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AbstractÐExploiting locality of reference is key to realizing high levels of performance on modern processors. This paper describes a

compiler algorithm for optimizing cache locality in scientific codes on uniprocessor and multiprocessor machines. A distinctive

characteristic of our algorithm is that it considers loop and data layout transformations in a unified framework. Our approach is very

effective at reducing cache misses and can optimize some nests for which optimization techniques based on loop transformations

alone are not successful. An important special case is one in which data layouts of some arrays are fixed and cannot be changed. We

show how our algorithm can accommodate this case and demonstrate how it can be used to optimize multiple loop nests. Experiments

on several benchmarks show that the techniques presented in this paper result in substantial improvement in cache performance.

Index TermsÐCaches, data reuse, locality, loop and data transformations, optimizing compilers.
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1 INTRODUCTION

IN most computer systems, exploiting locality of reference
is key to achieving high levels of performance. It is well-

known that increasing the cache hit rates is one of the most
important factors in reducing the average memory latency.
Fine tuning of the cache coherence protocol and selecting an
appropriate block (line) size are very important techniques
for improving cache performance [17], [16]. Recent ad-
vances include the work of Gonzalez et al. [6], who have
developed a dual data cache and a selective data cache;
Sanchez et al. [15] have proposed a static locality analysis
technique oriented toward optimizing programs that
exhibit high conflict miss ratios and applied the results of
their technique to these new caches developed in [6].
Software techniques [16] complement the advances in cache
hardware and organization [17] and are capable of deliver-
ing additional performance. It has been observed that
compiler techniques are useful for optimizing locality in
both uniprocessors and multiprocessors and for reducing
the number of coherence related misses [3].

From a software point of view, programmers and
compiler writers often attempt to change the access patterns
of a program so that a majority of accesses are satisfied from
the cache memory. Several efforts have been aimed at using
iteration space (loop) transformations and scheduling
techniques to improve locality [3], [13], [14], [20]; these
techniques improve data locality indirectly as a result of
modifying the iteration space traversal order.

We offer a compiler approach to enhance the cache
performance of scientific codes on uniprocessors and

multiprocessors. In a unified framework, our approach
considers modifying array layouts in memory and trans-
forming loop nests suitably to exploit spatial locality. We
simulate miss rates for several programs in order to
demonstrate that our approach is very effective at reducing
the number of cache misses, and report execution times on
the SGI Challenge shared memory multiprocessor. We
conclude that fixing the memory layouts for all arraysÐas
in C and FortranÐlimits performance that could otherwise
have been obtained from the programs. In this paper, we
make the following contributions:

. We present a new algorithm for optimizing the
spatial locality characteristics of nested loops. This
algorithm applies both data and loop transforma-
tions. When the data transformation part is not
activated (i.e., when the layouts are fixed), in most
cases, it obtains the same results as the existing loop
transformation techniques.

. We argue that the known approaches which con-
sider only loop transformations (e.g., loop permuta-
tions [14], [13], [20], tiling [12], [2], [11], etc.) might be
insufficient for some cases.

. We demonstrate the effectiveness of our approach
by using both simulation results and execution time
measurements and show that our approach is
effective on both uniprocessors and multiprocessors.

Since our approach is oriented toward optimizing spatial
locality, it is generally more effective with large cache block
sizes. Since the architectural trend is toward larger block
sizes and higher associativities anyway, we believe that our
approach will be suitable for future architectures as well.

This paper is organized as follows. Section 2 presents a
brief summary of the necessary background. In Section 3,
we discuss related work on cache locality. Section 4
discusses the algorithm for optimizing locality in a single
loop nest. In Section 5, we extend this algorithm to multiple
loop nests. Section 6 presents a set of experimental results
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which illustrate the efficacy of our approach. Section 7
presents our work on false sharing. In Section 8, we
conclude with a summary and discussion.

2 PRELIMINARIES

We represent each iteration of a loop nest of depth n using a
loop iteration vector ~I � �i1; i2; :::; in�, where ik is the value
of the index of the kth loop from the outermost. The
subscript function in each reference to an m-dimensional

array U in such a loop nest is assumed to be an affine

function of the iteration represented by ~I, i.e., ~I is mapped

onto data element LU~I � ~bU . Here, LU is an m� n matrix

called the reference (access) matrix and the m-vector ~bU is
called the offset vector [20].

Linear mappings between iteration spaces of loop nests
can be modeled by nonsingular transformation matrices
[13]. On applying a transformation T to a loop with index ~I,

the transformed loop index becomes ~I 0 � T~I and the

transformed reference matrix becomes LUTÿ1. Similarly, if
~d is the distance (direction) vector, on applying T , then T~d is

the new distance (direction) vector. A transformation is legal

if and only if T~d is lexicographically positive for every ~d

[21]. In this paper, we denote Tÿ1 by Q. An important

characteristic of our algorithm is that the entries of Q � �qij�
are derived systematically using the array reference

matrices.
In order to obtain good performance from programs

running on a machine that contains some sort of cache
memory, cache locality should be exploited. That is, data
brought into cache should be reused as much as possible
before it is replaced. The reuse of the same data while it is
still in the cache is called as temporal locality, whereas the
use of the nearby data in a cache line is called spatial locality
[20]. We have to stress that a program may have data reuse
but, due to the replacement of the data, it might not be able
to exploit cache locality.

The scope of our work is dense matrix programs with
affine subscript functions and affine loop bounds; we focus
mainly on self-spatial reuse since the cases where the
group-spatial reuses bring an additional reuse dimension
over the self-spatial reuse space are rare [21]. We assume
that the memory layout of an m-dimensional array can be in
any of the m! forms, each of which corresponding to layout
of data in memory linearly by a nested traversal of the axes
in some predetermined order. In other words, the data
storage schemes we consider can be expressed as permuta-
tions of the dimensions of the array. For a two-dimensional
array, these are only row-major and column-major layouts.
For a three-dimensional array, there are six possible
storages, and so on. Each layout that we consider in this
paper has a fastest changing dimension, that is, the innermost
dimension in the traversal of array in memory. For instance,
for row-major layouts, the last dimension is the fastest
changing dimension. Our algorithm only determines the
fastest changing dimension; this is because the relative
order of the other dimensions may not be as important,
assuming large array bounds.

3 RELATED WORK

3.1 Loop Transformations for a Fixed Layout

Wolf and Lam [20] present definitions of different types of

reuse and propose an algorithm to optimize locality. Their

algorithm evaluates a subset of legal loop transformations

and transforms the loop nest such that the locality is

maximized. They focus on tiling the innermost loops. In

contrast, Li [13] uses the concept of reuse distance. His

algorithm can represent the reuse vectors precisely and the

transformations operate directly on reuse vectors. McKinley

et al. [14] offer a unified optimization technique consisting

of loop permutation, loop fusion, and loop distribution.

None of these consider data space (memory layout)

transformations. In this paper, we show that data space

transformations can also make a difference on the locality

properties of the programs. Moreover, by unifying data

space transformations with iteration space transformations,

locality can be exploited in a better way, which is not

possible using the loop and data transformations by

themselves.
Unlike the pure loop transformations discussed above,

Anderson et al. [1] propose a data layout transformation

technique for distributed shared memory machines. By

using two types of data transformations (strip-mining and

permutation), they try to make the data accessed by the

same processor contiguous in the shared address space.

Their algorithm inherits loop transformation decisions

made by a previous phase of the SUIF compiler [19]; so,

in a sense, their approach does not lend itself to a direct

comparison with ours, which attempts to come up with

both loop and data transformations to improve locality.

3.2 Combined Loop and Data Transformations

Cierniak and Li [3] present a unified approach like ours to

optimize locality that employs both data and control

transformations. The notion of a stride vector is introduced

and an optimization strategy is developed for obtaining the

desired mapping vectors representing layouts and the

transformation matrix. At the end, the following equality

is obtained: TT~v � LT ~m. In this formulation, only the

reference matrix L is known. The algorithm tries to find

T , the iteration-space transformation matrix; ~m, a mapping

vector that can assume h! different forms for an h-

dimensional array; and ~v, the desired stride vector. Since

this optimization problem is difficult to solve, the following

heuristic is used. First, it is assumed that the transformation

matrix contains only 0s and 1s. Second, the value of the

stride vector ~v is assumed to be known beforehand. The

algorithm constructs the matrix T row by row by consider-

ing a restricted set of legal mappings. In comparison, our

approach is more accurate, as it does not restrict the search

space of possible loop transformations. Also our approach

is simpler for embedding in a compilation system, since it

does not require a prior knowledge of any vector such as ~v.

Our extension to multiple nests is also different from the

one proposed by Cierniak and Li [3] for global optimization.

Cierniak and Li [4] also use data transformations for

optimizing JAVA byte-codes.
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4 ALGORITHM FOR OPTIMIZING LOCALITY

In this section, we explain our algorithm that automatically

transforms a given loop nest to exploit spatial locality and
assigns appropriate memory layouts for arrays, both in a

unified framework.
We assume that C is the array accessed on the LHS with

the access function LC~I � ~bC , whereas A is an array from the

RHS with the access function LA~I � ~bA. Let j1, j2, ..., jn be

the loop indices of the transformed nest, starting from

outermost position. The following is a brief explanation of

our algorithm. More technical details can be found in [10],
[9]. In comparison to [10], the techniques presented in this
paper handle false sharing as well.

. Fix the Layout of the LHS Array: Our loop transforma-
tion matrix should be such that the LHS array of the
transformed loop should have the innermost index
as the only element in one of the array dimensions
and that index should not appear in any other
dimension for this array. In other words, after the
transformation, the LHS array C should be of the
form C��; :::; �; jn; �; :::; ��, where jn (the new inner-
most loop index) is in the rth dimension and �
indicates a term independent of jn. This means that
the rth row of the transformed reference matrix for C
is �0; :::; 0; 1� and all entries of the last column except
the one in the rth row are zero. Although this is a
stronger requirement than necessary, it is suitable
for our purposes in this work. After that, the LHS
array can be stored in memory such that the rth
dimension is the fastest changing dimension. This
approach effectively exploits the spatial locality for
this reference. Notice that all possible values for r
should be considered.

. Fix the Layouts of the RHS Arrays: Then, the algorithm
works on one reference from the RHS at a time. If a
row s in the data reference matrix is identical to row
r of the original reference matrix of the LHS array,
then the algorithm attempts to store this RHS array
in memory such that its dimension s will be the
fastest changing dimension. Note that having such a
row s does not guarantee that the array will be
stored on memory such that the sth dimension will
be the fastest changing dimension. In the ideal case,
each RHS array will have a row identical to the rth
row of LHS array and can be stored on memory such
that the corresponding dimension will be the fastest
changing dimension.

If the condition stated above does not hold for an

RHS array A, it means this array cannot be stored in

memory such that the new innermost loop index

appears only in the fastest changing dimension. In

that case, the algorithm tries to transform the
reference to A��; :::; �; f�jnÿ1�; �; :::; ��, where f�jnÿ1�
is an affine function of jnÿ1 and other indices except

jn, and � indicates a term independent of both jnÿ1

and jn. This helps in exploiting the spatial locality at
the second innermost loop. If no such transformation

is possible, the transformed loop index jnÿ2 is tried

and so on. If all loop indices are tried unsuccessfully,

then the remaining entries of Q are set arbitrarily,

observing the data dependences and nonsingularity.
. Pick up the Best Alternative: After a loop transforma-

tion and corresponding memory layouts are found,
these are recorded and the next alternative memory
layout for the LHS is tried and so on. Among all the
feasible solutions, the best one is chosen. The best
alternative is the one that exploits spatial locality in
the innermost loop for the maximum number of array
references.

It should be emphasized that the algorithm

determines the transformation matrix T (actually

its inverse) and memory layouts together. That is,

depending on the resultant access matrices from the

selected loop transformation, we determine the

fastest changing dimension for each array. The

following points should also be mentioned. First, it

should be noted that the algorithm first optimizes

the LHS array. Although this is not strictly neces-

sary, we found it useful as the LHS array is read and

written, whereas the other arrays are only read.

Second, a special case occurs when an array is

referenced more than once. If all of these references

belong to the same uniformly generated set [5] (i.e.,

have the same L matrix), then it is enough to

consider only one of them. If, on the other hand,

there are references to the same array with different

access matrices, then a reasonable heuristic might be

to concentrate on the most frequently occurring

reference. Third, we use the method given in [13]

with appropriate modifications for completing a

partial matrix to a full nonsingular transformation

matrix such that all data dependences are observed.

Our algorithm performs an exhaustive search in the

worst case. Using the structure of the LHS reference

allows us to explore the search space of layouts in a

controlled manner; in a sense, we use an enumera-

tion tree of the hierarchically structured search

space, exploring a current partial configuration if

and only if it is a feasible partial configuration. The

worst-case complexity of the algorithm is ��mvn3�,
where m is the maximum array dimensionality, v is

the number of arrays, and n is the number of loops

in the nest (n � m). In practice, however, the

algorithm is very fast.

4.1 Illustration of the Algorithm

Fig. 1a shows the ijk matrix-multiply routine. The reference

matrices are as follows:

LC � 1 0 0
0 1 0

� �
; LA � 1 0 0

0 0 1

� �
; LB � 0 0 1

0 1 0

� �
:

For the sake of clarity, we only show the successful steps

of the algorithm which proceeds as follows (� denotes a

don't care entry):
The compiler first tries column-major layout for array C.
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LCQ � 0 0 1
� � 0

� �
:

Thus, q11 � q12 � q23 � 0 and q13 � 1.

LAQ � 0 0 1
� � 0

� �
:

Therefore, q33 � 0.

LBQ � � 1 0
� 0 0

� �
:

Therefore, q22 � 0 and q32 � 1. At this point,

Tÿ1 � Q �
0 0 1
q21 0 0
q31 1 0

0@ 1A:
Setting q21 � 1, q31 � 0,

Tÿ1 � Q �
0 0 1
1 0 0
0 1 0

0@ 1A:
All the arrays are column-major and the resulting code is

shown in Fig. 1b.
Next, the compiler tries the other alternative memory

layout (row-major) for array C.

LCQ � � � 0
0 0 1

� �
:

Thus, q13 � q21 � q22 � 0 and q23 � 1.

LBQ � � � 0
0 0 1

� �
:

Therefore, q33 � 0.

LAQ � � 0 0
� 1 0

� �
:

Therefore, q12 � 0 and q32 � 1. At this point,

Tÿ1 � Q �
q11 0 0
0 0 1
q31 1 0

0@ 1A:
Setting q11 � 1, q31 � 0, we obtain

Tÿ1 � Q �
1 0 0
0 0 1
0 1 0

0@ 1A:

All the arrays are row-major and the resulting code is
shown in Fig. 1c.

Notice that our first optimized nest is the same as the
nest obtained by earlier works [13], [14]. Our other
optimized nest is the same nest used in Lam et al. [12] for
row-major layouts. Since, even when the layouts are fixed
as row-major or column-major, we exhaustively search for
all possible loop transformations, in most cases (omitting
temporal locality), we replicate the results obtained by pure
loop oriented approaches such as that of Li [13].

5 GLOBAL LOCALITY OPTIMIZATION: MULTIPLE

LOOP NESTS

In this section, we address the problem of optimizing a
collection (sequence) of loop nests, each accessing a subset of
the arrays in the program. It is easy to show that the
problem of finding a global array layout and loop order
combinations that satisfy all the nests is NP-complete, even
for the restricted case where only row-major and column-
major arrays are considered. Therefore, we present a
heuristic for this problem.

5.1 Locality Optimization Under Layout Constraints

During the compilation of a program, it may be possible
that the compiler, due to data dependences or some other
constraints, is not able to apply loop transformations or
change memory layouts. In fact, the order of loops in the
nest may only be partially changed or may not be changed
at all. Similarly, the compiler may not be able to change the
memory layouts of some arrays. Each unmodifiable
information constitutes a constraint for the compiler.

We now focus on the problem of optimizing locality
when some or all the array layouts are fixed. We note that
each fixed layout requires that the innermost loop index
should be in the appropriate array index position (dimen-
sion), depending on layout form of the array. For example,
suppose that the memory layout for an m-dimensional
array is such that the dimension k1 is the fastest changing
dimension, the dimension k2 is the second fastest changing
dimension, k3 is the third, etc. The compiler should first try
to place the new innermost loop index jn only to the k1th
dimension of this array. If this is not possible, then it should
try to place jn only to the k2th dimension and so on. If all
dimensions, up to and including kh, are tried unsuccess-
fully, then jnÿ1 should be tried for the k1th dimension and
so on. In the next subsection, we show that this constrained
layout algorithm is very important for global locality
optimization.
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5.2 Global Locality Optimization Algorithm

The algorithm should find a memory layout for the array in

question that satisfies the majority of the nests. Our

approach is based on the concept of the most costly nest.

Intuitively, this is the nest which takes the most (memory)

time and should be optimized. Different methods can be

adopted to choose this nest. For example, profiling may be

used or the programmer can use compiler directives to give

hints about this nest. Then, the algorithm proceeds as

follows: First, the most costly nest is optimized using the

algorithm presented in Section 4. After this step, the

memory layouts for some of the arrays will be determined.

Then, each of the remaining nests can be optimized using

the approach presented for the constrained layout case in the

previous subsection. After each nest is optimized, new

layout constraints will be obtained, and these will be

propagated for optimization of the next nest. Note that the

order of processing for the remaining nests may be

important. If the number of nests is small, a more aggressive

approach can apply this heuristic by considering each nest

in turn as the most costly nest. For a more formal discussion

of the algorithm, we refer the reader to [9].

6 EXPERIMENTAL RESULTS

This section presents experimental results for a number of
example programs. We demonstrate the simulation results
obtained by using an enhanced version of DineroIII [7], a
trace-driven uniprocessor cache simulator. We simulate the
miss rates over a range of cache sizes, block sizes, and set-
associativities. For the matrix-multiply nest, we also present
the execution times obtained on an SGI Challenge multi-
processor. This machine uses snoopy write-invalidate cache
coherence. Each node has a 1 MB data cache attached to it.
During the multiprocessor experiments, static scheduling
has been employed. Due to lack of space, we present only a
subset of our results. More results, as well as a quantitive
comparison with Li's algorithm [13] can be found in the
longer version of our paper [9].

6.1 Matrix-Multiply

In Section 4.1, we showed how our algorithm optimizes this
nest. Here, we present experimental results. Fig. 2 shows
the miss ratios for the matrix-multiply nest with 500� 500

double arrays on a direct-mapped cache. We present four
different versions of the program: unoptimized, optimized
(all arrays column-major), tiled [12] version of the unopti-
mized nest, and finally the tiled version of the optimized
nest. The first thing to notice is that the tiled-optimized
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version outperforms the rest for all cache and block sizes. It

is also important to note that, for some cases, even the

optimized nest without tiling performs better than the tiled-

unoptimized version. The tile size is fixed at 32 for every

loop in the tiled versions.
Fig. 3a shows the execution times for the matrix-multiply

nest with different input sizes on a single node of the SGI

Challenge and Fig. 3b gives the execution times on different

number of processors on the SGI Challenge with 2; 000�
2; 000 double precision arrays. We note that there is a 20

percent performance improvement over the unoptimized

nest on single node. For both the unoptimized code (Unopt)

and the optimized code (Opt), only the outermost loop is

parallelized.

6.2 Example Nests from NAS Benchmarks

The NAS Parallel Benchmarks are a set of programs

designed to help evaluate the performance of parallel

supercomputers. To utilize the cache effectively, the bench-

marks generally access data with unit stride. Default layout

for the nests is column-major. It should be stressed that the

examples considered here are only representative nests, not

whole programs.

6.2.1 FT Benchmark

This kernel uses simple-transpose and complicated-transpose

nests. In Fig. 4a, the leftmost group of bars show the

performance improvement for the simple-transpose obtained

by our approach for different block sizes. Notice that the

effectiveness of the approach increases with larger block

sizes. The middle and rightmost bar-charts show the

improvement for the complicated-transpose obtained by our

approach for the tile sizes of 64� 64 and 150� 150,

respectively. Since, when tile size is 64� 64, the data used

by the innermost loops fit in the cache, our algorithm does

not add much. It should be emphasized that this compli-

cated-transpose nest is specifically meant for exploiting the

cache locality. This example shows that the performance of

a blocked (or tiled) loop nest can sometimes be further

improved if proper data layout optimizations are applied.

6.2.2 SP Benchmark

Fig. 4b illustrates the reduction in cache misses for a typical

loop nest from the SP benchmark after loop distribution has

been applied. As can be seen, for a block (cache line) size of

64, the miss rate of the optimized program is 35 percent of

that of the unoptimized. We chose this example to illustrate

that, sometimes, transformations such as loop distribution

enable the applicability of our techniques.
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6.2.3 LU Benchmark

Fig. 4c shows the performance improvement for a typical
loop nest. With a block size of 128, more than half of the
misses are eliminated.

6.2.4 MG Benchmark

The performance improvement illustrated in Fig. 4d for a
typical loop nest is substantial. It should be emphasized
that, for this program fragment, neither data transforma-
tions alone nor loop transformations alone can optimize
spatial locality for all arrays. Therefore, a combination of
data and loop transformations derived using a technique
like ours is crucial for the best performance.

6.3 Additional Examples

Fig. 3c shows the miss rates for the dgemm routine from BLAS.
This routine performs the fol lowing operation:
C � �f�A�f�B� � �C, where f�X� � X or XT for a matrix
X; and � and � are scalars. Both the unoptimized and the
optimized versions have been called four times, each of which
with different operation, and the average miss rates have been
computed.Themissratesinthefigurearenormalizedsuchthat
the miss rate for the unoptimized version is always 1. Below
each pair of bars is given the triple cache size, block size,

associativity. In the simulation, 500� 500 double precision
matrices are used. Fig. 4d demonstrates the performance
improvement on dtrsl, a routine from LINPACK which solves
the systems of the form T~x � ~b or TT~x � ~b, where T is a
triangular matrix of order n. While, for optimizing the dgemm
both loop and data transformations have been used, for dtrsl,
only the data transformations have been applied.

7 FALSE SHARING

In shared-memory multiprocessors, when processors make
references to different data items within the same cache
block, even though there is no dependence, false sharing may
occur [8], [18]. Since cache coherence is maintained on a
block basis, when one processor modifies a data item, it
causes an invalidation in the other processors' cache. One of
the main causes of the false sharing is the parallelization of
a loop that carries spatial reuse [13]. Reducing the extent of
false sharing can improve the scalability of parallel
applications, as well as the execution time. On the other
hand, the larger the granularity of parallelism, the better it
is because the synchronization overhead will diminish with
the increasing parallelism granularity. Therefore, to get the
maximum benefit from shared memory multiprocessors,
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parallelism and locality should be optimized and false
sharing should be reduced as much as possible. This
optimization problem looks very hard because of the
numerous factors involved in the optimization process.

We now discuss how our algorithm can be extended to
work in a shared memory multiprocessor environment. We
start by observing that, so far, our algorithm derives good
loop and data transformations to optimize spatial locality in
the innermost loops if possible. As a consequence (in many
cases), the outermost loops in the transformed nest will not
carry any spatial reuse. Therefore, the compiler can safely
parallelize these loops as, since they carry no spatial reuse,
most probably they will not cause false sharing. As a rule,
the compiler should always refrain from parallelizing a
loop that carries spatial reuse. In the following, we only
focus on loop permutations.

Essentially, we want the transformed loop nest to be of
the following generic form:

DO i1 = � � � , � � �
� � �

DOALL ik = � � � , � � �
� � �

DO* im = � � � , � � �
� � �

DO* in = � � � , � � �
loop body

ENDDO* in
� � �

ENDDO* im� � �
ENDDOALL ik� � �

ENDDOi1

In this generic form, all the spatial reuse will be carried by
only a subset of the loops between im and in, including both
these loops and the loops between them will not be
parallelized. There will be only a single parallel loop ik,
where 1 � k � mÿ 1. We want k to be as small as possible.
The best possible loop nest will have k � 1 and m � n and
only in will carry all the spatial reuse in the nest. The steps
taken by our approach are as follows:

1. Run the locality optimization algorithm explained in
this paper to obtain a sequence of alternative
transformed programs. The possible loop nests are

permutations of the original loop nest. The possible
array layouts are row-major, column-major, and
higher equivalents of them.

2. Then, the compiler starts handling these loops one at
a time. For a given transformed loop, it checks which
outermost loop can be executed parallel. Then, it
checks whether that loop carries any spatial reuse as
well. If so, the compiler discards that alternative and
focuses on the next. This process stops when the
compiler finds the set of all alternative loop nests
which fit in our generic form explained above.

3. Among the candidate alternatives, the compiler
chooses the one which has the outermost loop
parallelism. We use spatial locality as a tie breaker
if there is a need to do so. If there is still more than
one such alternative, any of those will do the job.

Consider the following example.

DO i = 1, N ÿ 1
DO j = 1, N

DO k = 2, N
A�i; j; k� � B�j; k; i� �A�i; j; kÿ 1� �A�i; j; k�
B�j; k; i� 1� � A�i; j; k� �B�j; k; i� �B�j; k; i�

ENDDO k
ENDDO j

ENDDO i

Table 1 shows all the possible loop permutations and, for

each array, the fastest changing dimension (marked with X)

for each permutation. For example, for the i; j; k loop order,

the third dimension of A and the second dimension of B

should be the fastest changing dimensions. An application

of dependence analysis [21] reveals that the only paralleliz-

able loop is the j loop. Let us focus on the loop order k; i; j.

This loop order results in very good spatial locality provided

that, for array A, the second dimension is the fastest

changing dimension and, for array B, the first dimension

is the fastest changing dimension. Notice that, in that case,

the spatial reuse for both the arrays are carried by the j loop.

Since this loop is the only parallelizable loop in the nest,

when it runs parallel, there will be false sharing for both A

and B. Since this alternative does not fit in our generic

optimized loop nest explained above, the compiler discards

it. With a similar analysis, we can eliminate the alternative

i; k; j as well. The remaining four alternatives fit in our

generic form. Since j; i; k and j; k; i have the outermost loop

parallelism, we select one of them as our transformed nest.
To sum up, after the second step of our approach, we

have four candidates and, after the third step, we have only

two candidates, which are equally optimized from the

points of view of false sharing and locality.

8 SUMMARY

This paper presents a new algorithm for improving cache

locality in scientific computations. Our algorithm trans-

forms the loop nests and changes the memory layouts of

multidimensional arrays in a unified framework. Our

algorithm can either be employed alone or can be combined

with other locality optimizations, such as tiling, and

transformations, such as loop fusion and loop distribution.

Experimental results on several programs provide strong
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TABLE 1
Possible Loop Permutations and the Best Fastest Changing

Dimensions (denoted X)



evidence that our approach is likely to be successful on both

uniprocessors and multiprocessors.
We are currently exploring the possibility of dynamically

changing data layouts and will be evaluating the relative

merits of this considering the runtime overhead incurred in

such a change. In addition, we plan to work on the problem of

improving spatial locality in sparse computations.

ACKNOWLEDGMENTS

This work is supported in part by U.S. National Science

Foundation (NSF) Young Investigator Award CCR-9357840,

NSF CCR-9509143. The work of J. Ramanujam is supported by

NSF Young Investigator Award CCR-9457768 and NSF grant

CCR-9210422.

REFERENCES

[1] J. Anderson, S. Amarasinghe, and M. Lam, ªData and Computation
Transformations for Multiprocessors,º Proc. Fifth ACM SIGPLAN
Symp. Principles & Practice of Parallel Programming, July 1995.

[2] S. Carr and R. Lehoucq, ªCompiler Blockability of Dense Matrix
Factorizations,º ACM Trans. Mathematical Software, vol. 23, no. 3,
Sept. 1997.

[3] M. Cierniak and W. Li, ªUnifying Data and Control Transformations
for Distributed Shared Memory Machines,º Proc. SIGPLAN '95 Conf.
Programming Language Design and Implementation, June 1995.

[4] M. Cierniak and W. Li, ªBriki: An Optimizing Java Compiler,º
Proc. IEEE CompCon '97, San Jose, Calif., Feb. 1997.

[5] D. Gannon, W. Jalby, and K. Gallivan, ªStrategies for Cache and
Local Memory Management by Global Program Transformations,º
J. Parallel and Distributed Computing, vol. 5, pp. 587-616, 1988.

[6] A. Gonzalez, C. Aliagar, and M. Valero, ªA Data Cache with
Multiple Caching Strategies Tuned to Different Types of Locality,º
Proc. ACM Int'l Conf. Supercomputing, pp. 338-247, July 1995.

[7] M. Hill and A. Smith, ªEvaluating Associativity in CPU Caches,º
IEEE Trans. Computers, vol. 38, no. 12, pp. 1,612-1,630, Dec. 1989.

[8] T. Jeremiassen and S. Eggers, ªReducing False Sharing on Shared
Memory Multiprocessors Through Compile Time Data Transfor-
mations,º Proc. Fifth ACM SIGPLAN Symp. Principles & Practice of
Parallel Programming, July 1995.

[9] M. Kandemir, J. Ramanujam, and A. Choudhary, ªA Compiler
Algorithm for Optimizing Locality in Loop Nests,º Technical
Report, CPDC-TR-9802-010, Northwestern Univ., Evanston, Ill.,
Feb. 1998.

[10] M. Kandemir, J. Ramanujam, and A. Choudhary, ªA Compiler
Algorithm for Optimizing Locality in Loop Nests,º Proc. 11th
ACM Int'l Conf. Supercomputing, pp. 269-278, July 1997.

[11] I. Kodukula, N. Ahmed, and K. Pingali, ªData-Centric Multi-Level
Blocking,º Proc. 1997 ACM SIGPLAN Conf. Programming Languages
Design and Implementation, pp. 346-357, June 1997.

[12] M. Lam, E. Rothberg, and M. Wolf, ªThe Cache Performance and
Optimizations of Blocked Algorithms,º Proc. Fourth Int'l Conf.
Architectural Support for Programming Languages & Operating
Systems, Apr. 1991.

[13] W. Li, ªCompiling for NUMA Parallel Machines,º PhD thesis,
Cornell Univ., Ithaca, New York, 1993.

[14] K. McKinley, S. Carr, and C. Tseng, ªImproving Data Locality
with Loop Transformations,º ACM Trans. Programming Languages
& Systems, 1996.

[15] F. Sanchez, A. Gonzalez, and M. Valero, ªStatic Locality Analysis
for Cache Management,º Proc. Int'l Conf. Parallel Architectures and
Compilation Techniques (PACT-97), Nov. 1997.

[16] M. Tartalja and V. Milutinovic, ªA Survey of Software Solutions
for Cache Consistency Maintenance in Shared Memory Multi-
processors,º IEEE Software, Fall 1996.

[17] M. Tomasevic and V. Milutinovic, Tutorial on the Cache Coherency
Problem in Shared-Memory Multiprocessors: Hardware Solutions. Los
Alamitos, Calif.: IEEE CS Press, 1993.

[18] J. Torrellas, M. Lam, and J. Hennessy, ªFalse Sharing and Spatial
Locality in Multiprocessor Caches,º IEEE Trans. Computers, vol. 43,
no. 6, pp. 651-663, June 1994.

[19] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S.
Tjiang, S. Liao, C. Tseng, M. Hall, M. Lam, and J. Hennessy, ªSUIF:
An Infrastructure for Research on Parallelizing and Optimizing
Compilers,º ACM SIGPLAN Notices, vol. 29, no. 12, pp. 31-37, Dec.
1994.

[20] M. Wolf and M. Lam, ªA Data Locality Optimizing Algorithm,º
Proc. ACM SIGPLAN 91 Conf. Programming Language Design and
Implementation, pp. 30-44, June 1991.

[21] M. Wolfe, High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

Mahmut Kandemir is a PhD candidate in
electrical engineering and computer science
department at Syracuse University. He received
BS and MS degrees, both in computer engineer-
ing, from Istanbul Technical University. His
research interests include different aspects of
locality improvement techniques for cache mem-
ories, optimizations for I/O-intensive applica-
tions, and computer architecture. He is a
student member of the IEEE Computer Society.

J. Ramanujam received the BTech degree in
electrical engineering from the Indian Institute of
Technology, Madras, in August 1983, and the MS
and PhD degrees in computer science from The
Ohio State University, Columbus, Ohio, in August
1987 and December 1990, respectively. He is
currently an associate professor of electrical and
computer engineering at Louisiana State Univer-
sity, Baton Rouge. His research interests are in
compilers for high-performance computer sys-

tems, program transformations, high-level synthesis, parallel input/output
systems, parallel architectures and algorithms. Dr. Ramanujam received
theU.S.NationalScienceFoundation'sYoung InvestigatorAward in1994.
He has served on the program committees of the 1997 International
International Conference on Parallel Processing and the Eighth Interna-
tional Conference on Supercomputing, 1995, and several other confer-
ences. He is a member of the High Performance Fortran Forum. He has
taught tutorials on compilers for high-performance computers at several
conferences such as the International Conference on Parallel Processing
(1998, 1996), Supercomputing '94, Scalable High-Performance Comput-
ing Conference (SHPCC 94), and the International Symposium on
Computer Architecture (1993 and 1994).

Alok Choudhary received his PhD from the
University of Illinois, Urbana-Champaign in elec-
trical and computer engineering, in 1989, his MS
from the University of Massachusetts, Amherst, in
1986, and his BE (Hons.) from Birla Institute of
Technology and Science,Pilani, India, in1982. He
has been an associate professor in the Electrical
and Computer Engineering Department at North-
western University since September, 1996. From
1993 to 1996,he was an associate professor in the

Electrical and Computer Engineering Department at Syracuse University
and, from 1989 to 1993, he was an assistant professor in the same
department. He has worked in industry for computer consultants prior to
1984. Dr. Choudhary received the U.S. National Science Foundation's
Young Investigator Award in 1993 (1993-1999). He has also received an
IEEEEngineeringFoundationaward,an IBMFacultyDevelopmentaward,
and an Intel Research Council award. His main research interests are in
high-performance computing and communication systems and their
applications in many domains including multimedia systems, information
processing, and scientific computing. In particular, his interests lie in the
designand evaluationof architectures and softwaresystems (from system
software such as runtime systems, compilers, and programming lan-
guages to applications), high-performance servers, high-performance
databases, and input-output. He has published more than 100 papers in
various journals and conferences in the above areas. He has also written a
bookandseveralbookchaptersontheabovetopics.Hisresearchhasbeen
sponsored by (past and present) DARPA, NSF, NASA, AFOSR, ONR,
DOE, Intel, IBM, and Texas Instruments.

KANDEMIR ET AL.: IMPROVING CACHE LOCALITY BY A COMBINATION OF LOOP AND DATA TRANSFORMATIONS 167


