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ABSTRACT

Dynamically Linked Libraries (DLLs) promote software
modularity, portability, and flexibility and their use has
become widespread. In this paper, we characterize the
behavior of five applications that make heavy use of
DLLs, with a particular focus on the effects of DLLs on
Branch Target Buffer (BTB) performance. DLLs aggra-
vate hot set contention in the BTB. Standard software
remedies are ineffective because the DLLs are shared,
compiled separately, and dynamically linked to applica-
tions. We propose a hardware technique, the DLL BTB,
that adds a small second buffer to the BTB and dedi-
cates it to storing DLL target addresses. We show that
the DLL BTB performance is similar to a BTB with a
victim buffer, but the DLL BTB requires no parallel
lookups or datapaths between the original BTB and the
added buffer. 

1.0  Introduction

Use of Dynamically Linked Libraries (DLLs) has
become widespread, as they enable software providers
to change software incrementally when enhancing func-
tionality and adapting to new systems and platforms.
Instead of having one large monolithic binary execut-
able, a smaller kernel executable is used, with specific
DLLs loaded at run-time to enable execution in the
environment of interest. The use of DLLs is increasing
commensurate with the increasing size and complexity
of modern applications and environments.

DLLs thus allow for more modularity, flexibility, and
portability. For instance, in the Win32 API, the three
most important DLLs are KERNEL32.DLL (which con-
sists of functions for managing memory, processes and
threads), USER32.DLL (which implements user-inter-
face tasks such as window creation and message send-
ing), and GDI32.DLL (which consists of functions for
drawing graphical images and displaying text). In order
to change the way an image is displayed involves
changing only GDI32.DLL and recompiling its source
code. Note that, since DLLs are dynamically linked,
finding all of the applications that call GDI32 and stati-
cally relinking the library is not required, nor is recom-
pilation of monolithic executables that make use of this

modified function. This reduces the number of errors
introduced, and makes it easier to update older executa-
bles. Portability in Windows NT is accomplished by the
Hardware Abstraction Layer, as implemented in
HAL.DLL, which has the responsibility of interfacing
directly to the hardware. Running Windows on different
platforms requires rewriting the hardware abstraction
layer, or HAL.DLL, while other DLLs, system software
and applications can remain (theoretically) unchanged.

Although the benefits of DLLs on software engineer-
ing are clear, their impact on performance is not. DLL-
reliant applications have not been as widely studied, are
inherently much larger, and have much more complex
interaction with the hardware than standard benchmarks
used by computer architects. We will show that the use
of DLL calls exacerbate contention in the Branch Target
Buffer (BTB). Since the libraries are dynamically linked
and shared among different processes, standard software
remedies do not alleviate contention. We then show how
a hardware remedy, the DLL Target Buffer (DTB) - a
second buffer added to the BTB that is dedicated to stor-
ing DLL call targets - can significantly reduce BTB con-
tention.

Section 2 below discusses some previous results in this
area. Section 3 characterizes our target applications,
while Section 4 discusses how DLLs affect BTB perfor-
mance. Section 5 describes the DLL BTB design we
propose here to reduce BTB contention. Section 6 dis-
cusses the results of our DLL BTB evaluations. Section
7 presents some concluding remarks.

2.0  Related Work

Lee et al. [6] provide some insight into applications that
use DLLs by discussing some of their results with Etch,
a general purpose tool for rewriting arbitrary Win32
binaries on x86 platforms without requiring modifica-
tion of the source code. Their study compares some pop-
ular desktop applications to some SPECINT95
benchmarks in terms of application characteristics,
cache behavior, TLB behavior, and branch prediction
accuracy. Even though Etch is limited to user level
traces only, some important findings about DLLs are
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outlined. This work and [7] point to the prominent role
of DLLs in Win32 environments.

Numerous studies have emphasized branch prediction
[13], with a few targeting the Branch Target Buffer
[3,8,9]. [3,9] target statically compiled code, but show
that BTB design is important. Perleberg and Smith [8]
investigate a hierarchical BTB design, but conclude that
it is too expensive for the modest improvement it offers
in performance. [9] uses a multilevel BTB, but for the
purpose of reducing wire delay. 

Calder et al. [2] showed that libraries tend to have simi-
lar control flow characteristics across different applica-
tions. They then reduced the overall branch
misprediction rate by up to 28% by simply linking in a
preoptimized library. This work gave insight into indi-
rect branches and their negative impact on performance
which led Calder [1] to propose new methods of reduc-
ing indirect function call overhead in C++ programs.
Earlier, Wall [12] had suggested using hardware to pre-
dict the targets of indirect function calls. 

In contrast with previous work, our work specifically
focuses on dynamically linked object files (DLLs) and
the applications that use them. We propose a multilateral
[10, 11] BTB design, the DLL BTB, consisting of two
buffers: a standard BTB with DLL call targets filtered
out called the Filtered BTB, and a smaller dedicated
buffer called the DLL Target Buffer (DTB), into which
these call targets are placed. We contrast the DLL BTB
with another multilateral design, a Victim BTB, where a
victim buffer [4] is added to a standard BTB. The DLL
BTB achieves similar performance on the target applica-
tions with a more straightforward design.

3.0  Five Win32 Applications

Target applications should broadly represent the domain
of interest. We have chosen five popular Windows NT
applications: Id’s Doom, Microsoft Explorer 5.0,
Microsoft Visual Studio 5.0, Netscape 4.0, and Winamp
2.5e. Doom is one of the early first-person type combat
games and is available as shareware. The run of Doom
included recording a session of a Doom game, and then
replaying it on the simulator. Explorer 5.0 is Microsoft’s
web browser; our input is a set of three .htm pages.
The first is the CNN web page, the second is an ESPN
web page, and the third is University of Michigan’s
EECS homepage.   Microsoft Visual Studio 5.0 (Msdev)
is a code development environment, with 5.0 being the
previous release. Our run of Visual Studio involved the
compilation of go from the SPEC95 benchmark suite.
Netscape 4.0 is another web browser, but a few revi-

sions old. The same web pages that were loaded on
Explorer were also used for Netscape. Winamp 2.5e is
the latest release of a popular mp3 player; its input was
“Cool Down Daddy”  by Jellyroll. Table 1 highlights
some dynamic characteristics of the applications. Basic
Block Size is the average size in instructions over the
entire benchmark trace (applications and DLLs).

In order to see how these applications differ from stan-
dard benchmarks with regard to instruction cache miss
rate, Figure 1 compares our five applications to that of
CPU2000. The average miss rate over all the CPU2000
benchmarks is calculated using the reference input set
and a direct mapped cache. As seen from the graphs our
applications have poorer instruction cache performance
than CPU2000, and hence may be expected to have
poorer BTB performance as well. Doom has the highest
instruction cache miss rate for small caches; for a 4KB
direct mapped cache, it misses nearly 9% of the time.
However, when the cache is increased to 256KB, the
miss rate nearly disappears. Msdev has a modest miss
rate for small instruction cache sizes, but doesn’t
approach zero as quickly as the other applications. For a
1MB direct mapped instruction cache, Msdev still has a
0.5% miss rate.

Branch predictor performance is quite tightly coupled
with BTB performance, since the BTB is accessed and
updated on every predicted taken branch. In our experi-
ments, we updated the BTB only on each branch that is
actually taken, which puts only those branch addresses
and targets into the BTB that are needed. The more
accurate the branch predictor, the better the chance of
putting useful data into the BTB. In order to see this
effect, we measured the branch prediction accuracy with
GAg [13], a global predictor that uses a shared history
vector and a two-bit saturating counter per history state.
Perleberg and Smith [8] show the correlation between
instruction cache performance and BTB performance;
essentially, the larger the working set in the instruction
cache, the larger the working set of branches that needs
to be captured by the BTB. 

TABLE 1. Application Trace Characteristics

App.
Insts 
(x106)

Data 
Refs 
(x106)

DLL
Calls 
(x106)

Basic 
Block 
Size

Doom 761 510 11.9 7.61

Explorer 408 247 4.03 7.07

Msdev 697 432 14.3 5.36

Netscape 865 500 18.5 7.27

Winamp 935 772 8.77 9.08
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In Figure 2, the BTB is 1K entry, 4-way with a return
address stack of size 8. Since Figure 2 uses the same
configuration as our later experiments, we can see that
branch prediction accuracy will impact the results pre-
sented in Section 6.

In these branch prediction curves, the direction line indi-
cates the percentage of time that the branch predictor
choses the correct direction. Address hits shows the
number of times that the branch predictor found an entry
with that branch address in the table (but not necessarily
with the correct destination). The final curve is the per-
centage of time that the predictor produced the correct
target address (i.e. in this case there would not be any
branch penalty in a real processor). Netscape has the
most predictable branches, in terms of target addresses,
out of all the applications. For a 16K entry GAg predic-
tor, the correct address is delivered nearly 85% of the
time. For the same size predictor, Winamp achieves only
60% correct addresses even though the direction predic-
tion accuracy is close to 95% and the address hit ratio is
85%.

4.0  DLL Effects on the BTB

Since it is widely available and in some sense a repre-
sentation of commonly used applications, the SPEC
benchmark suite has generally been used to evaluate
new computer architectures. These applications have
generally been developed for Unix platforms, and hence
do not contain multiple object files that are linked at
run-time. This is also true of the latest release,
CPU2000. Because of this, they have quite different
Branch Target Buffer needs than applications running
on Wintel configurations. With a 1K entry, 4-way BTB
and perfect branch prediction, the average misses per
one thousand instructions is shown in Table 2 for
CPU2000, our Win32 applications, and the Win32
applications with DLL calls filtered out. 

For example, for indirect branches, a 1K entry, 4-way
BTB will miss in the BTB 1.10 times per one thousand
instructions for CPU2000, while for our Win32 applica-
tions this figure rises to 2.66 times. Note that when the
DLL calls are filtered out, the number of misses per  one
thousand instructions for Indirects falls back close to
that of CPU2000. Removing DLL calls had a significant
beneficial effect on Calls, reducing the misses per one
thousand instructions by 31%. For Conditionals and
Unconditionals, there is also a small reduction. The

Figure 1.  Instruction Cache Miss   
Rate (line size = 32B)
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results for CPU2000 are averaged over all benchmarks
run for 1 billion instructions each.

4.1  The Windows DLL Linkage
In order to implement DLLs, a number of software
mechanisms need to be in place to facilitate multiple
binaries. At some point, the actual DLL has to be found
and mapped into the process’s space. Since DLLs (like
regular executables) are just files, the directories on the
magnetic media are searched until the appropriate DLL
is found. In the Win32 API, a DLL has a preferred loca-
tion that it maps to; if it doesn’t conflict with any previ-
ously loaded binary, the loader maps the DLL to that
location. Otherwise, it has to be loaded elsewhere, and
any absolute addresses contained within the DLL must
be corrected to reflect the new location. 

Lee et al. [6] provide some insight into why DLL calls
are more expensive than statically linked functions: 

• DLL calls are implemented as indirect function calls

• DLLs are shared among applications, so improving
instruction locality through scheduling is difficult,
therefore it is difficult to remap branches to reduce
contention for the BTB

• DLLs are aligned on page boundaries which forces
the caller and callee to reside in different pages in the
address space and contributes to hot set contention in
the BTB 

Unfortunately, since DLLs must be aligned on page
boundaries, it is difficult to reduce the number of con-
flicts by virtual mapping alone. Alternatively, code lay-
out algorithms can be applied to individual DLLs with
self conflicts, and inter-DLL conflicts can be taken into
consideration. But because the DLLs are shared
between processes, this might reduce the contention
only for one process, while increasing it for other pro-
cesses. We have therefore focused on a hardware rem-
edy for conflict misses in the BTB.

Using our base of a 1K entry, 4-way set associative BTB
configuration, we wanted to see what would happen if
we filtered DLL calls out of the branch stream. We mea-
sured the total number of misses in each BTB set for the
entire run and then measured the total number of misses
per set with DLL calls removed, i.e the number of
misses that would be seen by a Filtered BTB. The differ-

TABLE 2. Misses per 1000 Instructions in a 1K 
entry, 4-way BTB (Perfect Branch Prediction)

CPU2000 Win32
Win32 
(no DLL)

indirect 1.10 2.66 1.11

call 1.07 5.22 3.60

conditional 0.73 4.94 4.40

unconditional 1.59 4.90 4.53

Figure 2.  Branch Prediction          
Performance
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ence between these two metrics is a measure of the
misses attributed to DLL calls.

This information is shown in Figure 3 for all 5 bench-
marks. Many DLL calls are mapped to the same set
which creates contention for those sets, seen as a spike
on the graph. This shows how DLL calls clearly aggra-
vate hot set contention. Although the behavior of the
Filtered BTB is also “spikey” , the DLL calls clearly
aggravate the problem. 

One way to ameliorate these conflicts is to introduce a
victim buffer. The victim buffer does help, but since the
DLL calls do cause a large percentage of the misses (for
relatively few static calls), we will show how reducing
the misses for these calls dramatically improves perfor-
mance.

4.2  DLL Usage

The number of DLL calls will have a direct impact on
indirect call overhead. If there are few DLL calls, then
the benefit of removing these indirects will be minimal.
Lee et al. [6] showed that some applications can spend
as much as 50% of their overall running time in DLLs.
Unfortunately, they did not measure the actual number
of DLL calls or their impact on performance. Their
application suite included the standard desktop applica-
tions: MSWord, Excel, Netscape, and Photoshop. In this

paper we have measured the impact of DLL calls on a
more diverse set of applications.

5.0  The DLL BTB

Our general approach to improving BTB performance is
to take advantage of the fact that once a DLLs is loaded,
the target of a call to it never changes; hence DLL calls
are fully predictable. DLL calls tend to increase the
address predictability percentage, as a simple last-
address-seen mechanism in the BTB is sufficient to cap-
ture these indirect addresses. However, since DLL calls
increase BTB misses considerably, it might be best to
remove these easily predictable indirects from the BTB,
handle them with some other mechanism and use the
BTB to obtain better coverage of other harder to predict
target addresses. 

An alternative approach is to add a victim buffer [4] to
the BTB, which has been proven to reduce hot set con-
flicts in caches. However, although the victim cache
design has been shown to reduce conflicts, it’s imple-
mentation cost can be excessive. The swaps it requires
involve extra datapaths, and both the victim buffer and
the BTB have to be searched for every access. Such a
Victim BTB should alleviate the hot spot contention due
to the clustered DLL call sites. 

From Figure 3, we know that much of the hot set con-
tention is due to the additional DLL calls, so we propose

Figure 3. Misses per 1000 instruc-
tions for each set in a 1K entry, 4-
way BTB. Light shade indicates 
misses attributed to non-DLL branches 
only; dark shades are the additional 
misses due to DLL calls.
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a DLL BTB filtering mechanism that performs nearly as
well as the Victim BTB without the additional datapath
or parallel search requirements. 

In the DLL BTB, we assign all DLL call targets to a
small fully associative buffer, the DLL Target Buffer
(DTB). All other branch targets are entered into the
BTB, called the Filtered BTB when it is used within a
DLL BTB configuration. 

Filtering out DLL calls can easily be done at run-time
by using the import table of the application. The import
table is included at the end of the text segment of every
application, and contains the addresses of all imported
symbols (functions and variables). DLL calls map indi-
rectly through this table. Since we know the boundary
addresses of this table, a simple compare can identify
which calls are DLL calls. 

The results presented in the next section compare a DLL
BTB and a Victim BTB with a Base BTB. We use a DTB
of size 128 entries, which turns out to be a good choice
for most of these applications; the Victim buffer is set to
the same size. The BTB in the Base and Victim configu-
rations and the filter BTB in the DLL BTB configura-
tion are each 1K entry, 4-way set associative. Each
implementation has a 32 entry Return Address Stack
(RAS), with the Filtered BTB and the DTB sharing a
common RAS. Returns from DLL calls are pushed onto
this stack even though DLL call targets are in the DTB. 

6.0  Quantitative Results

We have developed a PC simulator based on Bochs [5],
that models not just the CPU, but the entire target plat-
form in enough detail to support the execution of a com-
plete operating system and the applications that run on
it. Currently, we are using out-of-the-box Windows NT
4.0 (Build 1381) as the operating system for our Virtual
PC. This simulator runs as a user-level process on a
standard PC by model ing the platform components
completely in software.

Since Windows NT can execute on the functional simu-
lator, we can study complete commercial applications.
This approach al lows access to al l  operating system
events in addition to the standard instruction, data, and
branch traces of user code. The limitation of this method
is that the simulator is only functional, not cycle accu-
rate, which precludes detailed timing analysis. However,
our simulator can be used as a f ront end for more

detailed simulations. With our traces we can do work-
load, memory, and branch prediction studies.

Table 3 highlights some of the differences between the
five applications by showing the breakdown of the
dynamic count of taken control instructions of each
type. Note that these are all taken control instructions.
Whereas in a real implementation, we would access the
BTB on every predicted taken control instruction. If we
predict the branch to be taken, and it ends up not being
taken, the BTB gets updated with the wrong informa-
tion. Although with increasingly accurate branch predic-
tors these effects become less important, our results are
in effect assuming perfect branch prediction (best-case
scenario). The ramifications of how the BTB gets
updated can be seen in Figure 2. In these graphs, the
BTB remains fixed at 1K entries, but as the predictor
size increases, the correct target address generation
improves. 

In Table 3 and throughout the paper, Calls include both
direct calls and Indirect Calls; while Unconditionals
include jumps and Returns. DLL calls are implemented
as indirect calls. Our applications have significantly
more indirect calls than the SPEC95 or CPU2000
benchmarks. A few points are worth noting about Table
3. First, the number of calls and returns are not the same.
Some of this discrepancy is due to the nature of the
trace, as well as interrupts and exceptions. We started
the trace after the system was already up and running,
but before we launch the application (this leads to some
unbalanced calls and returns). The Other category
includes instructions such as LOOP and REP. Based on
certain flags, instructions LOOP (loop) and REP
(repeat) will stay in the execution core and continue
executing (in essence, creating instructions) until the
flag condition clears. 

TABLE 3. Taken Control Flow Instructions by 
Category (per 1000 instructions)

Doom Expl. Msd. Net. Win.

ind. 9.97 7.99 15.1 12.7 5.50

ind. 
calls

8.42 6.20 8.55 10.1 4.00

calls 22.1 21.2 28.9 23.0 14.5

ret. 23.8 22.3 29.0 23.4 15.5

cond. 48.4 39.2 47.0 58.7 53.2

uncon. 36.5 36.0 58.5 34.9 25.8

other 24.3 45.1 52.6 21.3 16.3

total 131 141 187 138 110
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6.1  Initial Observations

Of the applications studied, Doom uses DLLs a little
less frequently than the others. This is because Doom is
not a true 32-bit application, but requires the use of
NTVDM.EXE to convert the Win16 calls to Win32
calls.

The Explorer benchmark trace is about half the size of
the other benchmark traces. In fact, for the loading of
the same three web pages, it took Explorer only 400 mil-
lion instructions, while Netscape required over 700 mil-
lion. Although the overall figures are lower, the various
ratios are fairly consistent.

The Microsoft Visual C++ environment tends to make
liberal use of DLLs, as we see in the following section.
Compiling a Win32 application, as opposed to a console
application (as go was compiled), would have seen an
even greater increase in the number of DLLs used by
Msdev. Win32 applications require more system support
(and hence more DLL calls) to operate.

Finally, Winamp uses the most floating point instruc-
tions out of the applications studied. Interestingly, with a
16K entry branch predictor for Winamp, we correctly
predict the direction 95% of the time, but correctly pre-
dict the right address only 60% of the time. We will see
that this drop is due to contention in the 1K entry BTB.

6.2  BTB Residency by Category 

To construct Table 4 we simulated a standard size (1K
entry, 4-way) Base BTB (B) and a DLL BTB (consisting
of a Filtered BTB (F) and a DTB (D)). Table 4 shows a
categorization of the accesses to the BTB. The sum of
the entries in a column is the total number of BTB
accesses per one thousand instructions. The first four
rows in the table handle all taken control instructions
except DLL calls. The first row represents the total
number of times that a non-DLL call hits in both the
Base BTB (B) and the Filtered BTB (F) in our DLL
BTB. The second row shows the total number of times
that a non-DLL branch was found in B but not F.
Although intuitively this number should be zero, there
are some cases where LRU replaces different entries in
the two systems. The third row highlights the additional
coverage that the Filtered BTB captures over the Base
BTB. The fourth shows taken non-DLL calls that miss
in both the Base BTB and the Filtered BTB. The last
four rows are analogous to the first four, but handle only
DLL calls. For instance, the fifth row shows the total
number of times that a DLL call target was found in
both the Base BTB (B) and the DTB (D) in our DLL
BTB. The seventh row highlights the additional cover-
age of DLL function calls that our dedicated 128 entry
DTB buffer provides. The sixth row gives us insight into

Figure 4.  The Frequency of DLL 
call residency in the base BTB.
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whether the 128 entry size is sufficient. For most of the
applications, it seems to provide good coverage. 

For Doom, in Table 4, the Filtered BTB captures only
1.7% of the extra branches whereas the DTB captures
5.6% more DLL function calls. For Msdev, which has
the greatest reliance on DLLs, we get a 4% increase in
coverage of DLL calls, but only a 0.9% increase in cov-
erage from other branch targets. Since we still miss
nearly 30% of all DLL calls with a 128 entry buffer, we
might need to use a larger DTB. However, we do cap-
ture more DLL calls than the Base BTB. From the
instruction cache miss rates in Figure 1, it is clear that
Msdev has a larger working set than the other
applications. For Netscape, coverage of DLL calls is
roughly 93%, which implies that a buffer size of smaller
than 128 can be used. Winamp is unique in that the DTB
captures 17% more DLL call targets than the standard
configuration. For each application, most of these DLL
calls actually pollute the standard BTB, as seen in Fig-
ure 3, and hence we can gain added performance by fil-
tering out these calls. 

6.3  DLL Residency

To get a better indicator of coverage, we count the num-
ber of DLL calls resident in the base BTB on every BTB
update, i.e.every taken control flow instruction. Figure 4
shows the frequency distribution of the number of DLL
call targets in the BTB over all BTB accesses. This data
is shown for each application for three different configu-
rations: the standard 1K entry, 4-way base BTB plus a
1K entry, 16-way and a 2K entry, 4-way configuration
for comparison. This information can be used as guide
to select the size of the DTB. This curve is a distribution
of the number of DLL calls resident in the standard BTB
whenever the standard BTB is updated. These curves do
not have a bimodal distribution; for every application,

the two 1K entry curves end at about the middle of the
x-axis.

The DLL residency graph for Explorer shows a wider
distribution than for Doom, but the average is close to
the same for similar configurations. The varying distri-
bution is due to the shorter instruction trace. Note the
higher average of resident DLLs for the 2K entry BTB
in which case a larger DTB would definitely be useful.
The DLL residency graph for Msdev shows a similar
distribution to Doom for the 1K entry sizes, but for the
2K configuration, the average is much higher than for
the other benchmarks. On average, nearly 400 DLL
calls are resident at any given time. This is almost 15%
of the total number of entries. Since DLL calls only
comprise 6% of all dynamic taken branches, an average
residency of 400 seems excessive. Winamp has the least
variance when it comes to the average number of DLL
call targets resident in the standard BTB. This would
imply that Winamp has one of the smaller instruction
footprints, and tends to stay in the same DLLs. As
shown in Figure 2, it does have a small instruction foot-
print.

6.4  DLL BTB Performance

The performance numbers that we present in this section
are represented in terms of misses per one thousand
instructions. By presenting the data in this fashion, the
impact of the hardware optimizations immediately
becomes clear. For example, if the penalty to miss in the
BTB is 23 cycles and the average instructions per cycle
is (IPC) 1.25, saving one miss per one thousand instruc-
tions, corresponds to a 23 cycle reduction from 800 to
777 cycles (or about 2.5%). The numbers shown in
Table 6 are for the base configuration: a 1K entry, 4-way
BTB.

Most of the applications have similar values for the base
configuration, except for Msdev. This application has
roughly twice as many indirects, and twice as many
calls, that miss in the standard BTB. The DLL BTB out-
performs the Victim BTB for all of the applications for
indirects and indirect calls; however, most of the appli-
cations already have low values for these categories.
Because this is not true for Msdev, the DLL BTB out-
performs the Victim BTB in overall performance
(shown in Figure 5).

Generally, the categories with the largest misses per one
thousand instructions are Calls and Conditionals. The
Victim system has an edge over the DLL BTB through-
out these categories, since any hot set contention can be
ameliorated by the Victim BTB, whereas only those hot
sets caused by DLLs can off-load entries into the DTB.

TABLE 4. Likelihood of BTB Residency by 
Category (per 1000 instructions)

Doom Expl. Msd. Net. Win.

100.5 114.0 148.7 105.4 86.23

0.001 0 0.022 0 0

1.750 0.777 1.356 0.699 1.651

13.44 16.77 16.40 10.43 12.54

13.93 7.708 15.48 19.74 6.289

0.028 0.034 0.080 0.029 0.029

0.808 0.480 0.532 0.383 1.073

0.838 1.684 4.559 1.317 2.013B D∩

B D∩

B D∩

B D∩

B F∩
B F∩

B F∩

B F∩
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This improvement is an average of 5.3% for calls and
22% for conditionals. 

Table 6 shows how the DLL BTB did alleviate some of
the hot set contention, and the impact of the number
misses per one thousand instructions for the seven cate-
gories. To obtain another measure of interference of
resources, we measured the average lifetime of a BTB
entry. This is measured in terms of the number of
instructions, and is done for the Base BTB, the Filtered
BTB, and the DTB. These results are shown in Table 6.

Table 6. Average lifetime of a BTB entry (1K 4way)

This table illustrates that, as we would expect, DLL
calls have a coarser locality (larger average lifetime)
than other branches. The Doom and Winamp applica-
tions highlight how much interference can occur
between DLL calls and other branches. When DLL calls
are removed from the instruction stream (i.e. the Fil-
tered BTB), the lifetime of a BTB entry doubles in these
two benchmarks. It is also in these two applications that
the most benefit is gained from using the DLL BTB.

To see the effect on overall performance, we deduce the
performance analytically. Since we know the total num-
ber of instructions and the total number of branches and
branch hits, if we fix the IPC and the branch mispredic-

tion penalty, we can calculate the improvement in IPC.
Using a Pentium Pro as our model, we fixed the BTB
miss penalty to 23 cycles, and our base IPC to be 1.25.
Figure 5 shows the overall improvement. This is actu-
ally a pessimistic model for our method since a penalty
for either swaps of lookups for the Victim BTB is not
assigned, and our branch predictor is perfect. For a 16-
way BTB for the Winamp application, we actually see
around a 10% performance improvement. In most cases,
we track the Victim BTB closely; in fact, in the Msdev
application the DLL BTB actually surpass the perfor-
mance of the Victim BTB.

7.0  Concluding Remarks

We have seen that, because of their nature, applications
with multiple dynamic object files have different char-

Base Filtered DTB

Doom 316,198 543,184 333,049

Explorer 67,431 76,072 153,530

Msdev 75,766 93,439 91,674

Netscape 110,163 130,225 199,045

Winamp 715,711 1,346,477 445,162

Figure 5. Performance Improvement over the
Standard 1K entry System (darker shades 4-way,
lighter shades 16-way)
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TABLE 5.  Misses Per Instruction (x1000) for 1K entry, 4-way configuration

Doom Explorer Msdev Netscape Winamp

base dll vic base dll vic base dll vic base dll vic base dll vic

ind. 1.41 0.83 1.02 2.45 2.01 2.20 5.86 5.20 5.56 1.63 1.27 1.42 1.95 0.97 1.48

ind. 
calls

1.30 0.76 0.95 1.70 1.33 1.52 3.68 3.23 3.50 1.09 0.83 0.95 1.73 0.86 1.31

calls 3.84 2.94 2.55 6.11 5.57 5.39 8.16 7.30 7.38 3.63 3.20 3.09 4.36 3.12 2.96

rets 4.21 4.21 4.21 2.48 2.48 2.48 2.64 2.64 2.64 1.35 1.35 1.35 3.42 3.42 3.42

con. 4.72 3.95 2.84 5.15 4.80 4.28 4.50 4.19 4.01 4.46 4.12 3.50 5.85 5.01 3.65

unc
ond.

5.80 5.47 5.16 4.79 4.64 4.54 6.25 5.93 5.98 2.74 2.60 2.57 4.90 4.64 4.33

oth. 0.69 0.40 0.46 0.45 0.41 0.38 0.43 0.37 0.36 0.24 0.22 0.21 0.45 0.28 0.31
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acteristics than their traditional statically linked counter-
parts. We have highlighted some of these differences in
this paper. In one area that they deviate significantly,
branch target prediction, we have presented some of the
characteristics that can be leveraged to increase perfor-
mance. Branch target prediction is especially important
in today’s (and tomorrow’s) wide-issue superscalar
machines.

The ratio of the number of indirect function calls to
direct function calls is much higher in applications that
use dynamically loaded libraries. Since these applica-
tions have multiple object files, the calling linkage
between two functions residing in different object files
requires an indirect function call. We have proposed the
DLL BTB to separate out these calls and place the tar-
gets in a special buffer (DTB) so that they will not inter-
fere with the targets of other types of branches. For a 1K
entry Branch Target Buffer, the DLL BTB performs
close to that of a Victim BTB for the applications we
studied; however, the DLL BTB has the benefit of not
requiring the extra datapath that the Victim requires. For
larger BTB sizes, our 128 entry DLL target buffer does
not improve performance as effectively; our results indi-
cate that a larger DLL target buffer is required in this sit-
uation.

Although we primarily looked at one specific microar-
chitectural resource, the Branch Target Buffer, we can
use this work as a jumping off point for other microar-
chitectural resource usage studies in the presence of
multiple object files. Since Win32 applications are dif-
ferent from standard benchmarks and are more widely
used in practice, further research tailored to this envi-
ronment is well justified.
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