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Abstract. One of the most efficient methods for solving the polynomial eigenvalue prob-
lem (PEP) is the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR), which
finds the eigenvalues contained in a certain domain using the contour integral. The SS-RR
method converts the original PEP to a small projected PEP using the Rayleigh-Ritz projec-
tion. However, the SS-RR method suffers from backward instability when the norms of the
coefficient matrices of the projected PEP vary widely. To improve the backward stability of
the SS-RR method, we combine it with a balancing technique for solving a small projected
PEP. We then analyze the backward stability of the SS-RR method. Several numerical
examples demonstrate that the SS-RR method with the balancing technique reduces the
backward error of eigenpairs of PEP.
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1. Introduction

In this paper, we consider the polynomial eigenvalue problem (PEP)

(1.1) P (λ)x =

( m∑

i=0

λiAi

)
x = 0,

where Ai ∈ C
n×n \{O}, λ ∈ C and x ∈ C

n \{0} are eigenvalues and their associated

eigenvectors.
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A number of problems that arise in science and engineering involve the PEP, such

as oscillation analysis of structural mechanics, and acoustic systems in electrical

circuit simulation [13].

In some applications, such as structural dynamics and structural-acoustic inter-

action, it is unnecessary to compute all eigenpairs, and partial eigenpairs (λ,x) are

sufficient.

The Sakurai-Sugiura (SS) method has been proposed to efficiently compute par-

tial eigenpairs for the generalized eigenvalue problem (GEP) [11]. The SS method

projects the matrix pencil onto a subspace associated with the eigenvalues that are

located in a domain via numerical integration. A number of extensions of the SS

method are available for solving the GEP, including the SS-Hankel method [11], [8]

and the SS method with the Rayleigh-Ritz projection (SS-RR) [7]. The SS-Hankel

method transforms the original GEP to a small GEP with Hankel matrices. The

SS-RR method, which is based on the Rayleigh-Ritz projection, projects the GEP

onto a projected matrix pencil. The SS methods [14], [1], [2] have also been extended

to the nonlinear eigenvalue problem (NEP).

The SS-RR method extracts only the eigenvalues within a Jordan curve Γ, us-

ing a subspace constructed with a contour integral. In the SS-RR method for the

PEP [14], P (λ) is transformed into a projection of a matrix polynomial with a small

dimension as

(1.2) R(λ) = V HP (λ)V,

where the matrix V ∈ C
n×l, l ≪ n, has orthonormal columns consisting of basis

vectors for the subspace constructed by the SS-RR method. Then, the pair (λ̂, V ŷ) is

used as an approximate eigenpair for P (λ), where (λ̂, ŷ) is an approximate eigenpair

for R(λ). However, the SS-RR method can suffer from backward instability when the

coefficient matrices of R(λ) vary widely in their norm. Recently, we have improved

the backward stability of the SS-RR method for the quadratic eigenvalue problem

(QEP) [4]. Extending this idea, we improve the backward stability of the SS-RR

method for the PEP using balancing technique.

One common way for solving (1.2) is to convert R(λ) into a GEP with the same

spectrum as R(λ) and solve the GEP. In this article, to improve the accuracy of

computing eigenpairs, we consider using a balancing technique [9], [10], that is a pre-

processing technique for improving accuracy of computing eigenpairs in the standard

eigenvalue problem (SEP). To allow the use of the balancing technique, we transform

the GEP into the SEP. We also explain why the use of a stable eigensolver for the

SEP, such as the QR method with a balancing technique, can improve the back-

ward stability of the SS-RR method. To achieve this goal, we need to find relations
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between the backward error of the SS-RR method and that of the SS-RR method

with the balancing technique. We found that the SS-RR method with the balancing

technique improves the accuracy of computing eigenpairs under some assumptions.

The remainder of this paper is organized as follows. In the next section, we review

the SS-RR method for the PEP. In Section 3, we introduce a linearization for solving

the projected PEP. In Section 4, we provide a brief description of the balancing tech-

nique and present an algorithm for the SS-RR method with the balancing technique.

Then we investigate why the SS-RR method with the balancing technique improves

the accuracy for computing eigenpairs. In Section 5, we present numerical experi-

ments that confirm the accuracy of the SS-RR method with the balancing technique.

Finally, conclusions and suggestions for future studies are presented in Section 6.

The following notation is used in this paper: V = [v1,v2, . . . ,vL] ∈ C
n×L and

R(V ) := span{v1,v2, . . . ,vL}, where R(V ) is the range space of the matrix V .

2. The SS-RR method for the PEP

The SS-RR method computes the eigenvalues that are located inside a Jordan

curve Γ. Let K,L ∈ N
+ be input parameters and U ∈ C

n×L the input matrix with

KL < n. We define

S = [S0, . . . , SK−1] ∈ C
n×KL

and

(2.1) Sk =
1

2πi

∫

Γ

gk(z)P (z)−1U dz ∈ C
n×L,

where gk is a k-th degree polynomial function. Since the target eigenvectors are

in R{S}, the target eigenpairs can be computed using the Rayleigh-Ritz procedure

with R{S}, see [14].

In numerical calculations, we use a numerical quadrature to approximate the con-

tour integral (2.1). The approximation of Sk is given by

(2.2) Sk ≈ Ŝk =
N∑

p=1

ωpgk(zp)P (zp)
−1U,

where zp and ωp, p = 1, . . . , N , are the integral points and their associated weights.

We construct Ŝ = [Ŝ0, . . . , ŜK−1] and compute a low-rank approximation of Ŝ by

singular value decomposition as

Ŝ = V̂ Σ̂ŴH ≈ V ΣWH,
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where V = V̂ (:, 1 : l), and l is the numerical rank of Ŝ. Then we convert the original

problem P (λ) to R(λ) = V HP (λ)V and compute all eigenpairs of R(λ), where the

dimension of R(λ) is l. Let the computed eigenpairs of R(λ) be denoted by (λ̂j , ŷj),

where ŷj ∈ C
l. Then the eigenpairs (λ̂j , x̂j) of P (λ) are approximated by

(λ̂j , x̂j) = (λ̂j , V ŷj), j = 1, . . . , n(Γ),

where n(Γ) 6 l is the number of approximate eigenvalues in the target region Ω.

The main steps of the SS-RR method are presented in Algorithm 1.

Algorithm 1. The SS-RR method

Input: N,K,L ∈ N
+, U ∈ C

n×L, zp, ωp, p = 1, . . . , N . A Jordan curve Γ and

a matrix polynomial P (λ).

Output: λ̂j , x̂j , j = 1, . . . , n(Γ), where n(Γ) is the number of eigenvalues inside the

Jordan curve.

1: Compute P (zp)
−1U , p = 1, . . . , N .

2: Compute Ŝk, k = 0, . . . ,K − 1 by (2.2).

3: Construct Ŝ = [Ŝ0, . . . , ŜK−1] and perform the singular value decomposition of Ŝ,

where Ŝ = V̂ Σ̂ŴH.

4: Construct the orthonormal basis V from V̂ (:, 1 : l), where l is the numerical rank.

5: Form R(λ) = V HP (λ)V .

6: Compute eigenvalues λ̂j and eigenvectors ŷj of R(λ), j = 1, . . . , n(Γ).

7: Set x̂j = V ŷj , j = 1, . . . , n(Γ).

3. Eigensolver for the projected PEP using linearization

We now discuss why the numerical solution of the PEP in Step 6 of Algorithm 1

requires special attention. In the SS-RR method, the standard way to solve small to

medium size PEP,

(3.1) R(λ)y =

( m∑

i=0

λiRi

)
y = 0, Ri = V HAiV,

is via linearization. We assume Ri ∈ C
l×l \ {O}. We linearize (3.1) as follows:

L(λ)z = (λX + Y )z = 0,

where X,Y ∈ C
ml×ml, L(λ) and R(λ) have the same spectrum. There are several

choices for L(λ). In practice, a common choice for L(λ) is its companion form, which
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is given by

(3.2) L(λ) = λ




R1 R2 . . . Rm

−Il O . . . O
...
. . .

. . .
...

O . . . −Il O


+




R0 O . . . O

O Il . . . O
...
...
. . .

...

O O . . . Il


 , z =




y

λy
...

λm−1
y


 ,

where Il ∈ R
l×l is the identity matrix. We compute all eigenpairs of L(λ) by us-

ing the QZ algorithm. Finally, we recover the eigenvectors V y of P (λ) from the

eigenvectors z of L(λ).

The QZ algorithm is backward stable for the GEP; however, it can be backward

unstable for the PEP, especially when the norms of the coefficient matrices of R(λ)

vary widely [12].

4. The SS-RR method with the balancing technique for the PEP

As shown in Section 2, the SS-RR method extracts only the eigenvalues within

a Jordan curve Γ. However, the SS-RR method is not stable when the coefficient

matrices of the projected PEP have widely varying norms.

From [6], it is clear that if the backward error of L(λ) is reduced, then the backward

error of quadratic matrix polynomial is reduced as well. To reduce the backward error

of L(λ), in this section we convert the GEP L(λ) to an SEP and solve it using the

QR method with the balancing technique that improves the backward stability of

the SEP.

4.1. Balancing technique for the standard eigenvalue problem. In this

section, we review the balancing techniques.

The balancing technique is a preprocessing step to improve the accuracy for solving

the SEP,

(4.1) Av = λv, A ∈ C
n×n.

The main idea of the balancing technique is to minimize the norm of D−1AD with

a similarity transformation using a diagonal matrix D.

Osborne proposed the use of a diagonal matrix D that minimizes the Frobenius

norm ‖D−1AD‖F , see [9]. He showed that his technique also decreases the 2-norm,

that is, ‖A‖2 > ‖D−1AD‖2, see [9]. Parlett and Reinsch extended Osborne’s tech-

nique to any p-norm [10].
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The Parlett-Reinsch algorithm operates on columns and rows of A in a cyclic

fashion. Let ci and ri be the p-norms of each column and row, which ignore the

diagonal element of the matrix A defined by

ci =

(∑

j 6=i

|aj,i|
p

)1/p
, ri =

(∑

j 6=i

|ai,j |
p

)1/p
.

The norm of D−1AD can be reduced when the norms of the columns and rows

are equal. The Parlett-Reinsch algorithm seeks fi to minimize

g(fi) = fp
i c

p
i +

rpi
fp
i

,

and finds an approximation of the exact value fi that minimizes g(fi).

The main steps of the Parlett-Reinsch algorithm are summarized in Algorithm 2.

The diagonal elements of the matrix D are obtained from the value fi by Step 15 in

Algorithm 2.

Algorithm 2. Parlett-Reinsch algorithm (Balancing technique) [10]

Input: A matrix A ∈ C
n×n, κ is a radix base.

Output: A diagonal matrix D and Ã that is overwritten by D−1AD.

1: D ← I

2: converged← 0

3: while converged = 0 do

4: converged = 1;

5: for i← 1, . . . , n do

6: c←
(∑
j 6=i

|aj,i|
p
)1/p
, r←

(∑
j 6=i

|ai,j |
p
)1/p

7: s← cp + rp, f ← 1

8: while c < r/κ do

9: c← cκ, r = r/κ, f ← f × κ

10: end while

11: while c > rκ do

12: c← c/κ, r = rκ, f ← f/κ

13: end while

14: if (cp + rp) < 0.95× s then

15: converged← 0, dii ← f × dii
16: A(:, i)← f ×A(:, i), A(:, i)← A(:, i)/f

17: end if

18: end for

19: end while

362



4.2. The SS-RR method with the balancing technique. In the SS-RR

method, we transform L(λ) to an SEP and apply the balancing technique to the

SEP with the nonsingular diagonal matrix D such that

(4.2) D−1(−X−1Y )Dv = λv.

Finally, we compute the eigenpairs of (4.2) with a backward stable method, such as

the QR method. The eigenpairs of P (λ) are recovered from (4.2).

The SS-RR method with the balancing technique is presented in Algorithm 3.

Alogrithm 3. The SS-RR method with the balancing technique

Input: N,K,L ∈ N
+, U ∈ C

n×L, zp, ωp, p = 1, . . . , N . A Jordan curve Γ, and

a matrix polynomial P (λ).

Output: λ̃j , x̃j , j = 1, . . . , n(Γ), where n(Γ) is the number of eigenvalues inside the

Jordan curve.

1: Form R(λ) = V HP (λ)V by step 1–5 in Algorithm 1.

2: Convert the projected matrix polynomial R(λ) to L(λ).

3: Construct the SEP by (4.2) and compute eigenpairs (λ̃j , ṽj) of (4.2).

4: Compute eigenvalues λ̃j and eigenvectors z̃j of L(λ) from (4.2) by setting z̃j =

Dṽj , j = 1, . . . , n(Γ).

5: Compute eigenvalues λ̃j and eigenvectors x̃j of P (λ) by setting x̃j = V ỹj , where

ỹj = z̃j(1 : l), j = 1, . . . , n(Γ).

4.3. Analysis of the backward error for the SS-RR method with the

balancing technique. For solving QEP, an improvement of the backward error

of the SS-RR method using a backward stable QEP eigensolver has been proposed

and analyzed in [4]. In this article, we extend the idea in [4] to solve the PEP.

The analysis in [4] is only based on the relationship between backward errors of the

original QEP and projected QEP. Instead, to analyze the backward stability of the

proposed method (Algorithm 3), we additionally need to analyze the relationship

between the backward error of the projected PEP and the linearized eigenvalue

problems. In what follows, we analyze these relationships and provide a theory

to explain why the use of a stable eigensolver for the SEP improves the backward

stability of the SS-RR method.

In the SS-RR method, let (λ̂j , ẑj) and (λ̃j , z̃j) be the approximations of the same

eigenpair (λj , zj) of L(λ), where (λ̂j , ẑj) are computed by L(λ) without using the

balancing technique and (λ̃j , z̃j) are computed with D−1(−X−1Y )Dv = λv, where

z̃j = Dṽj .

From (3.2), we also define ŷj and ỹj as

ŷj = ẑj(1 : l), ỹj = z̃j(1 : l).
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Here, we also assume that ŷj , ỹj are normalized, that is, ‖ŷj‖2 = ‖ỹj‖2 = 1. Then

(λ̂j , ŷj), (λ̃j , ỹj) are approximate eigenpairs of R(λ) and (λ̂j , V ŷj), (λ̃j , V ỹj) are

approximate eigenpairs of P (λ).

To analyze the accuracy of the eigenpairs obtained by the SS-RR method with the

balancing technique, we consider the backward error of the PEPs.

Definition 4.1 ([12]). Let R(λ) be the matrix polynomial,

R(λj) =

m∑

i=0

λi
jRi.

The backward error of the approximated eigenpairs (λ̂j , ŷj) of R(λ) is given by

η(R, λ̂j , ŷj) := min{ε : (R(λ̂j) + ∆R(λ̂j))ŷj = 0, ‖∆Ri‖2 6 ε‖Ri‖2, i = 0, . . . ,m},

where ∆R(λj) =
m∑
i=0

λi
j∆Ri, ∆Ri is a perturbation matrix.

An analogous definition holds for the backward error η(L, λ̂j , ẑj) of an approximate

eigenpair (λ̂j , ẑj).

For computing the backward error numerically, explicit expressions for the back-

ward error of η(R, λ̂j , ŷj) and η(L, λ̂j , ẑj) are given by the following formulas [6]:

η(R, λ̂j , ŷj) =
‖R(λ̂j)ŷj‖2(∑m

i=0
|λ̂j |i‖V HAiV ‖2

)
‖ŷj‖2

,(4.3)

η(L, λ̂j , ẑj) =
‖L(λ̂j)ẑj‖2

(|λ̂j |‖X‖2 + ‖Y ‖2)‖ẑj‖2
.(4.4)

The approximate eigenpair (λ̃j , z̃j) is computed with the balancing technique, there-

fore, we assume

(4.5) η(L, λ̂j , ẑj) > η(L, λ̃j , z̃j).

In the following steps, we try to identify the sufficient conditions under which (4.5)

implies that

(4.6) η(P, λ̂j , V ŷj) > η(P, λ̃j , V ỹj).

By virtue of the relation of the backward errors for R(λ) and L(λ), L(λ) satisfies

a left-side factorization such that for some non-zero g ∈ C
l

G(λ)L(λ) = g
T ⊗R(λ),
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where ⊗ denotes the Kronecker product [5]. If we use (3.2) to construct L(λ), then

G(λ) is given by

G(λ) =

{
[Il − λV HA2V ] (m = 2)

[Il − λ(V HA2V + V HA3V ) − λV HA3V ] (m = 3).

When m > 3, we can obtain G(λ) from [5]. Based on (4.3) and (4.4), to analyze

the bounds for the backward error for R(λ) relative to L(λ), we have the following

theorem.

Theorem 4.1 ([5]). Let (λ̂j , ẑj) be an approximation of the eigenpair of L(λ)

and (λ̂j , ŷj) an approximation of the eigenpair of R(λ), where ŷj is obtained from

ẑj by (3.2) and is normalized so that ‖ŷj‖2 = 1. Then the bound for the backward

error of R(λ) relative to L(λ) is

(4.7)
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)
6 CU (λ̂j , ẑj),

where

CU (λ̂j , ẑj) =
(|λ̂j |‖X‖2 + ‖Y ‖2)‖G(λ̂j)‖2∑m

i=0
|λ̂j |i‖V HAiV ‖2

‖ẑj‖2,

and G(λ̂j) is an l × lm matrix polynomial.

To analyze the bounds of the backward error of P (λ) relative to R(λ), we introduce

the following lemma.

Lemma 4.1 ([4]). Let (λ̂j , ŷj) be the approximate eigenpairs of R(λ), where

R(λ) := V HP (λ)V , and V is an orthogonal matrix, V HV = I. Let (λ̂j , V ŷj) be the

approximated eigenpairs of P (λ), ‖V ŷj‖2 = 1. Then we have

BL(λ̂j) 6
η(P, λ̂j , V ŷj)

η(R, λ̂j , ŷj)
6 BU (λ̂j , ŷj),

where

BL(λ̂j) =

∑m
i=0
|λ̂j |

i‖V HAiV ‖2∑m
i=0
|λ̂j |i‖Ai‖2

, BU (λ̂j , ŷj) =
‖P (λ̂j)V ŷj‖2

‖V HP (λ̂j)V ŷj‖2

are functions that depend on the eigenpairs of the problem.
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P r o o f. Based on (4.3), we have

η(P, λ̂j , V ŷj)

η(R, λ̂j , ŷj)
=

‖P (λ̂j)V ŷj‖2(∑m
i=0
|λ̂j |i‖Ai‖2

)
‖V ŷj‖2

(∑m
i=0
|λ̂j |

i‖V HAiV ‖2
)
‖ŷj‖2

‖V HP (λ̂j)V ŷj‖2
.

Because of ‖V HP (λ̂j)V ŷj‖2 6 ‖V H‖2‖P (λ̂j)V ŷj‖2, we have

η(P, λ̂j , V ŷj)

η(R, λ̂j , ŷj)
>

∑m
i=0
|λ̂j |

i‖V HAiV ‖2∑m
i=0
|λ̂j |i‖Ai‖2

= BL(λ̂j),

and based on ‖V HAiV ‖2 6 ‖Ai‖2, we also have

η(P, λ̂j , V ŷj)

η(R, λ̂j , ŷj)
6
‖P (λ̂j)V ŷj‖2

‖V HP (λ̂j)V ŷj‖2
= BU (λ̂j , ŷj),

which proves Lemma 4.1. �

Using Theorem 4.1 and Lemma 4.1, we have the following theorem.

Theorem 4.2. Let θj be a scalar value satisfying η(L, λ̂j , ẑj) = θjη(L, λ̃j , z̃j).

Assume

(4.8) δj = θjαjβj > 1,

where

αj = BL(λ̂j)
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)
, βj =

1

BU (λ̃j , ỹj)CU (λ̃j , z̃j)
.

Then we have

η(P, λ̂j , V ŷj) > η(P, λ̃j , V ỹj).

P r o o f. Based on Theorem 4.1, we have

η(R, λ̂j , ŷj) =
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)
η(L, λ̂j , ẑj) =

η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)
θjη(L, λ̃j , z̃j)

>
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)
θj

η(R, λ̃j , ỹj)

CU (λ̃j , z̃j)
.
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Lemma 4.1 yields

η(P, λ̂j , V ŷj) > BL(λ̂j)η(R, λ̂j , ŷj)

> BL(λ̂j)
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)

θj

CU (λ̃j , z̃j)
η(R, λ̃j , ỹj)

> BL(λ̂j)
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)

θj

CU (λ̃j , z̃j)

η(P, λ̃j , V ỹj)

BU (λ̃j , ỹj)

= θj

(
BL(λ̂j)

η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)

)
1

CU (λ̃j , z̃j)BU (λ̃j , ỹj)
η(P, λ̃j , V ỹj)

= δjη(P, λ̃j , V ỹj).

Therefore, from the assumption δj > 1 we have

η(P, λ̂j , V ŷj) > η(P, λ̃j , V ỹj),

thus proving Theorem 4.2. �

The computation of δj may be complicated, because it requires ‖Ai‖2. To deter-

mine a more efficient way of computing δj , we analyze (4.8) in detail.

Defining

ε1 := max
i=0:m

‖Ai‖2
‖V HAiV ‖2

,

we have ‖Ai‖2 6 ε1‖V
HAiV ‖2. Therefore, the lower bound for BL(λ̂j) is given by

(4.9) BL(λ̂j) =

∑m
i=0
|λ̂j |

i‖V HAiV ‖2∑m
i=0
|λ̂j |i‖Ai‖2

>
1

ε1
.

In this case, the lower bound for αj is given by

(4.10) αj = BL(λ̂j)
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)
>

1

ε1

η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)
.

We also define

ε2 := max
j

‖P (λ̃j)V ỹj‖2

‖V HP (λ̃j)V ỹj‖2
= max

j
BU (λ̃j , ỹj).

Then ε2 > BU (λ̃j , ỹj) and the lower bound of βj is given by

(4.11) βj =
1

BU (λ̃j , ỹj)CU (λ̃j , z̃j)
>

1

ε2CU (λ̃j , z̃j)
.
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Based on (4.5), (4.8), (4.10), and (4.11), the lower bound for δj is given by

(4.12) δj = θjαjβj >
1

ε1ε2

η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)

1

CU (λ̃j , z̃j)
.

If the projection V does not significantly change the norms of the coefficient ma-

trices of P (λ), that is,

(4.13) ‖Ai‖2 ≈ ‖V
HAiV ‖2,

we have

(4.14) ε1 ≈ 1.

Next, we analyze the parameter ε2. If R(V ) is an invariant subspace with respect

to P (λ̃j), i.e., there is Q(λ̃j) such that P (λ̃j)V = V Q(λ̃j), then we have

‖P (λ̃j)V ỹj‖2 = ‖V Q(λ̃j)ỹj‖2 = ‖Q(λ̃j)ỹj‖2,

and

‖V HP (λ̃j)V ỹj‖2 = ‖V HV Q(λ̃j)ỹj‖2 = ‖Q(λ̃j)ỹj‖2.

Therefore, ‖P (λ̃j)V ỹj‖2 = ‖V HP (λ̃j)V ỹj‖2. In the SS-RR method, V is constructed

as an approximation of the invariant subspace with respect to the target eigenpairs.

Based on this, we may assume

(4.15) BU (λ̃j , ỹj) =
‖P (λ̃j)V ỹj‖2

‖V HP (λ̃j)V ỹj‖2
≈ 1,

and thus ε2 is close to 1. Using these assumptions, the lower bound for δj is given

by

(4.16) δj = θjαjβj &
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)CU (λ̃j , z̃j)
.

Thus, if

(4.17) τj =
η(R, λ̂j , ŷj)

η(L, λ̂j , ẑj)CU (λ̃j , z̃j)
> 1,

we have

η(P, λ̂j , V ŷj) & η(P, λ̃j , V ỹj).

The parameter τj in (4.17) can be computed with low cost, although it may

sometimes happen that δj > 1 > τj .
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5. Numerical experiments

In this section, we compare the backward error of the SS-RR method in combi-

nation with the balancing technique (Algorithm 3) with the backward error of the

standard implementation of the SS-RR method (Algorithm 1). For Algorithms 1

and 3, we use (3.2) to construct the linearized form of R(λ). We use the MAT-

LAB command balance to balance the coefficient matrix of the SEP in step 7 of

Algorithm 3. The MATLAB command balance implements Algorithm 2.

The test problems (shown in Table 1) are PEP of degree m = 2 and higher-order

PEP belonging to the collection of nonlinear eigenvalue problems NLEVP, see [3].

The problems orr−sommerfeld and mod−butterfly are higher-order PEP. Other

problems are PEP of degree m = 2.

Problem n applications

damped−beam 400 A simple supported beam damped in the middle

shaft 400 The model of a shaft on bearing supports with a damper

wiresaw1 400 Vibration analysis of a wiresaw

wiresaw2 400 Vibration analysis of wiresaw with viscous damping

sleeper 400 Model of a railtrack resting on sleepers

spring 400 A finite element model of a damped mass-spring system

dirac 400 The Dirac operator

acoustic−wave−1d 400 Acoustic wave problem in 1 dimension
plasma−drift 128 Cubic PEP arising in tokamak reactor design

orr−sommerfeld 400 Arising from Qrr-Sommerfeld equation

mod−butterfly 400 Quartic matrix polynomial with T-even structure

Table 1. Polynomial eigenvalue problems [3].

For each problem, the Jordan curve Γ is a circle with center γ and radius ̺ whose

values are given in Table 2. We set N = 32, K = 6 and L = 12 for the problem

plasma−drift. We use N = 32, K = 8, and L = 16 for the other problems. For the

quadrature points and the corresponding weights, we assign

zp = γ + ̺ exp
(2πi(p− 1/2)

N

)
, ωp =

zp − γ

N
, p = 1, . . . , N.

All the computations were performed using MATLAB 2014.

5.1. Verification of the assumptions. Here we verify the assumptions of (4.14),

(4.15), δj in (4.8) and τj in (4.17) by using numerical experiments.
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Problem center γ radius ̺ #eigs

damped−beam −2 + 2.6× 106i 3× 105 22

shaft 2× 105i 9× 104 18

wiresaw1 −180i 40 26

wiresaw2 140i 40 26

sleeper −16 0.2 29

spring −12 1 26

dirac −5 0.7 24

acoustic−wave−1d −126 + 0.03i 1 30
plasma−drift 10 1 10

mod−butterfly 70i 10 18

orr−sommerfeld 3.8× 10−4i 0.4× 10−4 20

Table 2. Parameters for the SS-RR method.

Problem ε1
damped−beam 16.0

shaft 1.3

wiresaw1 4.0

wiresaw2 3.8

sleeper 1.0

spring 1.1

dirac 1.4

acoustic−wave−1d 17.0
plasma−drift 1.0

mod−butterfly 1.2

orr−sommerfeld 182.0

Table 3. The value of
ε1 := max

i=0:m
‖Ai‖2/‖V

HAiV ‖2.

Problem ε2
damped−beam 27.0

shaft 1.3

wiresaw1 2.4

wiresaw2 1.1

sleeper 1.2

spring 1.6

dirac 5.0

acoustic−wave−1d 1.1
plasma−drift 1.0

mod−butterfly 1.3

orr−sommerfeld 64.0

Table 4. The value of
ε2 := max

j
BU (λ̃j , ỹj).

As shown in Table 3, the norms of the coefficient matrices of R(λ) are simi-

lar to that of P (λ) for all problems except damped−beam, acoustic−wave−1d and

orr−sommerfeld.

Table 4 shows the maximum values of BU (λ̃j , ỹj). The value of BU (λ̃j , ỹj) is

not much larger than 1 in most problems. The only exceptions where the assump-

tion (4.15) is not satisfied are damped−beam and orr−sommerfeld.

Table 5 displays the assumption that θj > 1 is satisfied for all problems. Ta-

ble 5 also shows that the assumption that δj > 1 is satisfied for all problems. The
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Problem min θ min δ min τ

damped beam 7.1× 104 6.9× 105 2.4× 102

shaft 7.2× 103 5.7× 107 6.6× 103

wiresaw1 2.3× 101 2.4× 102 4.6× 101

wiresaw2 2.0× 101 3.1× 102 3.9× 101

sleeper 1.8× 100 5.8× 100 3.0× 100

spring 1.5× 100 2.9× 100 1.3× 100

dirac 4.1× 100 2.0× 100 1.6× 100

acoustic−wave−1d 1.0× 101 3.5× 102 3.0× 101

plasma−drift 1.0× 100 4.1× 100 3.9× 100

mod−butterfly 2.1× 100 9.9× 101 6.3× 101

orr−sommerfeld 3.6× 108 3.6× 102 1.3× 10−4

Table 5. The minimum value of the parameters δ, θ and τ for P (λ).

more practical approximation τj for δj is also larger than 1 for all problems except

orr−sommerfeld, which confirms its wide applicability.

5.2. Evaluation of the backward error of P (λ). In this section we evaluate

the backward errors of P (λ) for the SS-RR method and the SS-RR method with

the balancing technique. As shown in Table 6 and Figures 1–4, the backward errors

of the SS-RR method with the balancing technique are smaller than those of the

SS-RR method when τ is larger than 1. The improvement in the backward error is

significant even for orr−sommerfeld in spite of the bad estimate for τ . We also find

that there is almost no improvement in the dirac problem.

Problems SS-RR SS-RR method with balancing

damped−beam 3.7× 10−7 7.7× 10−14

shaft 3.4× 10−10 2.6× 10−15

wiresaw1 8.4× 10−13 6.0× 10−15

wiresaw2 4.4× 10−13 1.3× 10−15

sleeper 1.8× 10−13 5.3× 10−15

spring 7.1× 10−14 1.6× 10−15

dirac 3.4× 10−15 4.7× 10−16

acoustic−wave−1d 4.1× 10−13 7.7× 10−15

plasma−drift 4.7× 10−13 7.8× 10−15

mod−butterfly 1.1× 10−9 4.2× 10−11

orr−sommerfeld 1.8× 10−6 1.4× 10−17

Table 6. Maximum backward errors of the eigenpairs of P (λ).
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Figure 1. Backward error for the damped−beam problem.
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Figure 2. Backward error for the shaft problem.
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Figure 3. Backward error for the plasma−drift problem.
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Figure 4. Backward error for the orr−sommerfeld problem.
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Based on the experimental results, we find that the SS-RR method with the bal-

ancing technique can reduce the backward error of P (λ).

6. Conclusion

We have proposed an approach for accurately computing the eigenpairs of the PEP

using the SS-RR method with the balancing technique. In this paper we discussed

why the SS-RR method with the balancing technique can improve the accuracy of

computing eigenpairs and we found a relation between the backward error of the

SS-RR method and that of the SS-RR method with the balancing technique. The

analysis suggests that the SS-RR method with the balancing technique can reduce

the backward error of the SS-RR method under certain conditions. In the numerical

experiments, we found that these conditions are satisfied in most practical problems

and the SS-RR method with the balancing technique is more accurate than the

original SS-RR method. In our future investigations, we propose to study the results

of combining the balancing technique with other types of SS methods.
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