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Abstract—Automatic polyp detection has been shown to be 
difficult due to various polyp-like structures in the colon and high 

interclass variations in polyp size, color, shape, and texture. An 
efficient method should not only have a high correct detection rate 

(high sensitivity) but also a low false detection rate (high precision 
and specificity). The state-of- the-art detection methods include 
convolutional neural net- works (CNN). However, CNNs have 
shown to be vulnerable to small perturbations and noise; they 

sometimes miss the same polyp appearing in neighboring frames 
and produce a high number of false positives. We aim to tackle this 
prob- lem and improve the overall performance of the CNN-based 

object detectors for polyp detection in colonoscopy videos. Our 
method consists of two stages: a region of interest (RoI) 

proposal by CNN-based object detector networks and a false 
positive (FP) reduction unit. The FP reduction unit exploits the 

temporal dependencies among image frames in video by 
integrating the bidirectional temporal informa- tion obtained by 

RoIs in a set of consecutive frames. This information is used to 
make the final decision. The exper- imental results show that 

the bidirectional temporal infor- mation has been helpful in 
estimating polyp positions and accurately predict the FPs. This 

provides an overall perfor- mance improvement in terms of 
sensitivity, precision, and 
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specificity compared to conventional false positive learn- ing 
method, and thus achieves the state-of-the-art results on the 
CVC-ClinicVideoDB video data set. 

Index Terms—Colonoscopy, polyp detection, computer aided 
diagnosis, convolutional neural networks, false posi- tive learning, 
transfer learning, temporal information. 

 
 

I. INTRODUCTION 

OLORECTAL cancer (CRC) is the second leading cause 
of cancer-related death in the USA for both genders, and 

its incidence increases, with 140,250 new cases and 50,630 
deaths expected by 2018 [1]. Most colorectal cancers are ade- 
nocarcinomas developing from adenomatous polyps. Although 
adenomatous polyps are initially benign, they might become ma- 
lignant over time if left untreated [2]. Colonoscopy is a widely 
used technique for screening and preventing polyps from be- 
coming cancerous [3]. However, it is dependent on highly skilled 
endoscopists, and recent clinical studies have shown that 22%– 
28% of polyps are missed in patients undergoing colonoscopy 
[4]. A missed polyp can lead to late diagnosis of colon cancer 
and survival rates become as low as 10% [5]. 

Over several decades, methods based on computer vision and 
machine learning have been proposed for automatic detection 
of polyps [6]–[23]. In early studies, hand-craft features, such 
as color wavelet, texture, Haar, histogram of oriented gradients 
(HoG) and local binary pattern (LBP) were investigated [6]– 
[11]. More sophisticated algorithms were proposed in [12] and 
[13]; where valley information based on polyp appearance was 
used in the former and edge shape and context information were 
used in the later. These feature patterns are frequently similar in 
polyp and polyp-like normal structures, resulting in decreased 
performance. 

Convolutional neural networks (CNN) lead to promising re- 
sults in polyp detection [14]–[21]. In the MICCAI 2015 polyp 
detection challenge, CNN features outperformed hand-craft fea- 
tures [14]. However, several recent studies demonstrated that 
deep neural networks (DNN) including CNNs are highly vul- 
nerable to perturbations and noise [24]–[29]. Jiawei Su et al. 

[29] have shown that current DNNs are even vulnerable to small 
attacks and can easily be fooled just by adding relatively small 
perturbations (one pixel) to the input image. Because of this 
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vulnerability, CNN networks might be fooled by the specular 
highlights and small changes in polyp (other elements) struc- 
tures appearance in colonoscopy. This means the CNN networks 
can easily miss the same polyp appearing in a sequence of neigh- 
boring frames and produce unstable detection output contami- 
nated with a high number of FPs. To the best of our knowledge, 
this paper is the first to study the CNN’ s vulnerability in polyp 
detection. 

In this paper, we aim to tackle these problems by exploit- 
ing the temporal dependencies among consecutive frames. We 
propose a method to find and remove FPs and detect intra- 
frame missed polyps based on the consecutive detection outputs 
of CNN-based detectors. The hypothesis is that neighboring 
frames should contain the same polyp, and the detected polyp 
should be closely similar in position and size. We use a dataset 
of still images for training, and make the trained models useful 
for polyp detection in colonoscopy video. At inference time, 
we can take advantage of the multitude of detected bounding 
boxes in consecutive frames. We use bidirectional temporal co- 
herence information from the detection outputs to make the final 
decision for the current frame. This approach can improve the 
sensitivity, precision, and specificity of the detector models. We 
can also stabilize the detection outputs by forcing the system 
to find the missed polyps and refine the detection coordinates 
within a sequence of frames. We demonstrate that the proposed 
method outperforms the results obtained with state-of-the-art 
object detectors, i.e., faster region based convolutional neural 
network (Faster R-CNN) [30] and single shot multibox detector 
(SSD) [31]. 

 

II. RELATED WORK 

From a clinical perspective, performance of a given computer- 
aided diagnostic tool should have high sensitivity (high true 
positive rate, TPR) and high precision (low false positive rate, 
FPR) [23]. Low sensitivity is unacceptable since it gives a 
false sense of security while low precision affects the psyche 
of the patients and annoys clinicians. In the large bowel, there 
are various structures of normal mucosa that closely resemble 
the characteristics of polyps. This makes polyp detection task 
more difficult for both CNN and hand-craft features, resulting 
in the present low precision rates. 

Recently, Dou et al. [32] proposed false positive learning 
(FP learning) to reduce FPs and increase precision in Cerebral 
Microbleeds detection from MR images. Shin et al. [15] and 
Angermann et al. [22] adapted FP learning for polyp detection. 
Although FP models can successfully decrease FPs, true positive 
(TP) detections decline [15], [22]. In this work, we propose an 
efficient FP reduction method which improve both sensitivity 
and precision. Later, we also validate our method on FP models 
for further performance improvement. 

Another active method to reduce FPs is to include time in- 
formation during detection in video sequences [11], [16]–[18], 
[23]. Sun et al. [11] used the previous and the future frames to 
model the probabilistic dependence between adjacent frames us- 
ing conditional random fields with the Markov property. Anger- 
mann et al. [23] extended their previous work [22] by adding 
a spatio-temporal module to incorporate temporal coherence 

information from the two previous frames. Tajbakhsh et al. 

[16] and Zhang et al. [17] incorporated information from the 
detection in the previous frames to enhance the polyp detec- 
tion performance. In [17], an online object tracker was used 
in combination with YOLO [33] to increase sensitivity, more 
TPs. This model failed to increase both precision and speci- 
ficity due to the introduction of new FPs. The main reason 
for these new FPs could be the lack of temporal information 
fed into the tracker as it relies on previous frames only. When 
FPs are used to initialize the tracker more FPs will be gener- 
ated. Yu et al. [18] proposed a 3D fully convolutional network 
(FCN) framework to learn spatio-temporal features from vol- 
umetric data and generate more discriminative features [34]. 
They extracted a video clip of 16 frames (7 previous and 8 
future frames) to train an offline and online 3D-FCNs. This 
method is computationally expensive and needs 1.23 sec (be- 
side the delay from using future frames) to generate the final 
decision. Unlike [17] and [18], we use 3D temporal information 
extracted from a video clip after a 2D-CNN is applied to pro- 
vide RoIs for each frame. We use temporal dependencies among 
future and previous frames to more reliably filter out FPs and 
Keep TPs. 

 
III. METHODS 

The proposed system consists of two stages: a RoI proposal 
network stage, and FP reduction stage (see Fig. 1). In the first 
stage, a CNN based detector, e.g., Faster R-CNN and SSD, sug- 
gests multiple RoIs to the next stage. In the second stage, the 
proposed RoIs of the current frames are examined and catego- 
rized as TPs or FPs by considering the RoIs of some consecutive 
frames. 

 
A. The RoI Proposal Network 

The RoI Proposal Network is a CNN-based detector model 
able to propose a number of RoIs for the FP reduction unit. 
For each frame, the detector can generate up to 100 RoIs and 
sort them based on their confidence values in which the top 
one has the highest value. At test time, we control how many 
RoIs are considered for the next stage. There is a trade off 
between sensitivity and precision relative to the number of RoIs 
considered, i.e., a large number of RoIs causes higher sensitivity 
but lower precision. 

The RoI proposal network can be any CNN-based detec- 
tor model. In this study, we only consider Faster R-CNN [30] 
and SSD [31] architectures to investigate polyp detection per- 
formance improvement using our method. In fact, these two 
detector models can be utilized as a standalone model for auto- 
matic polyp detection. Both detector architectures are designed 
for object detection in a single independent frame, and have 
no mechanism to adapt temporal information during training 
and testing phases. They produce a high number of FPs and 
may miss the same polyp appearing in neighboring frames. In 
Section V, we will show the results of these detectors when 
used alone and compare them to the results obtained with our 
proposed method. 

In these detector models, a collection of boxes acting as an- 
chors are overlaid on the image at different spatial locations, 
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Fig. 1. Procedure of the proposed system. The CNN-based proposal network provides RoIs to the FP reduction unit. The FP reduction unit performs the 
following: 1) classifies the proposed RoIs as TPs or FPs using a similarity measure to find temporal coherence among a set of consecutive frames, 2) 
estimates the location of missed polyps using interpolation. 

 
scales, and aspect ratios [30], [31]. Then, a model is trained to 
predict: category scores for each anchor, and a continuous box 
offset by which the anchor needs to be shifted to fit the ground- 
truth bounding box. The objective loss function is a combined 
loss of classification and regression losses. For each anchor a, 
the best matching ground-truth box b will be found. If there is 
such a match, anchor a acts as a positive anchor, and we assign 
a class label ya ∈ {1, 2, ...K}, and a vector (φ(ba ; a)) encoding 
box b with respect to anchor a. If there is no match, anchor a acts 
as a negative sample, and the class label is set to ya = 0. The loss 
for each anchor a, then consists of two losses: location-based 
loss floc for the predicted box floc (I; a, θ), classification loss 
fcls for the predicted class fcls (I; a, θ), where I is the image 
and θ is the model parameter, the overall loss function to train 
a model is to minimize a weighted sum of the localization loss 
and the classification loss over a mini-batch of size m 

box classifier network. Both networks share a common set of 
convolutional layers to reduce the marginal cost for computing 
region proposals. The RPN utilizes feature maps at one of the 
intermediate layers (usually the last convolutional layer) of the 
CNN feature extractor network to generate class-agnostic box 
proposals, each with an objectness confidence value. The pro- 
posed boxes are a grid of anchors titled in different aspect ratios 
and scales. The box classifier network uses these anchors to 
crop features from the same intermediate feature map and feeds 
the cropped features to the remainder of the network in order to 
predict object categories and offsets in bounding box locations. 
The loss functions for both stages take the form of Eq. (1). 

The RPN can benefit from deeper and more expressive fea- 
tures because it learns to propose regions from the training 
data [30]. By using Faster R-CNN, we aim to design a highly 
accurate polyp detector and show that its results can be im- 
proved with the proposed method. We decide to use a very deep 
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(
φ(ba ; a) network—Inception Resent [36]—as the feature extractor net- 

work. The RPN generates 300 proposals from the “Mixed_6a” 
layer including its associated residual layers. Unlike [30], we 

— floc (I; a, θ)
\ 
+ β ·  fcls 

(
ya , fcls (I; a, θ)

\
, (1) 

where N is the number of anchors for each frame, and α, β are 
weights balancing the localization and the classification loss. 
For both models, we use the Smooth L1 loss [35] for computing 
the localization loss between the predicted box and the ground- 
truth box. The classification loss is the softmax loss. 

1) Faster R-CNN: To detect objects in an image, Faster R- 
CNN uses two stages: region proposal network (RPN), and a 

use “crop_and_resize” operation in Tensorflow instead of RoI 
pooling [37]. During training, the anchors are classified as either 
negative or positive samples based on Jaccard overlap matching. 
Shin et al. [15] evaluated different Jaccord overlap thresholds 
for polyp detection and recommended 0.3 and 0.6 to choose 
negative and positive samples respectively. After the matching 
step, most of the anchors are negatives. Instead of using all 
the negative samples, we set the ratio between negatives and 
positives to 1:1 to avoid imbalance training. In Faster R-CNN, 
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models are trained on image resized to M on the shorter edge. 
For our polyp model, we set M to be the height of the training 
images to keep the original image size. 

2) SSD: Unlike Faster R-CNN, The SSD approach uses a 
single deep neural network for object detection in an image and 
eliminates the need for an extra proposal generation network. 
This makes SSD a much faster object detector than Faster R- 
CNN. To handle objects of various sizes and achieve higher 
detection accuracy, SSD evaluates a fixed set of anchor boxes 
of different aspect ratios at multiple feature maps from multiple 
layers to predict the category scores and box offset. In SSD, the 
input images are always re-sized to M × M pixel resolutions. 
Image resolution is a way to trade accuracy for speed—higher 
resolution means higher accuracy, but lower detection speed. 
We set M = 600 for our SSD model. The purpose of using SSD 
in our study is to show that the proposed method is effective for 
less accurate object detector. We choose MobileNet [38] as the 
CNN feature extractor, and follow the methodology in [31] to 
generate anchors by selecting the topmost convolutional feature 
maps (conv−1 and conv−3) and appending four additional con- 
volutional layers with spatial decaying resolution with depths 
512, 256, 256, 128 respectively. We use ReLU6 in all layers ex- 
cept the softmax layer. During training, we treat those anchors 
with Jaccard overlap higher than a threshold of 0.5 as positive 
anchors and the rest as negatives. We set the ratio between neg- 
atives and positives to 3:1, recommended ratio by the original 
paper [31]. 

 

B. FP Reduction Unit 

In the FP reduction unit, we identify detection irregularities 
and outliers in a video sequence. When a polyp appears in a 
sequence of frames, its location slightly changes following a 
motion estimating the movement in the sequence. Irregularities 
and outliers are those detection outputs that do not smoothly 
follow such a movement. More specifically, outliers are those 
outputs that appear to be FPs among a set of TPs (see Fig. 3b). 
The proposed RoIs in a number of consecutive frames are passed 
through another process to find irregular detection outputs be- 

 

 
 

Fig. 2.    Coordinates of a RoI used as features. 
 
 

 
provided for a set of consecutive frames. Only those RoIs with 
high similarity measure (smaller than a distance threshold value) 
should be considered to generate the final detection output in the 
current frame, and those RoIs without spatio-temporal overlap 
(higher than the distance threshold value) should be eliminated 
for the final decision. 

We propose an algorithm shown in Fig. 1 in which some 
previous and future frames are considered in order to choose the 
proposed RoIs as true detection outputs in the current frame— 
the frame in the middle. The question regarding how many 
frames need to be considered is an optimization problem that we 
will discuss later in Section IV-E. The optimal number is 15 (see 
Fig. 5) consecutive frames i.e., 7 previous frames and 7 future 
frames. The CNN-based detector in the first stage continuously 
generates RoIs for the last frame. We store the features of each 
RoI of the 15 consecutive frames in a matrix called c. The size 
of matrix c depends on the number of RoIs (r) provided per 
frame and the number of frames considered (f ). The matrix 
size is f × r × d where d is the dimension of the features, 8 in 
our case. 

For the sake of simplicity, we only show the contents of matrix 
c when one RoI per frame is provided. This will allow us to write 
the mathematical equations in simpler forms. Matrix c for one 
RoI per frame can then be expressed as follows 

c = [ct−7 ......ct−2 ct−1 
c

tct+1 ct+2 .....ct+7 ]T , 
⎫

 ⎪⎪ ⎪⎬ fore the final decision is made for the RoIs in the current frame. ct+ n = [xt+ n t+ n t+ n t+ n t+ n t+ n t+ n t+ n 

We consider those detection irregularities and outliers as FPs. 
In case of an outlier, an action is taken to correct the detection. 

min   ymin   xmax  ymax  xc yc w h ], ⎪⎪ ⎪⎭ 

Therefore, the FP reduction unit comprises of two processes: 
a mechanism to detect FPs, and a mechanism to correct the 

n ∈ {−7, −6, ....., −2, −1, 0, 1, 2, ....., 6, 7}. 
(2) 

outliers denoting the missed polyps in the sequence. 
1) FP Detection Mechanism: To detect irregularities and 

outliers, we use the coordinates  provided by the RoI pro- 
posal network as features. Fig. 2 presents the coordinate points 

At an initial study, we used the Euclidean distance as the sim- 
ilarity metric, later we optimize the proposed model by evalu- 
ating several distance metrics. Using the Euclidean distance, 
the similarity between two RoIs of two consecutive frames 

of a proposed RoI used in this study to collect 8 features— 
xmin , ymin , xmax , ymax , xc , yc , w, and h. We use all these 

(ft
 and f t+1  ) is measured as follows 

I  
coordinate points to detect even small irregularities in the de- d2 : (ct , ct+1 ) ∗→ ||ct − ct+1 ||2  = 

   
(ct  − ct+1 )2 , 

tection outputs and refine them if they appear to be outliers 
(see Fig. 12a and Fig. 12c). To handle different frame sizes, we 
normalize the coordinate points by dividing them by the frame 
width and height. 

A distance metric (e.g., Euclidean distance) can be applied 
to compute the similarity measure between the features of RoIs 

i   i i 

ci ∈ {xmin , ymin , xmax , ymax , xc , yc , h, w} .  (3) 

Every time, the RoIs provided for the current frame ft are com- 
pared to the RoIs in the previous frame ft−1 and the future frame 
ft+1 . If the similarity measure for a particular RoI in either 



 

 

 
 

 
 

Fig. 3. A sequence of frames starting from frame 42 (top left frame) and ending 
at 56 (bottom right frame) shows a case where the same polyp is missed in 
frames 51 and 52. (a) detection results in the sequence (b) the normalized 
coordinates of the proposed RoIs in the sequence. In (b), The coordinates of 
frame 51 and 52 are two outliers compared to the other detected RoIs, and 
thus can be considered as FPs. 

 

 
direction is smaller than a threshold value, the flag correspond- 
ing to that RoI is set to 1. Otherwise, the corresponding flag is set 
to 0. The number of flags for each frame is equal to the number 
of RoIs provided by the CNN detector, therefore, the size of the 
flags matrix is f × r . The other frames in the set only need to 
be checked with one frame in one direction. For instance, 
frame ft+1 needs to be checked with frame ft+2 , and the cor- 
responding flags are set based on the similarity measure. If no 
similar RoI found in frame ft+2 , frame ft+1 will be checked 
with frame ft+3 , and all the corresponding flags for frame ft+2 

will be set to 0. This checking process continues until the last 
two frames in both directions are reached. 

 
 

 

 
 

 
 

Fig. 4. Truncated Precision-Sensitivity curve showing the effect of 
changing avg−th on the performance. The numbers shown above the curve are 
the avg−th values. 0.5 is chosen to keep the balance between precision and 
sensitivity. 

 
 

 

 
 

 
 

Fig. 5.  F1-score when the number of frames (nf ) is varied. F1-score is 
maximum when nf is 15 frames. 

 
 

Once all the flags are set, we classify each RoI provided for the 
current frame. If the number of flags with value 1 accumulated 
for a specific RoI is less than 7, this RoI is classified as FP, 
and thus it will be deleted. In other words, we only pick those 
RoIs overlapped with at least 7 RoIs in a set of 15 consecutive 
frames. Furthermore, we calculate the average confidence for the 
overlapped RoIs and only classify those RoIs with an average 
confidence (avg−th) ≥ 0.5 (an optimized value, see Fig. 4) as 
TPs. In this way, we have less FPs and keep only those RoIs that 
repeat in more than 7 consecutive frames with high confidence 
values in the final output. 

2) Correction Mechanism: Since the CNN detectors are vul- 
nerable to small variation, the same polyp might be missed in 
a couple of frames in a video sequence. Fig. 3a presents a case 
where the same polyp is correctly detected by the CNN-based 
detector in most of the frames but missed in a couple of frames 
in the sequence (i.e., frame 51 and 52). In Fig. 3b, we can clearly 
see these outliers in the curves drawn from the eight coordinate 
points of the provided RoIs. 

When outliers are detected, the correction mechanism can 
be performed on future frames before they become the 
current frame in the sequence. In particular, we only ap- 
ply the correction mechanism when the missing occurs in 

frames ft+1 ,f t+2 ,f t+3 , or/and ft+4 . The other two important 
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conditions to apply the correction mechanism are: the number of 
flags with value 1 accumulated during the FP detection process 
for a specific RoI has to be larger than 7 (optimized number), 
and at least there is a RoI in the next frames coincident with 
RoIs in the previous frames. If all these conditions are met, we 
set the outlier data points to zeros in matrix c based on the flag 
sets. That means we will have missing points in the data points 
representing the coordinates of the RoIs in matrix c. Now we 
have a function that is only known at a discrete set of data points 
(ft+ n , ct+ n ). We can use interpolation to estimate the values 
of that function at frames of ft+ n not included in the data. An 
interpolation function I(ft+ n ) passes through the points of a 
discrete data set 

I(f t+ n ) = ct+ n . (4) 

Usually, we prefer a function that smoothly connects the data 
points. One possibility is to use the polynomial of the least 
degree that passes through all of the points. To find the missed 
polyps within inter-frames, we compute interpolation for each 
column in matrix c as a function of the frame number separately 
from each other using the Lagrange interpolation formula [39] 
as follows 

t+ j 

the system, we aimed to find the best hyper-parameters for both 
the RoI proposal networks and the FP reduction unit, and real- 
ize a generalized model for other unseen datasets. We used 5 
negative videos to evaluate and compare the specificity of our 
model and the existing FP model [15]. The remaining 5 negative 
videos were used for FP sample selection for the FP model. 

We used CVC-ClinicVideoDB dataset to evaluate the overall 
performance of the proposed model. This dataset comprises 
of 18 videos, each with a unique polyp that appears multiple 
times in the videos. The total number of frames in this dataset 
is 11954 frames whereas only 10025 frames are annotated as 
having polyps. The size of the frames is 768 × 576. This dataset 
aims to cover all different possible scenarios that a given support 
system should face, making it very useful for the overall system 
evaluation [23]. 

The ground-truth for all polyp frames in all three datasets is 
provided. All annotations have been reviewed and corrected by 
clinical experts. The ground-truth provided for CVC-CLINIC 
and ASU-Mayo Clinic is exact boundaries around the polyp 
parts in the frames, while the ground-truth for polyps in CVC- 
ClinicVideoDB dataset is an approximation, i.e, an ellipse is 
drawn around the polyps. 

I(f ) =     ct+ n   
n

 f − f 
f t+ n − f t+ j 

. (5) B. Evaluation Metrics 
n n (j /= n ) 

This results in a continuous and smoothed curve. This function 
can simply estimate the polyp position in the sequence, mainly 
due to the use of the future frames to estimate the location of 
missed polyps in inter-frames in the sequence. The confidence 
values for the new generated RoIs are also calculated using Eq. 
(5). We illustrate the proposed method in pseudocode shown in 
Algorithm 1 to summarize and describe the entire procedure. 

 
IV. EXPERIMENTAL SETUP 

A. Experimental Datasets 

We used three publicly available datasets, one still frame 
dataset, CVC-CLINIC [12] and two colonoscopy video datasets, 
ASU-Mayo Clinic [13] and CVC-ClinicVideoDB dataset [23]. 
We used each dataset for different purposes i.e., training, vali- 
dation and testing. In this way, the system will more likely be 
generalized because there is no any similar frames in the training 
and testing datasets. 

CVC-CLINIC was used for training the CNN detectors, i.e., 
Faster R-CNN and SSD. This dataset consists of 612 Standard 
Definition (SD) frames of 576 × 768 pixel resolutions. The 
frames are extracted from 31 different videos, each containing 
at least a unique polyp. 

ASU-Mayo Clinic is a set of 38 different and fully annotated 
videos. 20 videos are assigned for the training stage whereas 
18 videos for testing. The ground-truth of the 18 testing videos 
is not publicly available. Therefore, we only used the 20 train- 
ing videos, in which 10 videos are positive (with polyps) and 
the other 10 videos are negative (without polyps). We split the 
20 training videos into validation, training and test sets. We 
used the 10 positive videos for validating and tuning the hyper- 
parameters of the proposed method. By validating and tuning 

We use the common evaluation metrics of object detection 
to evaluate the performance of our polyp detection method. 
The output of the models is four coordinates (x, y, w, h) of 
the detected rectangular bounding boxes. Therefore, we define 
the term “polyp detection” as the process of finding the polyp 
location within a given frame. Based on that, the following 
parameters are defined as follows: 

True Positive (TP): True detection, the centroid of the detec- 
tion falls within the polyp boundary. In case of having multiple 
true detection outputs for the same polyp, we will only count 
one TP. 

True Negative (TN): True detection, no output detection for 
a frame without a polyp (negative frames). 

False Positive (FP): False detection, the centroid of the detec- 
tion falls outside the polyp boundary. In case of having multiple 
RoIs proposals, there can be more than one FP per frame. 

False Negative (FN): False detection, the polyp is not de- 
tected in a frame containing a polyp. 

Using these parameters, we can calculate the following met- 
rics to precisely evaluate the performance: 

Sensitivity: It is also called True Positive Rate (TPR) and 
Recall. It measures the proportion of actual polyps that are 
correctly detected 

Sensitivity (Sen) = 
TP 

100. (6) 
TP + FN  

Precision: It measures how precise the model at correctly lo- 
calizing a polyp within a frame 

P recision (Pre) = 
TP 

100. (7) 
TP + FP  

Specificity: It is also called True Negative Rate (TNR). It mea- 
sures the proportion of actual negative frames that are correctly 



 

 

 

Algorithm 1: Algorithmic Framework Describing the Basic 
Steps of the Proposed System. 

1: Input: video frames  
2: initialize matrix c ← 0 
3: for ft  = 1 to M do {M: no. of frames in a video} 
4:  if ft+7 ∈[1, 2, 3, 4, 5, 6] then {wait till f 1 becames ft } 

5: ct+7 ← RoIP roposalNetwork(f t+7 ) 
6:   else 

7: ct+7 ← RoIP roposalNetwork(f t+7 ) 
8: initialize matrix flagt ← 0 

9: cnext ← ct 

10: cprevious ← ct 

11: for i = 1 to 7 do 
12: if ||cnext − ct+ i ||2 � 0.65 then {future frames} 
13: flagt+ i ← 1 

14: cnext ← ct+ i 

15: end if 
16:  if ||cprevious − ct−i ||2 � 0.65 then {previous 

frames} 
17: flagt−i ← 1 

18: cprevious ← ct−i 

19: end if 
20: end for 
21: if sum(flag) < 7 then 
22:  ct  ← 0 {ct is considered as FP} 
23: else 

24: keep ct {ct is considered as TP} 
25: if flagt+1 = 0 and (flagt+2 , f lagt+3 or 

f algt+4 ) /= 0 then {Correction Mechanism} 
f −f t + j 

TABLE I 
AUGMENTATION STRATEGIES APPLIED TO ENLARGE THE DATASET 

 

 
 

detectors from overfitting and enlarge the training samples, we 
utilized different augmentation strategies. It is important to ap- 
ply the augmentation strategies by considering real colonoscopy 

scenarios and variations that a given system will face. In real 
colonoscopy recordings, polyps show large inter-class variation 
such as changes in colors, scales, and positions in addition to 
changes in viewpoints due to camera movement. To cover these 
variations, we applied not only image rotation and flipping but 
also zoom-in, zoom-out, and shearing. Table I presents all the 
augmentation techniques applied to enlarge the training dataset. 

The reason for having three zoom-out and only one zoom-in 
is that detection of small size polyps is more difficult compared 
to large size polyps. With this imbalance zooming, we can en- 
force the detectors to find small size polyps more efficiently. We 
excluded those polyps that disappeared after applying zoom-in. 
The total number of training samples became 18594 images 
after applying the augmentation methods presented in Table I. 

Even though the dataset is enlarged, it does not guarantee 
that the proposed model is prevented from overfitting and per- 
forms well in the test phase. The main reason is that the training 
dataset contains only 31 different unique polyps, and augmen- 
tation methods do not improve data distribution, they only lead 

26: I(f ) =    n c
t+ n     

n (j = n ) 
 

 

f t + n −f t + j to an image-level transformation through depth and scale. To 
27: end if 
28: end if 
29:   end if 
30:    for k = 0 to 6 do {shift matrix c to the left} 
31: ct−k −1 ← ct−k 

32: ct+ k  ← ct+ k +1  

33:   end for 
34: Output: ct (coordinates, confidence) 
35: end for 

 
 

classified 

overcome the lack of training data in medical applications, N. 
Tajbakhsh et al. [40] demonstrated that pre-trained CNN fea- 
ture extractors with proper fine-tuning can outperform training 
from scratch. We therefore used transfer learning by initializing 
weights of the CNN feature extractors with pre-trained mod- 
els. Both CNN feature extractors were trained on Microsoft’ 
s COCO (Common Objects in Context) dataset [41], using all 
80 K samples of “2014 train” and a subset from 32 K samples 
of “2014 val”, holding 8000 examples for validation [37]. 

We fine-tuned the pre-trained models using the augmented 
dataset. For Faster R-CNN, we used SGD with a momentum of 
0.9 and batch sizes of 1. We set the maximum number of epochs 

Specificity (Spec) = 
TN 

 
TN + FP  

× 100. (8) to 30 with the learning rate equal to 0.0001. For SSD, we used 
RMSProp [42] with a decay of 0.9 and batch sizes of 18. Since 

F1-score: It can be used to consider the balance between sensi- 
tivity and precision 

2 × Sensitivity × Precision 

the SSD converges slower than Faster R-CNN, we needed to 
take more epochs. We set the maximum number of epochs to 
300 with the learning rate of 0.002. 

F 1 − score (F 1) = Sensitivity + Precision 
× 100.

 
(9) 

 
D. False Positive Models 

From a clinical perspective, high precision is desirable, but 
C. Training the Detectors 

To train both CNN-based detectors, we used the CVC- 
CLINIC dataset. This dataset consists of 612 positive sam- 
ples (images with polyps). This low number of images is not 
sufficient to train deep neural networks [40]. To prevent the 

this is difficult in automatic polyp detection. There are various 
structures which closely resemble polyp characteristics [14], 
resulting in performance degradation especially in precision. 
Using only positive samples to train a detector model, nega- 
tive samples are selected from the background during training. 



 

 

i i 

 
To avoid imbalance training, only a portion of the background 
patches that have zero or small Jaccard overlap (< 0.5 for SSD, 
and < 0.3 for Faster R-CNN) with polyp masks will be consid- 
ered as negative samples [30], [31]. In this way, it is difficult to 

curve showing the effect of the changing avg−th. To compute 
the similarity measure between two RoIs from two neighboring 
frames (ft and ft+1 ), the formula for Canberra distance metric 
[43] can be defined as follows 

have exact bounding boxes around structures mimicking polyps, 
and the two polyp detector models do not efficiently learn how dCAD : (ct , ct+1 ) ∗→ 

 
 (ct − 

t 
ct+1 ) 

t+1  

 
. (11) 

the hard negative samples would look like [15], [22]. Therefore, 
they tend to generate many FPs (see the result in Section V). 

For comparison, we followed the procedure proposed by Shin 
et al. in [15] to collect strong FP samples and obtain the FP mod- 
els for our polyp detectors. We set the confidence threshold to 
99% and applied our two trained polyp detectors separately on 
5 negative videos from ASU-Mayo Clinic dataset. For Faster 
R-CNN model, we collected 654 images, and for SSD model, 
we collected 536 images. We further increased the number of 
negative samples by applying 5 rotations to the collected FP 
samples, generating 3924 FP samples for Faster R-CNN, and 
3216 FP samples for SSD. We enlarged the training dataset by 
combining the initial training samples (18594 positive samples) 
with these FP samples and their augmented ones. Using the en- 
larged dataset, we fine-tuned both polyp detectors to strengthen 
their detection capability and obtained their FP models. 

 
E. Parameter Optimization for the Proposed Model 

Before testing our models, we need to find a set of optimal pa- 
rameters such as the distance threshold value (dv), the number 
of consecutive frames (nf ) and the average confidence value 
(avg−th). A selection of the most effective distance metrics for 
our model can be considered as an optimization problem. We 
evaluate 8 commonly used distance metrics (dm) such as Eu- 
clidean, Manhattan, Chebyshev, Minkowski, Canberra, Cosine, 
Correlation and Chi-square. 

We define an optimization problem P as a function of the 
model parameters ω which is a function of dm, dv, nf and 
avg−th. Since we wish to improve sensitivity and precision, 
and keep a balance between them, we consider P to be F1-score 
of the system. Therefore, the goal is to maximize P on a given 
validation set (Svalid ) using a grid search on a fixed set of values 
for each parameter 

ω∗(dm, dv, nf, avg−th) = arg max P 
(
dm, dv, nf, 

ω 

avg−th, Svalid 

)
. (10) 

We used 10 positive videos of ASU-Mayo Clinic as the val- 
idation dataset (Svalid ). Each distance metric has a different 
domain of acceptable values. We performed small experiments 
over each distance metric to find its range of acceptable values 
and shrink the search domain. For each distance metric dm, we 
varied the distance value dv in increments of a small step size. 
Regarding how many consecutive frames nf should be consid- 
ered, we took 11 scenarios by changing nf from 5 to 25 frames 
in increments of 2. We let the RoI proposal network give one 
RoI per frame, and run this optimization problem. 

We obtained the Canberra metric with dv = 0.65, avg−th = 
0.5 and 15 consecutive frames as the optimal values for the 
purposed model. In Fig. 4, we show the precision-sensitivity 

i   
| ci | + | ci | 

Fig. 5 illustrates the effect of nf on F1-score. We used Can- 
berra metric with dv = 0.65, and only changed nf from 5 to 25 
frames in increments of 2. F1-score is maximum when nf = 15 
frames. 15 is a reasonable value to keep the balance between the 
sensitivity and precision. When nf is a small number, finding 
FPs may become difficult as the probability of FP repetition in 
a small number of frames is higher than a large number. On the 
other hand, we may lose many TPs when nf is large. Since the 
difference between the distance metrics is not significant, we do 
not provide in this paper the evaluation results of the distance 
metrics we used. 

 
V. EXPERIMENTAL RESULTS 

In this section, we present the performance of the proposed 
method and compare it with the performance of the original 
detectors, i.e., without FP reduction unit. The objective of this 
study is to improve sensitivity and precision. Since the proposed 
model is designed to find FPs, it should be able to improve 
the specificity. To investigate the overall performance improve- 
ment, we evaluate two datasets: 18 positive videos from CVC- 
ClinicVideoDB to explore the improvement in the sensitivity 
and precision, and 5 negative videos from ASU-Mayo Clinic to 
explore the improvement in the specificity. 

The two detector models are able to generate up to 100 pro- 
posals per frame. They sort the proposals based on their confi- 
dence values. When we let the detectors provide one proposal 
per frame, the top one is returned as the detection result. Due 
to the existence of FPs, it is not always the case that the top 
detection contains the polyp. The polyp might be bounded by 
the second or other RoI proposals. To increase the detection ca- 
pability and build a multi-polyp detection model, we need to let 
the detectors provide more than one RoIs per frame. Although 
this will enhance the sensitivity, it will degrade the precision as 
the majority of these 100 proposals are FPs. To further validate 
the capability of the proposed model, we evaluate two scenar- 
ios: one proposal per frame, and multiple proposals per frame. 
We later apply our FP reduction method on the results obtained 
by the two original detectors when their confidence threshold 
(score−th = 0.5). This is to confirm that our method is still 
effective in exposing FPs and maintaining TPs in the output 
detection of these detectors. 

 
A. One RoI per Frame 

In this scenario, we let the RoI proposal network provide 
one RoI per frame. The confidence threshold value of the RoI 
proposal network must be set to 0 so that the CNN detectors 
always return the top RoI regardless of its confidence value. 
In other words, every frame will be considered as a positive 
frame—assuming there are no TN frames in the videos. In case 



 

 

 
TABLE II 

RESULTS OBTAINED ON THE 18 POSITIVE VIDEOS FROM 

CVC-CLINICVIDEODB FOR ONE ROI PER FRAME SCENARIO: IN EACH SUB-
TABLE, THE 1ST ROW SHOWS THE RESULT OF THE DETECTOR MODELS 

WITH SCORE THRESHOLD OF 0.5, THE 2ND ROW SHOWS MAXIMUM 

DETECTION CAPABILITY OF THE DETECTOR MODELS WITH THE SCORE 

THRESHOLD OF 0, AND THE 3RD ROW SHOWS THE RESULT OF THE 

PROPOSED METHOD APPLIED ON THE 2ND ROW RESULT 

TABLE III 
RESULTS OBTAINED ON THE 5 NEGATIVE VIDEOS FROM ASU-MAYO CLINIC 

DATASET FOR ONE ROI PER FRAME SCENARIO: IN EACH SUB-TABLE, THE 1ST 

ROW SHOWS THE RESULT OF THE DETECTOR MODELS WITH SCORE 

THRESHOLD OF 0.5, THE 2ND ROW SHOWS THE RESULTS OF THE DETECTOR 

MODELS BY SETTING THE SCORE THRESHOLD TO 0, AND 

THE 3RD ROW SHOWS THE RESULT OF THE PROPOSED METHOD 

APPLIED ON THE 2ND ROW RESULT 

 
  

 

  
 

  
 

  
 

  
 

 

of 15 consecutive frames, the RoI of the current frame will be 
classified as TP if it satisfies the two conditions: it overlaps with 
at least 7 RoIs of 7 neighboring frames, and their computed 
average confidence value is ≥ 0.5 (avg−th). 

1) Evaluation of Positive Videos: Table II presents the results 
obtained on the 18 positive videos from CVC-ClinicVideoDB 
dataset. The maximum polyp detection capability of the two 
detector models including their FP models is obtained when 
the score−th = 0. However, when the score−th = 0, the num- ber 
of FPs is enormous i.e., low precision. In all cases, after 
applying the FP reduction method, we could significantly im- 
prove the precision and F1-score by keeping most of the TPs 
and eliminating most of the FPs. The reason that some TPs are 
classified as FPs is either that avg−th is less than 0.5 or the 
number of overlapping RoIs is less than 7. This TP degradation 
for the FP models is higher due to the fact that FP models pro- 
duce softer predictions i.e., confidence of the detected polyps 
is smaller compared to the initial trained models. Compared to 
the initial Faster R-CNN and SSD models, the proposed method 
achieves the best overall performance by keeping a good bal- 
ance between the sensitivity and precision (higher F1-score). 
This improvement is remarkably higher for FP models— ∼ 8% 
in the sensitivity and a little higher precision ∼ (1%–3.5%). 

2) Evaluation of Negative Videos: Table III presents the per- 
formance of the proposed method on 5 negative videos from 
ASU-Mayo Clinic. These 5 videos contain 6854 frames with- 
out polyps. When the confidence threshold of the RoI proposal 
network is 0.0, a RoI, which is obviously a FP, is provided 

for each frame. However, the proposed method can efficiently 
detect those FPs and outperform the counterpart models. 

Based on the results of the initial Faster R-CNN and SSD, 
68.02% and 84.01% of the proposed RoIs have a confidence 
value less 0.5, respectively. The proposed system is able to 
detect 16.24% and 9.64% (Faster R-CNN and SSD respectively) 
of those RoIs with confidence value more than 0.5. When the 
proposed method is applied to the FP models, the specificity can 
farther be improved and reaches close to 100%. 

 
 

B. Effect of Involving Previous or Future Frames Only 

To know how information from future and previous frames 
separately contribute to the performance increase, we conducted 
two extra experiments: 1) incorporating previous frames only, 
and 2) incorporating future frames only. Fig. 6 shows that in- 
corporating previous frames enables the proposed method to 
remove FPs. More previous frames eliminate more FPs (i.e. 
better precision) whereas sensitivity decreases because some 
TPs will be removed in the final output detection. We obtained 
the same results when we incorporated future frames only (see 
Fig. 7). Again, the proposed method could not keep the sensi- 
tivity at the same level. Compared to Fig. 6, Fig. 7 makes sense 
because we are involving the same frames to make the final de- 
cision since the future frames become past frames dynamically. 
However, with the incorporation of both future and previous 
frames the method can detect less FPs and keep TPs, resulting 
in better F1_score (see Table II). We can conclude that involving 



 

 

 

 

 
  

 

 
 

Fig. 6. Effect of involving only previous frames on the performance. Re- sults 
were obtained on the 18 positive videos from CVC-ClinicVideoDB. With 
more previous frames, precision can be increased by removing FPs while 
sensitivity decreases because some TPs cannot be preserved. 

Fig. 8. An example where two detection outputs overlaid on the same regions. 
The redundant detection outputs with lower confidence values are eliminated 
by non-max suppression. (a) output detection before ap- plying non-max 
suppression, (b) output detection after applying non-max suppression. Two RoIs 
eliminated by non-max suppression. 

 

 
 

 

 
 

  
 

 

Fig. 7.   Effect of involving future frames only on the performance. Re-           
sults were obtained on the 18 positive videos from CVC-ClinicVideoDB. With 
more future frames, precision can be increased by removing FPs while 
sensitivity decreases because some TPs cannot be preserved. 

 

 
information from future and previous frames enables more reli- 
able classification of FPs and TPs. 

 
C. Multiple RoIs per Frame 

Although in the positive test dataset there is no video that 
contains multiple polyps, multiple polyps on the colonoscopy 
frame can be possible. It is important for a CAD system to have 
the capability of detecting multiple polyps simultaneously. We 
conducted multiple RoIs per frame experiment for two purposes: 
1) to confirm that the proposed method is robust to detect FPs 
even if several bounding boxes are provided, 2) to increase the 
detection capability in case the polyp is not bounded by the first 
box. That would confirm whether the model is suitable for mul- 
tiple polyp detection task. If we set the detection output of the 
RoI proposal network to be n proposals, the top n RoIs will be 
returned. In this way, the model detection capability (sensitivity) 
increases whereas the precision decreases due to having a high 
number of FPs among these n proposals. It is necessary to run 
the optimization process again in order to obtain a new distance 
threshold value (dv). For example in case of 5 RoI proposals, we 
fixed nf = 15 frames and dm = canberra. The optimal dv 

changed from 0.65 to 0.55. We post-process the n proposed RoIs 
with non-max suppression to eliminate multiple redundant de- 
tections on top of the same polyp. In original Faster R-CNN and 

Fig. 9. Results obtained on the 18 positive videos from CVC- 
ClinicVideoDB dataset for multiple RoIs per frame scenarios using Faster R-
CNN as the RoI proposal network in the first stage. 

 
 

SSD [30], [31], Jaccard overlap thresholds of 0.7 and 0.45 were 
used, respectively. These thresholds might be optimal for object 
detection in natural images as there is possibility of having ob- 
jects occluded by other objects. In colonoscopy, this possibility 
is rare, and we empirically noticed that the detectors would gen- 
erate multiple redundant detections for the same polyp, and thus 
we fixed the Jaccard threshold at 0.25, see Fig. 8 as an example. 

1) Evaluation of Positive Videos: We plotted the results of n 

RoIs proposal scenarios in Fig. 9. For sake of simplicity, we 
only show the results obtained when Faster R-CNN is used as 
the RoI proposal network. Similar results were obtained for FP 
models and SSD. Sensitivity slightly increases whereas preci- 
sion degrades by involving more RoIs. However, both sensitivity 
and precision of the proposed method are improved compared 
to the counterpart models—initial models and FP models. This 
means our method can enhance the detection performance of 
both Faster R-CNN and SSD meta-architectures by integrating 
temporal information. Both sensitivity and precision tend to be- 
come constant after three RoIs. This is because the 100 RoIs 
generated by the first stage are sorted based on their confidence 
values. The deeper we go, the smaller the confidence value will 
be and the avg−th threshold condition eliminates those RoIs 
with low confidence values. 



 

 

 

 

 

 

 
 
 
 

Fig. 10. Results obtained on the 5 negative videos from ASU-MAYO Clinic 
dataset for multiple RoIs per frame scenarios using Faster R-CNN as the RoI 
proposal network in the first stage. 

 
 

2) Evaluation of Negative Videos: Fig. 10 shows that the 
proposed method is efficient to eliminate many of these FPs 
with confidence values ≥ 0.5 before displayed as the final de- 

Fig. 11. Types of polyps in CVC-ClinicVideoDB. (a) 0-Ip— pedunculated 
polyp, (b) 0-Is—sessile polyp, (c) 0-IIa—flat-elevated polyp. 

 

 
TABLE IV 

PERFORMANCE EVALUATION OF FASTER R-CNN AND SSD 
IN DETECTING DIFFRENT TYPES OF POLYPS 

tection. In Fig. 10, we again showed only the results obtained           
using Faster R-CNN as the RoI proposal network. We got sim-    
ilar results for the other models. For initial Faster R-CNN, the 

specificity is improved by 14.44% while for initial SSD this 
improvement was 8.77%. When applied on the FP models,    
the specificity of the proposed method was around 98% and 
still higher than the two FP models. When we take more RoIs 
into account we get slightly better sensitivity, and worse preci- 
sion and specificity. These changes in the metrics will continue 
to repeat in the same manner if we take more than 5 RoIs. 
It will become unnecessary to conduct experiments for other 
scenarios. 

 

D. Performance Evaluation of Faster R-CNN and SSD 

It is important to evaluate the performance of Faster R-CNN 
and SSD in detecting different types of polyps. The polyps in 
the CVC-ClinicVideoDB dataset are categorized based on Paris 
classification by endoscopists. The statistics of this classification 
is given in [23]. Paris classification is based on morphology 
of polyps. This database contains only three types: 1) 0-Ip— 
pedunculated polyp in 1313 frames, 2) 0-Is—sessile polyp in 
6633 frames, and 3) 0-IIa—flat-elevated polyp in 2079 frames. 
Fig. 11 illustrates the graphical representation of the three types 
of polyps with an example for each. 

Table IV shows the detection capability of Faster R-CNN 
and SSD in detecting these three types of polyps. Both are able 
to detect all different types of polyps in at least a sequence of 
frames in all videos. Pedunculated polyps are the easiest type 
for both models. Faster R-CNN could detect 91.01% of pedun- 
culated polyps whereas SSD could detect 87.66%. For sessile 
polyps, Faster R-CNN showed a better performance than SDD, 
with sensitivity of 83.73% and 67.9% respectively. For flat- 
elevated polyps SSD performed poor with sensitivity of 11.5% 
only while Faster R-CNN could detect 68.4% of them. These re- 
sults show that Faster R-CNN is more powerful than SSD for flat 
polyps. In general, Faster R-CNN demonstrated better detection 

 
 
 
 

 
capability than SSD for all types of polyps. However, SSD is 
much faster than Faster R-CNN and meets real-time constraints. 
To evaluate the processing time, we use the Mean Processing 
Time (MPT)—the time needed for processing a frame and the 
time needed for displaying the results. On a standard PC with 
NVIDIA GeForce GTX1080i, MPT is 390 msec for Faster R- 
CNN while it is just 33 msec for SSD. The total MPT of the 
proposed method then becomes the MPT of the detectors (either 
390 msec or 33 msec) plus the delay caused by the FP reduction 
unit (280 msec). The reason for these differences might be due 
to two factors: 1) the CNN feature extractor network of Faster 
R-CNN is much deeper, 2) there is an additional network (RPN) 
proposing RoIs in Faster R-CNN. 

 
VI. DISCUSSION 

Temporal information is essential to reduce the number of 
FPs in video sequences. Original Faster R-CNN and SSD meta- 
architectures are developed for object detection in still images 



 

 

 
 

 
 

  

 

 

 

 

 
 

  
 

  
 

Fig. 12.   Refining and smoothing the detection outputs in a sequence of frames starting from frame 364 (the top left frame in (a) and (b)) and ending at frame 378 
(the bottom right frame in (a) and (b)). (a) Detection results before refining–see irregular detected bounding boxes in frames 372, 373, and 374, (b) Detection 
results after refining–see the corrected bounding boxes in frames 372, 373, and 374, (c) coordinates of the detected bounding boxes before refining, (d) 
coordinates of the detected bounding boxes after refining. 

 
and do not have any mechanism to learn this important feature 
during training even if they are trained on video sequences. To 
improve their performance for polyp detection and make them 
more suitable for clinical usability, we integrated information 
from previous and future frames. The proposed scheme can be 
incorporated with any detector network for normal video detec- 
tion applications. Usually, FPs are located in different positions 
in the neighboring frames, and their coordinates are irregular. 
The advantage of integratinginformation from future frames 
is to detect those irregularities with more robust and reliable 
decision-making and to estimate the changes in polyp position 
by a simple interpolation in order to detect missed polyps in 
inter-frames. The second advantage is to smoothen the detec- 
tion output in the sequence by refining coordinates of those TP 
bounding boxes that are a little larger or smaller than those in 

the neighboring frames. In Fig. 12, even though the detections 
in frame 373, 374, and 375 are correct, the system recognizes 
them as abnormal relative to the detections in the consecutive 
frames and refines them using the same interpolation formula. 

The main drawback of using future frames is that a small 
delay in displaying the detection outputs is introduced. The RoI 
proposal network generates RoIs for the last frame, but they 
will not be shown till the frame becomes the current frame—the 
frame in the middle of the sequence. In case of having 25 frames 
per second, this delay is just 280 msec. The main objective of 
the FP learning is to teach the detection models how FPs look 
like. Although this enhances both the precision and specificity, 
it degrades the sensitivity by a large ratio [15]. When we applied 
our FP reduction method over the results obtained by the initial 
Faster R-CNN and SSD (score−th = 0.5), we could improve 



 

 

 
TABLE V 

ONE ROI PER FRAME SCENARIO RESULTS OBTAINED ON 18 POSITIVE VIDEOS 

FROM CVC-CLINICVIDEODB: IN EACH SUB-TABLE, THE 1ST ROW SHOWS 

THE RESULT OF THE DETECTORS WITH SCORE THRESHOLD OF 0.5, THE 2ND 

ROW SHOWS THE RESULT OF OUR METHOD APPLIED ON THE 1ST ROW 

RESULT, AND THE 3RD ROW SHOWS THE RESULTS OF FP MODELS FOR 

COMPARISON PURPOSE 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a novel polyp detection frame- 
work that can be used with any object detector method to 
integrate temporal information and increase the overall polyp 
detection performance in colonoscopy videos. The proposed 

   scheme combines individual frame analysis and temporal video 
analysis to make the final decision in the current state. In par- 
ticular, the proposed scheme benefits from the coordinates of 
the RoIs provided for a set of consecutive frames to measure 
the similarities and find detection irregularities and outliers. In 
addition, the proposed scheme is able to detect missed polyps 
and refine the detection output by incorporating some future 
frames. We validated our method on two state of the art con- 
volutional neural network (CNN) based detectors, faster region 
based convolutional neural network (Faster R-CNN) and single 
shot multibox detector (SSD). Faster R-CNN is incorporated 
with the Inception-Resent for high detection performance, but 

TABLE VI 
FIVE ROI PER FRAME SCENARIO RESULTS OBTAINED ON 18 POSITIVE 

VIDEOS FROM CVC-CLINICVIDEODB DATASET: FOR MORE DETAILS 

PLEASE SEE THE CAPTION OF TABLE V 

 
 

 

 
 

 
 
 

 
the precision by 7%–8% whereas the sensitivity got degraded 
by just 1%∼2%. From a clinical point of view, this balance is 
important and measured by the F1-score. As shown in Tables V 
and VI, the initial Faster R-CNN and SSD with the combination 
of our FP reduction unit have better sensitivity and thus better 
F1-score compared to their FP models. 

Our method is similar to the methods proposed by Zhang et al. 

[17] and Yu et al. [18] in the way that all utilize temporal depen- 
dencies for better detection performance. However, Our method 
is developed to precisely eliminate FPs and keep/increase TPs. 
Unlike Zhang et al. [17], we used temporal information from 
future and previous frames. Future frames allowed us for better 
and more reliable decision making, and thus we were able to 
increase sensitivity, precision and specificity by keeping and in- 
creasing TPs and eliminating most of the FPs. Unlike Yu et al. 

[18], we used 2D-CNN for providing regions of polyp candi- 
dates and used 3D temporal information in a post processing 
unit to classify FPs from TPs. This makes our model less com- 
putationally and memory expensive compared to the 3D-CNN 
model in [18]. Unfortunately, due to licence problems we could 
not get our hands on the ground-truth of the ASU–Mayo Clinic 
test dataset to numerically compare all the three models in a 
table. 

low speed; SSD is incorporated with MobileNet for low detec- 
tion performance, but real-time speed. Our experimental results 
showed that the two object detectors are missing the importance 
of Spatio-Temporal coherence feature for video sequence anal- 
ysis and vulnerable to small changes, and thus they miss the 
same polyp within the inter-frames. 

Only using the coordinates of the proposed RoIs to mea- 
sure the similarities might not be sufficient to make the final 
detection decision. The possibility of incorporating additional 
features should be investigated to improve overall performance. 
It is important to find a mechanism in order to train the object 
detection models on video sequences to learn extra features such 
as motion estimation and variability of polyp appearance within 
a sequence of frames. 
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