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In tradit ional cache-based computers, all memory 
references are made through cache. However, a significant 
number of items which are referenced in a program are 
referenced so infrequently tha t  other cache traffic is certain 
t o  “bump” these items from cache before they a re  refer- 
enced again. In such cases, not only is there no benefit in 
placing the item in cache, but there is the additional over- 
head of “bumping” some other item out of cache to make 
room for this useless cache entry. Where a cache line is 
larger than  a processor word, there is a n  additional penalty 
in loading the entire line from memory into cache, whereas 
the reference could have been satisfied with a single word 
fetch. Simulations have shown t h a t  these effects typically 
degrade cache-based system performance (average reference 
time) by 10% to 30%. 

This  performance loss is due to cache pollution; by sim- 
ply forcing “polluting” references to  directly reference main 
memory - bypassing the cache - much of this performance 
can be regained. The  technique proposed in this paper 
involves the use of new hardware, called a Bypass-Cache, 
which, under program control, will determine whether each 
reference should be through the cache or bypassing the 
cache and referencing main memory directly. Several inex- 
pensive heuristics for the compiler to  determine how to  
make each reference a re  given. 

1. Introduction 

Advances in supercomputing and semiconductor tech- 
nologies have made it possible t o  design and build high per- 
formance computer systems with many processors. How- 
ever, the performance of these systems is often limited by 
memory reference bandwidth. While the execution of each 
operation has become very fast, the time t o  fetch each 
da tum from main memory (or from another processor’s local 
memory) is at least an order of magnitude longer than the 
processor operation time - also an order of magnitude 
longer than  the reference time from on-chip or local 
memory. Use of a cache seems a natural  way t o  a t tack  this 
mismatch. 

I t  is widely accepted t h a t  cache memory is a cost 
effective way to  improve system performance by using local- 
ity properties to  improve apparent  average memory access 
time. Significant reductions in the average data/instruction 
access time have been achieved using very simple cache 
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placement/replacement policies implemented in hardware 
(Be1741. If anything, the success of cache has been too com- 
plete; the  desirability of caching items is rarely questioned 
and basic research on cache design generally has been 
reduced to the level of benchmarking and fine-tuning a few 
well-known parameters. 

For example, since cache reference time is so much less 
than  main memory reference time, i t  is commonly held t h a t  
as many d a t a  as possible should be placed in cache. One 
typically measures the efficacy of a cache design by deter- 
mining the cache hit ratio - the fraction of memory refer- 
ences which are satisfied by cache entries. The problem is 
simply t h a t  i t  is not always beneficial to fetch a line into 
the cache on a cache-miss even if the cache is infinitely 
large - increasing cache hit ratio sometimes reduces system 
perjormance! Other  criteria like memory traffic have occa- 
sionally been used instead of cache hit ratio, but these 
measures are also somewhat imprecise and indirect. If one 
wants  t o  minimize total memory rejerence time, then t h a t  is 
the obvious measure by which cache performance should be 
judged. Throughout this paper, cache performance is meas- 
ured in terms of the effect on to ta l  memory reference time. 

Why are the more commonly used cache performance 
criteria inaccurate measures of system performance? There 
is always a n  overhead associated with fetching a line from 
memory into cache. If the benefit gained from having t h a t  
line in cache is not greater than  the overhead tha t  loading 
the cache line implies, then i t  is faster t o  reference the d a t a  
of t h a t  line directly from main memory. This is true even if 
the cache is infinitely large - but even more dramatically 
true with smaller caches. If some mechanism can be used t o  
selectively disable or bypass the cache for those references 
which cache cannot improve: 

[I] 

[2] 

the cost of loading the cache with these lines is saved 
and 
for finite-size caches, more cache space becomes avail- 
able to other references and the probability of acciden- 
tally replacing useful lines (those lines tha t  can help 
improve system performance) is reduced - there will 
be less cache pollution. 

Simulation results, reported in Section 4, strongly support 
this view. An average of 10% to 30% reduction in total 
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reference time can be achieved simply by using the prbposed 
cache bypass mechanism. 

Section 2 of this paper presents a survey of current 
cache designs and bypass concepts. Section 3 discusses the 
cache bypass mechanism and how the cache bypass control 
information can be implemented in practical hardware. 
Section 4 presents simulation results. Continuing research 
on the cache bypass mechanism is described in Section 5. 

#-*- 

//-- 

#------- 

2. Current Cache Designs and Bypass Concepts 

Before investigating the mechanism for, and benefits of, 
selective cache bypass, i t  is useful t o  briefly survey existing 
cache management policies; in par t ,  this highlights where 
the extra performance comes from, but i t  also clarifies the 
constraints these traditional policies impose on the cache 
bypass mechanism. Examples illustrate why some con- 
straints imposed by previous cache replacement policies 
often cause a large decrease in system performance, as  well 
as  how eliminating some of these constraints can regain 
much of the lost performance. 

Tc Reference from 
Cache 

This discussion serves the purpose of illustrating the 
importance of cache bypass and of giving motivation t o  
research this topic. In the last par t  of this section, we 
briefly describe the  cache bypass mechanism used in the C 1  
minisupercomputer manufactured by Convex Computer Cor- 
poration [Con86]. Although the strategy used for cache 
bypass in the C 1  is very, limited, it does demonstrate the 
importance of incorporating a bypass mechanism. 

2.1. Traditional Replacement Policies 

Replacement policy is defined as  the set of rules by 
which the choice of which cache line to  replace is made 
when the cache is full and a new line is t o  be fetched from 
the main memory into the cache [HwB84]. Replacement 
policies such as LRU (least recently used), random replace- 
ment, FIFO (first-in first-out), etc., a re  commonly used in 
current cache designs. 

Although each of these traditional cache replacement 
policies has i ts  own unique technique for placing and/or 
replacing cache lines, the option of deciding not t o  put the 
requested line in cache was not considered. In all conven- 
tional cache replacement policies, immediately after each 
reference, the line refetenced is in cache. This implies t h a t  
whenever there is a cache miss occurred, the missed line 
needs to be fetched into the cache and this line fetch is 
independent of whether the fetched line would bring 
improvement t o  system performance. 

The main argument for this constraint is t h a t  since 
reference time of d a t a  in cache is much smaller than  t h a t  
from main memory and with spatial  and temporal behavior 
of program references [Spi77], having the current referenced 
line in cache has  a high probability to bring improvement in 
system performance. While this argument is generally true,  
it is possible to predict with good certainty exactly which 
lines will not contribute t o  improving performance; without 
such prediction, i t  is easy t o  envision scenarios where the 
cache would replace lines i t  should have kept with lines t h a t  
will never again be referenced. This leads to  a worst-case 
scenario in which a machine runs slower with cache than  
without i t .  Bypassing the cache, hence avoiding this pollu- 
tion. this worst-case scenario is averted. 

An example of this problem is easily constructed. Sup- 
pose there is a fully-associative cache of size two,.line size 
one, and the memory reference string is 129123. (It is 
interesting t o  note t h a t  this example is exactly the kind of 
reference sequence one would get in executing a typical loop 
which references more d a t a  than  there a re  cache cells - 
which is well-known t o  the worst-case for LRU.) With the 
cost of different types of memory references shown in Table  
1 (and the line-style used t o  represent each), the cache con- 
tent after each reference with random replacement, LRU, 
and modified LRU with cache bypass mechanism are shown 
in Figures 1, 2, and 3. 

T, Reference from 1 ___---- ---- 1 1 Main Memory l -  __/----- 

to Empty Cache 
Line 

_ - - - -  
Replacement of a 
Cache Line 

Table 1: Coat for Each Type of Memory Reference 

Table 2: Comparsion of Execution Times for 1291 23 
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Figure 1: Random Replacement Transactions for 129129 
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Figure 2: LRU Transactions for l29l23 

Figure 3: Modified LRU with Cache Bypass for 129125 

The  to ta l  reference costs using these three policies are  
shown in Table  2. In this table,  it  can be seen tha t  the 
ra t io  of CostRandotn/CostBypass is 1.898 and the ra t io  of 
CostLRu/CostBypasr is 2.409. 

Notice t h a t  while placing d a t a  1 and  2 in cache can 
improve system performance, placing da tum 9 in cache 
actually decreases the system performance. Unfortunately, 
if bypass of the cache is not considered, the resulting perfor- 
mance is the  worst possible - in fac t ,  it  is worse than if no 
cache were present. With selective cache bypass, one might 
simply reference da tum 9 directly from main memory; yet 
the cache would speed-up references t o  d a t a  1 and 2. 

2.2. History of Cache Bypass 

Although not commonly accepted as par t  of tradit ional 
cache design, cache bypass is not entirely new. 

Nearly all cache-based computers have some provision 
for disabling the  cache so t h a t  memory-mapped 1/0 t ran-  
sactions can t ake  place. However, the idea of 
enabling/disabling the  cache for each memory reference is 
not well supported by most of these systems (presumably 
the possibility had not been considered). These systems typ- 
ically require a n  entire instruction t o  be executed t o  change 
the cache enable s t a t e .  Despite this, such systems can be 
used t o  implement cache bypass where several consecutive 
references should be bypassed. 

Some machine designers also recognized tha t  the per- 
formance of cache could be improved by simultaneously 
requesting each d a t u m  from both main memory and cache. 
In this scheme, if t he  item is found in the cache then the 
cached value is used and the main memory request is can- 
celled o r  ignored. If no t ,  t he  item is returned directly from 
main memory t o  the  processor, simultaneously initiating a 
cache update for t h a t  datum's  line. This  technique does 
improve performance, but  may require fairly expensive 
hardware and does not  aver t  cache pollution - i t  merely 
reduces the cost of referencing "through" the cache. 

Somewhat closer in spirit t o  our approach, Convex 
Computer Corporation has  implemented a selective cache 
bypass mechanism in their C1 minisupercomputer. The  
s t ra tegy employed is [Con86]: 

Upon load o r  store,  the physical control unit 
either writes t he  referenced d a t a  into its cache or  
bypasses the  cache and accesses main memory 
directly, leaving the cache unmodified. All 
aligned 64-bit vector loads and stores result in 
cache bypass. Loads and stores of aligned, con- 
tiguous 32-bit vector elements bypass the cache 
as well. Since vector accesses dominate 
supercomputer-class applications software. cache 
bypass opportunities occur frequently. 

.Apparently, the cache bypass mechanism is employed only 
on vector operations because the C1 has a cache with a set 
size of one, hence. loading a vector register had the effect of 
totally flushing the cache - obviously negating any benetits 
of caching. I n  any case. the Convex scheme is qulte reason- 
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able, and was sufficiently new so as  to be patented (patent 
pending?); the problem is t h a t  it equates “vector” with 
“bypass,” and this isn’t really correct. Some vectors should 
be cached and some scalars shouldn’t be, but on the average 
the Convex scheme is right often enough t o  yield a big 
improvement. 

In contrast ,  the current proposal for cache bypass is t o  
use a compile-time s ta t ic  analysis of the reference behavior 
of each program to compute a “cache/bypass” t a g  for each 
memory reference the compiled code makes. These tags  are 
used at runtime to control a cache enable/disable line. 

Type of Access 

On-chip memory access 

3. Implementing Cache Bypaas 

As shown in the example of Section 2 1, LRU referenc- 
ing of all  d a t a  through the cache actually performed worse 
than  if no cache were present. 

There a re  two main reasons for this phenomena. First ,  
there is often a large time overhead implied in moving lines 
of d a t a  between cache and main memory. This overhead 
increases as the  cache line size is increased. Consequently, 
fetching a line into cache can improve system performance 
if the to ta l  number of references to d a t a  in t h a t  line (before 
t h a t  line is replaced) is such t h a t  the savings in referencing 
cache outweighs the overhead of moving t h a t  line between 
cache and main memory. If not, the to ta l  time t o  make 
these references will be minimized by ignoring the cache - 
bypassing to directly reference main memory. Even if the 
cache is infinitely large, this still holds. 

Second, since all real caches are finite, placing one line 
in cache generally means t h a t  some other line cannot be in 
cache. Hence, placing infrequently referenced lines into 
cache not only adds  a large overhead to total  memory 
access time, but also prevents speed-up t h a t  could have 
been gained if some other (more heavily referenced) line 
were placed in cache. This effect is what we call “cache pol- 
lu tion.” 

Since minimizing the total  memory access time is our 
goal in selective cache bypass and the to ta l  access time 
depends on both the architectural design and the 

Silicon CMOS/SOS Silicon NMOS GaAS 

10-20ns 0.5-2.0ns 10-20ns 

implementation technology of the cache and main memory, 
some details must be supplied. In the remainder of this 
paper, we have chosen t o  discuss cache bypass assuming 
t h a t  the supplied information is t h a t  of a typical system; 
this greatly simplifies the following discussion and reduces 
the number of graphs needed to support the rest of the 
paper. For example, the simulations and examples 
presented in this paper are based on the assumption t h a t  
LRU is the basic cache management technique and tha t  
“typical” CMOS or  NMOS ICs implement the relevant sys- 
tem components. This implies, for example, t h a t  a main 
memory reference takes about 10 times as long as a cache 
reference - in reality, this ratio varies from about 2:l to 
greater than  50:l. Of course, the use of specific numbers in 
the examples and discussion is not indicative of the tech- 
nique requiring those exact numbers: the technique works 
for most reasonable cache organizations, only the percen- 
tage benefit gained varies. 

In Section 3.1, a brief discussion of current IC technolo- 
gies and their impact on memory access time is given. Cri- 
teria or rules to determine whether a reference request is 
going to bypass the cache and t o  reference directly from 
main memory are presented in Section 3.2. Section 3.3 gives 
a very simple and cheap, yet efficient, way to  incorporate a 
cache bypass mechanism with a n  LRU policy. Practical  
implementation schemes for cache bypass control signals t o  
be added to existing systems are presented in Section 3.4. 

Off-chip on-package memory access 

Off-chip off-package memory access 

Ratio of off-chip on-package to 
on-chip memory access 

3.1. Integrated Circuit Technologies 

Integrated circuit (IC) technology is one of the major 
parameters  in the criteria for cache bypass mechanism (dis- 
cussed in the next section). Hence, a brief survey of current 
different (IC) technologies and i t s  impact on off-chip and 
on-chip memory reference .time is necessary. Table  3 gives 
the  on-chip and off-chip memory access times for some of 
the current integrated circuit technologies IMiF86). From 
this table,  we see tha t  the ratio of off-chip to  on-chip 
memory access times is a t  least 10. Using this ratio,  an 
estimate of the minimum reference frequency t h a t  a line 
needs to justify i ts  placement in cache can be obtained. 

40-80ns 20-40ns 4-1011s 

100200ns 100-200ns 20-80ns 

4 2 5- 8 

Ratio of off-chip off-package t o  
on-chip memory access 

10 10 40 

Table 3. Memory Access Time of Different IC Technologies 
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3.2. Criteria for Cache Bypass Mechanism 

Thoughout the current work, the main focus is the 
reduction of to ta l  memory reference time for a program. 
Hence, criteria proposed here a re  based on the comparsion 
between the time overhead involved in having a line in 
cache and the to ta l  reference time saved by referencing 
d a t a  in a line in cache. 

The  time overhead of placing a line in cache is the 
transfer time for all d a t a  of t h a t  line from main memory to 
cache. If any dirty2 line is bumped out  of cache using a 
write-back cache, a similar transfer time to uptime the 
main memory is also included in this overhead. Since the 
amount of d a t a  transfer between main memory and cache is 
constant for a cache design, this overhead is only architec- 
ture design and implementation technology dependent, and 
is independent of program behavior. 

On the other hand, the time savings for placing a line 
in cache accumulates every time d a t a  in t h a t  line is refer- 
enced. Hence, the savings are, in addition, program depen- 
dent. 

There are additional factors which can influence the 
costs and the savings of placing/replacing a line in cache, 
resulting in slightly different cache bypass decisions of 
references in a program. For example, if a reference is going 
to bypass the cache and directly reference main memory, 
the average probability of bumping a line from cache 
decreases, and cache space could also be viewed as  available 
to  other lines. 

These effects are easily recognized and advantageously 
used in the cache bypass mechanism. In fact, a complete 
analytical model of the cache bypass mechanism for com- 
mon cache replacement policies to take all these factors into 
consideration can easily be derived from the compiler-driven 
cache (SCP.).model [ChD87] [ChDSS]. While the SCP model 
can fully amount  for cache bypass, and can promise optimal 
performance, the complete S C P  model does entail relatively 
complex analysis and compiler technology; hence, the tech- 
nique presented here is a sub-optimal, but quite effective 
and simple, approximation to the S C P  model3. 

To define an  algorithm for determining when to  bypass 
the cache for a particular reference, some definitions and 
notations are useful. 

overhead(i) = time overhead of placing/replacing line i 
in cache 
saving(i) = time saving of having line i in cache before 
i t  is replaced 
n(i) = total  number of referencing line i in cache before 
i t  is replaced 

With the cost notations defined in Table  1, the overhead(i) 
and saving(i) are as follows: 

If no dirty line is bumped out of cache, the overhead is: 

If a dirty line is replaced (bumped) from the cache, 
then the overhead is: 

The savings for having line i in cache (before it is 
replaced) is: 

overhead(;) = T, 

overhead(i) = 2 * T, 

saving(i) = n(i) * ( T ,  - T,) 

In order for a reference line i to bypass the cache, the 
overhead overhead(i) must be greater or equal to  the total  
time savings saving(i). Only in this case can the placement 
of line i contribute to improve system performance. 

3.3. Algorithm for LRU Bypass-Cache 

In this section, LRU (least recently used) cache 
replacement is chosen as the basic scheme and the cache 
bypass control is added on top of this policy. We have 
choosen to  discuss an LRU Bypass-Cache because the basic 
LRU policy is probably the most commonly used and most 
commonly trusted t o  yield good performance. Hence, the 
comparsions of simulated performance with/without cache 
bypass (in Section 4) are very good estimates of the 
expected improvement derived by converting commonly 
available computers to use Bypass-Cache instead of tradi- 
tional cache. 

In this section, a fast ,  simple, efficient (yet sub- 
optimal) algorithm t o  determine when a reference should 
bypass the cache is proposed. The algorithm is based on the 
concept of a trace, as  discussed in trace scheduling tech- 
niques used for automatic  parallelizing compilers [E1185]. 
The procedure t o  determine, for each reference in the p r e  
gram, whether t o  bypass or t o  reference through the cache 
is: 

1 .  Perform traditional flow analysis and build the p r e  
gram flow graph. (This step should be considered 
“free” because any good compiler will use this same 
analysis to aid in generating efficient code.) 

* A line in cache is considered dirty igsome protion of the value i t  contains does not match the 
value stored in the corresponding main memory line 

In fact, i f  the SCP model is used with more radically redesigned cache, performance IS much 
better than using a Bypass-Cache and the analysis is essentially the same Hence, we feel t ha t  if  

one wants to  achieve optimal performance, one should be willing t o  make the more drastic 
hardware and software changes t o  support i t  - here, we have simply given a technique whereby 
only trivial hardware and software changes result in large, but sub-optimal, performance gains 
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2. For each trace (a possible control flow pa th  which has 
not yet been processed), d o  the following: 
a .  Mark all references in this trace as “cachable” 

memory access time by factors of 2 or more is virtually 
always worthwhile. Also, existing machines with at least 
one currently unused bit in each instruction should probably 

[put in cache). 
use this implementation. b. Scan this trace, keeping track of which items 

would be resident in cache assuming t h a t  all 
items marked as cachable are always referenced 
through the cache and tha t  LRU is used to deter- 

Alternatively, the instruction set  of the machine can be 
expanded to include explicit Bypass-Cache control instruc- 

mine which item is bumped from cache when line 
replacement occurs. As the references are 
scanned, the time overhead and savings realized 
for each cachable line a re  accumulated. As a sim- 
ple heuristic, the savings for referencing a n  item 
within a loop is multiplied by a factor4 of 10. 
A t  the end of the trace, mark all references which 
have a larger overhead than savings as “non- 
cachable”. 

d.  The  above set  of markings can be somewhat 
improved, although not made optimal, by repeat- 
ing steps 2b and 2c. Such repetition is, however, 
completely optional. All the simulation results 
given in this paper used only a single pass. 

c. 

This algorithm, although very crude and simple, reaps 
speedups ranging from a few percent to a factor of nearly 
100, depending on the cache configuration and the bench- 
mark used. Speedups greater than  2 are not unusual for 
commonly used cache configurations. 

3.4. Implementation of Bypass Control 

With the results of compiler analysis of a program (or 
with statist ical  results gleaned from previous runs), the 
bypass/cache question is easily answered with good enough 
accuracy so as to permit huge performance increases. How- 
ever, this information must be transmitted t o  the Bypass  
Cache control logic for each reference. T h e  information for 
each reference requires only a single bit - a 1 means 
“bypass” and 0 means “go through the cache.” The natural  
question is how does the compiler get this one bit of infor- 
mation for each reference into the Bypass-Cache control at 
runtime? 

There are a number of alternative solutions to  this 
problem and each of these solutions trades off some 
resources or capabilities. 

The conceptually easiest and most efficient way to 
transmit this cache bypass information is to embed a bit in 
each instruction for each memory reference the instruction 
may cause. For new machine design, this is fairly con- 
venient; reserving a control bit to obtain speedups of total  

tions. In fact ,  these instructions exist for virtually all com- 
puters which have cache. An extreme example of this expli- 
cit cache control is the IBM 801, where individual cache 
lines can be explicitly allocated and deallocated; most sys- 
tems simply permit the  cache to be enabled/disabled as a 
whole. Since bypasses may come in “clumps”, even this 
crude bypass control can gain some improvement; however, 
bypasses d o  not always come in clumps. By defining a new 
instruction specifically to implement Bypasscache  control, 
one could permit each cache control instruction to set  the 
pattern of bypass/cache decisions for the next n references, 
where n is somewhat less than  the machine word length. 
Again, some performance would be gained, but the high fre- 
quency of Bypasscache  control instructions would limit 
performance. 

While all the above schemes have some merit,  there is 
another scheme which both permits a cache control bit t o  
be associated with each instruction and does not require 
changes in the instruction set  design or encoding. In current 
machine designs, the addressable space is typically very 
large and programs rarely use the entire addressable space 
of the machine. Thus,  i t  is possible to trade one address bit 
(e.g., the  most significant bit of a n  address) for use as the 
control bit for the Bypass-Cache. In fact ,  this solution is 
suggested by Intel in their 80886 programmer’s reference 
manual  [Int86] as a way to provide a cache control bit for 
use in multiprocessor cache coherency control. Worst case, 
this effectively reduces the  addressable space by 50%‘05. Of 
course, i t  also causes the compiler writer a bit of grief in 
t h a t  not only must all addresses be correctly tagged, but 
the compiler must also be careful about operations such as 
pointer arithmetic or comparisons. 

Other  methods, such as using a separate cache con- 
troller t o  explicitly control the cache (similar t o  the remote 
PC idea [Rad83]) a re  also possible. However, the overhead 
and the  synchronization cost involved may be too large t o  
be practical. 

This is a rough approximation to  weighting each reference in the trace by its expected 
number of executions - it assumes each loop executes an average of 10 times. If the compiler has 
a better estimate, this can be used instead. Techniques for the compiler to make more intelligent 
estimates of expected execution frequencies are discussed in [Die87]. 

The actual address space may not be affected because address mapping mechanisms may be 
able to circumvent the loss. 
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4. Simulation Results 

To measure. the effect of cache bypass in reducing to ta l  
reference t ime, detailed simulation of the LRU Bypass- 
Cache was performed using the  single-pass compiler algo- 
rithm described above. For  comparison, the same simula- 
tions were performed using a conventional LRU cache with 
the same configuration as the Bypass-Cache. 

T h e  benchmark programs were taken from the DARPA 
MIPS package, and  are  widely used as benchmarks of cache 
and/or system performance. D a t a  are  given for four of 
these programs: 

Bubble 
A typical bubble sor t  program, executed on a se t  of 
500 random da ta .  

This  is a compute-bound program from Forest Basket, 
run with a size of 511. 

A program which performs a matrix multiplication of 
two  real matricies, each of which is 40 by 40. 

T h e  s tandard recursive tower-of-Hanoi solution, given 
the problem of moving 18 disks. 

Each of the programs was simulated for about 500,000 refer- 
ences of execution, hence “cold s t a r t ”  cache effects are  
negligible. 

Puzzle 

Realmm 

Tower 

Since our primary concern is minimizing the to ta l  
reference time, ra ther  t han  maximizing hit ratio,  it  was also 
necessary t o  assume specific ratios of reference times for 
each of the different types of reference. The  cost functions 
used for t he  d a t a  in this paper were based on cost estimates 
for a typical CMOS-based system: 

Cost of referencing d a t a  from cache is 1 time unit. 
Cost of referencing d a t a  from main memory is 10 time 
units. 
Cost of placing a line in a n  empty or non-dirty cache 
entry is 10 + ( l inesize - 1) * 7 time units. 

The  fac t  t h a t  fetching/storing n consecutive d a t a  into/from 
cache in one request takes less time than  fetching/storing ?E 

d a t a  in n requests is reflected in the above costs. \Ve were 
actually quite generous in this assumption, using a formula 
giving a 30% benefit for multi-word fetch/store; however, 
this simply has  the effect of making the benefit due t o  
Bypass-Cache appear  smaller. 

To make the simulations as complete as possible, all 
possible power-of-2 cache organizations (e.g. different line 
sizes, se t  sizes) for a fixed cache size of 128 words6 were 
simulated and are  presented in this paper. The  absolute 
reference times for the different benchmarks naturally differ, 
however, the speedups and curve shapes are  fairly consistent 
across all the  simulations. 

Figures 4 through 7 graph speedup of to ta l  memory 
reference times with Bypass-Cache as compared t o  the same  
configuration conventional cache. Each curve in the graphs 
is marked with the  power-of-2 which was  used as the  associ- 
ative se t  size. These graphs clearly demonstrate t h a t  the 
speedup in to ta l  memory reference time using Bypasscache  
is very large - in fac t ,  i t  is plotted on a log scale, and aver- 
ages about  2. 

T h e  speedup with Bypass-Cache is usually smallest for 
a line size of one or two. Wi th  a n  increase in line size (leav- 
ing cache size and se t  size fixed), the speedup with Bypass- 
Cache increases greatly.  This  agress with confirms the 
argument given in Section 3. This  is because a larger h e  
size implies a larger overhead in cache line placement and 
replacement. Although the to ta l  number of references of a 
line with increasing line size increases, this increase is much 
less t han  the increase in overhead. Consequently, cache 
more easily becomes polluted, and the Bypass-Cache 
becomes more critical in improving system performance. 

These curves also show tha t  the speedup with Bypass- 
Cache is usually smaller for cache with small se t  size (fixed 
cache size and line size). Although the cause of this is not 
yet known, we suspect t h a t  this is related to the increase in 
traffic seen by each cache se t  (becuase there are  fewer sets). 
Even though the speedup is much smaller in these cases, it  is 
still typically about  1.2 (i.e., 20 percent). 

Figure 8 shows the to ta l  reference time for the Tower 
benchmark. T h e  dot ted lines indicate the times taken using 
conventional cache, whereas the solid lines show the times 
taken with Bypass-Cache. 

Aside from the obvious benefit in using Bypass-Cache, 
this graph suggests a n  interesting general cache design rule. 
If the total memory reference time is to be minimized, 
rather than the hit-ratio maximized, it is usually 
better to choose small line size and small set size. This  
makes perfect sense in t h a t  although large line sizes increase 
hit-ratio, they imply overhead increases which are  greater 
t han  the hit-ratio increases - in fact ,  expotentially greater.  
T h a t  increasing se t  size is not beneficial is less intuitive, but  
probably is related t o  t,he increased traffic per se t  and use of 
a poor replacement algorithm (i.e., one can do a whole lot 
bet ter  t han  LRU [ChDU]). 

For  Bypass-Cache, the difference in to ta l  memory 
access time for different line sizes (with same  cache size and 
size) is not as great  as those for cache without’bypass. This  
is t rue because a lot of cache pollution can be avoided with 
By pass- C a c  he. 

About 500 simulations were performed, encompassing a wide varietv of cache sizes nnd 
configurations However, all the simulation results obtained were very consistent, hence we have 
chosen to present only the data for the largest cache size we examined - 128 \rords Othel 
simulation data are avalable upon request 
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5. Conclusion 

In this paper, we present a new cache design - 
Bypass-Cache - which is able t o  avert  polluting the cache 
by bypassing the cache for entries for which caching would 
not result in faster total  execution time. From our simula- 
tion results, we see t h a t  the speedup is tremendous, with an 
average of about  2. Various methods for implementing the 
Bypass-Cache architecture are presented as well as an  out- 
line of the compiler technology required for i ts  effective use. 

Perhaps the most significant result, however, is t h a t  
cache hit ratio is not necessary related to the total 
reference time. This will be discussed more deeply in a 
later paper. 
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Figure 5: Speedup in Tota l  Reference Time for Puzzle 
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Figure 8: 
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Figure 7: Speedup in Total Reference Time for Tower 
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