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Abstract

Breast cancer is the most common malignancy in women and is responsible for hundreds of thousands of deaths annually.
As with most cancers, it is a heterogeneous disease and different breast cancer subtypes are treated differently.
Understanding the difference in prognosis for breast cancer based on its molecular and phenotypic features is one avenue
for improving treatment by matching the proper treatment with molecular subtypes of the disease. In this work, we
employed a competition-based approach to modeling breast cancer prognosis using large datasets containing genomic
and clinical information and an online real-time leaderboard program used to speed feedback to the modeling team and to
encourage each modeler to work towards achieving a higher ranked submission. We find that machine learning methods
combined with molecular features selected based on expert prior knowledge can improve survival predictions compared to
current best-in-class methodologies and that ensemble models trained across multiple user submissions systematically
outperform individual models within the ensemble. We also find that model scores are highly consistent across multiple
independent evaluations. This study serves as the pilot phase of a much larger competition open to the whole research
community, with the goal of understanding general strategies for model optimization using clinical and molecular profiling
data and providing an objective, transparent system for assessing prognostic models.

Citation: Bilal E, Dutkowski J, Guinney J, Jang IS, Logsdon BA, et al. (2013) Improving Breast Cancer Survival Analysis through Competition-Based
Multidimensional Modeling. PLoS Comput Biol 9(5): e1003047. doi:10.1371/journal.pcbi.1003047

Editor: Richard Bonneau, New York University, United States of America

Received October 24, 2012; Accepted March 18, 2013; Published May 9, 2013

Copyright: � 2013 Bilal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH grant P41 GM103504, U54 CA121852-07 (National Center for the Multi-Scale Analysis of Genomic and Cellular
Networks), grant U54CA149237 from the Integrative Cancer Biology Program of the National Cancer Institute and by program grant 3104672 from the
Washington Life Sciences Discovery fund to Sage Bionetworks. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: margolin@sagebase.org

" These first authors contributed equally to this paper, and are listed alphabetically.

` These senior authors contributed equally to this paper.

PLOS Computational Biology | www.ploscompbiol.org 1 May 2013 | Volume 9 | Issue 5 | e1003047



Introduction

Breast cancer remains the most common malignancy in females,

with more than 200,000 cases of invasive breast cancer diagnosed

in the United States annually [1]. Molecular profiling research in

the last decade has revealed breast cancer to be a heterogeneous

disease [2–4], motivating the development of molecular classifiers

of breast cancer sub-types to influence diagnosis, prognosis, and

treatment.

In 2002, a research study reported a molecular predictor of

breast cancer survival [5] based on analysis of gene expression

profiles from 295 breast cancer patients with 5 year clinical follow-

up. Based on these results, two independent companies developed

the commercially available MammaPrint [6] and Oncotype DX

[7] assays, which have both been promising in augmenting risk

prediction compared to models based only on clinical data.

However, their role in clinical decision-making is still being

debated.

Based on the success of these initial molecular profiles, a large

number of additional signatures have been proposed to identify

markers of breast cancer tumor biology that may affect clinical

outcome [8–13]. Meta-analyses indicate that many of them

perform very similarly in terms of risk prediction, and can often

be correlated with markers of cell proliferation [14], a well-known

predictor of patient outcome [15], especially for ER+ tumors

[16,17]. Therefore, it is much more challenging to identify

signatures that provide additional independent and more specific

risk prediction performance once accounting for proliferation and

clinical factors. Recent studies have even suggested that most

random subsets of genes are significantly associated with breast

cancer survival, and that the majority (60%) of 48 published

signatures did not perform significantly better than models built

from the random subsets of genes [18]. Correcting for the

confounding effect of proliferation based on an expression marker

of cell proliferation removes most of the signal from the 48

published signatures [18].

The difficulties in reaching community consensus regarding the

best breast cancer prognosis signatures illustrates a more intrinsic

problem whereby researchers are responsible for both developing

a model and comparing its performance against alternatives [19].

This phenomenon has been deemed the ‘‘self-assessment trap’’,

referring to the tendency of researchers to unintentionally or

intentionally report results favorable to their model. Such self-

assessment bias may arise, for example, by choosing assessment

statistics for which their model is likely to perform well, selective

reporting of performance in the modeling niche where their

method is superior, or increased care or expertise in optimizing

performance of their method compared to others.

In this work, we explore the use of a research strategy of

collaborative competitions as a way to overcome the self-

assessment trap. In particular, the competitive component

formally separates model development from model evaluation

and provides a transparent and objective mechanism for ranking

models. The collaborative component allows models to evolve and

improve through knowledge sharing, and thereby emphasizes

correct and insightful science as the primary objective of the study.

The concept of collaborative competitions is not without

precedent and is most evident in crowd-sourcing efforts for

harnessing the competitive instincts of a community. Netflix [20]

and X-Prize [21] were two early successes in online hosting of data

challenges. Commercial initiatives such as Kaggle [22] and

Innocentive [23] have hosted many successful online modeling

competitions in astronomy, insurance, medicine, and other data-

rich disciplines. The MAQC-II project [24] employed blinded

evaluations and standardized datasets in the context of a large

consortium-based research study to assess modeling factors related

to prediction accuracy across 13 different phenotypic endpoints.

Efforts such as CASP [25], DREAM [26], and CAFA [27] have

created communities around key scientific challenges in structural

biology, systems biology, and protein function prediction, respec-

tively. In all cases it has been observed that the best crowd-sourced

models usually outperform state-of-the-art off-the-shelf methods.

Despite their success in achieving models with improved

performance, existing resources do not provide a general solution

for hosting open-access crowd-sourced collaborative competitions

due to two primary factors. First, most systems provide partic-

ipants with a training dataset and require them to submit a vector

of predictions for evaluation in the held-out dataset [20,22,24,26],

often requiring (only) the winning team to submit a description of

their method and sometimes source code to verify reproducibility.

While this achieves the goal of objectively assessing models, we

believe it fails to achieve an equally important goal of developing a

transparent community resource where participants work openly

to collaboratively share and evolve models. We overcome this

problem by developing a system where participants submit models

as re-runnable source code by implementing a simple program-

matic API consisting of a train and predict method. Second, some

existing systems are designed primarily to leverage crowd-sourcing

to develop models for a commercial partner [22,23] who pays to

run the competition and provides a prize to the developer of the

best-performing model. Although we support this approach as a

creative and powerful method for advancing commercial applica-

tions, such a system imposes limitations on the ability of

participants to share models openly as well as intellectual property

restrictions on the use of models. We overcome this problem by

making all models available to the community through an open

source license.

Author Summary

We developed an extensible software framework for
sharing molecular prognostic models of breast cancer
survival in a transparent collaborative environment and
subjecting each model to automated evaluation using
objective metrics. The computational framework present-
ed in this study, our detailed post-hoc analysis of hundreds
of modeling approaches, and the use of a novel cutting-
edge data resource together represents one of the largest-
scale systematic studies to date assessing the factors
influencing accuracy of molecular-based prognostic mod-
els in breast cancer. Our results demonstrate the ability to
infer prognostic models with accuracy on par or greater
than previously reported studies, with significant perfor-
mance improvements by using state-of-the-art machine
learning approaches trained on clinical covariates. Our
results also demonstrate the difficultly in incorporating
molecular data to achieve substantial performance im-
provements over clinical covariates alone. However,
improvement was achieved by combining clinical feature
data with intelligent selection of important molecular
features based on domain-specific prior knowledge. We
observe that ensemble models aggregating the informa-
tion across many diverse models achieve among the
highest scores of all models and systematically out-
perform individual models within the ensemble, suggest-
ing a general strategy for leveraging the wisdom of crowds
to develop robust predictive models.

Breast Cancer Survival Modeling
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In this study, we formed a research group consisting of scientists

from 5 institutions across the United States and conducted a

collaborative competition to assess the accuracy of prognostic

models of breast cancer survival. This research group, called the

Federation, was set up as a mechanism for advancing collaborative

research projects designed to demonstrate the benefit of team-

oriented science. The rest of our group consisted of the organizers

of the DREAM project, the Oslo team from the Norwegian Breast

Cancer study, and leaders of the Molecular Taxonomy of Breast

Cancer International Consortium (METABRIC), who provided a

novel dataset consisting of nearly 2,000 breast cancer samples with

median 10-year follow-up, detailed clinical information, and

genome-wide gene expression and copy number profiling data.

In order to create an independent dataset for assessing model

consistency, the Oslo team generated novel copy number data on

an additional 102 samples (the MicMa cohort), which was

combined with gene expression and clinical data for the same

samples that was previously put in the public domain by the same

research group [4,28].

The initial study using the METABRIC data focused on

unsupervised molecular sub-class discovery [29]. Although some of

the reported sub-classes do correlate with survival, the goal of this

initial work was not to build prognostic models. Indeed, the

models developed in the current study provide more accurate

survival predictions than those trained using molecular sub-classes

reported in the original work. Therefore, the current study

represents the first large-scale attempt to assess prognostic models

based on a dataset of this scale and quality of clinical information.

The contributions of this work are two-fold. First, we conducted

a detailed post-hoc analysis of all submitted models to determine

model characteristics related to prognostic accuracy. Second, we

report the development of a novel computational system for

hosting community-based collaborative competitions, providing a

generalizable framework for participants to build and evaluate

transparent, re-runnable, and extensible models. Further, we

suggest elements of study design, dataset characteristics, and

evaluation criteria used to assess whether the results of a

competition-style research study improve on standard approaches.

We stress that the transparency enabled by making source code

available and providing objective pre-defined scoring criteria allow

researchers in future studies to verify reproducibility, improve on

our findings, and assess their generalizability in future applications.

Thus the results and computational system developed in this work

serve as a pilot study for an open community-based competition

on prognostic models of breast cancer survival. More generally, we

believe this study will serve as the basis for additional competition-

based research projects in the future, with the goal of promoting

increased transparency and objectivity in genomics research (and

other applications) and providing an open framework to collab-

oratively evolve complex models leading to patient benefit, beyond

the sum of the individual efforts, by leveraging the wisdom of

crowds.

Results

Competition dataset characteristics
We used the METABRIC dataset as the basis of evaluating

prognostic models in this study. This dataset contains a total of

nearly 2,000 breast cancer samples. 980 of these samples

(excluding those with missing survival information) were available

for the duration of the collaborative competition phase of this

study. An additional 988 samples became available after we had

concluded our evaluation in the initial dataset and, fortunately,

served as a large additional dataset for assessing the consistency of

our findings. For each sample, the dataset contains median 10 year

follow-up, 16 clinical covariates (Table 1), and genome-wide gene

expression and copy number profiling data, normalized as

described in [29], resulting in 48,803 gene expression features

and 31,685 copy number features summarized at the gene level

(see Methods).

Initial analysis was performed to confirm that the data

employed in the competition were consistent with previously

published datasets and to identify potential confounding factors

such as internal subclasses. Data-driven, unsupervised hierarchical

clustering of gene expression levels revealed the heterogeneity of

the data and suggested that multiple subclasses do exist (not

shown) [29]. However, for the current analysis we decided to focus

on the well established separation into basal, luminal, and HER2

positive subclasses, as previously defined [2,30]. These subclasses

are known to closely match clinical data in the following way: most

triple-negative samples belong to the basal subclass; most ER

positive samples belong to the luminal subclass; and most ER

negative HER2 positive samples belong to the HER2 subclass. To

ensure that this holds in the current dataset, the 50 genes that best

separate the molecular subclasses in the Perou dataset [31]

(PAM50) were used for hierarchical clustering of the METABRIC

data and compared with a similar clustering of the Perou dataset

(Figure 1A). The results of the supervised clustering reveal similar

subclasses with similar gene expression signatures as those

presented by Perou et al, and were also consistent with the

clinical definitions as presented above. Finally, the 3 subclasses

show a distinct separation in their Kaplan-Meier overall survival

plots for the three subtypes defined by the clinical data, where the

HER2 subclass has the worst prognosis, followed by the basal

subclass, and the luminal subclass has the best prognosis, as

expected (Figure 1B). This analysis shows that sub-classification

based on ER (IHC), PR (gene expression), and HER2 (copy

number) should capture the major confounding factors that may

be introduced by the heterogeneity of the disease.

Multiple individual clinical features exhibit high correlation

with survival for non-censored patients, and have well documented

prognostic power (Table 1, Figure 1C), while others have little

prognostic power (Figure 1D). To demonstrate that the compe-

tition data is consistent in this respect, a Cox proportional hazard

model was fit to the overall survival (OS) of all patients using each

one of the clinical covariates individually. As expected, the most

predictive single clinical features are the tumor size, age at

diagnosis, PR status, and presence of lymph node metastases

(Table 1). To assess the redundancy of the clinical variables, an

additional multivariable Cox proportional hazard model was fit to

the overall survival (OS) of all patients using all clinical features.

The remaining statistically significant covariates were patient age

at diagnosis (the most predictive feature), followed by tumor size,

presence of lymph node metastases, and whether the patient

received hormone therapy.

Improving breast cancer models in the pilot competition
Participants from our 5 research groups were provided data

from 500 patient samples used to train prognostic models. These

models were submitted as re-runnable source code and partici-

pants were provided real-time feedback in the form of a

‘‘leaderboard’’ based on the concordance index of predicted

survival versus the observed survival in the 480 held-out samples.

Participants independently submitted 110 models to predict

survival from the supplied clinical and molecular data (Table S1),

showing a wide variability in their performance, which was

expected since there were no constraints on the submissions. Post-

hoc analysis of submitted models revealed 5 broad classes of

Breast Cancer Survival Modeling
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modeling strategies based on if the model was trained using: only

clinical features (C); only molecular features (M); molecular and

clinical features (MC); molecular features selected using prior

knowledge (MP); molecular features selected using prior knowl-

edge combined with clinical features (MPC) (Table 2). The

complete distribution of the performance of all the models,

evaluated using concordance index, and classified into these

categories is shown in Figure 2.

Analysis of the relative performance among model categories

suggested interesting patterns related to criteria influencing model

performance. The traditional method for predicting outcome is

Cox regression on the clinical features [32]. This model, which

used only clinical features, served as our baseline, and obtained a

concordance index of 0.6347 on the validation set. Models trained

on the clinical covariates using state-of-the-art machine learning

methods (elastic net, lasso, random forest, boosting) achieved

notable performance improvements over the baseline Cox

regression model (Figure 2, category ‘C’).

Two submitted models were built by naively inputting all

molecular features into machine learning algorithms (i.e. using all

gene expression and CNA features and no clinical features). These

models (our category ‘M’) both performed significantly worse than

the baseline clinical model (median concordance index of 0.5906).

Given that our training set contains over 80,000 molecular

features and only 500 training samples, this result highlights the

challenges related to overfitting due to the imbalance between the

number of features and number of samples, also known as the

curse of dimensionality [33,34].

Models trained using molecular feature data combined with

clinical data (category ‘MC’) outperformed the baseline clinical

model in 10 out of 28 (36%) submissions, suggesting there is

some difficulty in the naı̈ve incorporation of molecular feature

data compared to using only clinical information. In fact, the

best MC model attributed lower weights to molecular compared

to clinical features by rank-transforming all the features

(molecular and clinical) and training an elastic net model,

imposing a penalty only on the molecular features and not on the

clinical ones, such that the clinical features are always included

in the trained model. This model achieved a concordance index

of 0.6593, slightly better than the best-performing clinical only

model.

One of the most successful approaches to addressing the curse of

dimensionality in genomics problems has been to utilize domain-

specific prior knowledge to pre-select features more likely to be

associated with the phenotype of interest [35]. Indeed, the

majority of submitted models (66 of 110, 60%) utilized a strategy

of pre-selecting features based on external prior knowledge.

Interestingly, analysis of model submission dates indicates that

participants first attempted naı̈ve models incorporating all

molecular features, and after achieving small performance

improvements over clinical only models, evolved to incorporate

prior information as the dominant modeling strategy in the later

phase of the competition (Figure 2B). This observation is consistent

with previous reports highlighting the importance of real-time

feedback in motivating participants to build continuously improv-

ing models [36].

Table 1. Association of clinical features with overall survival (OS).

Variable name spearman(SP) SP p-val univariate HR uni p-val multivariate HR multi p-val

ageDiagnosis 20.05 2.34e-01 1.03 6.71e-07 1.05 3.98e-10

tumorSizeCM 20.19 1.47e-05 1.16 2.86e-07 1.1 4.74e-03

Lymphnodes (pos vs. neg) 0.24 4.2e-08 1.68 1.84e-04 1.62 5.2e-03

Hormone (treatment vs. no
treatment)

20.09 3.96e-02 1 9.84e-01 0.63 8.72e-03

Radiation (treatment vs. no
treatment)

20.04 3.62e-01 0.84 2.08e-01 0.7 2.19e-02

PR (pos vs. neg) 0.23 2.52e-07 0.53 4.21e-06 0.7 3.44e-02

Grade (ordinal) 20.15 1.02e-03 2.48 5.79e-03 1.98 5.63e-02

Chemo (treated vs not) 20.27 5.62e-10 1.62 3.06e-03 1.67 7.37e-02

HER2 (pos vs. neg) 20.1 2.50e-02 1.78 2.79e-03 1.43 1.84e-01

hist Medullary (vs. ILC) 20.04 3.6e-01 1.12 8.58e-01 0.62 4.77e-01

hist Mixed (vs. ILC) 0.06 1.63e-01 0.59 1.61e-01 0.83 6.36e-01

ER (pos. vs. neg) 0.14 1.23e-03 0.65 7.78e-03 0.8 7.73e-01

tripleNegative 20.09 4.05e-02 1.32 1.42e-01 0.89 7.75e-01

hist Inf Duct (vs. ILC) 20.04 3.89e-01 1.07 8.17e-01 0.93 7.99e-01

hist Muc (vs. ILC) 0 9.38e-01 0.92 8.75e-01 0.9 8.53e-01

ERPR 0.14 1.18e-03 0.65 8.26e-03 1.13 8.78e-01

The columns are: variable name; Spearman correlation between variable and OS for uncensored patients; p-value of the Spearman correlation; Cox proportional hazard
ratio (HR) for all patients between individual clinical features and OS; p-values of the HR (Wald test); HR for all patients using all clinical variables and OS; p-value (Wald
test) for the HR using all clinical features. The clinical covariates in this table include age at diagnosis (continuous), tumor size in centimeters (continuous), histological
grade (ordinal) and whether the patient received hormone therapy (treated vs. untreated), radiotherapy (treated vs. untreated), or chemotherapy (treated vs. untreated).
In addition, there are clinical covariates for common breast cancer subtype markers including HER2 status (positive vs. negative), ER status (positive vs. negative) and PR
status (positive vs. negative) individually, as well as joint ER and PR status (ERPR) and triple negative status (tripleNegative) when a patient is negative for ER, PR, and
HER. Histological types are: medullary carcinomas, mixed invasive, infiltrating ductal carcinomas (IDC), mucinous carcinomas, and infiltrating lobular carcinomas.
Histology is treated as a categorical level variable, with ILC as the baseline. The multivariate Cox model also includes site as a categorical level variable to adjust for
inclusion site (not reported). In the multivariate analyses ER status/endocrine treatment and chemotherapy/node status will be confounded. The table is sorted on the
p-values of the multivariate analysis.
doi:10.1371/journal.pcbi.1003047.t001
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All models trained on only the molecular features (i.e. excluding

the clinical features) and incorporating prior knowledge (MP

category) performed worse than the baseline model, with the

highest concordance index being 0.5947, further highlighting the

difficultly in using molecular information alone to improve

prognostic accuracy compared to clinical data.

Twenty-four models outperformed the baseline by combining

clinical features with molecular features selected by prior

knowledge (MPC category). The overall best-performing model

attained a concordance index of 0.6707 by training a machine

learning method (boosted regression) on a combination of: 1)

clinical features; 2) expression levels of genes selected based on

both data driven criteria and prior knowledge of their involvement

in breast cancer (the MASP feature selection strategy, as described

in Methods); 3) an aggregated ‘‘genomic instability’’ index

calculated from the copy number data (see Methods).

The wide range of concordance index scores for models in the

MPC category raises the question of whether the improved

performance of the best MPC models are explained by the

biological relevance of the selected features or simply by random

fluctuations in model scores when testing many feature sets. Due to

the uncontrolled experimental design inherent in accepting

unconstrained model submissions, additional evaluations are

needed to assess the impact of different modeling choices in a

controlled experimental design. We describe the results of this

experiment next.

Controlled experiment for model evaluation
We analyzed the modeling strategies utilized in the original

‘‘uncontrolled’’ model submission phase and designed a ‘‘con-

trolled’’ experiment to assess the associations of different modeling

choices with model performance. We determined that most

models developed in the uncontrolled experiment could be

described as the combination of a machine learning method with

a feature selection strategy. We therefore tested models trained

using combinations of a discrete set of machine learning methods

crossed with feature selection strategies using the following

experimental design:

1. We designed 15 categories of models based on the choice of

features used in each model based on the following design:

a. We chose 6 strategies for pre-selecting feature subsets as

developed in the uncontrolled phase (Table 3).

b. We created 6 additional model categories consisting of each

feature subset plus all clinical covariates.

c. We created an additional model category using only clinical

covariates.

d. We created 2 additional categories incorporating the genomic

instability index (GII), which was a component of the best-

performing model in the uncontrolled phase. We used GII in

additional to all clinical covariates, as well as GII in addition

to all clinical covariates and the additional features used in the

best-performing model (MASP) from the uncontrolled

experiment. We note that since GII is only a single feature

we did not train models using GII alone.

2. For each of the 15 feature selection strategies described above,

we trained 4 separate models using the machine learning

algorithms that were frequently applied and demonstrated

good performance in the uncontrolled experiment: boosting,

random survival forest, lasso, and elastic net.

3. We constructed a series of ensemble learning algorithms by

computing concordance index scores after averaging the rank

predictions of subsets of models. Models trained using

ensemble strategies included:

a. 15 ensemble models combining the learning algorithms for

each model category.

b. 4 ensemble models combining the model categories for each

learning algorithm.

c. 1 ensemble model combining all model categories and

learning algorithms.

This experiment design resulted in a total of 60 models based on

combinations of modeling strategies from the uncontrolled

Figure 1. Gene expression subclass analysis. (A) Comparison of hierarchical clustering of METABRIC data (left panel) and Perou data (right
panel). Hierarchical clustering on the gene expression data of the PAM50 genes in both datasets reveals a similar gene expression pattern that
separates into several subclasses. Although several classes are apparent, they are consistent with sample assignment into basal-like, Her2-enriched
and luminal subclasses in the Perou data. Similarly, in the METABRIC data the subclasses are consistent with the available clinical data for triple-
negative, ER and PR status, and HER2 positive. (B) Kaplan-Meier plot for subclasses. The METABRIC test dataset was separated into 3 major subclasses
according to clinical features. The subclasses were determined by the clinical features: triple negative (red); ER or PR positive status (blue); and HER2
positive with ER and PR negative status (green). The survival curve was estimated using a standard Kaplan-Meier curve, and shows the expected
differences in overall survival between the subclasses. (C,D) Kaplan-Meier curve by grade and histology. The test dataset was separated by tumor
grade (subplot C; grade 1 – red, grade 2 – green, grade 3- blue), or by histology (subplot D; Infilitrating Lobular – red, Infiltrating Ductal – yellow,
Medullary –green, Mixed Histology – blue, or Mucinous - purple). The survival curves were estimated using a standard Kaplan-Meier curve, and show
the expected differences in overall survival for the clinical features.
doi:10.1371/journal.pcbi.1003047.g001

Table 2. Description of categories of models submitted to the pilot competition based on the features used by the models in each
category.

Category Features used by models # models Range of c-index (median)

C Only clinical (C) features 14 0.5097–0.6576 (0.6264)

M Only molecular (M) features 2 0.5705–0.6108 (0.5906)

MC Molecular and clinical features 28 0.5334–0.6593 (0.6169)

MP Molecular features selected using prior (P) knowledge 8 0.5651–0.5947 (0.5806)

MPC Molecular features selected as above and all clinical features 58 0.5376–0.6707 (0.6197)

doi:10.1371/journal.pcbi.1003047.t002
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experiment (Table S4), plus 20 models using ensemble strategies.

This controlled experimental design allowed us to assess the effect

of different modeling choices while holding other factors constant.

Following an approach suggested in the MAQC-II study [24],

we designed negative and positive control experiments to infer

bounds on model performance in prediction problems for which

models should perform poorly and well, respectively. As a negative

control, we randomly permuted the sample labels of the survival

data, for both the training and test datasets, and computed the

concordance index of each model trained and tested on the

permuted data. To evaluate how the models would perform on a

relatively easy prediction task, we conducted a positive control

experiment in which all models were used to predict the ER status

of the patients based on selected molecular features (excluding the

ER expression measurement). We found that all negative control

models scored within a relatively tight range of concordance

indices centered around 0.5 (minimum: 0.468, maximum: 0.551),

significantly lower than the lowest concordance index (0.575) of

any model trained on the real data in this experiment. Conversely,

all ER-prediction models scored highly (minimum: 0.79, maxi-

mum: 0.969), suggesting that the scores achieved by our survival

models (maximum: 0.6707) are not due to a general limitation of

the selected modeling strategies but rather the difficulty of

modeling breast cancer survival.

Overall, we found that the predictive performance of the

controlled experiment models (Figure 3A) was significantly

dependent on the individual feature sets (P=1.02e-09, F-test),

and less dependent on the choice of the statistical learning

algorithm (P=0.23, F-test). All model categories using clinical

covariates outperformed all model categories trained excluding

clinical covariates, based on the average score across the 4 learning

algorithms. The best-performing model category selected features

based on marginal correlation with survival, further highlighting

the difficulty in purely data-driven approaches, and the need to

Table 3. Feature sets used in the controlled experiment.

Feature Category Description

Clinical The set of 14 clinical features from [29].

Marginal Association 1000 molecular features (gene expression and/or copy number) most predictive of survival in a
univariate Cox regression analysis on the training set.

Top-Varying 1000 molecular features (gene expression and/or copy number) with the greatest variance in the
training set.

Cancer Census 1526 gene expression and copy number features corresponding to 487 genes from the Cancer
Gene Census database [60].

Higgins 1000 gene expression and copy-number features with the greatest variance among oncogenes
identified by Higgins et al. [61].

Metabric Clustering 754 gene expression and copy number features used to define the clusters in the study by Curtis
et al. [29].

MASP: Marginal Association with Subsampling and
Prior Knowledge

Gene expression of 50 known oncogenes and transcription factors selected by computing
univariate Cox regression models on random subsets of the training set and aggregating the
resulting p-values (see Methods).

GII: Genomic Instability Index Number of amplified/deleted sites as calculated from the segmented copy number data (see
Methods).

doi:10.1371/journal.pcbi.1003047.t003

Figure 2. Distribution of concordance index scores of models submitted in the pilot competition. (A) Models are categorized by the type
of features they use. Boxes indicate the 25th (lower end), 50th (middle red line) and 75th (upper end) of the scores in each category, while the whiskers
indicate the 10th and 90th percentiles of the scores. The scores for the baseline and best performer are highlighted. (B) Model performance by
submission date. In the initial phase of the competition, slight improvements over the baseline model were achieved by applying machine learning
approaches to only the clinical data (red circles), whereas initial attempts to incorporate molecular data significantly decreased performance (green,
purple, and black circles). In the intermediate phase of the competition, models combining molecular and clinical data (green circles) predominated
and achieved slightly improved performance over clinical only models. Towards the end of the competition, models combining clinical information
with molecular features selected based on prior information (purple circles) predominated.
doi:10.1371/journal.pcbi.1003047.g002
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incorporate prior knowledge to overcome the curse of dimension-

ality.

The best-performing model used a random survival forest

algorithm trained by combining the clinical covariates with a

single additional aggregate feature, called the genomic instability

index (GII), calculated as the proportion of amplified or deleted

sites based on the copy number data. This result highlights the

importance of evaluating models using a controlled experimental

design, as the best-performing method in the uncontrolled

experiment combined clinical variables with GII in addition to

selected gene expression features (clinical variables plus only GII

was not evaluated), and the controlled experiment pointed to

isolating GII as the modeling insight associated with high

prediction accuracy.

The random survival forest trained using clinical covariates and

GII was significantly better than a random survival forest trained

using clinical covariates alone (P=2e-12 by paired Wilcoxon

signed rank test based on 100 bootstrap samples with replacement

from the test dataset). We also tested if inclusion of the GII feature

improved model performance beyond a score that could be

obtained by chance based on random selection of features. We

trained 100 random survival forest models and 100 boosting

models, each utilizing clinical information in addition to random

selections of 50 molecular features (corresponding to the number

of features used based on the MASP strategy, which achieved the

highest score of all feature selection methods). The best-

performing model from our competition (trained using clinical

covariates and GII) achieved a higher score than each of these 100

models for both learning algorithms (P,= .01).

The use of the aggregate GII feature was based on previous

reports demonstrating the association between GII and poor

prognosis breast cancer subtypes like Luminal B, HER2+ and

Basal-like tumors [37]. We found that HER2+ tumors had the

strongest association with the GII score (P=1.65e-12, t-test) which

partly explains why it performs so well considering none of the

patients were treated with compounds that target the HER2

pathway (e.g. Herceptin). Samples with high GII scores were also

associated with high-grade tumors (P=7.13e-13, t-test), further

strengthening its credential as a good survival predictor. However,

despite these strong associations, the genomic instability index

provided an added value to the strength of predictions even as

clinical covariates histologic grade and HER2 status are used in

the models.

Boosting was the best-performing method on average. Elastic

net and lasso exhibited stable performance across many feature

sets. Random survival forests performed very well when trained on

a small number of features based on clinical information and the

genomic instability index. However, their performance decreased

substantially with the inclusion of large molecular feature sets.

Ensemble methods trained by averaging predicted ranks across

multiple methods systematically performed better than the average

concordance index scores of the models contained in the

ensemble, consistent with previously reported results [38].

Strikingly, an ensemble method aggregating all 60 models

achieved a concordance index score of .654, significantly greater

than the average of all model scores (.623) (Figure 3B). The

ensemble performed better than the average model score for each

of 100 resampled collections of 60 models each, using boot-

strapping to sample with replacement from all 60 models

(P,= .01). The ensemble model scored better than 52 of the 60

(87%) models that constituted the ensemble. We note that 2 of the

algorithms (boosting and random forests) utilize ensemble learning

strategies on their own. For both of the other 2 algorithms (lasso

and elastic net) the method trained on an ensemble of the 15

feature sets scored higher than each of the 15 models trained on

the individual feature sets (Figure 3B). Consistent with previous

reports, the systematic outperformance of ensemble models

compared to their constituent parts suggests that ensemble

approaches effectively create a consensus that enhances the

biologically meaningful signals captured by multiple modeling

approaches. As previously suggested in the context of the DREAM

project [38–41], our finding further reinforces the notion that

crowd-sourced collaborative competitions are a powerful frame-

work for developing robust predictive models by training an

ensemble model aggregated across diverse strategies employed by

participants.

Consistency of results in independent datasets
In the first round of the competition, we did not restrict the

number of models a participant could submit. This raises the

possibility of model overfitting to the test set used to provide real-

time feedback. We therefore used 2 additional datasets to evaluate

Figure 3. Model performance by feature set and learning algorithm. (A) The concordance index is displayed for each model from the
controlled experiment (Table S4). The methods and features sets are arranged according to the mean concordance index score. The ensemble
method (cyan curve) infers survival predictions based on the average rank of samples from each of the four other learning algorithms, and the
ensemble feature set uses the average rank of samples based on models trained using all of the other feature sets. Results for the METABRIC2 and
MicMa datasets are show in Figure S1. (B) The concordance index of models from the controlled phase by type. The ensemble method again utilizes
the average rank for models in each category.
doi:10.1371/journal.pcbi.1003047.g003
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the consistency of our findings. The first dataset, which we called

METABRIC2, consisted of the 988 samples (excluding those with

missing survival data) from the METABRIC cohort that were not

used in either the training dataset or the test dataset used for real-

time evaluation. The second dataset, called MicMa, consisted of

102 samples with gene expression, clinical covariates, and survival

data available [4,28] and copy number data presented in the

current study (see Methods). We used the models from our

controlled experiment, which were trained on the original 500

METABRIC samples, and evaluated the concordance index of the

survival predictions of each model compared to observed survival

in both METABRIC2 and MicMa.

The concordance index scores across models from the original

evaluation were highly consistent in both METABRIC2 and

MicMa. The 60 models evaluated in the controlled experiment (15

feature sets used in 4 learning algorithms) had Pearson correlations

of .87 (P,1e-10) compared to METABRIC2 (Figure 4A) and .76

(P,1e-10) compared to MicMa (Figure 4C), although we note that

p-values may be over-estimated due to smaller effective sample

sizes due to non-independence of modeling strategies. Model

performance was also strongly correlated for each different

algorithm across the feature sets for both METABRIC2

(Figure 4B) and MicMa (Figure 4D).

Consistent with results from the original experiment, the top

scoring model, based on average concordance index of the

METABRIC2 and MicMa scores, was a random survival forest

trained using clinical features in combination with the GII. The

second best model corresponded to the best model from the

uncontrolled experiment (3rd best model in the controlled

experiment), and used clinical data in combination with GII and

the MASP feature selection strategy, and was trained using a

boosting algorithm. A random forest trained using only clinical

Figure 4. Consistency of results in 2 additional datasets. (A,C) Concordance index scores for all models evaluated in the controlled
experiment. Scores from the original evaluation are compared against METABRIC2 (A) and MicMa (C). The 4 machine learning algorithms are
displayed in different colors. (B,D) Individual plots for each machine learning algorithm.
doi:10.1371/journal.pcbi.1003047.g004
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data achieve the 3rd highest score. The top 39 models all

incorporated clinical data.

As an additional comparison, we generated survival predictions

based on published procedures used in the clinically approved

MammaPrint [6] and Oncotype DX [7] assays. We note that these

assays are designed specifically for early stage, invasive, lymph

node negative breast cancers (in addition ER+ in the case of

Oncotype DX) and use different scores calculated from gene

expression data measured on distinct platforms. It is thus difficult

to reproduce exactly the predictions provided by these assays or to

perform a fair comparison to the present methods on a dataset that

includes samples from the whole spectrum of breast tumors. The

actual Oncotype DX score is calculated from RT-PCR measure-

ments of the mRNA levels of 21 genes. Using z-score normalized

gene expression values from METABRIC2 and MicMa datasets,

together with their published weights, we recalculated Oncotype

DX scores in an attempt to reproduce the actual scores as closely

as possible. We then scored the resulting predictions against the

two datasets and obtained concordance indices of 0.6064 for

METABRIC2 and 0.5828 for MicMa, corresponding to the 81st

ranked model based on average concordance index out of all 97

models tested, including ensemble models and Oncotype DX and

MammaPrint feature sets incorporated in all learning algorithms

(see Table S5). Similarly, the actual MammaPrint score is

calculated based on microarray gene expression measurements,

with each patient’s score determined by the correlation of the

expression of 70 specific genes to the average expression of these

genes in patients with good prognosis (defined as those who have

no distant metastases for more than five years, ER+ tumors, age

less than 55 years old, tumor size less than 5 cm, and are lymph

node negative). Because of limitations in the data, we were not able

to compute this score in exactly the same manner as the original

assay (we did not have the metastases free survival time, and some

of the other clinical features were not present in the validation

datasets). We estimated the average gene expression profile for the

70 MammaPrint genes based on all patients who lived longer than

five years (with standardized gene expression data), then computed

each patient’s score as their correlation to this average good

prognosis profile. We scored the predictions against the two

validation datasets and observed concordance indices of 0.602 in

METABRIC2 and 0.598 in MicMa, corresponding to the 78th

ranked out of 97 models based on average concordance index.

We were able to significantly improve the scores associated with

both MammaPrint and Oncotype DX by incorporating the gene

expression features utilized by each assay as feature selection

criteria in our prediction pipelines. We trained each of the 4

machine learning algorithms with clinical features in addition to

gene lists from MammaPrint and Oncotype DX. The best-

performing models would have achieved the 8th and 26th best

scores, respectively, based on average concordance index in

METABRIC2 and MicMa. We note that using the ensemble

strategy of combining the 4 algorithms, the model trained using

Mammaprint genes and clinical data performed better than

clinical data alone, and achieved the 5th highest average model

score, including the top score in METABRIC2, slightly (.005

concordance index difference) better than the random forest

model using clinical data combined with GII, though only the 17st

ranked score in MicMa. This result suggests that incorporating the

gene expression features identified by these clinically implemented

assays into the prediction pipeline described here may improve

prediction accuracy compared to current analysis protocols.

An ensemble method, aggregating results across all learning

algorithms and feature sets, performed better than 71 of the 76

models (93%) that constituted the ensemble, consistent with our

finding that the ensemble strategy achieves performance among

the top individual approaches. For the 19 feature selection

strategies used in the METABRIC2 and MicMa evaluations, an

ensemble model combining the results of the 4 learning algorithms

performed better than the average of the 4 learning algorithms in

36 out of 38 cases (95%). Also consistent with our previous result,

for both algorithms that did not use ensemble strategies themselves

(elastic net and lasso), an ensemble model aggregating results

across the 19 feature sets performed better than each of the

individual 19 feature sets for both METABRIC2 and MicMa.

Taken together, the independent evaluations in 2 additional

datasets are consistent with the conclusions drawn from the

original real-time feedback phase of the completion, regarding

improvements gained from ensemble strategies and the relative

performance of models.

Discussion

‘‘Precision Medicine’’, as defined by the Institute of Medicine

Report last year, proposes a world where medical decisions will be

guided by molecular markers that ensure therapies are tailored to

the patients who receive them [42]. Moving towards this futuristic

vision of cancer medicine requires systematic approaches that will

help ensure that predictive models of cancer phenotypes are both

clinically meaningful and robust to technical and biological sources

of variation.

Despite isolated successful developments of molecular diagnostic

and personalized medicine applications, such approaches have not

translated to routine adoption in standard-of-care protocols. Even

in applications where successful molecular tests have been

developed, such as breast cancer prognosis [5,6], a plethora of

research studies have claimed to develop models with improved

predictive performance. Much of this failure has been attributed to

‘‘difficulties in reproducibility, expense, standardization and proof

of significance beyond current protocols’’ [43]. The propensity of

researchers to over-report the performance of their own

approaches has been deemed the ‘‘self-assessment trap’’ [19].

We propose community-based collaborative competitions [43–

49] as a general framework to develop and evaluate predictive

models of cancer phenotypes from high-throughput molecular

profiling data. This approach overcomes limitations associated

with the design of typical research studies, which may conflate

self-assessment with methodology development or, even more

problematic, with data generation. Thus competition-style

research may promote transparency and objective assessment of

methodologies, promoting the emergence of community stan-

dards of methodologies most likely to yield translational clinical

benefit.

The primary challenge of any competition framework is to

ensure that mechanisms are in place to prevent overfitting and

fairly assess model performance, since performance is only

meaningful if models are ranked based on their ability to capture

some underlying signal in the data. For example, such an

approach requires datasets affording sufficient sample sizes and

statistical power to make meaningful comparisons of many models

across multiple training and testing data subsets. We propose

several strategies for assessing if the results obtained from a

collaborative competition are likely to generalize to future

applications and improve on state-of-the art methodologies that

would be employed by an expert analyst.

First, baseline methods should be provided as examples of

approaches an experienced analyst may apply to the problem. In

our study, we employed a number of such methods for

comparison, including methodologies used in clinical diagnostic
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tests and multiple state-of-the-art machine learning methods

trained using only clinical covariates.

Second, performance of models should be evaluated in multiple

rounds of independent validation. In this study, we employed a

multi-phase strategy suggested by previous researchers [50] in

which a portion of the dataset is held back to provide real-time

feedback to participants on model performance and another

portion of the dataset is held back and used to score the

performance of all models, such that participants cannot overfit

their models to the test set. If possible, we recommend an

additional round of validation using a dataset different from the

one used in previous rounds, in order to test against the possibility

that good performance is due to modeling confounding variables

in the original dataset. This experimental design provides 3

independent rounds of model performance assessment, and

consistent results across these multiple evaluations provides strong

evidence that performance of the best approaches discovered in

this experimental design are likely to generalize in additional

datasets.

Finally, statistical permutation tests can provide useful safe-

guards against the possibility that improved model performance is

attributable to random fluctuations based on evaluation of many

models. Such tests should be designed carefully based on the

appropriate null hypothesis. A useful, though often insufficient, test

is to utilize a negative control null model, for example by

permuting the sample labels of the response variable. We suggest

that additional tests may be employed as post-hoc procedures

designed specifically to provide falsifiable hypotheses that may

provide alternative explanations of model performance. For

example, in this study we assessed the performance of many

models trained using the same learning algorithm (random

survival forest) and the same clinical features as used in the top

scoring model, but using random selections of molecular features

instead of the GII feature. This test was designed to falsify the

hypothesis that model performance is within the range of likely

values based on random selection of features, as has been a

criticism of previously reported models [18].

We suggest that the guidelines listed above provide a useful

framework in reporting the results of a collaborate competition,

and may even be considered necessary criteria to establish the

likelihood that findings will generalize to future applications. As

with most research studies, a single competition cannot compre-

hensively assess the full extent to which findings may generalize to

all potentially related future applications. Accordingly, we suggest

that a collaborative competition should indeed report the best

forming model, provided it meets the criteria listed above, but

need not focus on declaring a single methodology as conclusively

better than all others. By analogy to athletic competitions such as

an Olympic track race, a gold medal is given to the runner with

the fastest time, even if by a fraction of a second. Judgments of

superior athletes emerge through integrating multiple such data

points across many races against different opponents, distances,

weather conditions, etc., and active debate among the community.

A research study framed as a collaborative competition may

facilitate the transparency, reproducibility, and objective evalua-

tion criteria that provide the framework on which future studies

may build and iterate towards increasingly refined assessments

through a continuous community-based effort.

Within several months we developed and evaluated several

hundred modeling approaches. Our research group consisted of

experienced analysts trained as both data scientists and clinicians,

resulting in models representing state-of-the art approaches

employed in both machine learning and clinical cancer research

(Table 3). By conducting detailed post-hoc analysis of approaches

developed by this group, we were able to design a controlled

experiment to isolate the performance improvements attributable

to different strategies, and to potentially combine aspects of

different approaches into a new method with improved perfor-

mance.

The design of our controlled experiment builds off pioneering

work by the MAQC-II consortium, which compiled 6 microarray

datasets from the public domain and assessed modeling factors

related to the ability to predict 13 different phenotypic endpoints.

MAQC-II classified each model based on several factors (type of

algorithm, normalization procedure, etc), allowing analysis of the

effect of each modeling factor on performance. Our controlled

experiment follows this general strategy, and extends it in several

ways.

First, MAQC-II, and most competition-base studies [20,22,26],

accept submissions in the form of prediction vectors. We

developed a computational system that accepts models as re-

runnable source code implementing a simple train and predict

API. Source code for all submitted models are stored in the

Synapse compute system [51] and are freely available to the

community. Thus researchers may reproduce reported results,

verify fair play and lack of cheating, learn from the best-

performing models, reuse submitted models in related applications

(e.g. building prognostic models in other datasets), build ensemble

models by combining results of submitted models, and combine

and extend innovative ideas to develop novel approaches.

Moreover, storing models as re-runnable source code is important

in assessing the generalizability and robustness of models, as we

are able to re-train models using different splits or subsets of the

data to evaluate robustness, and we (or any researcher) can

evaluate generalizability by assessing the accuracy of a model’s

predictions in an independent dataset, such as existing related

studies [5] or emerging clinical trial data [52]. We believe this

software system will serve as a general resource that is extended

and re-used in many future competition-based studies.

Second, MAQC-II conducted analysis across multiple pheno-

typic endpoints, which allowed models to be re-evaluated in the

context of many prediction problems. However, this design

required models to be standardized across all prediction problems

and did not allow domain-specific insights to be assessed for each

prediction problem. By contrast, our study focused on the single

biomedical problem of breast cancer prognosis, and allowed

clinical research specialists to incorporate expert knowledge into

modeling approaches. In fact, we observed that feature selection

strategies based on prior domain-specific knowledge had a greater

effect on model performance than the choice of learning

algorithm, and learning algorithms that did not incorporate prior

knowledge were unable to overcome challenges with incorporating

high-dimensional feature data. In contrast to previous reports that

have emphasized abstracting away domain-specific aspects of a

competition in order to attract a broader set of analysis [50], in

real-word problems, we emphasize the benefit of allowing

researchers to apply domain-specific expertise and objectively test

the performance of such approaches against those of analysts

employing a different toolbox of approaches.

Finally, whereas MAQC-II employed training and testing splits

of datasets for model evaluation, our study provides an additional

level of evaluation in a separate, independent dataset generated on

a different cohort and using different gene expression and copy

number profiling technology. Consistent with findings reported by

MAQC-II, our study demonstrates strong consistency of model

performance across independent evaluations and provides an

important additional test of model generalizability that more

closely simulates real-world clinical applications, in which data is

Breast Cancer Survival Modeling

PLOS Computational Biology | www.ploscompbiol.org 11 May 2013 | Volume 9 | Issue 5 | e1003047



generated separately from the data used to construct models. More

generally, whereas MAQC-II evaluated multiple prediction

problems in numerous datasets with gene expression data and

samples numbers from 70 to 340, our study went deeper into a

evaluating a single prediction problem, utilizing copy number and

clinical information in addition to gene expression, and with a

dataset of 2,000 samples in addition to an independently-

generated dataset with 102 samples.

The model achieving top performance in both the initial

evaluation phase and the evaluation in additional datasets

combined a state-of-the-art machine learning approach (random

survival forest) with a clinically motivated feature selection strategy

that used all clinical features together with an aggregate genomic

instability index. Interestingly, this specific model was not tested in

the uncontrolled phase, and was the result of the attempt to isolate

and combine aspects of different modeling approaches in a

controlled experiment. The genomic instability index measure

may serve as a proxy for the degree to which DNA damage repair

pathways (including, for instance, housekeeping genes like p53 and

RB) have become dysregulated [37].

Beyond the specifics of the top performing models, we believe

the more significant contribution of this work is as a building

block, providing a set of baseline findings, computational

infrastructure, and proposed research methodologies used to

assess breast cancer prognosis models, and extending in the future

to additional phenotype prediction problems. Towards this end,

we have recently extended this work into an open collaborative

competition through which any researcher can freely register and

evaluate the performance of submitted models against all others

submitted throughout the competition. Though this expanded

breast cancer competition, and future phenotype prediction

competitions to be hosted as extensions of the current work, we

invite researchers to improve, refute, and extend our findings and

research methodologies to accelerate the long arc of cumulative

progress made by the community through a more transparent and

objectively assessed process.

Methods

Breast Cancer Prognosis Competition Design and
Software
Our competition was designed to assess the accuracy of

predicting patient survival (using the overall survival metric,

median 10 year follow-up) based on feature data measured in

the METABRIC cohort of 980 patients, including gene expression

and copy number profiles and 16 clinical covariates (Table 1).

Participants were given a training dataset consisting of data

from 500 samples, and data from the remaining 480 were hidden

from participants and used as a validation dataset to evaluate

submitted models.

We developed the computational infrastructure to support the

competition within the open-source Sage Synapse software

platform. Detailed documentation is available on the public

competition website: https://sagebionetworks.jira.com/wiki/

display/BCC/Home. The system is designed to generalize to

support additional community-based competitions and consists of

the following components (Figure 5):

1. The ability for participants to access training data stored in the

Sage Synapse software system through programmatic APIs,

with initial support built for the R programming language.

2. A programmatic API for training and testing predictive models.

To date, we have developed support for models developed in

the R programming language conforming to a simple interface

implementing methods named customTrain and customPre-

dict. Any model conforming to this interface can be plugged-in

to the competition infrastructure, trained on the training

dataset, and evaluated for prediction accuracy in the validation

dataset, as well as using various cross-validation statistics.

3. The ability to upload models, including re-runnable source

code, in Synapse, allowing models to be shared with the

community in a fully transparent, reproducible environment.

4. An automated model evaluation system for assessing the

performance of submitted models and outputting the scores to

a web-based real-time leaderboard. We stress this aspect of the

framework, based on the findings from previous competitions

that rapid feedback is critical to motivating its participants to

improve their model beyond the baseline [36].

5. Communication and social networking tools, such as wikis and

discussion forums (http://support.sagebase.org).

All models are available with downloadable source code using

the Synapse IDs displayed in Table S1 and Table S4. An

automated script continuously monitored for new submissions,

which were sent to worker nodes in a computational cluster for

scoring. Each worker node ran an evaluation script, which called

the submitted model’s customPredict method with arguments

corresponding to the gene expression, copy number, and clinical

covariate values in the held-out validation dataset. This function

returns a vector of predicted survival times in the validation

dataset, which were used to calculate the concordance index as a

measure of accuracy compared to the measured survival times for

Figure 5. Model evaluation pipeline schematic. Green regions:
Public areas, untrusted. Blue regions: Trusted areas where no
competitor’s code is to be run. Yellow region: Sandboxed area, where
untrusted code is run on a trusted system. Red region: Permissions
managed by Synapse.
doi:10.1371/journal.pcbi.1003047.g005
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the same samples. Concordance index scores were shown in a real-

time leaderboard, similar to the leaderboards displaying the

models scores shown in Table S1 and Table S4.

Concordance index (c-index) is the standard metric for

evaluation of survival models [53]. The concordance index ranges

from 0 in the case of perfect anti-correlation between the rank of

predictions and the rank of actual survival time through 0.5 in the

case of predictions uncorrelated with survival time to 1 in the case

of exact agreement with rank of actual survival time. We

implemented a method to compute the exact value of the

concordance index by exhaustively sampling all pairwise combi-

nations of samples rather than the usual method of stochastically

sampling pairwise samples. This method overcomes the stochastic

sampling used in standard packages for concordance index

calculation and provides a deterministic, exact statistic used to

compare models.

Study timeline
Data on the original 980 samples were obtained for this study in

early January, 2012. Study design and computational infrastruc-

ture were developed from then until March 14th, at which point

participants were given access to the 500 training samples and

given 1 month to develop models in the ‘‘uncontrolled experi-

ment’’ phase. During this time, participants were given real-time

feedback on model performance evaluated against the held-out

test set of 480 samples. After this 1-month model development

phase, all models were frozen and inspected by the group to

conduct post-hoc model evaluation and identify modeling

strategies used to design the controlled evaluation. All models in

the controlled evaluation were re-trained on the 500 training

samples and re-evaluated on the 480 test samples. After all

evaluation was completed based on the original 980 samples, the

METABRIC2 and MicMa datasets became available, and were

used to perform additional evaluations of all models, which was

conducted between January 2013–March 2013. For the new

evaluation, all data was renormalized to the gene level, as

described below, in order to allow comparison of models across

datasets performed on different platforms. Models were retrained

using the re-normalized data for the same 500 samples in the

original training set.

Model source code
All model source code is available in the subfolders of Synapse

ID syn160764, and specific Synapse IDs for each model are listed

in Table S1 and Table S4. Data stored in Synapse may be

accessed using the Synapse R client (https://sagebionetworks.jira.

com/wiki/display/SYNR/Home) or by clicking the download

icon on the web page corresponding to each model, allowing the

user to download a Zip archive containing the source files

contained in the submission.

Datasets and normalization
The METABRIC dataset used in the competition contains gene

expression data from the Illumina HT 12v3 platform and copy

number data derived from experiments performed on the

Affymetrix SNP 6.0 platform. In the initial round of analysis,

the first 980 samples data was normalized as described in [29],

corresponding to the data available in the European Genome-

Phenome Archive (http://www.ebi.ac.uk/ega), accession number

EGAS00000000083. Copy number data was summarized to the

gene level by calculating the mean value of the segmented regions

overlapping a gene. Data for use in our study are available in the

Synapse software system (synapse.sagebase.org) within the folder

with accession number syn160764 (https://synapse.prod.sagebase.

org/#!Synapse:syn160764), subject to terms of use agreements

described below. Data may be loaded directly in R using the

Synapse R client or downloaded from the Synapse web site.

Patients treated for localized breast cancer from 1995 to 1998 at

Oslo University Hospital were included in the MicMa cohort, and

123 of these had available fresh frozen tumor material [4,28].

Gene expression data for 115 cases obtained from an Agilent

whole human genome 4644 K one color oligo array was available

(GSE19783) [54]. Novel SNP-CGH data from 102 of the MicMa

samples were obtained using the Illumina Human 660k Quad

BeadChips according to standard protocol. Normalized LogR

values summarized to gene level were made available and are

accessible in Synapse (syn1588686).

All data used for the METABRIC2 and MicMa analyses are

available as subfolders of Synapse ID syn1588445. For comparison

of METABRIC2 and MicMa, we standardized all clinical

variables, copy number, and gene expression data across both

datasets. Clinical variables were filtered out that were not available

in both datasets. Data on clinical variables used in this comparison

are available in Synapse.

All gene expression datasets were normalized according the

supervised normalization of microarrays (snm) framework and

Bioconductor package [55,56]. Following this framework we

devised models for each dataset that express the raw data as

functions of biological and adjustment variables. The models were

built and implemented through an iterative process designed to

learn the identity of important variables. Once these variables

were identified we used the snm R package to remove the effects of

the adjustment variables while controlling for the effects of the

biological variables of interest.

SNP6.0 copy number data was also normalized using the snm

framework, and summarization of probes to genes was done as

follows. First, probes were mapped to genes using information

obtained from the pd.genomewidesnp.6 Bioconductor package [57].

For genes measured by two probes we define the gene-level values

as an unweighted average of the probes’ data. For genes measured

by a single probe we define the gene-level values as the data for the

corresponding probe. For those measured by more than 2 probes

we devised an approach that weights probes based upon their

similarity to the first eigengene. This is accomplished by taking a

singular value decomposition of the probe-level data for each gene.

The percent variance explained by the first eigengene is then

calculated for each probe. The summarized values for each gene

are then defined as the weighted mean with the weights

corresponding to the percent variance explained.

For Illumina 660k data we processed the raw files using the

crlmm bioconductor R package [58]. The output of this method

produces copy number estimates for more than 600k probes. Next,

we summarized probes to Entrez gene ids using a mapping file

obtained from the Illumina web site. For genes measured by more

than two probes we selected the probe with the largest variance.

Feature selection methods
Feature selection strategies used in the controlled experiment

(identified through post-hoc analysis of the uncontrolled experi-

ment) are described briefly in Table 3. Specific genes used in each

category are available within Synapse ID syn1643406 and can be

downloaded as R binaries via the Synapse web client or directly

loaded in R using the Synapse R client. Most feature selection

strategies are sufficiently described in Table 3, and we provide

additional details on 2 methods below.

The MASP (Marginal Association with Subsampling and Prior

Knowledge) algorithm employs the following procedure: all genes

were first scored for association with survival (using Cox
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regression) in chunks of 50 randomly selected gene expression

samples. This process was repeated 100 times which resulted in an

overall survival association score si~{
P

j log pij where pij is the

p-value associated with the Cox regression on the expression of

gene i in sample set j. All genes were sorted in descending order by

their survival association score and the top 50 oncogenes and

transcription factors were kept. A list of human transcription

factors was obtained from [59] and a list of oncogenes was

compiled by searching for relevant keywords against the Entrez

gene database.

GII is a measure of the proportion of amplified or deleted

genomic loci, calculated from the copy number data. Copy

number values are presented as segmented log-ratios cij with

respect to normal controls. Amplifications and deletions are thus

counted when cijw1 or cijv{1and devided by the total number

of loci N.

GII~
1

N

X

N

i~1

1cijw1z
X

N

i~1

1cijv{1

 !
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Figure S1 Performance of models from the controlled experi-

ment in the METABRIC2 (A) and MicMa (B) dataset.

(PNG)

Table S1 Complete details of all the models submitted to the

pilot competition in the uncontrolled experimental design. Source

code for all models are available using the Synapse IDs listed in

this table (see Methods for description of how to view model source

code).

(XLSX)

Table S2 Association of gene expression and CNA with survival

and p-values of the association between gene expression and

survival and between CNA and survival for the 10 probes with

lowest P-value. (a) Top ten gene expression probes associated with

survival marginally. (b) Top ten copy number probes associated

with survival marginally. (c) Top ten gene expression probes

associated with survival conditioning on clinical variables. (d) Top

ten copy number alteration probes associated with survival

conditioning on clinical variables.

(DOCX)

Table S3 Top 50 oncogenes and transcription factors inferred

by the MASP feature selection algorithm.

(XLSX)

Table S4 Complete details of all the models evaluated in the

controlled experiment. Source code for all models is available

using the Synapse IDs listed in this table.

(XLSX)

Table S5 Model scores in METABRIC2 and MicMa evalua-

tions. Models, and corresponding model scores, used in the

METABRIC2 and MicMa evaluations are at syn1646909 and

syn1642232, respectively.

(DOCX)
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