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Abstract

The goal of augmentedreality is to insertvirtual objectsinto real video sequences.
Thispapershows thatby incorporatingimage-basedgeometricconstraintsover mul-
tiple views, we improve on traditionaltechniqueswhich usepurely3D information.
The constraintsimposedarechosento directly target perceptualcues,importantto
thehumanvisualsystem,by whicherrorsin AR aremostreadilyperceived. Imposi-
tionof theconstraintsisachievedbyconstrainedmaximum-likelihoodestimation,and
blendsprojective,affineandEuclideangeometryasappropriatein differentcases.We
introducea numberof examplesof augmentedreality tasks,show how image-based
constraintscanbe incorporatedinto current3D-basedsystems,anddemonstratethe
improvementsconferred.
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1 Intr oduction

Theobjectiveof augmentedreality (AR) is to addvirtual objectsto realvideosequences,
allowing computer-generatedimageryto beoverlaidon thevideoin sucha mannerasto
appearpart of the viewed 3D scene.Applicationsincludecomputer-aidedsurgery [7],
robot teleoperation[11], andspecialeffectsfor thefilm andbroadcastindustries[6, 20,
12]. Thispaperconcentrateson theparticularapplicationof videopost-production.

Augmentationfor specialeffects (or compositing) has traditionally beendone by
skilled animators,painting2D imagesonto eachplateof film. This techniqueensures
that thefinal compositeis visually credible,but is enormouslyexpensive,andis limited
to relatively simpleeffectsevenfor expertanimators.

More recently, computergraphicshasdrivenanapproachin which theworld is mod-
elledin 3D,andthenthecamerais computedfor eachframein thesequence[22]. Graph-
ical modelscanthenbe renderedfrom the samesequenceof viewpointsastheoriginal
footage,giving theimpressionthatthevirtual objectsarerigidly attachedto thestructure
in thescene.Furthermore,recentadvancesin structureandmotionrecoveryhaveenabled
the3D structureandcamerasfor eachframeto berecoveredautomaticallydirectly from
theimagesequence[1, 2, 5, 14, 15, 21].

However, althoughthe cameramotion can be recoveredto sub-pixel accuracy, the
registrationaccuracy of theaugmentationmustequalor surpassthis. Theerrorsresulting
from inaccurateregistrationfall into two maincategories:a high-frequency (framerate)
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jitter, andlow-frequency drift. Evenif jitter is of theorderof tenthsof pixels,a tasksuch
asline extrapolation( � 3) amplifiesthe error to levels which causethe augmentationto
visibly wobblein thecompositedsequence.Drift is unacceptablebecauseof thehuman
visualsystem’shighsensitivity toperceptualcuessuchasmotionparallaxandparallelism,
exposingeven sub-pixel discrepanciesin the final output. At a basic level, drift is a
problemof temporalextrapolation—geometryis predictedwell in theframesfrom which
it wasestimated,but thepredictiondegradesfor extrapolationintootherframes.However,
althoughthefeaturemaynotbedetectablein the“f ar” images,its positionmaybeinferred
by humanobserversusingothercues(for example,a nearbyparallel line in � 3.1), and
errorsin extrapolationwill beobserved.

In the post-productionindustry, correctingthesedeficienciesrequiresmanualinter-
ventionafterwardsto fine-tunethe registration. Thenovelty in this paperis thatwe ex-
plicitly incorporateimageandsceneconstraintsinto thegeometryestimationandachieve
perceptuallyperfectresultsautomatically. The key to the approachis that the percep-
tual cuesby which humanobserversdiscernerrorsin theaugmentationaretargettedand
incorporatedinto thegeometryestimationandrenderingprocesses.

(a)

(b)

(c)

(d)

Figure1: Typical AR tasks: (a) Five frames (between frames 70 and 220) from the Wilshire
sequence. The images are �����
	���
��� pixels. (b) Planeaugmentationwith occlusion—the
‘Cowdays’ logo is added to the far building and occluded by the sides of the foreground
Wilshire building. (c) Planeextrapolation—the sides of the foreground “One Wilshire” build-
ing are extended. (d) 3D augmentation—an extra storey “Two Wilshire” is added to the top
of the Wilshire building.
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1.1 Overview

Threebasictypesof insertionAR taskswill beconsidered,imposingprogressively more
complex requirementson thetrackingandestimationalgorithms.

1. Augmentationof a planar surface: This is thesimplestcase—onlyasingleplane
needbeconsidered,andthecomputationaltaskis to determinea 2D homography.
If theplaneis not a foregroundplane,occlusionboundariesmustbeidentifiedand
tracked.

2. Augmentationof connectedplanes: To augmenta pair of connectedplanes,it is
perceptuallyimportantthattheline of intersectionbeaccuratelylocated.However,
for imageprocessingreasons,this line is often impossibleto track throughmuch
of the sequence,so mustbe extrapolatedfrom a small numberof closely-spaced
views.

3. 3D Augmentation. In orderto introducea 3D objectinto thescene,the3D loca-
tionsof somereferencepointsmustbedetermined.Againthismayonly bepossible
overa shortbaseline,causingdrift in theaugmentationif not corrected.

Figure1 shows typical examplesof thesetechniquesappliedto a sequenceof �����
imagesof skyscrapersin Los Angeles,viewedwith a moving cameramountedon a heli-
copter. Camerapositionsfor eachframearecomputedautomatically, togetherwith corre-
spondinginterestpointsusingthemethoddescribedin [5]. Thesequenceprovidesseveral
thousand3D points,with RMS imagereprojectionerror of ����� pixels. In the following
sectionswego througheachof theseexamplesin detail.

2 Example I: Planar surfaceaugmentation

Theobjectivehereis to superimposeanimageontoa targetplanein thescene.
The mapbetweenplanesin perspective imagesis a planarhomography� (a plane

projectivetransformation).We will requirethemapbetweentheplaneof theaugmenting
patternandthe sceneplanein eachframeof the sequence.Equivalently this mapmay
becomputedasthemapfrom theaugmentationpatternto thesceneplanein oneframe,
composedwith theinter-imagehomographyof thesceneplanebetweenthis frameandall
othersin thesequence.We exploretwo waysof computingthis inter-imagehomography
inducedby thetargetplane,onelocalandoneglobal.

Method 1: A purely 2D approachis to track imagefeatures,suchaslines or interest
pointsandcomputethehomographiesdirectlyby leastsquaresfitting. Thehomographies
arethenoptimallyestimatedby bundleadjustment(seebelow).

Method 2: A moreglobal approachis to imposethe global sceneconstraintthat all
the tracked featuresarecoplanar. Thehomographiesarecomputedby identifying a 3D
plane,andprojectingit via theprecomputedcameramatrices.Supposethe ����� camera
matricesfor eachview are �� �!#" $� &%('*),+ , thenif �*-.!/"102%435+ andtheplaneis definedby
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687:9 !;� with 6<7 !/" = 7?> + thenthehomographyinducedby theplanebetweenviews@
and > is [17]

�  !A$  CB '  = 7 (1)

The parametersof the planeareestimatedby least-squaresfitting to the samefeatures
usedto trackin method1, andthenby constrainedbundleadjustment.

2.1 Implementation

Theimplementationof bothof theabovemethodsdependsmainlyon threetechnologies:
bundleadjustment,geometricallyconstrainedoptimizationandline tracking.Thesewill
alsobecentralto themorecomplex estimationprocedureslaterin thepaper.

2.1.1 Bundle Adjustment

Bundleadjustment[9, 19] is usedto optimallyestimategeometricrelationsovermultiple
views,for examplethehomographyusedin method1 above. It is anonlinearleastsquares
techniquewhich givesthe maximumlikelihoodestimateunderthe assumptionthat the
errorsin themeasured2D pointsareGaussian.

We wish to estimatehomographymatrices D�  for eachview andideal2D points DE )
suchthat the reprojectionerror to the measuredimagepoints E  ) is minimized. This
correspondsto minimizing thecostfunction

FHGJIKL4MON KPRQ
S
)T 
UWVYX D�  DE )[Z E  )]\

where
U^X E Z(_ \ is theEuclideanimagedistancebetweentwo points E and _ , anddistances

areincludedfor every view in which thereis a correspondence.In this casethenumber
of parametersthat mustbe estimatedis `�acbd�Re for a views (8 for eachhomography
matrix)and e 2D points.

2.1.2 Err or metric for line segments

If linesegment(asopposedtopoint)featuresaretracked,thentheerrormetricis modified.
The ideal line is againparametrizedby 2 degreesof freedom,andthe error is the sum
of squaresof perpendiculardistancesbetweenthe detectedline segmentendpointsand
the infinite 2D line [16]. This providesa reasonableapproximationto the Mahalanobis
distanceat significantlyreducedcomputationalcost.

2.1.3 Geometrically constrainedoptimization

Becausebundleadjustmentexplicitly parametrizesthe geometricrelations,it is just as
readily applied to the geometricallyconstrainedproblem in method2. In this case,
the constraintis that the imagefeaturesarecoplanarin 3D. This is ensuredsimply by

parametrizingtheplaneby the3 d.o.f.of = , sothateachhomographyD�  is a functionof�� and= asin (1). Again,each2Dpointonthe3D planehas2 parameters,sothatthetotal
numberof unknownsis �fbg�Re . This useof constrainedoptimizationfeaturesthrough-
out therestof this paper, whereimageerrorswill beminimizedoversomeparametrized
geometricmodel.
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2.1.4 Line tracking

Both thetechniquesdiscussedabove for computingplanarhomographiesrequirefeature
correspondencesovermany frames.A parametrizedtracker [3, 8, 10] is usedto automat-
ically determinethepositionsof 2D line segmentsin theimagesequence.An estimateof
theline configurationin someimagecoordinateframeis usedbothto predictthelocation
of the lines in thenext frame,andin therejectionof outliersgeneratedby thedetection
process.Thisestimateis initialisedby edgedetectionandline segmentfitting in theview
closestto a fronto-parallelview of theplane.

In its simplestform, eachline is parametrizedby its 2 degreesof freedom.For con-
strainedestimation,though,a moregeneralform is used,wherean arbitrarycollection
of 2D linesis parametrizedby someuser-specifiedmodel.For example,a singletracked
line mightbeconstrainedto passthroughavanishingpoint,sothatit hasonly onedegree
of freedom;or a collectionof linesmaybeparametrizedby a singlehomography.

2.2 Comparison

In comparingthetwo methodsfor planeaugmentation,we canimmediatelymake some
qualitativeobservations.

Method2 mustbe usedin imageswhereno featurescan be detectedon the target
plane—forexample,if the planeis temporarilyoccluded,or when it is foreshortened
prior to goingout of shot. Also, planetrackingrequiresfewer 2D featuresto definethe
plane. In figure 3, this provesvery important,as the only reliable2D featureson the
lower half of thebuilding area setof parallellines,which areinsufficient to determinea
homographyusingmethod1.

However, it is clearthathomographiescalculatedby method1 will moreaccurately
fit thetrackedfeatures,sincein method2 we imposeanadditionalconstraintthattheho-
mographiesmustbeconsistentwith thegivencameraprojectionmatrices.Consequently,
the resultsof method2 are limited by the accuracy of the suppliedcameraprojection
matrices.Figure2ashows thedifferencein accuracy of thetwo techniques.

On theotherhand,method1 mayworsentheresultsif the tracked2D featureshave
correlatederrors. For example,on the front wall of the Wilshire building, the vertical
edgescorrespondin later framesto shadows castby thewall on thewindows. Tracking
thesefeaturesresultsin a low-frequency drift which producesa large movementof the
augmentingsurface.Manuallydeletingtheoffendingfeaturesis simple,andresultsin a
greatlyimprovedtrack,but anautomaticmethodwouldbepreferable.

2.3 Occlusion

If theplaneto beaugmentedis nota foregroundplane,it is importantthattheaugmenting
patternbe correctlyoccludedby foregroundobjects. In the casewherethe foreground
objectshave straightedges,the 2D line tracker is usedto locatethe occludingedgein
eachimage.Simplyexcludingpixelsontheoccludedsideof theline resultsin thecorrect
occlusion(Figure3).
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Figure2: (a) Reprojection error (RMS in pixels) for planar homography estimation (near-
side plane of “One Wilshire”). Method 1 (solid) estimates 8 d.o.f. of H for each frame.
Method 2 (dashed) estimates the 3 d.o.f. of the plane h over the whole sequence and
therefore results in a larger error. The method 1 error increases slowly through the 100
frames as the image noise increases, while the method 2 error varies from frame to frame
as the relative quality of the i matrices changes. (b) “Super-resolution” textureextraction:
The left image shows a single frame warped into canonical position; the right image shows
the texture averaged from all images of the surface, after method 1 has registered them
into the canonical frame.

3 Example II: Connectedplaneaugmentation

In this example, the prototypicaltask is to extend the sidesof one of the foreground
buildings in the sequencevertically. This is achieved by extrapolatingspatiallythe 3D
lineswhich definethesidesof thebuilding. This alsoinvolvesa temporalextrapolation,
asthe threevisible lines arereliably detectablein only a subsetof the completesetof
frames,but mustappearrigidly fixedin all framesof thesequence.

In this case,thevisualcuewhichmosttellingly revealsany inaccuracy is parallelism
betweenthe re-renderedwalls of the building andotherverticalsin the scene. There-

Figure3: Insertion with occlusion: The “Cowdays” logo added to the far building is correctly
occluded by the foreground “One Wilshire” building. The homography for augmentation is
computed using method 2, as there are too few features on the building to use method 1.
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Fitting accuracy (Frame210) Extrapolationaccuracy (Frame100)

Fit Parallel Fit Parallel

Figure4: Augmentation with parallelism constraints. “Fit”: 3D line fitted to image tracks
from frames 190–230. “Parallel”: 3D line from the constraint that all verticals must share
an intersection point. In frame 210, “Fit” is more accurate, because this is in the middle of
the set of frames from which the line was estimated. Extrapolating back in time to frame
100, however, shows that the line is more accurately estimated over the sequence as a
whole by using “Parallel”.

fore, we instantiatethe3D linessothat they areconstrainedto beparallel. In projective
geometry, this is equivalentto sayingthat the lines arecoincidentat a point in 3-space.
Furthermore,in thiscase,thelinesareparallelto severalotherverticallinesin thescene,
soall cancontributeto computationof theverticalintersectionpoint.

3.1 Comparison

Figure4 shows the reprojected3D lines with andwithout theparallelismconstraint.In
particular, the line on thenearcornerof thebuilding, which is detectedonly in extreme
framesof the sequence,is morereliably estimatedover the whole sequencewhencon-
strainedto beparallelto morereliablydetectedlines.

3.2 Implementation

Theconstraintthatthethreeverticaledgesof thebuildingareparallelis implementedover
multipleviews asfollows. We requirethatthelinesin 3-spaceintersectin a singlepoint.
For e vertical lines in 3-space,this reducesthe estimationfrom �Ye degreesof freedom
(four for each3D line) to �.bg��e , threefor the intersectionpoint andtwo for eachline.
The specificparametrizationusedrepresentseach3D line by two points: the common
intersectionpoint,andapointonanarbitraryreferenceplane(2 d.o.f.perline). Then,the
intersectionpoint and3D lines areestimatedby minimizing reprojectionerror ( � 2.1.2)
overall views.

In order to extend the building, a texture imageis computedby averagingthe im-
agesof thetrackedplaneovermany views,resultingin a “super-resolution”texturemap.
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Figure2b shows an examplefrom the front wall of the building. Manuallyediting this
texturemapto addrows of windows givesthe texture that is usedfor thefinal resultin
figure1c. Again,becauseall theparallellinesin thesceneareusedto definethevertical,
the difficult spatial extrapolationneededto ensurethat the top of the building doesnot
wobbleis solved.

4 Example III: 3D Augmentation

As afinal example,weconsidertheaugmentationof a 3D scenewith a3D object.In this
example,wewish to adda 3D box to theroof of theWilshirebuilding. In orderto doso,
werequirea3D coordinatesystemwhichhasits origin in someknownpositionrelativeto
theroof, sayacorner, andwhoseaxesareparallelto thebuilding sidesandto thevertical.

The traditionalway of doing this is to manuallyselectsomespatialfeatureson the
target object in two widely spacedviews, andusetheseto solve for the 3D coordinate
transformationwhich alignsa Euclideancoordinatesystemwith the target. Given three
perpendicular3D lineswhich areidentifiedover two widely separatedviews, anda ref-
erencepoint on theintersectionof two of the lines,we solve for theEuclideantransfor-
mationthatmapsthereferencepoint to theorigin andalignsthelineswith thecoordinate
axes.

A secondmethodis to defineanaffine coordinatesystem[13, 14], andrepresentthe
virtual objectin thatframe.In [14] theaffinecoordinatesareobtainedby trackingmarkers
placedin thescene,anda parallelprojectionapproximationis used.In this work, there
is no suchapproximation:we usea perspectivecameraandtrackthevanishingpointsof
threesetsof parallellines.The3D intersectionpointsof theline bundlesareestimatedas
in � 3.2. Usingthethreeaffinedirectionsj we canrectify thecameramatricesto anaffine
systemwith respectto thechosendirections.

Figure 5a is a wireframedetail of 3D augmentationresultingfrom this technique.
In this instance,vertical lines insertedinto the sceneappearto drift relative to image
features,this drift beingdueto errorin thecomputedpositionof thecorrespondinghori-
zontaldirection.Thiserrorarisesbecausethedirectionis nearto thebaselineconnecting
the cameras,so the2D lines which intersectits vanishingpoint in any particularimage
provide only a weakconstrainton its 3D position. However, not all imageconstraints
have beenenforced—the3D lines arealsoknown to becoplanarwith the vertical lines
on thefront of thebuilding, sothe3D directionmustalsobeso.Minimizing theposition
of thevanishingpoint subjectto the constraintthat it is coplanarwith the vertical lines
removesthedrift, asshown in figure5b.

An exampleof suchan augmentation,wherea secondstorey is addedto the fore-
groundbuilding is shown in figure 1d. The two methodsof estimationshow the ad-
vantageof usingall theavailableconstraints.In the line bundlemethodthe situationis
near-degenerateanda poorestimateof thedirectionis obtained,however if planarityis
alsoimposedtheestimationis not degenerate.Of course,many sequenceswill not pro-
vide suchrich geometry, but mostallow the extractionof oneor two directions,which
canbeincorporatedsimilarly.k

A direction is a 3D point on the planeat infinity [18], its homogeneouscoordinatesare l X m Y m Z mon]p . Its
projectioninto animageis thevanishingpointof that3D direction.
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(a) (b)

Figure5: 3D augmentation: detail from Wilshire roof. (a) Unconstrained estimation of the
horizontal direction. (b) Horizontal direction constrained to be coplanar with other lines on
front face.

4.1 Implementation

Estimationof thescenedirectionsinvolvesessentiallythesametechniquesastheestima-
tion of parallellinesabove. In this case,we usetheestimateddirectionsratherthanthe
linesthemselves.Giventhreedirectionsanda referencepoint correspondingto a corner
of the building, a projective transformationof 3-spaceis chosenwhich mapsthe direc-
tionsto theX, Y andZ directions,andthereferencepointto theorigin. Thenthe3D model
is constructedin thiscoordinatesystemandreprojectedinto theoriginal images.

5 Discussion

This paperhaspresenteda novel paradigmfor theexecutionof augmentedreality tasks.
The key conceptis that augmentationcan be improved by incorporatingimage-based
cues,muchascurrentmanualanimatorsperforma2D “touch-up”after3D augmentation,
but automatically.

The techniqueis not applicablein every situation,asit needsfeatureswhich canbe
tracked to lock down theaugmentation.However, it is preciselyon sceneswheremany
suchfeaturesexist (suchastheexamplesequence)thaterroneousaugmentationis most
visible. Similarly, wehavenotmadespecialreferenceto psychophysicsin orderto deter-
minewhich featuresaremostperceptuallyrelevant.

The paperhasalsoshown that it is relatively easyto identify candidateconstraints
thatcanbeapplied,but hasmadenoattemptto taxonomizetheseconstraintsor to build a
generalconstraintresolutionsystem[4]. Thismeansthattheparadigmcurrentlyrequires
mathematicalexpertiseon thepartof theuser. However thebasictypesof constraintare
limited: coincidenceof 2D points,parallelism,tangency etc;sothatonly a smallnumber
of estimatorsneedto beimplementedbeforethetechniqueis moregenerallyavailable.
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