
Improving Cache Performance by

Selective Cache Bypass
Chi-Hung Chi

Philips Laboratories
345 Scarborough Road

Briarcliff Manor, NY 10510

In tradit ional cache-based computers, all memory
references are made through cache. However, a significant
number of items which are referenced in a program are
referenced so infrequently tha t other cache traffic is certain
t o “bump” these items from cache before they a re refer-
enced again. In such cases, not only is there no benefit in
placing the item in cache, but there is the additional over-
head of “bumping” some other item out of cache to make
room for this useless cache entry. Where a cache line is
larger than a processor word, there is a n additional penalty
in loading the entire line from memory into cache, whereas
the reference could have been satisfied with a single word
fetch. Simulations have shown t h a t these effects typically
degrade cache-based system performance (average reference
time) by 10% to 30%.

This performance loss is due to cache pollution; by sim-
ply forcing “polluting” references to directly reference main
memory - bypassing the cache - much of this performance
can be regained. The technique proposed in this paper
involves the use of new hardware, called a Bypass-Cache,
which, under program control, will determine whether each
reference should be through the cache or bypassing the
cache and referencing main memory directly. Several inex-
pensive heuristics for the compiler to determine how to
make each reference a re given.

1. Introduction

Advances in supercomputing and semiconductor tech-
nologies have made it possible t o design and build high per-
formance computer systems with many processors. How-
ever, the performance of these systems is often limited by
memory reference bandwidth. While the execution of each
operation has become very fast, the time t o fetch each
da tum from main memory (or from another processor’s local
memory) is at least an order of magnitude longer than the
processor operation time - also an order of magnitude
longer than the reference time from on-chip or local
memory. Use of a cache seems a natural way t o a t tack this
mismatch.

I t is widely accepted t h a t cache memory is a cost
effective way to improve system performance by using local-
ity properties to improve apparent average memory access
time. Significant reductions in the average data/instruction
access time have been achieved using very simple cache

’ The author did this work at Purdue University

Henry Dietz

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907

placement/replacement policies implemented in hardware
(Be1741. If anything, the success of cache has been too com-
plete; the desirability of caching items is rarely questioned
and basic research on cache design generally has been
reduced to the level of benchmarking and fine-tuning a few
well-known parameters.

For example, since cache reference time is so much less
than main memory reference time, i t is commonly held t h a t
as many d a t a as possible should be placed in cache. One
typically measures the efficacy of a cache design by deter-
mining the cache hit ratio - the fraction of memory refer-
ences which are satisfied by cache entries. The problem is
simply t h a t i t is not always beneficial to fetch a line into
the cache on a cache-miss even if the cache is infinitely
large - increasing cache hit ratio sometimes reduces system
perjormance! Other criteria like memory traffic have occa-
sionally been used instead of cache hit ratio, but these
measures are also somewhat imprecise and indirect. If one
wants t o minimize total memory rejerence time, then t h a t is
the obvious measure by which cache performance should be
judged. Throughout this paper, cache performance is meas-
ured in terms of the effect on to ta l memory reference time.

Why are the more commonly used cache performance
criteria inaccurate measures of system performance? There
is always a n overhead associated with fetching a line from
memory into cache. If the benefit gained from having t h a t
line in cache is not greater than the overhead tha t loading
the cache line implies, then i t is faster t o reference the d a t a
of t h a t line directly from main memory. This is true even if
the cache is infinitely large - but even more dramatically
true with smaller caches. If some mechanism can be used t o
selectively disable or bypass the cache for those references
which cache cannot improve:

[I]

[2]

the cost of loading the cache with these lines is saved
and
for finite-size caches, more cache space becomes avail-
able to other references and the probability of acciden-
tally replacing useful lines (those lines tha t can help
improve system performance) is reduced - there will
be less cache pollution.

Simulation results, reported in Section 4, strongly support
this view. An average of 10% to 30% reduction in total

211
0073-1 129/89/0000/0277$01.00 0 1989 IEEE

reference time can be achieved simply by using the prbposed
cache bypass mechanism.

Section 2 of this paper presents a survey of current
cache designs and bypass concepts. Section 3 discusses the
cache bypass mechanism and how the cache bypass control
information can be implemented in practical hardware.
Section 4 presents simulation results. Continuing research
on the cache bypass mechanism is described in Section 5.

#-*-

//--

#-------

2. Current Cache Designs and Bypass Concepts

Before investigating the mechanism for, and benefits of,
selective cache bypass, i t is useful t o briefly survey existing
cache management policies; in par t , this highlights where
the extra performance comes from, but i t also clarifies the
constraints these traditional policies impose on the cache
bypass mechanism. Examples illustrate why some con-
straints imposed by previous cache replacement policies
often cause a large decrease in system performance, as well
as how eliminating some of these constraints can regain
much of the lost performance.

Tc Reference from
Cache

This discussion serves the purpose of illustrating the
importance of cache bypass and of giving motivation t o
research this topic. In the last par t of this section, we
briefly describe the cache bypass mechanism used in the C 1
minisupercomputer manufactured by Convex Computer Cor-
poration [Con86]. Although the strategy used for cache
bypass in the C 1 is very, limited, it does demonstrate the
importance of incorporating a bypass mechanism.

2.1. Traditional Replacement Policies

Replacement policy is defined as the set of rules by
which the choice of which cache line to replace is made
when the cache is full and a new line is t o be fetched from
the main memory into the cache [HwB84]. Replacement
policies such as LRU (least recently used), random replace-
ment, FIFO (first-in first-out), etc., a re commonly used in
current cache designs.

Although each of these traditional cache replacement
policies has i ts own unique technique for placing and/or
replacing cache lines, the option of deciding not t o put the
requested line in cache was not considered. In all conven-
tional cache replacement policies, immediately after each
reference, the line refetenced is in cache. This implies t h a t
whenever there is a cache miss occurred, the missed line
needs to be fetched into the cache and this line fetch is
independent of whether the fetched line would bring
improvement t o system performance.

The main argument for this constraint is t h a t since
reference time of d a t a in cache is much smaller than t h a t
from main memory and with spatial and temporal behavior
of program references [Spi77], having the current referenced
line in cache has a high probability to bring improvement in
system performance. While this argument is generally true,
it is possible to predict with good certainty exactly which
lines will not contribute t o improving performance; without
such prediction, i t is easy t o envision scenarios where the
cache would replace lines i t should have kept with lines t h a t
will never again be referenced. This leads to a worst-case
scenario in which a machine runs slower with cache than
without i t . Bypassing the cache, hence avoiding this pollu-
tion. this worst-case scenario is averted.

An example of this problem is easily constructed. Sup-
pose there is a fully-associative cache of size two,.line size
one, and the memory reference string is 129123. (It is
interesting t o note t h a t this example is exactly the kind of
reference sequence one would get in executing a typical loop
which references more d a t a than there a re cache cells -
which is well-known t o the worst-case for LRU.) With the
cost of different types of memory references shown in Table
1 (and the line-style used t o represent each), the cache con-
tent after each reference with random replacement, LRU,
and modified LRU with cache bypass mechanism are shown
in Figures 1, 2, and 3.

T, Reference from 1 ___---- ---- 1 1 Main Memory l - __/-----

to Empty Cache
Line

_ - - - -
Replacement of a
Cache Line

Table 1: Coat for Each Type of Memory Reference

Table 2: Comparsion of Execution Times for 1291 23

278

B-Q-B \)--& 1 B\-p
\
\

"B \ 'B 1
1 rer 2 3 I r d 2 ref 3

Figure 1: Random Replacement Transactions for 129129

rrr I ,er 2 3 r r r I rrr 2 3

Figure 2: LRU Transactions for l29l23

Figure 3: Modified LRU with Cache Bypass for 129125

The to ta l reference costs using these three policies are
shown in Table 2. In this table, it can be seen tha t the
ra t io of CostRandotn/CostBypass is 1.898 and the ra t io of
CostLRu/CostBypasr is 2.409.

Notice t h a t while placing d a t a 1 and 2 in cache can
improve system performance, placing da tum 9 in cache
actually decreases the system performance. Unfortunately,
if bypass of the cache is not considered, the resulting perfor-
mance is the worst possible - in fac t , it is worse than if no
cache were present. With selective cache bypass, one might
simply reference da tum 9 directly from main memory; yet
the cache would speed-up references t o d a t a 1 and 2.

2.2. History of Cache Bypass

Although not commonly accepted as par t of tradit ional
cache design, cache bypass is not entirely new.

Nearly all cache-based computers have some provision
for disabling the cache so t h a t memory-mapped 1/0 t ran-
sactions can t ake place. However, the idea of
enabling/disabling the cache for each memory reference is
not well supported by most of these systems (presumably
the possibility had not been considered). These systems typ-
ically require a n entire instruction t o be executed t o change
the cache enable s t a t e . Despite this, such systems can be
used t o implement cache bypass where several consecutive
references should be bypassed.

Some machine designers also recognized tha t the per-
formance of cache could be improved by simultaneously
requesting each d a t u m from both main memory and cache.
In this scheme, if t he item is found in the cache then the
cached value is used and the main memory request is can-
celled o r ignored. If no t , t he item is returned directly from
main memory t o the processor, simultaneously initiating a
cache update for t h a t datum's line. This technique does
improve performance, but may require fairly expensive
hardware and does not aver t cache pollution - i t merely
reduces the cost of referencing "through" the cache.

Somewhat closer in spirit t o our approach, Convex
Computer Corporation has implemented a selective cache
bypass mechanism in their C1 minisupercomputer. The
s t ra tegy employed is [Con86]:

Upon load o r store, the physical control unit
either writes t he referenced d a t a into its cache or
bypasses the cache and accesses main memory
directly, leaving the cache unmodified. All
aligned 64-bit vector loads and stores result in
cache bypass. Loads and stores of aligned, con-
tiguous 32-bit vector elements bypass the cache
as well. Since vector accesses dominate
supercomputer-class applications software. cache
bypass opportunities occur frequently.

.Apparently, the cache bypass mechanism is employed only
on vector operations because the C1 has a cache with a set
size of one, hence. loading a vector register had the effect of
totally flushing the cache - obviously negating any benetits
of caching. I n any case. the Convex scheme is qulte reason-

219

able, and was sufficiently new so as to be patented (patent
pending?); the problem is t h a t it equates “vector” with
“bypass,” and this isn’t really correct. Some vectors should
be cached and some scalars shouldn’t be, but on the average
the Convex scheme is right often enough t o yield a big
improvement.

In contrast , the current proposal for cache bypass is t o
use a compile-time s ta t ic analysis of the reference behavior
of each program to compute a “cache/bypass” t a g for each
memory reference the compiled code makes. These tags are
used at runtime to control a cache enable/disable line.

Type of Access

On-chip memory access

3. Implementing Cache Bypaas

As shown in the example of Section 2 1, LRU referenc-
ing of all d a t a through the cache actually performed worse
than if no cache were present.

There a re two main reasons for this phenomena. First ,
there is often a large time overhead implied in moving lines
of d a t a between cache and main memory. This overhead
increases as the cache line size is increased. Consequently,
fetching a line into cache can improve system performance
if the to ta l number of references to d a t a in t h a t line (before
t h a t line is replaced) is such t h a t the savings in referencing
cache outweighs the overhead of moving t h a t line between
cache and main memory. If not, the to ta l time t o make
these references will be minimized by ignoring the cache -
bypassing to directly reference main memory. Even if the
cache is infinitely large, this still holds.

Second, since all real caches are finite, placing one line
in cache generally means t h a t some other line cannot be in
cache. Hence, placing infrequently referenced lines into
cache not only adds a large overhead to total memory
access time, but also prevents speed-up t h a t could have
been gained if some other (more heavily referenced) line
were placed in cache. This effect is what we call “cache pol-
lu tion.”

Since minimizing the total memory access time is our
goal in selective cache bypass and the to ta l access time
depends on both the architectural design and the

Silicon CMOS/SOS Silicon NMOS GaAS

10-20ns 0.5-2.0ns 10-20ns

implementation technology of the cache and main memory,
some details must be supplied. In the remainder of this
paper, we have chosen t o discuss cache bypass assuming
t h a t the supplied information is t h a t of a typical system;
this greatly simplifies the following discussion and reduces
the number of graphs needed to support the rest of the
paper. For example, the simulations and examples
presented in this paper are based on the assumption t h a t
LRU is the basic cache management technique and tha t
“typical” CMOS or NMOS ICs implement the relevant sys-
tem components. This implies, for example, t h a t a main
memory reference takes about 10 times as long as a cache
reference - in reality, this ratio varies from about 2:l to
greater than 50:l. Of course, the use of specific numbers in
the examples and discussion is not indicative of the tech-
nique requiring those exact numbers: the technique works
for most reasonable cache organizations, only the percen-
tage benefit gained varies.

In Section 3.1, a brief discussion of current IC technolo-
gies and their impact on memory access time is given. Cri-
teria or rules to determine whether a reference request is
going to bypass the cache and t o reference directly from
main memory are presented in Section 3.2. Section 3.3 gives
a very simple and cheap, yet efficient, way to incorporate a
cache bypass mechanism with a n LRU policy. Practical
implementation schemes for cache bypass control signals t o
be added to existing systems are presented in Section 3.4.

Off-chip on-package memory access

Off-chip off-package memory access

Ratio of off-chip on-package to
on-chip memory access

3.1. Integrated Circuit Technologies

Integrated circuit (IC) technology is one of the major
parameters in the criteria for cache bypass mechanism (dis-
cussed in the next section). Hence, a brief survey of current
different (IC) technologies and i t s impact on off-chip and
on-chip memory reference .time is necessary. Table 3 gives
the on-chip and off-chip memory access times for some of
the current integrated circuit technologies IMiF86). From
this table, we see tha t the ratio of off-chip to on-chip
memory access times is a t least 10. Using this ratio, an
estimate of the minimum reference frequency t h a t a line
needs to justify i ts placement in cache can be obtained.

40-80ns 20-40ns 4-1011s

100200ns 100-200ns 20-80ns

4 2 5- 8

Ratio of off-chip off-package t o
on-chip memory access

10 10 40

Table 3. Memory Access Time of Different IC Technologies

280

3.2. Criteria for Cache Bypass Mechanism

Thoughout the current work, the main focus is the
reduction of to ta l memory reference time for a program.
Hence, criteria proposed here a re based on the comparsion
between the time overhead involved in having a line in
cache and the to ta l reference time saved by referencing
d a t a in a line in cache.

The time overhead of placing a line in cache is the
transfer time for all d a t a of t h a t line from main memory to
cache. If any dirty2 line is bumped out of cache using a
write-back cache, a similar transfer time to uptime the
main memory is also included in this overhead. Since the
amount of d a t a transfer between main memory and cache is
constant for a cache design, this overhead is only architec-
ture design and implementation technology dependent, and
is independent of program behavior.

On the other hand, the time savings for placing a line
in cache accumulates every time d a t a in t h a t line is refer-
enced. Hence, the savings are, in addition, program depen-
dent.

There are additional factors which can influence the
costs and the savings of placing/replacing a line in cache,
resulting in slightly different cache bypass decisions of
references in a program. For example, if a reference is going
to bypass the cache and directly reference main memory,
the average probability of bumping a line from cache
decreases, and cache space could also be viewed as available
to other lines.

These effects are easily recognized and advantageously
used in the cache bypass mechanism. In fact, a complete
analytical model of the cache bypass mechanism for com-
mon cache replacement policies to take all these factors into
consideration can easily be derived from the compiler-driven
cache (SCP.).model [ChD87] [ChDSS]. While the SCP model
can fully amount for cache bypass, and can promise optimal
performance, the complete S C P model does entail relatively
complex analysis and compiler technology; hence, the tech-
nique presented here is a sub-optimal, but quite effective
and simple, approximation to the S C P model3.

To define an algorithm for determining when to bypass
the cache for a particular reference, some definitions and
notations are useful.

overhead(i) = time overhead of placing/replacing line i
in cache
saving(i) = time saving of having line i in cache before
i t is replaced
n(i) = total number of referencing line i in cache before
i t is replaced

With the cost notations defined in Table 1, the overhead(i)
and saving(i) are as follows:

If no dirty line is bumped out of cache, the overhead is:

If a dirty line is replaced (bumped) from the cache,
then the overhead is:

The savings for having line i in cache (before it is
replaced) is:

overhead(;) = T,

overhead(i) = 2 * T,

saving(i) = n(i) * (T , - T,)

In order for a reference line i to bypass the cache, the
overhead overhead(i) must be greater or equal to the total
time savings saving(i). Only in this case can the placement
of line i contribute to improve system performance.

3.3. Algorithm for LRU Bypass-Cache

In this section, LRU (least recently used) cache
replacement is chosen as the basic scheme and the cache
bypass control is added on top of this policy. We have
choosen to discuss an LRU Bypass-Cache because the basic
LRU policy is probably the most commonly used and most
commonly trusted t o yield good performance. Hence, the
comparsions of simulated performance with/without cache
bypass (in Section 4) are very good estimates of the
expected improvement derived by converting commonly
available computers to use Bypass-Cache instead of tradi-
tional cache.

In this section, a fast , simple, efficient (yet sub-
optimal) algorithm t o determine when a reference should
bypass the cache is proposed. The algorithm is based on the
concept of a trace, as discussed in trace scheduling tech-
niques used for automatic parallelizing compilers [E1185].
The procedure t o determine, for each reference in the p r e
gram, whether t o bypass or t o reference through the cache
is:

1 . Perform traditional flow analysis and build the p r e
gram flow graph. (This step should be considered
“free” because any good compiler will use this same
analysis to aid in generating efficient code.)

* A line in cache is considered dirty igsome protion of the value i t contains does not match the
value stored in the corresponding main memory line

In fact, i f the SCP model is used with more radically redesigned cache, performance IS much
better than using a Bypass-Cache and the analysis is essentially the same Hence, we feel t ha t if

one wants to achieve optimal performance, one should be willing t o make the more drastic
hardware and software changes t o support i t - here, we have simply given a technique whereby
only trivial hardware and software changes result in large, but sub-optimal, performance gains

28 1

2. For each trace (a possible control flow pa th which has
not yet been processed), d o the following:
a . Mark all references in this trace as “cachable”

memory access time by factors of 2 or more is virtually
always worthwhile. Also, existing machines with at least
one currently unused bit in each instruction should probably

[put in cache).
use this implementation. b. Scan this trace, keeping track of which items

would be resident in cache assuming t h a t all
items marked as cachable are always referenced
through the cache and tha t LRU is used to deter-

Alternatively, the instruction set of the machine can be
expanded to include explicit Bypass-Cache control instruc-

mine which item is bumped from cache when line
replacement occurs. As the references are
scanned, the time overhead and savings realized
for each cachable line a re accumulated. As a sim-
ple heuristic, the savings for referencing a n item
within a loop is multiplied by a factor4 of 10.
A t the end of the trace, mark all references which
have a larger overhead than savings as “non-
cachable”.

d. The above set of markings can be somewhat
improved, although not made optimal, by repeat-
ing steps 2b and 2c. Such repetition is, however,
completely optional. All the simulation results
given in this paper used only a single pass.

c.

This algorithm, although very crude and simple, reaps
speedups ranging from a few percent to a factor of nearly
100, depending on the cache configuration and the bench-
mark used. Speedups greater than 2 are not unusual for
commonly used cache configurations.

3.4. Implementation of Bypass Control

With the results of compiler analysis of a program (or
with statist ical results gleaned from previous runs), the
bypass/cache question is easily answered with good enough
accuracy so as to permit huge performance increases. How-
ever, this information must be transmitted t o the Bypass
Cache control logic for each reference. T h e information for
each reference requires only a single bit - a 1 means
“bypass” and 0 means “go through the cache.” The natural
question is how does the compiler get this one bit of infor-
mation for each reference into the Bypass-Cache control at
runtime?

There are a number of alternative solutions to this
problem and each of these solutions trades off some
resources or capabilities.

The conceptually easiest and most efficient way to
transmit this cache bypass information is to embed a bit in
each instruction for each memory reference the instruction
may cause. For new machine design, this is fairly con-
venient; reserving a control bit to obtain speedups of total

tions. In fact , these instructions exist for virtually all com-
puters which have cache. An extreme example of this expli-
cit cache control is the IBM 801, where individual cache
lines can be explicitly allocated and deallocated; most sys-
tems simply permit the cache to be enabled/disabled as a
whole. Since bypasses may come in “clumps”, even this
crude bypass control can gain some improvement; however,
bypasses d o not always come in clumps. By defining a new
instruction specifically to implement Bypasscache control,
one could permit each cache control instruction to set the
pattern of bypass/cache decisions for the next n references,
where n is somewhat less than the machine word length.
Again, some performance would be gained, but the high fre-
quency of Bypasscache control instructions would limit
performance.

While all the above schemes have some merit, there is
another scheme which both permits a cache control bit t o
be associated with each instruction and does not require
changes in the instruction set design or encoding. In current
machine designs, the addressable space is typically very
large and programs rarely use the entire addressable space
of the machine. Thus, i t is possible to trade one address bit
(e.g., the most significant bit of a n address) for use as the
control bit for the Bypass-Cache. In fact , this solution is
suggested by Intel in their 80886 programmer’s reference
manual [Int86] as a way to provide a cache control bit for
use in multiprocessor cache coherency control. Worst case,
this effectively reduces the addressable space by 50%‘05. Of
course, i t also causes the compiler writer a bit of grief in
t h a t not only must all addresses be correctly tagged, but
the compiler must also be careful about operations such as
pointer arithmetic or comparisons.

Other methods, such as using a separate cache con-
troller t o explicitly control the cache (similar t o the remote
PC idea [Rad83]) a re also possible. However, the overhead
and the synchronization cost involved may be too large t o
be practical.

This is a rough approximation to weighting each reference in the trace by its expected
number of executions - it assumes each loop executes an average of 10 times. If the compiler has
a better estimate, this can be used instead. Techniques for the compiler to make more intelligent
estimates of expected execution frequencies are discussed in [Die87].

The actual address space may not be affected because address mapping mechanisms may be
able to circumvent the loss.

282

4. Simulation Results

To measure. the effect of cache bypass in reducing to ta l
reference t ime, detailed simulation of the LRU Bypass-
Cache was performed using the single-pass compiler algo-
rithm described above. For comparison, the same simula-
tions were performed using a conventional LRU cache with
the same configuration as the Bypass-Cache.

T h e benchmark programs were taken from the DARPA
MIPS package, and are widely used as benchmarks of cache
and/or system performance. D a t a are given for four of
these programs:

Bubble
A typical bubble sor t program, executed on a se t of
500 random da ta .

This is a compute-bound program from Forest Basket,
run with a size of 511.

A program which performs a matrix multiplication of
two real matricies, each of which is 40 by 40.

T h e s tandard recursive tower-of-Hanoi solution, given
the problem of moving 18 disks.

Each of the programs was simulated for about 500,000 refer-
ences of execution, hence “cold s t a r t ” cache effects are
negligible.

Puzzle

Realmm

Tower

Since our primary concern is minimizing the to ta l
reference time, ra ther t han maximizing hit ratio, it was also
necessary t o assume specific ratios of reference times for
each of the different types of reference. The cost functions
used for t he d a t a in this paper were based on cost estimates
for a typical CMOS-based system:

Cost of referencing d a t a from cache is 1 time unit.
Cost of referencing d a t a from main memory is 10 time
units.
Cost of placing a line in a n empty or non-dirty cache
entry is 10 + (l inesize - 1) * 7 time units.

The fac t t h a t fetching/storing n consecutive d a t a into/from
cache in one request takes less time than fetching/storing ?E

d a t a in n requests is reflected in the above costs. \Ve were
actually quite generous in this assumption, using a formula
giving a 30% benefit for multi-word fetch/store; however,
this simply has the effect of making the benefit due t o
Bypass-Cache appear smaller.

To make the simulations as complete as possible, all
possible power-of-2 cache organizations (e.g. different line
sizes, se t sizes) for a fixed cache size of 128 words6 were
simulated and are presented in this paper. The absolute
reference times for the different benchmarks naturally differ,
however, the speedups and curve shapes are fairly consistent
across all the simulations.

Figures 4 through 7 graph speedup of to ta l memory
reference times with Bypass-Cache as compared t o the same
configuration conventional cache. Each curve in the graphs
is marked with the power-of-2 which was used as the associ-
ative se t size. These graphs clearly demonstrate t h a t the
speedup in to ta l memory reference time using Bypasscache
is very large - in fac t , i t is plotted on a log scale, and aver-
ages about 2.

T h e speedup with Bypass-Cache is usually smallest for
a line size of one or two. Wi th a n increase in line size (leav-
ing cache size and se t size fixed), the speedup with Bypass-
Cache increases greatly. This agress with confirms the
argument given in Section 3. This is because a larger h e
size implies a larger overhead in cache line placement and
replacement. Although the to ta l number of references of a
line with increasing line size increases, this increase is much
less t han the increase in overhead. Consequently, cache
more easily becomes polluted, and the Bypass-Cache
becomes more critical in improving system performance.

These curves also show tha t the speedup with Bypass-
Cache is usually smaller for cache with small se t size (fixed
cache size and line size). Although the cause of this is not
yet known, we suspect t h a t this is related to the increase in
traffic seen by each cache se t (becuase there are fewer sets).
Even though the speedup is much smaller in these cases, it is
still typically about 1.2 (i.e., 20 percent).

Figure 8 shows the to ta l reference time for the Tower
benchmark. T h e dot ted lines indicate the times taken using
conventional cache, whereas the solid lines show the times
taken with Bypass-Cache.

Aside from the obvious benefit in using Bypass-Cache,
this graph suggests a n interesting general cache design rule.
If the total memory reference time is to be minimized,
rather than the hit-ratio maximized, it is usually
better to choose small line size and small set size. This
makes perfect sense in t h a t although large line sizes increase
hit-ratio, they imply overhead increases which are greater
t han the hit-ratio increases - in fact , expotentially greater.
T h a t increasing se t size is not beneficial is less intuitive, but
probably is related t o t,he increased traffic per se t and use of
a poor replacement algorithm (i.e., one can do a whole lot
bet ter t han LRU [ChDU]).

For Bypass-Cache, the difference in to ta l memory
access time for different line sizes (with same cache size and
size) is not as great as those for cache without’bypass. This
is t rue because a lot of cache pollution can be avoided with
By pass- C a c he.

About 500 simulations were performed, encompassing a wide varietv of cache sizes nnd
configurations However, all the simulation results obtained were very consistent, hence we have
chosen to present only the data for the largest cache size we examined - 128 \rords Othel
simulation data are avalable upon request

283

5. Conclusion

In this paper, we present a new cache design -
Bypass-Cache - which is able t o avert polluting the cache
by bypassing the cache for entries for which caching would
not result in faster total execution time. From our simula-
tion results, we see t h a t the speedup is tremendous, with an
average of about 2. Various methods for implementing the
Bypass-Cache architecture are presented as well as an out-
line of the compiler technology required for i ts effective use.

Perhaps the most significant result, however, is t h a t
cache hit ratio is not necessary related to the total
reference time. This will be discussed more deeply in a
later paper.

References

[A19861

(Be1741

[BuC86]

[Con861

[ChD87]

[ChD88]

[Die871

[EllS5]

[HwB84]

[Int86]

[Rad831

[Smi82]

[Spi77]

Allen, R., Baumgartner, D., Kennedy, K.,
Porterfield, A., “PTOOL: A Semi-Automatic
Parallel Programming Assistant,” 1986 Inter-
national Conference on Parallel Processing,

Belady, L.A., Palermo, F.P., “On-line Meas-
urement of Paging Behavior by the Multi-
valued MIN Algorithm,” IBM Research and
Development, 18, 1, January, 1974, pp. 2-19.
Burke, M., Cytron, R., “Interprocedural
Dependence Analysis and Parallelization,”
SIGPLAN Symposium on Compiler Construc-
tion, 1986, pp. 613-641.
“ C I Processor Series: Architecture,” Convex
Computer Corporation, 1986.
Chi, C.H., Dietz, H., “Compiler-Driven Cache
Policy,” Technical Report EE87-21, Purdue
University, May, 1987.
Chi, C.H., Dietz, H., “Register Allocation for
GaAs Computer Systems,” Proceedings of the
1988 Hawaii International Conjerence on Sys-
tems Sciences, January 1988, pp. 266-274.
Dietz, H. G., The Refined-Language Approach
To Compiling For Parallel Supercomputers,
Ph.D. Dissertation, Polytechnic University,
June 1987.
Ellis, J. R., Bulldog: A Compiler for VLIW
Architectures, 1985 ACM Doctoral Disserta-
tion Award, MIT Press, 1986.
Hwang, K., Briggs, F.A., Computer Architec-
ture and Parallel Processing, McGraw Hill
Book Company, 1984.
Intel Corporation, 80586 programmer’s refer-
ence manual, 1986, pp. 11-6.
Radin, G., “The 801 Minicomputer,” IBM
Journal of Research and Development, May

Smith, A.J., “Cache Memories,” Complqting
Surveys, Vol. 14, No. 3, September, 1982, pp.

Spirn, J., Program Behavior: Models and
Measurements, Elsevier-North Holland, N.Y.,
1977.

August 1986, pp. 164-170.

1983, pp. 237-246.

473-530.

Acknowledgements

Thanks to the members of CARP (the Compiler-
oriented Architecture Research group at Purdue) for their
useful comments on this work. Special thanks t o George
Adams for his suggestions concerning the presentation of the
results and also for coining the name Bypass-Cache.

10

1 1

IO 100
Line Size (log scale plot)

Figure 4: Speedup in Tota l Reference Time for Bubble

I I

1 10 LOO
Line Size (log scale plot)

I I

Figure 5: Speedup in Tota l Reference Time for Puzzle

284

lEM8

1EM7

I I I
1 10 IW

Line Size (log wale plot)

Figure 6: Speedup in Total Reference Time for Realmm

I I
10 100

Line Size (lag scale plot)

P

5 3

1 E M I I
10 IW I

Line Size (log scale plot)

Figure 8:

Total Reference Time WITH/ WITHOUT Bypass for Tower
(WITH is solid lines, WITHOUT is dotted lines)

Figure 7: Speedup in Total Reference Time for Tower

285

