
Technical Report
Number 800

Computer Laboratory

UCAM-CL-TR-800
ISSN 1476-2986

Improving cache utilisation

James R. Srinivasan

June 2011

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2011 James R. Srinivasan

This technical report is based on a dissertation submitted
April 2011 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Jesus College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Abstract

Microprocessors have long employed caches to help hide the increasing latency of ac-
cessing main memory. The vast majority of previous research has focussed on increas-
ing cache hit rates to improve cache performance, while lately decreasing power con-
sumption has become an equally important issue. This thesis examines the lifetime of
cache lines in the memory hierarchy, considering whether they are live (will be ref-
erenced again before eviction) or dead (will not be referenced again before eviction).
Using these two states, the cache utilisation (proportion of the cache which will be
referenced again) can be calculated.

This thesis demonstrates that cache utilisation is relatively poor over a wide range of
benchmarks and cache configurations. By focussing on techniques to improve cache
utilisation, cache hit rates are increased while overall power consumption may also be
decreased.

Key to improving cache utilisation is an accurate predictor of the state of a cache line.
This thesis presents a variety of such predictors, mostly based upon the mature field
of branch prediction, and compares them against previously proposed predictors. The
most appropriate predictors are then demonstrated in two applications:

• Improving victim cache performance through filtering

• Reducing cache pollution during aggressive prefetching

These applications are primarily concerned with improving cache performance and are
analysed using a detailed microprocessor simulator. Related applications, including
decreasing power consumption, are also discussed, as are the applicability of these
techniques to multiprogrammed and multiprocessor systems.

3



4



Acknowledgements

I would like to thank my supervisor, Simon Moore, for his advice, support and pa-
tience. Thanks also to my numerous friends and colleagues in the Computer Architec-
ture Group.

Thanks to my previous employer, Microsoft Research, for a never-ending source of
distractions and to my current employer, 2d3 Ltd, for their support and flexibility.

I would also like to thank my examiners, Prof Ian Watson and Dr Robert Mullins.

I would like to dedicate this dissertation to my father, without whom it would never
have been started, and to my wife, Sarah, without whom it would never have been
finished.

The work described in this dissertation was funded by the Cambridge MIT Institute.

5



6



Contents

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background 17

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 The “Memory Wall” Problem . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Moore’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Technology Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Frequency Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Increased Power Consumption . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Increased Cache Size . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Decreased Clock Cycles per Instruction . . . . . . . . . . . . . . . 21

2.3.5 Increased Number of Cores . . . . . . . . . . . . . . . . . . . . . . 22

2.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Cache Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Basic Cache Parameters . . . . . . . . . . . . . . . . . . . . . . . . 25

Cache Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Cache Line Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Associativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Reference Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Replacement Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Non-blocking Caches . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Write Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Cache Miss Classification . . . . . . . . . . . . . . . . . . . . . . . 28

7



2.5 Quantifying Performance and Power Consumption . . . . . . . . . . . . 29

2.5.1 Latency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Average Memory Access Time . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Misses per 1,000 Instructions . . . . . . . . . . . . . . . . . . . . . 30

2.5.4 Instructions Per Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.5 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Improving Cache Performance . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Victim and Other Multilateral Caches . . . . . . . . . . . . . . . . 31

2.6.2 Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Software Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Hardware Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . 35

Combined Hardware/Software Prefetching . . . . . . . . . . . . . 38

2.7 Decreasing Power Consumption . . . . . . . . . . . . . . . . . . . . . . . 39

2.7.1 State-Destroying Techniques . . . . . . . . . . . . . . . . . . . . . 39

2.7.2 State-Preserving Techniques . . . . . . . . . . . . . . . . . . . . . . 41

2.7.3 Combined Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Other Time-Based Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9 Cache Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Cache Utilisation 49

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Baseline System Configuration . . . . . . . . . . . . . . . . . . . . 51

3.3 Quantifying the Impact of Memory Latency . . . . . . . . . . . . . . . . . 53

3.3.1 Scaling Cache Size and Associativity . . . . . . . . . . . . . . . . . 57

3.4 Describing the Lifetime of a Cache Line . . . . . . . . . . . . . . . . . . . 59

3.4.1 Live Time Distributions . . . . . . . . . . . . . . . . . . . . . . . . 60

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Dead Time Distributions . . . . . . . . . . . . . . . . . . . . . . . . 62

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8



L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Access Interval Distributions . . . . . . . . . . . . . . . . . . . . . 67

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Cache Utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.1 DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.2 IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.3 L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.4 Relationship Between Cache Miss Rate and Cache Utilisation . . 73

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.5 Impact of Scaling Cache Size on Utilisation . . . . . . . . . . . . . 74

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.6 Impact of Scaling Cache Associativity on Utilisation . . . . . . . . 79

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Prediction 83

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Predictability of Cache Line Behaviour . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Live Time Predictability . . . . . . . . . . . . . . . . . . . . . . . . 85

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Dead Time Predictability . . . . . . . . . . . . . . . . . . . . . . . 88

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9



4.3.3 Access Interval Predictability . . . . . . . . . . . . . . . . . . . . . 93

DL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

IL1 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

L2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Alternative Predictability Metric . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Binary Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6.1 Branch Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Static Branch Prediction . . . . . . . . . . . . . . . . . . . . . . . . 101

Dynamic Branch Prediction . . . . . . . . . . . . . . . . . . . . . . 101

4.6.2 Static Direct Liveness Predictors . . . . . . . . . . . . . . . . . . . 102

4.6.3 Dynamic Direct Liveness Predictors . . . . . . . . . . . . . . . . . 103

Last-touch Predictor Implementation . . . . . . . . . . . . . . . . 104

Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Value Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7.1 Static Indirect Liveness Predictors . . . . . . . . . . . . . . . . . . 108

4.7.2 Dynamic Indirect Liveness Predictors . . . . . . . . . . . . . . . . 109

Dynamic Live Time Predictor . . . . . . . . . . . . . . . . . . . . . 109

Dynamic Access Interval Predictor . . . . . . . . . . . . . . . . . . 109

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Applications 111

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Victim Cache Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Conventional Victim Cache . . . . . . . . . . . . . . . . . . . . . . 112

Miss Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Cache Utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Instructions Committed per Cycle . . . . . . . . . . . . . . . . . . 114

5.2.3 Predictor Coverage & Accuracy . . . . . . . . . . . . . . . . . . . . 116

AlwaysLive Predictor . . . . . . . . . . . . . . . . . . . . . . . . 117

NeverLive Predictor . . . . . . . . . . . . . . . . . . . . . . . . . 117

StackLiveHeapDead Predictor . . . . . . . . . . . . . . . . . . . 118

ThresholdLiveTime Predictor . . . . . . . . . . . . . . . . . . . 121

10



DualThresholdLiveTime Predictor . . . . . . . . . . . . . . . . 121

ThresholdAccessInterval Predictor . . . . . . . . . . . . . . 123

5.2.4 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Miss Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Instructions Committed per Cycle . . . . . . . . . . . . . . . . . . 127

Storage Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Prefetching Victim Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.2 Conventional Tagged Prefetching . . . . . . . . . . . . . . . . . . 129

Miss Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Cache Utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Instructions Committed per Cycle . . . . . . . . . . . . . . . . . . 131

5.3.3 Static Liveness Predictors . . . . . . . . . . . . . . . . . . . . . . . 131

NeverLive Predictor . . . . . . . . . . . . . . . . . . . . . . . . . 131

Other Static Liveness Predictors . . . . . . . . . . . . . . . . . . . 132

5.3.4 Dynamic Direct Liveness Predictors . . . . . . . . . . . . . . . . . 132

LastTouch 1Addr Predictor . . . . . . . . . . . . . . . . . . . . . 133

LastTouch 2SAddr Predictor . . . . . . . . . . . . . . . . . . . . 133

LastTouch 1Addr3APC Predictor . . . . . . . . . . . . . . . . . . 135

LastTouch 1PC2Addr Predictor . . . . . . . . . . . . . . . . . . 135

LastTouch 1PC Predictor . . . . . . . . . . . . . . . . . . . . . . 136

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.5 Dynamic Live Time Predictors . . . . . . . . . . . . . . . . . . . . 136

LiveTime 1Addr Predictor . . . . . . . . . . . . . . . . . . . . . . 137

LiveTime 2SAddr Predictor . . . . . . . . . . . . . . . . . . . . . 137

LiveTime 1Addr3APC Predictor . . . . . . . . . . . . . . . . . . 139

LiveTime 1PC2Addr Predictor . . . . . . . . . . . . . . . . . . . 139

LiveTime 1PC Predictor . . . . . . . . . . . . . . . . . . . . . . . 139

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.6 Dynamic Access Interval Predictors . . . . . . . . . . . . . . . . . 141

AccessInterval 1Addr Predictor . . . . . . . . . . . . . . . . . 141

AccessInterval 2SAddr Predictor . . . . . . . . . . . . . . . . 142

AccessInterval 1Addr3APC Predictor . . . . . . . . . . . . . . 142

AccessInterval 1PC2Addr Predictor . . . . . . . . . . . . . . 144

AccessInterval 1PC Predictor . . . . . . . . . . . . . . . . . . 144

11



Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3.7 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Miss Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Cache Utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Instructions Committed per Cycle . . . . . . . . . . . . . . . . . . 147

Storage Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Conclusions 151

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.1 Non-Uniform Cache Architectures . . . . . . . . . . . . . . . . . . 152

6.1.2 Cache Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.1.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.1.4 Cache Utilisation Variation . . . . . . . . . . . . . . . . . . . . . . 154

Cache Utilisation Over Time . . . . . . . . . . . . . . . . . . . . . 154

Cache Utilisation Within Caches . . . . . . . . . . . . . . . . . . . 154

Cache Utilisation Visualisation . . . . . . . . . . . . . . . . . . . . 154

6.1.5 Low-Overhead Dynamic Threshold Predictors . . . . . . . . . . . 154

6.1.6 Improved Measurement of Cache Utilisation . . . . . . . . . . . . 155

6.1.7 Improved Predictor Analysis . . . . . . . . . . . . . . . . . . . . . 155

6.1.8 Towards Multicore . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Benchmarks 159

B Baseline Configuration 161

C Processor and Memory Trends 173

Bibliography 175

12



Introduction 1
This dissertation demonstrates that cache utilisation is an important performance and
power-related metric which current cache management techniques fail to adequately
address by focusing simply on the ordering of cache line accesses, rather than the ab-
solute and relative times of those accesses.

Having first defined cache utilisation and a variety of associated time-based metrics,
efficient run-time predictors for these metrics are introduced and two specific tech-
niques are evaluated to exploit these predictors which each improve overall cache and
hence processor performance. Finally, a preliminary analysis of cache utilisation in
multiprogramming and multiprocessor systems is presented, as well as a review of
additional applications.

In this chapter, the overall background to caching is discussed and the contribution of
the work described by this dissertation is highlighted. A brief overview of the remain-
ing content is then provided together with a description of the terminology that will
be used.

1.1 Motivation

Caching is a popular technique employed in a wide range of applications throughout
computer systems in an attempt to hide the full cost of accessing some relatively slow
device or connection by seeking a different capacity/speed tradeoff. While the penalty
of accessing the device behind the cache is usually a time penalty due to constrained
bandwidth or latency, it may equally well be some other penalty such as a financial
cost or energy penalty. Caches are typically of smaller capacity but faster speed than
the device which they are backing. By keeping suitable items in the cache, the full cost
of accessing the backing device may be largely hidden.

Caches are found in a wide variety of applications including processor caches (hiding
the latency of accessing main memory as well as other levels of cache), disk, database
buffer and virtual memory caches (hiding the latency of a disk access) and web caches
(hiding the latency and potential financial cost of a long-distance network access). In
each of these examples, the potential benefit provided by the cache depends on ensur-
ing that items which will be referenced in the near future are found in the cache, rather
than incurring the full cost of an access to the device behind the cache. Ensuring the
cache is populated with such useful items is of paramount importance, and often relies
upon exploiting spatial and temporal locality, the properties that the same, or similar,
items will be accessed again in the near future.

The exact techniques used to manage the cache vary widely according to the proper-
ties of both the device and the properties of the requests being made to the device. For

13



14 1.2. CONTRIBUTION

example, the time available to make a processor cache replacement decision is much
shorter than that available to make a disk buffer cache replacement decision so dif-
ferent policies are used. While this dissertation concentrates on the processor cache,
various techniques from other applications of caching are also briefly discussed and
the techniques developed here may well be applicable for other caches.

With increasing processor clock frequencies, the increasing latency to access main mem-
ory has long been a significant obstacle to continually improving overall system per-
formance. Though the rate of clock frequency increase has slowed lately, there is still
a substantial gap (the so-called memory gap), while other microarchitectural innova-
tions to improve performance such as multiple cores and simultaneous multithreading
(SMT) impose yet more demands on the already pressured memory subsystem.

More recently, power consumption has become a topic of concern to all processor ar-
chitects, from embedded devices, through mainstream desktop computers to blade
and other high-performance server applications. As the size of processor caches is
naı̈vely increased to improve performance, static power consumption together with
yield and reliability concerns place constraints on the economically achievable perfor-
mance. While this dissertation concentrates on performance-improving applications,
a brief discussion of analogous power-decreasing applications is also presented.

1.2 Contribution

The main contributions of the work described in this dissertation are as follows:

• A detailed characterisation of the distribution and scaling of cache utilisation
(and other related metrics) across a wide variety of benchmarks and cache con-
figurations

• Novel, accurate and practical predictors for metrics related to cache utilisation

• Two applications of such predictors which improve overall processor perfor-
mance, evaluated against other comparative techniques across a wide variety of
benchmarks

• A preliminary analysis of cache utilisation in multiprogrammed and multipro-
cessor environments

1.3 Outline

The remainder of this dissertation is organised as follows:

• Chapter 2 provides a thorough background to processor caches, reviewing pre-
vious work which relates to and motivates this dissertation.



CHAPTER 1. INTRODUCTION 15

• Chapter 3 starts by demonstrating that processor caches have a significant impact
on overall system performance. The improvements made by traditional cache
scaling are then examined. Various metrics relating to the liveness of a cache
lines are defined, which rely upon distinguishing live cache lines (those which
will be accessed again prior to eviction) from dead cache lines (those which will
not be accessed again prior to eviction). The distribution of these metrics between
different caches, cache configurations and benchmarks is detailed and discussed,
as is a metric for cache utilisation. Scaling of cache utilisation with traditional
cache parameters is also examined.

• Chapter 4 examines the predictability of the previously defined cache line life-
time metrics. Having established that the task of predicting such metrics is feasi-
ble, a variety of existing and novel predictors are introduced.

• Chapter 5 details two performance-improving applications for cache line lifetime
predictors and evaluates them against other comparative techniques. The first
application is a filtered victim cache, in which space in the victim cache is selec-
tively allocated based upon the predicted liveness of the cache line being evicted.
The second application decouples prefetch target selection from prefetch victim
selection, in order to reduce cache pollution under aggressive prefetching.

• Chapter 6 concludes this dissertation by reviewing the major findings and results
as well as suggesting areas for future research, particularly cache line lifetime pre-
dictor applications associated with reducing power consumption. In addition, a
preliminary analysis of cache utilisation in multiprogrammed and multiproces-
sor environments is presented.

1.4 Terminology

Some terminology relating to caches has already been used in this dissertation. Most
terms will be defined when they are used but to avoid any confusion, a small number
of key terms are defined here and subsequent uses of these terms in this dissertation
shall be with reference to these definitions.

A cache line is the smallest item of data which may be stored and transferred as a single
unit within the cache. For the purposes of this dissertation, cache block is another term
widely used for the same entity but only the former phrase will be used unless it refers
specifically to previous work.

A cache set of a set-associative cache is the collection of cache lines to which a single
line may map. Thus a n-way set-associative cache of size m contains m

n
sets.

The informal term average refers to the arithmetic mean when dealing with absolute
values, and the geometric mean when dealing with proportional or relative values.

Finally, when using abbreviations, the units of a quantity measured in bytes is abbre-
viated to B whereas the units of a quantity measured in bits is abbreviated to b. For
example, 8 kb and 1 kB both denote the same quantity. In keeping with convention,
bytes are largely used in this dissertation other than when discussing memory density
which is more often measured in terms of bits.



16 1.4. TERMINOLOGY



Background 2
2.1 Overview

The aim of this chapter is to provide a summary of cache designs as implemented
in microprocessors today, as well as focusing on previous relevant research and their
likely significance given current and anticipated technology trends.

This chapter begins by introducing the familiar “memory wall” problem, and puts it
into context with regard to current and anticipated technology trends. The basics of
cache design are then briefly reviewed through examining the parameters describing
traditional caches, and their influence on cache performance is considered. Methods
to quantify both cache and overall system performance are then discussed. Finally, a
wide variety of previous work associated with both increasing cache performance and
decreasing cache power consumption is reviewed and discussed. Due to the expansive
nature of previous cache-related research, only work directly relevant to that described
in this dissertation is considered.

2.2 The “Memory Wall” Problem

The memory wall refers to the increasing gap between the speed of logic and the speed
of main memory, first spelt out by Wulf and McKee in 1995 [WM95]. However, this gap
has existed for a long time. In the early days of computing main memories, constructed
using mercury delay lines, were much slower than the technology used to construct
logic. Later memory technologies such as cathode ray tubes and core memories im-
proved the situation somewhat but there was still a significant gap. With the introduc-
tion of semiconductor memories in the early 1970s, memory performance caught up
substantially but still lagged logic performance. Since then, the focus on developing
memory technology has been on increasing density rather than decreasing latency (in-
deed the two are somewhat contradictory), and the gap between main memory speed
and processor speed has been ever-widening. In addition, recent trends and microar-
chitectural innovations such as multithreading and multiple cores have only increased
the pressure on the memory subsystem.

2.2.1 Moore’s Law

In 1965 Gordon Moore observed that the complexity1 of an integrated circuit of min-
imum cost had approximately doubled over the previous five years and Moore pre-
dicted that such growth was attainable for at least the next ten years [Moo65]. Now

1In terms of the number of components

17



18 2.2. THE “MEMORY WALL” PROBLEM

Year

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

R
el

at
iv

e 
im

p
ro

v
em

en
t

1

10

100

1,000

10,000

Memory density

Processor clock frequency

Memory latency

Figure 2.1: Relative improvements of memory density, processor clock frequency and
memory latency, 1980—2006

termed Moore’s Law, it is most often formulated in terms of the number of transistors
on a integrated circuit doubling every 18 months, but has also been applied more gen-
erally to any exponential growth when using a variety of other metrics throughout the
computer industry, including processor clock frequencies, hard disk capacity, DRAM
density and network bandwidth. Figure 2.1 shows the improvements in memory den-
sity, processor clock frequency and memory latency from 1980 to 2006 using the data
detailed in Appendix C. Each metric is normalised relative to the earliest value avail-
able for that metric. Note that the y-axis of the plot uses a logarithmic scale.

The first observation from Figure 2.1 is that memory density has grown enormously
since 1980, by a factor of almost 20,000. The memory density line is approximately
straight, indicating exponential growth and the steep slope of the line suggests a large
base. Processor clock frequency has also increased significantly over the period, by
a factor of 300. This line is less straight than the memory density line, but is still in-
dicative of exponential growth. The kink evident in the early 2000s may represent
marketing rather than technology trends since processor clock frequency was viewed
by many consumers as being synonymous with overall processor performance, a fal-
lacy known as the “megahertz myth”. Finally, Figure 2.1 shows that memory latency
has improved, but by considerably less than either memory density or processor clock
frequency, a mere factor of five over the entire twenty-six year period. The line is also
slightly curved, hinting at less than exponential growth. The divergent behaviour of
the processor clock frequency line compared to the memory latency line signifies that
the gap between the two has grown exceedingly rapidly and is only accentuated by
the logarithmic scale.



CHAPTER 2. BACKGROUND 19

2.3 Technology Trends

A variety of current and anticipated technology trends are now examined and their
impact on cache design is investigated. Though presented separately, these trends are
by no means independent and their interactions are also discussed.

2.3.1 Frequency Scaling

As shown by Figure 2.1, processor clock frequencies have increased rapidly over the
past twenty-six years. This has been facilitated by both improvements in fabrication
technologies supplied by smaller transistors with less capacitance courtesy of Moore’s
Law, as well as microarchitectural innovations such as superpipelining coupled with
accurate branch prediction. However, despite decreasing capacitance and voltage scal-
ing, dynamic power consumption has proved to impose a hard limit on the perfor-
mance benefits that may be achieved through frequency scaling alone, and it has been
observed that the rate of processor clock frequency increase has slowed significantly in
recent years.

2.3.2 Increased Power Consumption

Figure 2.2 shows the improvements (or in the case of power consumption, the increase)
of the number of transistors per die, power consumption, process geometry and die
area for the processors detailed in Appendix C from 1982 to 2006. Again, each metric
is normalised relative to the earliest value available and a logarithmic scale is used for
the y-axis.

Over this time period the number of transistors has grown substantially, by a factor of
almost 10,000, and the line is fairly straight, indicating exponential growth as in the
original formulation of Moore’s Law. Both die area and process geometries have also
improved, but much more unevenly and by much smaller factors, approximately 10
and 200 respectively over the entire period. Both are heavily constrained by other fac-
tors including yield, reliability, and non-recurring expenditure. Note that the number
of transistors is proportional to the product of the die area and the square of the process
geometry.

As was mentioned in Section 2.3.1, power consumption has also increased significantly,
by a factor of over 100, and is now a primary, if not the primary, concern of proces-
sor architects. Overall power consumption is made up of dynamic and static (also
known as leakage) components. Dynamic power consumption, the energy expended
by transistors as they switch, was previously the dominant factor, increasing due to
increased clock frequencies as well as other factors such as the disparity between wire
and transistor scaling. Many techniques exist to manage dynamic power consump-
tion, two of the most popular being clock gating and dynamic voltage scaling. Re-
cently, static power consumption, the energy continually expended by transistors, has
become equally significant, due to smaller process geometries which have inherently
more static leakage current. Decreasing the supply voltage, a common technique to
decrease dynamic power consumption, has the side-effect of increasing static power



20 2.3. TECHNOLOGY TRENDS

Year

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

R
el

at
iv

e 
im

p
ro

v
em

en
t 

o
r 

in
cr

ea
se

1

10

100

1,000

10,000

Number of transistors

Power consumption

Process geometry

Die area

Figure 2.2: Relative improvements or increases of the number of transistors, power
consumption, process geometry and die area, 1982—2006

consumption, hence a suitable trade-off is required. Both forms of power consumption
are increased due to larger die areas, another trend shown in Figure 2.2.

2.3.3 Increased Cache Size

In an attempt to hide the widening gap between main memory access times and pro-
cessor frequencies previously discussed, caches have been widely deployed in both
high performance and increasingly embedded processors. There is an inherent tradeoff
between the size of the cache (larger caches have higher hit rates hence better overall
performance) and latency (larger caches tend to have higher latencies which can de-
crease overall performance). It is interesting to note that caching, when effective, can
reduce overall power consumption by reducing execution time as well as reducing the
number of off-chip accesses which are particularly costly in embedded platforms.

Figure 2.3 shows the increase in cache size and latency for three levels of cache based
on the data detailed in Appendix C. Again, each metric is normalised relative to the
earliest value available but unlike Figures 2.1 and 2.2, a linear scale is used on the
y-axis.

Overall, cache sizes have not increased and cache latencies, measured in terms of pro-
cessor cycles, have not improved anywhere near as quickly as the other metrics previ-
ously covered. Cache size growth towards the earlier dates is slow, or indeed negative
in the case of the first-level cache from 1984 to 1989. This is mainly due to the earli-
est caches being off-chip which enabled a higher capacity, but with a correspondingly



CHAPTER 2. BACKGROUND 21

Year

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

R
el

at
iv

e 
in

cr
ea

se

0

2

4

6

8

10

12

14

16

L1 size

L1 latency

L2 size

L2 latency

L3 size

Figure 2.3: Relative increases of cache size and latency, 1984—2006

much higher latency. As the number of transistors available on the die grew, caches
were moved on-chip where they had much smaller latencies. The number of cache
levels is also shown to increase over time, from a single level in 1985 to three in 2006.
As will be discussed later, multiple levels of cache are necessary to provide multiple
points in the design space, trading off latency against size. Third-level caches, a rela-
tively recently implemented technique, illustrated by only two datapoints are growing
rapidly, again due to the rapid increase in the number of available transistors per die
and today the cache accounts for the majority of the transistor budget, as exemplified
by Figure 2.4, illustrating the floorplan of a modern Intel Itanium microprocessor.

Figure 2.3 also show cache latencies increasing over time as the requirement to achieve
high cache hit rates outweighs that to minimise cache latency due to the implementa-
tion of microarchitectural latency-tolerating techniques such as out-of-order execution.
However, not only is absolute cache latency increasing, but the variability of cache la-
tency due to increasing wire delays is also becoming significant, a topic which will be
further discussed later in Section 6.1.1.

2.3.4 Decreased Clock Cycles per Instruction

Original Complex Instruction Set Computer (CISC) microprocessors may take many
cycles to execute each instruction. With the advent of Reduced Instruction Set Com-
puter (RISC) architectures, the introduction of pipelining and superpipelining, to-
gether with later trends such as superscalar execution, the number of cycles taken
to execute an instruction (CPI) has decreased rapidly such that multiple instructions



22 2.3. TECHNOLOGY TRENDS

Figure 2.4: Floorplan of the Intel Itanium microprocessor. Adapted from [Lab03]

may be executed in each cycle. The number of instructions executed per cycle (IPC,
the inverse of CPI) is now far more commonly quoted. Thus for each cycle that the
processor is stalled whilst waiting for data from the memory subsystem, not only are
an increasing number of clock cycles being wasted due to the widening difference in
speed between logic and memory, but the number of instructions which could have
been executed in this time is growing as well, making cache misses even more expen-
sive.

2.3.5 Increased Number of Cores

Following the end of frequency scaling to improve performance, high-level parallelism
has been exploited by increasing the number of processor cores on a single die, a phe-
nomenon known as multicore, a trend which many believe will continue into many-
core architectures [Par06]. Though hampered by immature software tools to express
such parallelism, well-designed applications demonstrate almost linear scaling with
the number of cores. In the general-purpose microprocessor marketplace, two or four
cores are common. In the embedded, scientific and technical computing marketplaces,
where parallelisation can be aided using detailed application knowledge, commercial
processors with 64 cores are available [BEA+08], and research processors with 80 cores
[VHR+07].

Continuing the theme of increased parallelism, hardware to explicitly support multiple
threads, known as symmetric multithreading (SMT) or chip multithreading (CMT)



CHAPTER 2. BACKGROUND 23

further increase the number of concurrent tasks being performed by the processor as a
whole. Various interconnection networks have been implemented but currently most
follow the traditional multiprocessor model of small private caches for each core fol-
lowed by larger caches shared between multiple cores and finally main memory inter-
faces to supply the shared cache. The interconnection requirements of such a bus-based
approach are clearly not scalable, leading to the development of on-chip networks to
more efficiently move data around. Returning to the overall technology trend, it is
conceivable that rather than cache sizes and the number of cache levels continuing to
scale, the amount of cache per core will remain reasonably constant and the number
of cores (plus cache) will simply increase. Thus it would be desirable to make more
efficient use of the limited cache resources available to each core.

The specific challenges introduced by multicore architectures include an increase in
on-chip memory traffic to support cache coherency, as well as increasing off-chip band-
width to support multiple concurrent threads of execution. This latter trend is partic-
ularly problematic, since the amount of off-chip bandwidth available is dependent on
the pin count of the package, which is predicted to grow far slower than the number
of cores within the package [RKB+09].

2.3.6 Summary

The primary technology trend of those previously discussed is increasing power con-
sumption, which drives several of the other technology trends. For high-performance
microprocessors, the power consumption limit is imposed by the ability to effectively
and economically cool the device, while for embedded microprocessors other factors
such as battery life may also be relevant. The prevalence of frequency scaling has di-
minished substantially in recent years, with overall system performance improved by
other trends such as increasing cache size, or increasing the number of cores.

2.4 Cache Basics

Having discussed the various technology trends which necessitate and influence caches,
this section briefly reviews traditional cache designs and examines the various cache
parameters which influence performance.

In its simplest sense, a cache is a smaller but faster memory which is placed between
a processor and its main memory and which seeks a different tradeoff in the design
space between capacity and latency. A cache contains a subset of main memory which
can be accessed quickly and providing the contents of the cache correspond closely to
the requests being made by the processor, the majority of memory references can be
satisfied by the cache (cache hits) and the apparent latency of accessing main memory
is much reduced. On the other hand, if the requests being made by the processor
cannot be found in the cache (cache misses), then the full latency (and energy) penalty
of accessing main memory is imposed. Clearly, keeping “useful” data in the cache is
of paramount importance.

Originally a single level of caching was adequate, but as the speed of logic outpaced
the speed of memories, multiple levels with different capacity/latency tradeoffs are



24 2.4. CACHE BASICS

Address

Tag OffsetIndex

=? =?

Tag Array

Data Array

Multiplexer

Figure 2.5: Simplified modern two-way set-associative cache

now common. For example, a first-level cache may favour a small latency (prioritising
latency over capacity), whereas a second-level cache may favour a low miss rate (pri-
oritising capacity over latency). These caches are usually inclusive, such that any data
at level n must also be contained at level n + 12. In most of the following discussion,
the remarks made are independent of which level of cache is being considered.

Figure 2.5 shows an example of a modern cache, adapted from the Alpha 21264 cache
as presented by Hennessy and Patterson [HP03].

The target address of each reference is split into three components. The index is used
to first index into the tag array yielding a set of potential tags, one for each degree of
associativity of the cache. The retrieved tags are then compared against that from the
target address to determine if the requested data can be found in the cache. In parallel,
the same index is used into the data array to retrieve the cache lines which may contain
the requested data. The outcome of the tag matching indicates which cache line, if any,
contains the requested data. Finally, the offset is used to index into the cache line to
return the exact word (or halfword, byte etc.) requested. If none of the tags match, a
memory request is submitted to the next level in the memory hierarchy (which may be
main memory or another cache). When this request is satisfied, a suitable cache line is
chosen by the replacement policy to be evicted and replaced by the new cache line.

While the tag and data lookups usually occur in parallel for optimum performance,
they are sometimes performed sequentially to reduce power consumption.

2Although the copy of the data at level n may be more recent than that at level n+ 1



CHAPTER 2. BACKGROUND 25

2.4.1 Basic Cache Parameters

The basic parameters influencing the performance of a cache are as follows:

Cache Size

The size of the data and tag arrays has a significant impact on cache performance,
with larger caches tending to have higher hit rates. As previously discussed in Section
2.3.3, cache sizes have increased somewhat but strict latency limitations have placed
restrictions on cache sizes. Power consumption, economic yield3 and the reliability of
large caches are now also significant issues.

Cache Line Size

Increasing the cache line size, while keeping the overall data array size constant, can
increase the hit rate if the application frequently accesses neighbouring words in the
larger cache line. However, increasing the cache line size might cause an overall per-
formance degradation due to increased cache fill time and increased bus traffic, as well
as reducing the total number of unique cache lines that may be stored simultaneously.

Associativity

The associativity of a cache refers to the number of potential locations within the cache
to which a cache line with a particular index may be stored.

• Direct mapped caches can place a cache line only at a single location within the
data array.

• Set-associative caches can place a cache line at a limited number of locations
within the data array. The number of sets determines the number of potential
locations. The cache depicted in Figure 2.5 is known as a two-way set-associative
cache since there are two potential locations for each cache line in the data array
and so there are two tags for each row in the tag array.

• Fully-associative caches can place a cache line anywhere within the data array.

Hallnor and Reinhardt present an interesting implementation of full associativity known
as an Indirect Index Cache (IIC) [HR00]. Full associativity is achieved via a level of
indirection whereby each tag entry contains a pointer to an arbitrary location into the
data array. A hash function is applied to the requested address, resulting in an index
into a table of tag entries. To reduce the penalty of hash collisions, a small number of
tag entries are stored in each row of the tag array. To handle the occurrence of over-
flowing these entries, tag entries may be chained resulting in an infrequent penalty of
having to traverse the chain. Replacement in the IIC is handled entirely by software,

3Economic yield refers to the fraction of acceptable devices fabricated compared to the number of to-
tal devices fabricated. Increasing cache size by increasing die area and/or decreasing process geometry
increases the incidence of defects per device, hence decreases the overall economic yield.



26 2.4. CACHE BASICS

allowing sophisticated algorithms to be implemented. Hallnor and Reinhardt propose
generational replacement whereby cache lines are pooled according to their frequency
of reference and the least frequently accessed cache lines are replaced.

Hallnor and Reinhardt identify the following advantages of their IIC:

• Software-management techniques may be applied to implement sophisticated re-
placement algorithms. Caches of lower associativity have far fewer choices about
where to place a cache line so the potential benefit of software management is
limited in a set-associative cache.

• A fully-associative cache can lock (pin) data in the cache much more efficiently
than caches of lower associativity. Locking is used to provide performance guar-
antees in real-time systems and may also be used to avoid side-channel attacks
such as that detailed by Bernstein [Ber05].

• A shared, fully-associative cache can be easily partitioned into arbitrarily sized
pieces. Such resizeable shared caches would be applicable in chip multiproces-
sors.

A pseudoassociative cache is similar to a direct-mapped cache, but in the case of a
cache miss the address undergoes a simple transformation (e.g. the most significant
bit of the index is inverted) and a second cache access performed. If this second access
hits, the latency is twice that if the first access had hit, but still smaller than accessing
the next level in the memory hierarchy. However, if this second access misses, the next
level in the hierarchy must be accessed with twice the penalty due to the additional
cache access.

Reference Stream

The properties of the stream of references from the CPU (or equally from the previous
level of cache in the memory hierarchy) is a key determinant of cache performance.
If the reference stream exhibits significant temporal locality (i.e. once accessed, refer-
ences to the same address are likely in the near future) or spatial locality (i.e. once
accessed, references to neighbouring addresses are likely in the near future), the cache
hit rate and hence overall performance is high. As such, much effort has been put
into cache blocking, designing algorithms for popular applications which operate on
“cache-sized” blocks.

Some applications exhibit very poor temporal and spatial locality, in particular stream-
ing applications such as graphics and network processing, and these applications per-
form much better with increased effective memory bandwidth rather than decreased
effective memory latency. While caches are primarily intended to reduce latency, now
that many caches are implemented on-chip their effective bandwidth is far higher
than that of off-chip main memory. Therefore, providing data can be satisfied by the
cache (for example, by prefetching which is discussed later), caches can be of benefit to
streaming applications as well.

Further down the memory hierarchy, the filtering effects of cache hits at higher levels
can cause a significant impact on the characteristics of the reference stream observed



CHAPTER 2. BACKGROUND 27

at the lower level. Whilst the impact on traditional cache performance is usually small,
it is important to account for this filtering effect when designing more complex cache
architectures.

Replacement Policy

For set-associative and fully-associative caches a choice needs to be made when evict-
ing existing data from the cache and bringing in new data to replace it. The perfor-
mance impact is highly dependent upon the characteristics of the application. Popular
options include:

• First In, First Out (FIFO) evicts the oldest line to have been brought into the set
or cache.

• Last In, First Out (LIFO) evicts the youngest line to have been brought into the
set or cache.

• Least Recently Used (LRU) evicts the least recently referenced line in the set or
cache

• Random evicts a random line from the set or cache.

Some microprocessors allow the replacement policy to be varied by software accord-
ing to the expected reference stream. For example, the Cell microprocessor allows
the programmer to set up a replacement management table which, based on address
space ranges, identifies the candidates for replacement [JB07]. Using this scheme, a
streaming application may choose LIFO replacement for its cache lines, while a critical
interrupt handler may choose LRU or even pin its cache lines by specifying an empty
list of replacements.

Non-blocking Caches

Early caches were blocking i.e. no further cache accesses could be made until any
outstanding cache miss was satisfied. As reference streams became more demanding,
this condition placed a significant restriction on the performance benefit of introducing
a cache. Instead, non-blocking (also known as hit under miss or lockup-free) caches
were introduced which are able to still operate even with multiple outstanding cache
misses. The most common implementation of a non-blocking cache uses Miss State
Holding Registers (MSHRs), proposed by Kroft [Kro81]. Each primary miss (the first
miss to a cache line) allocates an MSHR and subsequent misses to the same cache line,
secondary misses, are appended to the existing MSHR. The number of outstanding
misses before the cache is forced to block is determined by the number of MSHRs, a
design-time decision made balancing the high (usually full) associativity of the MSHRs
against the latency of accessing both the highly-associative MSHRs and the next level
in the memory hierarchy.



28 2.4. CACHE BASICS

Write Policies

A write through cache passes all store operations to the next level in the memory hier-
archy immediately, whereas a write back cache tracks which cache lines are dirty (i.e.
those which have been modified during their residency in the cache) and only passes
on store operations for modified cache lines when the line is evicted. A write allocate
cache will allocate a cache line for a store access which misses in the cache whereas a
no-write allocate cache will not.

2.4.2 Cache Miss Classification

Having detailed some of the parameters which impact cache performance, it is useful
to classify the various types of cache misses according to their (actual or perceived)
cause. Such a classification provides some insight into how cache performance may
be improved. Hill and Smith proposed a simple scheme [HS89] using three categories,
known as the three C’s:

• Conflict misses are those made by a set-associative cache but not by the same-
sized fully-associative cache

• Capacity misses are those made by a limited-size fully-associative cache but not
by an infinite-sized cache

• Compulsory misses are those still made by an infinite sized cache

In the interests of completeness, a fourth C has since been introduced when dealing
with cache-coherent multiprocessor systems. Coherence misses are those made due to
the implementation of the cache coherency protocol but since the work described in
this dissertation focuses primarily on uniprocessor systems, this fourth category will
not be considered further.

With respect to the basic cache parameters already introduced, the following general
trends may be observed:

• Increasing the cache size decreases the number of capacity misses, at the expense
of more complicated cache logic and hence potential increases in latency.

• Increasing the cache associativity decreases the number of conflict misses but
again at the expense of more complicated cache logic and hence potential in-
creases in latency.

• Increasing the cache line size may decrease the number of compulsory misses but
may also increase the number of conflict misses.

• Prefetching, a technique which is discussed later, can decrease the number of
compulsory misses.

The overall trend is that bigger, more associative caches have higher hit rates, but there
is a tradeoff between size, associativity and the cache latency which must be minimised
to provide data in a timely manner to the processor.



CHAPTER 2. BACKGROUND 29

2.5 Quantifying Performance and Power Consumption

When previously discussing cache performance, only the cache hit rate (the ratio of
cache hits compared to the total number of cache accesses) was considered. In this
section, various other performance and power consumption metrics are discussed.

2.5.1 Latency and Bandwidth

The two properties of a cache which are most key to attacking the memory wall are
the latency (the time taken to access a single item from the cache given a hit) and the
bandwidth (the rate at which data can be transferred to or from the cache). As shown
by Figure 2.3, cache latency, measured in processor cycles, has been reasonably con-
stant, if not growing slightly, over recent years. On the other hand, cache and memory
bandwidth have been growing exponentially, as detailed by Patterson [Pat04]. For
most current applications, the available memory bandwidth is adequate, whereas if
the apparent memory latency could be decreased then significant overall performance
benefits could be achieved.

Both latency and bandwidth are closely tied to the specific physical implementation
of the cache and its bus. Cache implementation simulators such as CACTI v3 [SJ01]
can provide estimates of the likely values when fabricated at a particular technology
node, but given the complexity of cache implementations on the most cutting-edge
process technologies, not least the rising issue of wire delay in large caches, such sim-
plistic cache implementation simulators are becoming less applicable. As a result, more
advanced cache implementation simulators which incorporate more parameters have
been developed, including CACTI v6 [MBJ09]. However, exact figures can only be
obtained by considering detailed circuit models describing the precise physical imple-
mentation.

2.5.2 Average Memory Access Time

Hennessy and Patterson [HP03] define the average memory access time as:

Average memory access time = Hit time + Miss rate × Miss penalty

where the hit time is the time to service a hit in the cache, the miss rate is the fraction of
references which result in a miss and the miss penalty is the additional time incurred
by a miss. Thus to decrease the average memory access time, the hit time must be
decreased (lower hit latency), the miss rate must be decreased or the miss penalty must
be decreased.

Miss rates and the average memory access time can be estimated using cache access
simulators such as Dinero [EH03] or Cheetah [AL03]. These simulators are provided
with a reference stream of time-stamped memory accesses and for each memory ac-
cess the simulator determines whether the access would hit or miss in the given cache
configuration. The reference stream may be extracted using specialised hardware from
an existing system, instrumented binaries on an existing system or via simulation of



30 2.5. QUANTIFYING PERFORMANCE AND POWER CONSUMPTION

a proposed system. Since the performance of the memory subsystem can influence
the timing and ordering of the memory reference trace, particularly with aggressive
out-of-order processors, a more system-wide simulator is often preferred.

2.5.3 Misses per 1,000 Instructions

The disadvantage of the miss rate and average memory access time metrics previously
discussed is that they take no account of the frequency of memory references in the in-
struction stream. The overall contribution towards system performance of a cache with
a given miss rate (or average memory access time) depends heavily upon how often
memory references are made when compared to other (arithmetic and control flow)
instructions. A system which makes very few memory references may find a higher
miss rate (or average memory access time) tolerable whereas a system which makes
very frequent memory references may not. For this reason, the number of Misses Per
1,000 Instructions (MPKI) is commonly used as an indicator of specific cache perfor-
mance whilst trying to be independent of the properties of the instruction stream and
other latency-tolerating schemes which the processor may employ.

2.5.4 Instructions Per Cycle

A common metric used throughout computer architecture to describe the overall per-
formance of a processor is to measure the average number of Instructions committed
Per clock Cycle (IPC). This is clearly dependent on a vast range of parameters, from
those describing the detailed microarchitecture of the processing core, to those cover-
ing the cache hierarchy and memory subsystem, to the properties of the specific code
running on the processor. However, the impact of just one seemingly small aspect, in
this case the cache architecture, can be isolated by keeping all other relevant factors
constant.

2.5.5 Power Consumption

As power consumption becomes a major limitation to further increasing processor
performance, much research has turned to investigating techniques to reduce over-
all power consumption, approaching the problem from both low-level transistor op-
timisations and also high-level system-wide techniques. Since caches are large, reg-
ular structures they are particularly amenable to relatively simple power-saving tech-
niques. However, without resorting to detailed circuit models it is rather difficult to es-
timate power consumption numerically, although some tools such as Wattch [BTM00]
estimate dynamic power consumption by breaking the cache into constituent elements
(such as memories, buses etc.) and accounting for accesses to each element. Static
power consumption, becoming a more significant factor, is now increasingly consid-
ered by more modern tools such as HotLeakage [LPZ+04] and McPAT [LAS+09].



CHAPTER 2. BACKGROUND 31

2.6 Improving Cache Performance

Since the performance of the memory subsystem is critical to that of the whole sys-
tem, there has been a vast range of previous work covering caches, some of which
have developed into entire avenues of research in themselves. One relatively early
survey published by Smith in 1982 [Smi82] covers the basic cache parameters already
described as well as briefly touching upon prefetching, an area which will be discussed
shortly.

Hennessy and Patterson found more than 5,000 research papers covering the field of
processor caches from 1989—2001 but restricted their discussion only to those which
had been implemented in commercially viable computers [HP03]. Unfortunately the
topic of this dissertation affords no such luxury. Therefore the techniques described in
this section are limited to those of direct relevance to the subsequent work.

2.6.1 Victim and Other Multilateral Caches

Introduced by Jouppi and Eustace, the victim cache is a small fully-associative cache
placed between two levels of memory in the hierarchy [Jou90]. Whenever a cache line
is evicted, it is first stored temporarily in the victim cache. If a request for that cache line
occurs in the near future, it may be satisfied by the victim cache rather than having to
access the next level in the memory hierarchy. Effectively, the victim cache adds further
associativity to selected cache sets, aiming to reduce the number of conflict misses.
Stiliadis and Varma extended Jouppi’s victim cache by selectively placing incoming
cache lines in either the main (first-level) cache or victim cache depending on their
predicted future usage [SV94]. The same predictor also allows for interchange of cache
lines between the main cache and the victim cache. The prediction algorithm is based
on the modified cache replacement scheme known as dynamic exclusion proposed by
McFarling [McF92]. Each cache line has an associated hit bit which indicates whether
or not there was a hit to that cache line the last time it was resident in the L1 cache.
While resident in the L1 cache, each line also has an associated sticky bit which is
cleared if that line is preferentially treated compared to some other conflicting line.
The replacement policy considers both these bits and tries to determine which of two
conflicting lines is more likely to be accessed soonest in the future. If cache line B is
accessed, there are three possible cases, as detailed by Stiliadis and Varma’s pseudo-
code:

Case 1: Hit in main cache:

hit[B] = 1; sticky[B] = 1;

(update hit and sticky bits)

Case 2: Miss in main cache, hit in victim cache:

Let A be the conflicting line in the main cache;

if sticky[A] == 0 then

interchange A and B;

sticky[B] = 1; hit[B] = 1;



32 2.6. IMPROVING CACHE PERFORMANCE

else

if hit[B] == 0 then

sticky[A] = 0

else

interchange A and B;

sticky[B] = 1; hit[B] = 0;

end if

end if

Case 3: Miss in both main and victim caches:

Let A be the conflicting line in the main cache;

if sticky[A] == 0

move A to victim cache;

transfer B to main cache;

sticky[B] = 1; hit[B] = 1;

else

if hit[B] == 0 then

transfer B to victim cache;

sticky[A] = 0

else

move A to victim cache;

transfer B to main cache;

sticky[B] = 1; hit[B] = 0;

end if

end if

Stiliadis and Varma find that such a scheme performs well for instruction caches, but
data caches, which are typically subject to a much less structured reference stream, do
not show such large improvements.

John and Subramanian propose a related scheme, the annex cache [JS97]. Like the
victim cache, this scheme uses a small highly-associative buffer, termed the annex
cache, which operates alongside a traditional main cache. Incoming cache lines are
first placed in the annex cache and only promoted to the main cache if they are refer-
enced twice in succession without any references being made to conflicting cache lines.
The aim of this scheme is to keep higher-usage lines in the main cache by preventing
them from being evicted by lower-usage lines. This scheme is shown to perform well
for the instruction cache, results for the data cache are not provided.

Hu et al. investigate what they term timekeeping techniques to manage a victim cache
[HKM02]. This approach is closely related to the work presented later in Chapters 4
and 5. Their technique uses a simple predictor which deems a conflict miss to have
occurred if, on eviction, the time since the last access to the cache line being evicted
is less than a fixed threshold. Such lines are then allocated space in the victim cache
while other lines are passed directly on to the next level in the memory hierarchy. This
approach is designed to maximise the number of conflict misses satisfied by the victim
cache since they are most likely to be those cache lines which are reused in the near
future.



CHAPTER 2. BACKGROUND 33

Collins and Tullsen propose another approach to manage the victim cache through the
use of a Miss Classification Table (MCT) which predicts whether a cache line being
evicted is due to either a conflict or a capacity4 miss [CT99]. The MCT simply stores
the partial tag of the last cache line evicted from each cache set; if the partial tag of a
newly-evicted line matches the partial tag of the previous line which was evicted from
that cache set, it is predicted as a conflict miss. Collins and Tullsen investigate three
victim cache policies which exploit their miss classification prediction. The first policy
does not swap cache lines between the main and victim caches when a victim cache
hit occurs to a cache line which is predicted to be a conflict miss. The second policy
bypasses the victim cache when a cache line is evicted from the main cache which is
predicted not to be a conflict miss. The third policy combines the first two policies
simultaneously. The average speedup observed for all three policies is moderate, com-
pared to a conventional victim cache.

Khan et al. propose a virtual victim cache which places evicted cache lines in the
adjacent cache set [KJBF10]. The specific position chosen is the most-recently used
position containing an invalid or predicted dead cache line, or the least-recently used
position if no cache lines in the adjacent set are invalid or predicted dead. The term
dead refers to the cache line not being accessed again prior to eviction, and is further
explored in Chapter 3. Khan et al. use a trace-based predictor which combines the
program counter values of all instructions touching a particular cache line which then
indexes two tables of counters with a different hashing algorithm for each. The sum
of the two counter values is then compared against a fixed threshold to determine
whether the cache line is predicted as dead or not. Trace-based predictors and similar
counters are further discussed in Chapter 4.

Victim caches are one example of multilateral caches, where multiple data stores are
used in parallel with some scheme to choose between them. One of the earliest multi-
lateral caches was the dual data cache, proposed by González et al., which predicts
whether data references will show spatial or temporal locality [GAV95]. Separate
caches are maintained for each type of locality and there is also the option to bypass
the cache entirely if no locality is predicted. This approach is designed for vector pro-
cessors whose types of locality are relatively easy to predict with adequate accuracy
and coverage.

Rivers et al. review several multilateral architectures based on data reuse [RTT+98].
Cachable Non-Allocatable (CNA), first proposed by Tyson et al. [TFMP95], allocates
lines based on the reuse behaviour of the cache line previously accessed by an instruc-
tion with the same program counter. If any words within that previous cache line were
reused, then the cache line is placed within the large main cache, otherwise it is placed
in a much smaller secondary cache. Very similar in concept is Rivers and Davidson’s
Non-Temporal Streaming (NTS) cache [RD96] which allocates lines based on the pre-
vious behaviour of the cache line with the same effective address. If during its previous
residency, no word within the cache line was reused then it is allocated to a smaller sec-
ondary cache rather than the larger main cache. Finally, Johnson and Hwu’s Memory
Address Table (MAT) cache [JH97] tags cache lines as either frequently or infrequently
accessed on the granularity of macroblocks (contiguous groups of cache lines expected
to have similar reuse patterns). A counter, indicative of “usefulness”, is maintained
for each macroblock. Every cache access to that macroblock increments the counter.

4Compulsory misses are grouped together with capacity misses



34 2.6. IMPROVING CACHE PERFORMANCE

Each incoming cache line as a result of a cache miss has its counter value5 compared
with the resident cache line. If it is greater, the cache line is replaced (the incoming
cache line is predicted to be more useful) otherwise the incoming cache line is placed
in a separate smaller data store (the incoming cache line is predicted to be less use-
ful). Comparing the three schemes to the traditional victim cache, Rivers et al. find
that for direct-mapped first-level caches the victim cache still performs best overall
but if the first-level cache is made two-way set-associative, address reuse information
schemes (NTS and MAT) perform better than a program counter reuse information
scheme (CNA) or a traditional victim cache. A second set of simulations by Tam et al.
show similar results [TRS+99]. This second study also investigates a near-optimal, but
not implementable6, scheme known as pseudo-opt. Again, the address reuse based
predictors performed better than those based on program counters, but both exhibited
a significant lag behind the performance of the pseudo-opt scheme.

One more recent multilateral cache architecture scheme is Allocation By Conflict (ABC),
proposed by Tam et al. [TVTD01]. This approach attempts to prevent an incoming
cache line from replacing a conflicting cache line which is still being actively refer-
enced. The least recently used cache line in a set is replaced only if it has not been
reaccessed since the last miss reference to that set which did not cause a replacement.
Otherwise, the incoming cache line is placed in a separate, smaller cache. This ap-
proach generally outperforms those previously discussed. However, Tam et al. also
show that random allocation performs surprisingly well.

2.6.2 Prefetching

Traditional cache architectures are demand fetch, cache lines are only brought into the
cache when they are explicitly requested by the processor. Alternatively, cache lines
may also be proactively fetched into the cache, anticipating that they will be used in the
near future. Such a technique is known as prefetching and has been widely employed
in high-performance memory subsystems. VanderWiel and Lilja survey a variety of
prefetching techniques, concluding that no single strategy considered is optimal in all
cases [VL00]. Smith also includes prefetching in his earlier survey of caches [Smi82].
Prefetches must be:

• Useful: the prefetched data must be referenced in the near future.

• Timely: the prefetch must occur early enough such that the data is ready in the
cache when the corresponding demand fetch occurs. Equally, the prefetch should
not occur too early such that it occupies space which would be better utilised by
storing other data.

• Little Overhead: the prefetch must not interfere with the standard demand fetch
model to the detriment of overall performance.

5Counter values for each macroblock are stored in a separate table indexed by macroblock address
6The pseudo-opt scheme is not implementable since it relies on future knowledge to make its deci-

sions



CHAPTER 2. BACKGROUND 35

As prefetch schemes become more aggressive, the overhead of prefetching can be-
come significant. This overhead may be expressed in terms of competition for band-
width with demand fetches, as well as competition for space (cache pollution) if the
prefetched and demand-fetched data share the same cache. Prefetching techniques can
be divided into three categories as follows.

Software Prefetching

Many high-performance microprocessors provide explicit prefetching instructions. Ex-
amples include loads targeting registers R31 or F31 on the Alpha 21264 [Cor99], lfetch
on the Intel Itanium [Cor06] and dcbt on the IBM PowerPC [WSM+05]. The operation
of such instructions is very similar to a traditional load from memory, but no register
is allocated to receive the resulting data and any exceptions raised are suppressed7.
These instructions may be used explicitly by a programmer seeking to hand-optimise
their code, in library code, or they may be inserted automatically as part of an op-
timisation pass made by a compiler. They are particularly effective when employed
in loops responsible for large array computations, a common task in scientific code,
which would otherwise exhibit poor cache performance. By taking advantage of the
referencing pattern known at compile time, suitable prefetch instructions may be is-
sued early to ensure that the subsequent demand fetches will hit in the cache. While
it has been shown that software prefetching can be effective in certain cases, the more
varied reference patterns of general applications make suitable compiler analyses dif-
ficult. Compared to other types of prefetching, prefetch instructions often add to the
execution time of the program since they must pass through the processor pipeline.

More specific cache control facilities are becoming available to the programmer. These
include the non-temporal nt1 and nta load hints on the Intel Itanium [Cor06], data
cache block set to zero (dbcz), cache line flush (clf) and cache line invalidate (cli)
instructions on the IBM PowerPC [WSM+05] and the cache operations register and the
cache lockdown registers on the ARM11 family of processors [ARM06]. However, as
with software prefetch instructions, their use is limited to either explicit programmer
invocation or implicit library or compiler optimisations.

Hardware Prefetching

While the future knowledge available to software prefetching can be very effective in
some circumstances, it is not always detailed enough to be more widely applicable.
Hardware prefetching takes advantage of the detailed information available at run-
time and speculates about future memory references based upon those observed in the
past.

One of the simplest hardware prefetching schemes is One Block Lookahead (OBL)
which issues a prefetch for cache line i + 1 whenever cache line i is referenced by a
demand-fetch. This is slightly different from simply doubling the cache line size since
the two consecutive cache lines will be treated separately by the replacement policy,
but essentially as one entity by the allocation policy. Tagged prefetch is one popular

7To preserve correctness, prefetches are only considered as hints that a particular address will be
referenced.



36 2.6. IMPROVING CACHE PERFORMANCE

implementation of OBL which issues a prefetch for cache line i+1 whenever cache line
i is demand-fetched or upon the first reference to the previously prefetched cache line
i. Referring to the list of desirable prefetch properties, if the reference stream simply
increments consistently by small amounts (as is common in large array calculations),
OBL can perform well. However, OBL prefetches may not be timely if the loop iterating
over memory is very tight. It is possible to prefetch all cache lines up to i + k where k

is the degree of prefetching, but this may impose a significant overhead even if most
of the cache lines for which prefetches are issued are already resident in the cache.

In the same paper that introduced victim caches, Jouppi also proposed stream buffers,
a FIFO structure into which prefetched cache lines are placed avoiding any cache pol-
lution [Jou90]. Only the head of the stream buffer is considered by the processor and
on a hit the cache line is transferred into the main cache and all entries moved up by
one, a prefetch being issued to fill the empty tail slot. On a miss, the whole structure
is flushed and new data brought into the buffer. This approach works well if the refer-
ence stream exhibits long sequences of references to incrementing addresses. However,
even the simplest scientific calculations typically involve multiple such streams with
interleaved accesses. For these applications, Jouppi extends the single stream buffer
to a set-associative multi-way stream buffer which can cope with such reference pat-
terns. These reference patterns are common on vector machines and an extension to
Jouppi’s multi-way stream buffer to filter stream buffer allocation and cope with non-
unit strides described by Parlacharla and Kessler [PK94] was implemented on the Cray
T3E system. The problem of non-unit strides has also been tackled by numerous other
researchers. VanderWiel and Lilja identifies Chen and Baer’s approach [CB95] as the
most aggressive proposed at the time of their survey [VL00]. A reference prediction
table is used to store observed strides from recent load instructions. A simple state
machine determines when a consistent non-unit stride has been achieved for a partic-
ular instruction and proceeds to issue prefetches for addresses based on that observed
stride. While this scheme can perform well for certain looping constructs, it only issues
prefetches one iteration in advance which may not be adequate to ensure the prefetch
is timely. To remedy this, Chen and Baer propose a lookahead program counter which
runs ahead of the conventional program counter and uses the existing branch predic-
tion hardware. The degree to which the lookahead program counter runs ahead of the
conventional program counter depends on the latency to prefetch data from the next
level of the memory hierarchy.

Seeking to leverage the varying spatial locality observed both between and within ap-
plications, Kumar and Wilkerson describe a Spatial Footprint Detector (SFD) [KW98].
This structure tracks the use of cache lines within larger contiguous groups, known
as sectors, using spatial footprints, a bit-vector showing which cache lines within the
sector have been used. Rather than just fetching the desired cache line on a miss, the
SFD is used to decide which additional cache lines within a sector to prefetch, specu-
lating that since those lines have been useful in the past, they will be useful again in the
future. The SFD itself is constructed from a table of previously observed spatial foot-
prints, indexed by a combination of bits from the reference address and the instruction
causing the miss. This approach is somewhat similar to OBL with a higher degree of
prefetching, but the spatial footprint predictor helps to reduce cache pollution by se-
lectively fetching those cache lines deemed to be useful. Chen et al. later propose a
very similar prefetcher based upon a slightly refined spatial footprint predictor which
they term a spatial pattern predictor [CYFM04].



CHAPTER 2. BACKGROUND 37

Other prefetching techniques targeted to more complex reference patterns include those
aimed at pointer-intensive code, becoming more prevalent with the increased use of
object-oriented languages which commonly require various levels of indirection. Both
Harrison and Mehrotra [HM94] and Roth et al. [RMS98] describe methods which aim
to identify loads that access linked data structures. The specific type of loads iden-
tified are those whose values are subsequently used as base addresses for other load
instructions. A common example is the traversal of a linked-list data structure. Roth et
al. conclude that such prefetching can improve performance, but the prefetches issued
may not always be timely depending on the amount of processing taking place on each
node in the data structure.

One final class of hardware prefetch techniques targeted at complex reference pat-
terns are correlation-based techniques, whereby observed microarchitectural events
are used to to infer the future addresses that will be accessed, much in the same way
that correlation-based branch predictors use the direction of past branches to predict
the direction of future ones. Such techniques were first proposed by Charney and
Reeves [CR95] and there have been a number of implementations since. Joseph and
Grunwald model the addresses accessed as a Markov process [JG97], requiring a large
amount of storage but the performance benefit gained is greater than that of dedicating
the equivalent amount of storage to simply enlarge the cache. This technique can be
very aggressive, generating up to four prefetch targets at once. Lai et al. propose a cor-
relation scheme which combines a dead-block predictor together with a Dead-Block
Correlating Prefetcher (DBCP) [LFF01]. The dead-block predictor consists of a history
entry for each cache line which stores a fixed-size encoded instruction trace, known as a
signature, for the sequence of memory operations which have touched that cache line.
The address being accessed and the encoded history is then used to index a dead-block
table which predicts whether the cache line is dead or not. A dead cache line is defined
to be one which will not be referenced again prior to eviction. Extending this further, a
dead-block correlating address predictor adds another entry to the dead-block table
which is a prediction of which cache line to prefetch if the current cache line is deemed
dead. In order to achieve adequate accuracy and coverage, the size of the dead-block
table is relatively large, 2MB on-chip or 7.6MB off-chip with corresponding latencies.

Analogous to dead block prediction, Lai and Falsafi propose a last-touch predictor
which seeks to identify the last reference to a cache line in a cache-coherent distributed
shared memory system prior to its invalidation by another processor [LF00]. Cache
lines which are predicted to have had their last-touch are speculatively self-invalidated
to reduce the impact of coherence misses. The predictor itself is similar to a traditional
two-level branch predictor, with the first-level table holding the current signatures for
each line and the second-level table holding previously-observed last-touch signatures
on a per-line or global basis. A signature consists of the truncated addition of all pro-
gram counter values which have touched that line since the last coherence miss.

Hu et al. propose a timekeeping scheme which uses a simple 1-miss history per cache
frame and a predictor which, given this history, specifies which cache line to prefetch
and critically a prediction of when to schedule the prefetch based on the expected life-
time of the cache line currently resident in the cache [HKM02]. Comparing an 8kB
timekeeping correlation table against a 2MB dead-block correlating prefetcher, Hu et
al. found similar if not better performance for a much smaller storage requirement.
Again seeking to reduce the storage required, Hu et al. later proposed Tag Correlat-



38 2.6. IMPROVING CACHE PERFORMANCE

ing Prefetchers (TCP) which track the history of cache tags (rather than complete ad-
dresses), comparing a 8kB TCP to a 2MB DBCP and finding that the smaller prefetcher
generally outperforms the larger at the L2 level. When considering prefetching into the
L1 from the L2, a dead-block predictor was found to be necessary to avoid excessive
cache pollution but the additional improvement to overall performance was slight.

Combined Hardware/Software Prefetching

As the complexity of prefetchers increases, some more recent research has looked at
combining the imprecise future knowledge available to the compiler with the detailed
run-time information available to hardware. Chen proposes a general programmable
prefetch engine consisting of a run ahead table populated using explicit software in-
structions [CB95]. Each entry of the run ahead table specifies a prefetch stream which
may be initiated should the current program counter match that stored for the stream.
The types of stream targeted by Chen are simple constant strides which are readily
detectable by compiler techniques. A more advanced technique is presented by Van-
derWiel and Lilja through the use of a Data Prefetch Controller (DPC) [VL99]. The
DPC is programmed by the processor with a set of prefetch streams which have been
determined at compile-time. To ensure the DPC and processor remain synchronised,
the issuing of prefetch requests is based upon specific trigger blocks, again analysed at
compile-time, which allow the establishment of a producer-consumer relationship. A
yet more complex approach is proposed by Solihin et al. which uses a user-level mem-
ory thread, implementing a correlation-based prefetcher and running on a dedicated
general-purpose processor in memory [SLT02]. Wang’s PhD dissertation considers co-
operative management of all cache aspects [Wan04], focusing specifically on replace-
ment policies and prefetching. Compiler hints are passed on to a dedicated prefetch
engine which is responsible for scheduling the required types of prefetches. The hints
described by Wang include spatial (prefetch the area around a load), pointer (follow
pointers in the loaded cache line) and recursive (fetch a data structure recursively).

Another combined hardware/software approach to prefetching is the concept of a
runahead mode or a hardware scout, proposed by Dundas and Mudge [DM97] and
implemented in the IBM POWER6 [CN10]. Upon a cache miss, an in-order processor
usually has to block until the data can be supplied by the memory hierarchy. Instead,
the processor enters runahead mode, in which instructions continue to be fetched and
executed, aiming to prefetch useful data into the caches.

One final approach is a software-programmable helper thread, which runs in parallel
with the main computation. This thread is a more generic version of VanderWiel and
Lilja’s Data Prefetch Controller, and allows arbitrarily complicated reference patterns
to be generated [XIC09]. Chappell et al. propose, but do not evaluate, helper threads
in a Simultaneous Subordinate Microthreading environment, which is characterised
by “additional work [being] done to enhance the performance of microarchitectural
structures, solely for the benefit of the primary thread” [CSK+99].



CHAPTER 2. BACKGROUND 39

2.7 Decreasing Power Consumption

As previously discussed, larger and larger on-chip caches are occupying proportion-
ally more die area and so are responsible for proportionally more power consump-
tion. Traditional techniques to tackle dynamic power consumption include clock gat-
ing and reducing the supply voltage, well-known approaches which have been widely
deployed as described by Borkar [Bor01]. More recently, static power consumption has
become increasingly significant as process geometries shrink. While quantitative re-
sults of power-saving techniques will not be provided in this dissertation, some of the
microarchitectural constructs are reusable from performance-improving applications,
as well as being an important application area for future cache utilisation research.
Various relevant approaches to reducing static power consumption in caches are now
considered.

Circuit-level research has provided two families of techniques to reduce the static
power consumption of a memory element. State-preserving techniques retain the con-
tents of the memory but require additional latency to return to the active state in which
the contents of the memory can be accessed. Cache lines in this state are typically
known as drowsy. Examples of such techniques include auto-backgate-controlled
multi-threshold CMOS [NMT+98], dynamic voltage scaling [FKM+02] and data re-
tention gated-ground [ALR02]. State-destroying techniques do not preserve the con-
tents of the memory but allow greater power savings to be made. This state is typically
known as sleep. Examples of such techniques include gated-Vdd [PYF+00] and gated-
Vss [LPZ+04]. These techniques can be coupled with a variety of microarchitectural
predictors in order to determine when to transition cache lines into the various low-
power states as follows.

2.7.1 State-Destroying Techniques

Reducing power consumption using state-destroying techniques provides the highest
potential reductions in power consumption, but at the cost of necessitating explicit
safety mechanisms in case of a misprediction. This is often accomplished by relying on
the inclusion property of the memory hierarchy, having ensured any modified data is
written back to the appropriate level. Powell et al. present the first cache design which
integrates microarchitectural and circuit-level techniques to reduce static power con-
sumption [PYF+00]. Their dynamically resizeable instruction cache changes the size
of the cache at run-time, using a gated Vdd approach to effectively switch off those
cache lines which are not required. The size of the cache is determined by periodically
examining the miss rate, decreasing the size of the cache if the miss rate is determined
to be acceptable or increasing the size of the cache if the miss rate is unacceptable.
Resizing the cache is achieved by changing the boundary between the tag and index
portions of a memory address during the cache indexing procedure, effectively limit-
ing the number of cache sets. Since the tag size must be allowed to vary, the tag array is
sized such that it is capable of storing the largest tag size possible (corresponding to the
smallest cache size allowed), which can be a source of additional power consumption
if the cache size is relatively large.

Albonesi proposes a related technique known as selective cache ways, which varies
the associativity of a set-associative cache in order to reduce power consumption [Alb99].



40 2.7. DECREASING POWER CONSUMPTION

The decision about which cache ways to enable is controlled by a machine register, ac-
cessible to the program or operating system and Albonesi suggests that software is
responsible for setting this register according to the current demands of the applica-
tion.

Yang et al. propose a later scheme [YFPV02] which combines the selective-ways [Alb99]
and selective-sets [PYF+00] approaches to allow a finer degree of control over cache
size. Comparing static and dynamic resizing, Yang et al. find that static resizing, driven
by profiling the application, generally performs better than a dynamic scheme which
periodically examines cache miss rates.

Kaxiras et al. present the first time-based approach to reducing cache leakage power
[KHM01]. Observing that cache lines are frequently storing data which will not be
referenced before the line is evicted, they aim to identify such lines and put them into
a state-destroying low-power mode via a gated-Vdd technique. Two predictors are
presented, the first puts a line into the low-power state after a fixed number of cycles
have passed without a reference to it, while the second uses an exponentially increas-
ing scheme per cache line, attempting to capture the variability in usage both between
cache lines in the same application as well as between cache lines in difference applica-
tions. This first predictor is shown to perform well and is the basis for predictors used
in other work with both state-destroying and state-preserving implementations.

Zhou et al. propose Adaptive Mode Control (AMC), a scheme which applies state-
destroying power-saving techniques to the data array whilst leaving the tag array
always active [ZTRC03]. This allows cache misses due to the power-saving scheme
(sleep misses) to be differentiated from misses which would have occurred regardless
of the state of the corresponding line in the data array (ideal misses). Zhou et al. pro-
pose an adaptive scheme to transition cache lines into the low-power state based upon
the cache decay mechanism previously proposed by Kaxiras et al. [KHM01]. A fixed
target is placed upon the number of sleep misses compared to ideal misses and the
period after which to transition a cache line into the low-power state is adjusted ac-
cordingly to achieve this target. If too many sleep misses are occurring, cache lines are
placed into the low-power mode after a longer period of time and vice versa, trading
off potential power savings against the performance impact.

Velusamy et al. build on Kaxiras et al.’s cache decay mechanism and Zhou et al.’s adap-
tive mode control by introducing formal feedback control theory resulting in their In-
tegral Miss Control (IMC) approach [VSP02]. This technique differs from AMC by tak-
ing a formal approach to the construction of the feedback control path using traditional
engineering approaches. Performance is similar to that of AMC, but Velusamy et al. ar-
gue that the rigorous design process results in less time-consuming ad-hoc tuning of
parameters and that such an approach copes better with unexpected inputs. However,
they only present results for four SPEC95 and four (integer) SPEC2000 benchmarks.

Also aiming to improve upon prior cache decay and adaptive mode control mecha-
nisms, Abella et al. propose a low-power scheme controlled by Inter-Access Time per
Access Count (IATAC) [AGVO05]. Observing that second-level cache access patterns
are similar between cache lines, this approach aims to track global state. While the
details of the exact method are rather lengthy, the basic process is to observe the inter-
access times for each line and classify the line depending on the number of accesses to
the line since it was brought into the cache. This classification then directly provides
a prediction for the decay interval, the period of time which must elapse without any



CHAPTER 2. BACKGROUND 41

intervening accesses before the cache line is placed in the low-power state. The circuit-
level mechanism used by Abella et al. to place cache lines in such a low-power state is
gated-Vdd.

2.7.2 State-Preserving Techniques

In contrast to state-destroying techniques, state-preserving techniques do not have the
potential to reduce power consumption as much, but can afford an aggressive predic-
tion mechanism, improving practical performance by relying on the lower latency of
transitioning the cache line from the drowsy state to the active state rather than the
latency of fetching the cache line from the next level in the memory hierarchy.

Flautner et al. present a drowsy cache which uses dynamic voltage scaling to place
individual cache lines in a low-power, state-preserving mode which requires just a
single cycle to transition into the active state in which data can be read [FKM+02].
Given this low latency implementation, they propose a simple prediction scheme in
which all cache lines are periodically placed into the drowsy state and awakened upon
their first access. Such a scheme is shown to perform reasonably for the first-level
instruction cache while no such scheme is required for the second-level cache — the
performance impact of keeping all cache lines in the drowsy state is minimal due to
the low latency of transition into the active state.

Petit et al. seek to improve upon the fixed decay intervals proposed by Kaxiras et al.
[KHM01] using a 4-way set-associative first-level data cache in which no cache lines,
the most recently used cache line or the two most recently used cache lines are in the
active state per cache set while the remaining cache lines remain in the drowsy state
[PSSK05]. The decision about how many cache lines to activate is made periodically
based upon the observation that the number of cache lines touched per fixed period
is reasonably constant e.g. if only one cache line was touched in the previous period,
only activate one cache line for the next period. This approach has a similarly small
performance impact as the original cache decay mechanism while providing slightly
superior leakage energy savings.

Similarly, Bhadauria et al. observe that the majority of cache references are to cache
lines which themselves have been most recently referenced and seek to improve upon
Kaxiras et al.’s fixed decay intervals via a reuse distance policy which keeps the pre-
vious n most recently accessed cache lines awake, with the remaining cache lines in
a state-preserving, low-power mode [BMST06]. This approach requires little addi-
tional hardware since the value of n is typically very small. For the second-level cache,
Bhadauria et al. find that keeping a single cache line awake is adequate to achieve sig-
nificant leakage savings with minimal performance impact. For the first-level cache,
keeping five lines awake yields the best performance/leakage tradeoff.

Besides investigating spatial locality as a means to guide prefetching, Chen et al. also
propose the use of a spatial pattern predictor to reduce cache leakage energy [CYFM04].
In this application, individual words within a cache line may be placed into a low-
power, state-preserving mode by using a data retention gated-ground technique as
described by Agarwal et al. [ALR02]. The spatial pattern predictor tracks usage of
words within each cache line and when a cache line is brought in to the cache, only



42 2.7. DECREASING POWER CONSUMPTION

those words which are predicted to be referenced are kept in the active state. The pre-
dictor itself uses two tables, similar to that described by Kumar and Wilkerson [KW98],
indexed by concatenating the low-order bits of the program counter of the instruction
causing the miss with the offset within the cache line of the requested word.

2.7.3 Combined Techniques

Several studies have sought to either compare state-preserving and state-destroying
techniques or use both in an attempt to gain the benefits of each.

Li et al. propose a dynamic voltage scaling scheme to implement a state-preserving
low-power mode on a cache line granularity [LKT+02]. They propose five different
management strategies which use a combination of this state-preserving low-power
mode together with a state-destroying low-power mode to exploit the duplication of
data between the first and second-level caches, the principle of inclusion. The strategy
found to save the most energy places the second-level cache line in a state-preserving
low-power mode whenever the contents of that cache line is transferred into the first-
level cache. A combination of this technique and Kaxiras et al.’s cache decay mecha-
nism [KHM01] is also shown to provide further energy savings.

In a second study, Li et al. compare the drowsy cache and cache decay in the context
of vulnerability to soft errors, primarily induced by external radiation [LDV+04]. The
dynamic voltage scaling technique used by the drowsy cache increases the number of
soft errors reaching the datapath, since the critical amount of collected charge is pro-
portional to the supply voltage. However, the cache decay technique actually decreases
the number of soft errors reaching the datapath since cache lines are resident in the
first-level cache for shorter periods, decreasing the time for which they are exposed. Li
et al. then propose an energy-efficient optimisation to decrease the likelihood of soft
errors by using an early-write-back policy.

In a third study, Li et al. also compare state-preserving and state-destroying leakage
control in caches using an adapted leakage model which includes the exponential ef-
fects of temperature [LPZ+04]. Gated-Vss is used in preference to gated-Vdd since this
technique effectively eliminates bitline leakage. At small second-level cache latencies,
gated-Vss (state-destroying) is superior to the drowsy cache (state-preserving) in terms
of both the overall leakage savings and the performance degradation. As the latency
increases, the drowsy cache surpasses gated-Vss. As the temperature increases, the
normalised energy savings increase, as would be expected. Gated-Vss almost elimi-
nates leakage regardless of temperature, whereas cache decay’s leakage is non-trivial
at low temperatures and increases exponentially with increasing temperature. How-
ever, the use of a fixed decay interval prevents gated-Vss from realising its full energy
savings, hence there is little relative difference between the two as the temperature is
increased. Li et al. proceed to show that varying the decay interval per benchmark (by
up to a factor of 32) can improve performance considerably but do not suggest methods
by which this could be achieved other than relying on previous work. Finally, gate ox-
ide thickness is also shown to have a significant influence on whether state-preserving
or state-destroying techniques fare best.

Hanson et al. compare several static power-saving techniques in the context of micro-
processor caches [HHA+03]. The first applies a simple dual-Vt scheme to the cache,



CHAPTER 2. BACKGROUND 43

using higher threshold, lower power consumption transistors in memory cells with
lower threshold, higher power consumption transistors elsewhere in the cache. This
scheme treats all cache lines equally, so no additional misses are incurred but the
cache latency is increased by one cycle to accommodate the slower switching speeds
of the higher threshold transistors. Gated-Vdd [PYF+00] and multi-threshold-CMOS
[NMT+98] are also examined, using the simple cache decay policy proposed by Kaxi-
ras et al. [KHM01] which transitions the cache line into a low-power state after a fixed
period with no intervening accesses to the line. The dual-Vt approach is shown to
provide the best energy savings for the second-level cache but the performance degra-
dation incurred by the additional cycle of latency significantly increases both program
execution time and hence energy consumption when applied to the first-level caches.
Gated-Vdd and multi-threshold-CMOS perform comparably for the first-level caches
but is found to be sensitive to the choice of the decay interval after which to transition
cache lines into the low-power state.

Meng et al. present a limit study investigating how much leakage power can be re-
duced by applying active, drowsy (state-preserving) and sleep (state-destroying) power
modes judiciously to individual cache lines [MSK05]. Given full future knowledge (i.e.
which addresses will be referenced and crucially when they will be referenced) and
the transition and leakage parameters of each of the power modes, the decision about
which mode to best place a cache line in can be made as soon as it is brought into the
cache. As might be expected, if the line is going to be referenced again soon, it is best
to use the active mode, if it will not be referenced for a long time it is best to use the
sleep mode and if it will be referenced in some medium-term timeframe then it is best
to use the drowsy mode. The exact time boundaries between these three modes is de-
termined by the energy consumed by each mode, the power consumed by switching
between modes and the time taken to switch between modes. For the first-level data
cache, instruction cache and the second-level unified cache Meng et al. find that 99.1%,
96.4% and 97.7% of leakage power respectively may be eliminated, providing an upper
bound for implementable leakage saving schemes.

Finally, many performance optimisations can increase power consumption and there
is often a tradeoff to be made. This tradeoff becomes significantly more complex when
considering energy as well as power, since the performance optimisation has the poten-
tial to reduce the total execution time therefore reducing overall energy consumption
even if power consumption is slightly raised. Kadayif et al. examine the relation-
ship between prefetching and power saving by turning off cache lines [KKL06]. This
approach applies different power-saving policies to prefetched and demand fetched
cache lines. The speculative state-preserving scheme places prefetched lines in a low-
power, state-preserving mode, adding a single cycle of latency when they are sub-
sequently accessed. The lazy, state-destroying scheme places prefetched cache lines
in the active mode for a short period of time after which they are transitioned into a
low-power, state-destroying mode. Finally, the predictive hybrid scheme exploits the
observation that useful8 prefetches very frequently follow other useful prefetches to
the same cache line. If the previous prefetch was non-useful then the current cache
line is placed in a state-preserving, low-power mode. If the previous prefetch was use-
ful and the previously prefetched line was accessed soon after being prefetched, the
cache line is placed in the active mode. If the previous prefetch was useful and the

8A useful prefetched cache line is referenced before the cache line is evicted



44 2.8. OTHER TIME-BASED TECHNIQUES

previously prefetched line was not accessed soon after being prefetched, the cache line
is first placed in a state-preserving, low-power mode for some period related to how
long it took the previously prefetched line to be accessed, following which it is placed
in the active mode. This third scheme is shown to yield the most energy savings with
little performance degradation.

2.8 Other Time-Based Techniques

In this section a variety of other cache management techniques which utilise not only
the ordering of memory references, but also their absolute timing are reviewed.

Lee et al. propose eager writeback, a technique which speculatively writes dirty lines
to main memory ahead of eviction [LTF00]. This policy can be considered as a compro-
mise between write-through (immediately writing dirty lines to main memory) and
writeback (writing dirty lines to main memory only when evicted). It is important to
note that eager writeback is always correct, the limiting cases of its operation being
either the traditional write-through or writeback behaviour. The best candidates for
eager writeback are those cache lines which will not be written to again prior to their
eviction. Such cache lines are identified by examining the LRU replacement stack, find-
ing that on their benchmarks the probability of rewriting a dirty least-recently used
cache line is generally small. While for some benchmarks the actual probability of
rewriting such a cache line may be numerically large, the actual number of such cases
is very small.

The performance benefit introduced by eager writeback comes from better distributed
bandwidth utilisation to alleviate memory bus congestion. For the SPEC95 bench-
marks, little benefit is gained by eager writeback. This is explained by SPEC95 being a
poor candidate for memory system performance studies due to its small working sets.
Instead, Lee et al. present a pair of kernels. The first kernel is based upon the tradi-
tional graphics rendering pipeline, utilising graphics hardware only for rasterisation.
The second kernel is intended to be representative of a streaming application, looping
over two large arrays. Both kernels show reasonable performance improvements from
eager writeback. When additional traffic is injected onto the bus, increasing the poten-
tial for contention, more significant performance improvements are observed. Such a
scenario occurs in many systems where there are multiple devices trying to access the
memory bus simultaneously, for example a graphics accelerator using Direct Memory
Access (DMA) to access main memory.

Al-Zoubi et al. demonstrate a significant gap between the performance of an optimal
cache replacement policy and that which is achieved by currently implemented cache
replacement policies [AZMM04]. While there has been much work on general cache re-
placement policies, several specific time-based cache replacement policies are detailed
below.

Lin and Reinhardt note the increasing gap between Least Recently Used (LRU) and
optimal (OPT) cache replacement policies as cache size and associativity grow and in-
vestigate last-touch references under the two policies [LR02]. All references can be par-
titioned into three disjoint subsets: references which are not last-touches under either
policy, references that are last-touches under both policies and references which are



CHAPTER 2. BACKGROUND 45

last-touches under LRU but not OPT. The converse of the latter case is shown to be im-
possible. In order to attempt to predict last-touch references, a variety of trace-based
signatures are introduced, composed of the (past and present) addresses referenced
and the (past and present) program counters of the instructions that reference them.
An ideal predictor is then introduced which simply accumulates signatures known to
be last-touches. Such a predictor is shown to be adequate at the first-level data cache,
but the increased associativity and filtered reference stream at the unified second-level
cache leads to poor accuracy and coverage. Some future knowledge can also be added
to the predictor, slightly improving predictability, since the time at which the predic-
tion is required (when a cache miss occurs and a replacement needs to be found) is later
than the time of the last-touch to the line. Instead, a Last-Touch History (LTH) bit vec-
tor is presented which tracks the last-touch history for each cache line. The LTH vector
simply stores a sequence of bits indicating if the previous references were last-touches
or not. The LTH vector is then used as a signature, having filtered out references to the
most recently used line to reduce the storage overhead, in the same manner as before.

Given a last-touch predictor, Lin and Reinhardt proceed to modify the replacement
policy by either early eviction or late retention, with a fallback LRU policy. The early
eviction policy replaces the first non-MRU line whose last reference is predicted to be
an OPT last-touch. The late retention policy does not replace the line whose last refer-
ence is predicted to be an LRU last-touch but not an OPT last-touch. In general, late
retention policies are more prone to degradation by inaccurate prediction than early
eviction policies, since late retention requires the eviction of one additional line for
each miss that takes place while the line is being retained, whereas early eviction suf-
fers at most one additional miss for each misprediction. While both policies improve
the miss rate compared to LRU, the early eviction policy performs slightly better than
the late retention policy.

Liu and Yeung also investigate last-touch predictors to improve cache replacement de-
cisions [LY09]. They form a signature from the reuse distance history of each cache
set, as well as the program counter of the current reference. The reuse distance is
defined as the the number of unique memory locations referenced between two refer-
ences to the same memory location. This signature is then used to index into a table of
previously-observed last-touch signatures. A shadow tag array is required in order to
track the history of recently evicted cache lines. Liu and Yeung find that the best vic-
tim for eviction is the most-recently used (MRU) cache line which is predicted to have
had its last-touch. Their Reuse Distance Last-Touch Predictor is further extended to
a direct Reuse Distance Predictor by storing a prediction of the reuse distance itself,
alongside the previously-observed last-touch signatures. Similarly, Petoumenos et al.
propose a reuse distance predictor for improved cache replacement based upon track-
ing reuse distances of the most frequent instructions which access memory [PKK09].
Yet another cache replacement enhancement is proposed by Jaleel et al., who predict
the re-reference interval of cache lines [JTSE10].

Takagi and Hiraki propose inter-reference gap distribution replacement, a time-based
cache replacement algorithm designed to improve upon traditional LRU replacement
[TH04]. The Inter-Reference Gap (IRG) is defined as the time difference between suc-
cessive references to a cache line. Time is tracked by the number of accesses to the
cache, hence is not absolute. While each memory block has its own probability distri-
bution of IRG, to reduce the overheads of storage, cache lines are classified into several



46 2.9. CACHE EFFICIENCY

disjoint classes:

• OT: cache lines with a reference count of one

• TT: cache lines with a reference count of two

• ST: cache lines with a reference count greater than two

• MT: cache lines with a reference count greater than some threshold

• PS: cache lines with a stable IRG. This is determined when the difference between
consecutive IRGs is less than some threshold and when this situation occurs con-
secutively at least a second threshold number of times.

The classes are listed in increasing order of priority such that a cache line is placed
in the class with the highest priority whose criteria it satisfies. The IRG probability
distribution for each class is divided into fixed size bins and the distribution statistics
for each class is recorded at run-time. Using the probability distribution of each class,
the IRG can be estimated, and the cache line chosen for replacement is the one with the
smallest reciprocal of IRG.

Kharbutli and Solihin propose using counters per cache line to improve the perfor-
mance of the cache replacement policy [KS05]. When a counter exceeds an adaptive
threshold, the line is considered eligible for eviction. In the absence of any eligible
lines, a fallback LRU policy is used. Two counters are proposed. The first increments
on every access to the cache set in which the cache line is contained, while the sec-
ond increments upon every access to the cache line itself. The two counter-based ap-
proaches are shown to yield significant performance improvements compared to both
standard LRU and two sequence-based replacement policies — Lin and Reinhardt’s
last-touch history predictor [LF00] and Lai and Falsafi’s dead block predictor [LFF01].
A replacement policy using absolute time shows a small overall performance improve-
ment compared to the simple counter-based approach. All predictors are limited to
approximately the same storage size of 64kB which goes some way towards explain-
ing the lacklustre performance of the sequence-based predictors, acknowledging that
large prediction tables are required for reasonable coverage and accuracy.

2.9 Cache Efficiency

The cache utilisation metric investigated in Chapter 3 is also known as cache efficiency,
first defined by Burger et al. [BGK95]. While much subsequent research has cited this
paper, very little work has directly addressed cache efficiency. One exception is Liu et
al.’s recent work prefetching into cache lines which are predicted not to be referenced
again prior to eviction, known as dead cache lines [LFHB08]. A cache burst is defined
as the period of time between a cache line becoming MRU and subsequently becoming
non-MRU, and cache bursts are found to be more predictable than regular references,
hence last-touch predictors based on cache bursts have superior performance com-
pared to last-touch predictors based on regular references. Notably, Liu et al. detail the
quantitative improvement in cache efficiency which their scheme provides.



CHAPTER 2. BACKGROUND 47

2.10 Summary

This chapter began by introducing several highly-significant technology trends which
have influenced the development of microprocessors over the past fifty years and
which are anticipated to continue to do so for the medium to long term future. The
basics of cache architectures were reviewed and several approaches to improve cache
performance and decrease power consumption were discussed focusing specifically on
victim caches, prefetching and transitioning cache lines into low-power states. Finally,
several other cache management techniques were reviewed which exemplify time-
based approaches to improving cache performance, primarily by improving cache re-
placement decisions.



48 2.10. SUMMARY



Cache Utilisation 3

3.1 Overview

The aim of this chapter is to define and examine various cache line lifetime metrics,
including cache utilisation, and to examine the distribution and scaling of these metrics
across various cache configurations.

This chapter begins with a description of the method used to explore the concepts and
results presented in this dissertation. This method is first used to evaluate the impact
of cache performance on overall system performance. The improvements made by
a traditional cache hierarchy are identified and the remaining gap between scaling a
traditional cache hierarchy and a perfect memory system is examined. Several cache
line lifetime metrics are defined and their distributions are examined across different
benchmarks. These metrics are based around the liveness of a cache line i.e. whether it
will be accessed again prior to eviction, and include cache utilisation, a measure of the
effectiveness or efficiency of the cache. Finally, the relationship between the cache miss
rate and cache utilisation as well as the scaling of cache utilisation with conventional
cache parameters are examined.

Subsequent chapters describe various approaches to predict the liveness of a cache line,
and how these predictions may be exploited in optimisations designed to efficiently
enhance cache and hence system performance by improving cache utilisation.

3.2 Method

Simulation is widely used in computer architecture due to the high cost1 of fabricating
actual semiconductor devices for architectural exploration. Simulation may be applied
along a wide spectrum of models, typically trading off accuracy against execution time
and development effort. Very detailed circuit-level simulators such as HSPICE and
PSPICE employ sophisticated transistor models to enable highly-accurate results, but
due to long execution times and complex parameterisation are only suitable for very
small parts of a design. At a higher level, Hardware Description Languages (HDLs)
such as Verilog and VHDL may be used to model larger systems, with correspondingly
shorter execution times and development effort, but with less accurate results than
circuit-level simulation. Finally, more abstract models of real hardware can be created
using traditional high-level programming languages such as C++ or Java. While such
abstract models are typically much quicker to develop and simulate compared to ei-
ther circuit-level simulation or hardware description languages, care must be taken to

1Both financial cost and the cost in terms of time

49



50 3.2. METHOD

ensure that the model does not implement functionality which would be unsuitable (in
terms of delay, area or power consumption) to implement in actual hardware.

One hybrid approach between a full hardware implementation and a software simu-
lation is hardware emulation by a suitably reconfigurable platform. This approach is
taken by the RAMP (Research Accelerator for Multiple Processors) project in which
Field-Programmable Gate Arrays (FPGAs) provide the reconfigurable substrate upon
which a multiprocessor system is implemented [WPO+07]. In Wawrzynek et al.’s rel-
ative comparison of different approaches for parallel research, software simulation
scores highly in all factors other than “credibility of result”. However, this lack of cred-
ibility is largely due to the parallel nature of the system under examination, whereas
the work in this dissertation concentrates on single processor systems.

Unless stated otherwise, all results in this dissertation were generated using a modi-
fied version of the M5 Simulator System v1 [BHR03] with a detailed processor model
based upon the venerable SimpleScalar v3 sim-outorderAlpha model [ALE02]. The
simulator operates in syscall-emulation mode, so any functionality that would be per-
formed by the operating system is emulated by the host system, rather than being
faithfully simulated. The alternative would be full-system simulation, not supported
by M5 v1, in which an entire operating system is run upon the simulated processor,
greatly increasing simulation times unless approaches such as checkpointing are used,
whereby the entire system state can be persisted and recalled under different proces-
sor configurations. Since the work in this dissertation is primarily concerned with
single benchmarks rather than multiprogramming, and since the benchmarks under
consideration are designed to place few demands on the operating system itself, this
approach is reasonable. Virtual memory, and hardware to support it, are not modelled.

The M5 Simulator processor core, memory hierarchy and buses were mostly unchanged.
Additional statistics were added to keep track of live and dead cache lines. New simu-
lation objects were created to model the victim cache and the various predictors evalu-
ated, while the existing prefetcher was modified to model the prefetch victim selection
scheme detailed in Chapter 5. Where appropriate, modifications were tested using unit
tests of individual pieces of functionality, followed by bespoke hand-written assembler
to perform larger-scale testing.

All results in this dissertation were generated by simulations running on the Univer-
sity of Cambridge Computer Laboratory’s processor bank which consists of numerous
virtual machines, each configured with a single processor and between 1 GB and 4
GB of memory. The Xen hypervisor is used for virtualisation, providing a reliable,
high-performance virtual machine [BDF+03]. The number of machines available in
the processor bank varies according to other system demands, but is usually between
40 and 90. The processor bank is managed using the Condor workload management
system [TTL05].

3.2.1 Benchmarks

For the majority of this dissertation the popular SPEC CPU2000 suite of integer and
floating point benchmarks is used [Hen00]. This suite is designed to measure the per-
formance of the processor core, memory subsystem (excluding any disk-based virtual
memory) and compiler. To clarify, the term benchmark (e.g. gcc scilab) will be used



CHAPTER 3. CACHE UTILISATION 51

Functional Units 6 Integer ALUs
2 Integer multiply/divide units
4 Floating-point ALUs
2 Floating-point multiply/divide units
2 Memory read/write ports

Instruction Queue Size 128 instructions
Fetch/Decode/Issue/Commit Width 8 instructions/cycle
Reorder Buffer Size 128 instructions
Load/Store Queue Size 64 entries
Clock Frequency 4 GHz

Table 3.1: Summary of the baseline processor core parameters

to specify a particular application (e.g. gcc) with a particular workload (e.g. scilab).
Almost all the simulated binaries are compiled with the Compaq compiler suite using
the peak SPEC2000 settings. However, gcc 200 is compiled using the standard GNU
gcc compiler with peak SPEC2000 settings since the binary produced by the Compaq
compiler suite exposes unresolved issues in the SimpleScalar processor core model.
Details of individual benchmarks can be found in Appendix A. Unlike much other
research, the full results for each individual application together with each individual
workload for that application are considered separately. The benchmarks are executed
using the reference set of inputs, with the first one billion cycles executed using a sim-
plified processor model to warm up the caches and to bypass any initialisation code
before running the next two billion cycles with a detailed processor model and record-
ing the desired statistics2. All benchmarks produced some text or file output which
was compared to the reference output provided by the SPEC CPU2000 suite in order
to help verify functional correctness.

3.2.2 Baseline System Configuration

The full baseline system parameters are listed in Appendix B and summaries of the
processor core, branch predictor and memory subsystem parameters are provided in
Tables 3.1, 3.2 and 3.3 respectively. The latter consists of separate first-level (L1) caches
for data (DL1) and instructions (IL1) and a unified second-level (L2) cache.

The parameters are based upon the Alpha 21264 microprocessor [Cor99], excluding
the microclustered architecture, but with some updates to accommodate recent and
shortly anticipated technology trends as previously discussed in Section 2.3. While
these parameters may appear slightly conservative, they are aligned with the demands
of the SPEC CPU2000 suite. For example, excessively increasing the L1 cache sizes
beyond the benchmark’s workload would result in a very sparse, unrepresentative,
reference stream being presented to the L2 cache.

The load/store queue provides load-bypassing and store-to-load forwarding, but does
not provide a load wait table as found in the Alpha 21264 microprocessor [Cor99].

2Except for perlbmk 2 which is fast-forwarded for one billion cycles then runs to completion in 650
million cycles in the baseline processor configuration



52 3.2. METHOD

Type Hybrid local/global predictor
Meta-predictor size 4 kB
Global history register size 12 bits
Local history size 10 bits
Local history registers 1024
Branch target buffer size 4 kB
Branch target buffer associativity 4-way
Return address stack size 16 entries

Table 3.2: Summary of the baseline branch predictor parameters

Data Level 1 Total size 128 kB
(DL1) Line width 64 bytes

Associativity 2-way
Latency 2 cycles
Replacement policy Least recently used
Prefetcher None

Instruction Level 1 Total size 128 kB
(IL1) Line width 64 bytes

Associativity 2-way
Latency 1 cycle a

Replacement policy Least recently used
Prefetcher None

Unified Level 2 Total size 1 MB
(L2) Line width 64 bytes

Associativity 8-way
Latency 12 cycles
Replacement policy Least recently used
Prefetcher None

Main Memory Total size Assumed infinite
Latency 200 cycles

aActual Alpha 21264 IL1 latency is 2 cycles but this is mostly hidden by line and way prediction
which are not modelled

Table 3.3: Summary of the baseline memory subsystem parameters



CHAPTER 3. CACHE UTILISATION 53

3.3 Quantifying the Impact of Memory Latency

The need to reduce the impact of increasing main memory latency is the primary mo-
tivation for the work described in this dissertation. This section examines to what ex-
tent current cache architectures can mitigate large main memory latencies. The overall
performance gains that would be achieved by theoretically perfect caches is also inves-
tigated, demonstrating that there is still significant progress to be made in the arena of
cache and memory subsystem design.

Figure 3.1 shows the average number of instructions committed per cycle (IPC) with
the baseline configuration over the SPEC CPU2000 integer and floating-point bench-
marks. The improvements that would be achieved by a perfect L2 cache and perfect
L1 caches are also shown. In this case, a perfect cache is defined as a cache in which
every access, including the first access to a cache line, hits with the fixed latency of that
particular cache. The further improvements that would be made by a perfect memory
subsystem in which every access hits in the cache with a fixed latency of a single cycle
are also shown.

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
ap

si

In
st

ru
ct

io
n

s 
co

m
m

it
te

d
 p

er
 c

y
cl

e 
(I

P
C

)

0

1

2

3

4

5

Perfect Memory

Perfect L1s

Perfect L2

Baseline

Figure 3.1: Average number of instructions committed per cycle (IPC)



54 3.3. QUANTIFYING THE IMPACT OF MEMORY LATENCY

It is interesting to note that the IPC attained varies considerably both between appli-
cations, as well as within applications but between different workloads, e.g. the seven
perlbmk benchmarks and the five gcc benchmarks show markedly different results.
Differing IPC values are to be expected between applications due to the inherent differ-
ence in the amount of Instruction Level Parallelism (ILP) that may be exploited, but
differing IPC values within applications but between workloads is more unexpected
and is an example of where previous research which considers only applications as a
whole may be misleading.

For the majority of benchmarks, a perfect L2 cache improves IPC considerably, with
an average of 26% for the integer and 150% for the floating-point benchmarks. As
would be expected, those benchmarks with the greatest improvements are typically
those which exhibit a high L2 miss rate, as shown in Figure 3.2. For example, mcf and
art both exhibit high L2 miss rates and correspondingly higher IPC improvements.
It is interesting to note that the floating-point benchmarks have a higher average L2
miss rate than the integer benchmarks, but they are sometimes omitted from previous
research.

Benchmark	

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

L
2 

ca
ch

e 
m

is
se

s 
p

er
 1

,0
00

 i
n

st
ru

ct
io

n
s

0

2

4

6

8

10

12

14

16

18

20

22

24

26

30 11
5

11
5

59

Figure 3.2: Number of L2 cache misses per 1,000 instructions committed

Perfect L1 caches show less of an incremental IPC improvement than for a perfect L2
cache, indicating that for the benchmarks studied, the processor is able to tolerate the



CHAPTER 3. CACHE UTILISATION 55

Benchmark	

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

IL
1 

ca
ch

e 
m

is
se

s 
p

er
 1

,0
00

 i
n

st
ru

ct
io

n
s

0

1

2

3

4

5

6

7

8

9

10

Figure 3.3: Number of IL1 cache misses per 1,000 instructions committed

small miss latency of the L1 caches. Drilling down into the individual miss rates for
the L1 caches, the IL1 cache, shown in Figure 3.3, exhibits a uniformly low miss rate
over all benchmarks. While the result for the perlbmk 3 benchmark may look rela-
tively high compared to the other benchmarks, the absolute value (9.5 misses per 1,000
instructions) is small compared to the results for the DL1 and L2 caches.

Compared to both the IL1 and L2 caches, the miss rates for the DL1 cache, shown in
Figure 3.4, are considerably higher. The combined miss rate for the L1 caches is sim-
ply the sum of the miss rates of the DL1 and IL1 caches, and given the small IL1 miss
rates is approximately equal to the DL1 miss rates. Indeed, again as would be ex-
pected, those benchmarks with high DL1 miss rates show correspondingly better IPC
improvements with perfect L1 caches e.g. mcf and ammp, but in general the improve-
ments are smaller than those achieved by a perfect L2 cache. art is an interesting
example of the interaction between L1 and L2 caches. Both miss rates are very high
for the application, indicating much traffic to main memory, but a perfect L2 cache
yields a much greater IPC benefit than perfect L1 caches. This is because with a perfect
L2 cache, the impact of a L1 cache miss is greatly reduced since the access will never
require a lengthy access to main memory.

Finally, a perfect memory hierarchy in which every access is satisfied in a single cycle



56 3.3. QUANTIFYING THE IMPACT OF MEMORY LATENCY

Benchmark	

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

D
L

1 
ca

ch
e 

m
is

se
s 

p
er

 1
,0

00
 i

n
st

ru
ct

io
n

s

0

10

20

30

40

50

60

70

11
9

20
7

20
7

75 70

Figure 3.4: Number of DL1 cache misses per 1,000 instructions committed

shows marginal further improvement in most cases. Those few benchmarks where
reasonable increases in IPC are observed are those which especially stress the memory
hierarchy by requiring particularly large numbers of accesses to be satisfied with as
little latency as possible e.g. gzip and bzip2.

At this point it is worth noting that there is still much scope for further overall perfor-
mance improvement beyond enhancing the memory hierarchy. The theoretical maxi-
mum IPC of the baseline configuration is 8 instructions per cycle, however, other fac-
tors such as limited benchmark ILP, imperfect branch prediction and functional unit
capabilities place additional limits on that which is achievable.



CHAPTER 3. CACHE UTILISATION 57

3.3.1 Scaling Cache Size and Associativity

Increasing cache size and associativity were two of the key technology trends previ-
ously identified in Section 2.3. The cache sizes and associativities are now scaled in
line with these projected trends and the impact on overall system performance is exam-
ined. The L1 caches are scaled more conservatively than the L2 cache since minimising
latency is of prime importance for L1 caches, whereas the significantly increased size
and hence hit rate of the L2 cache can help outweigh any latency increases. Table 3.4
details the ten cache configurations examined. Latencies remain the same in all cases
at the baseline values.

Figure 3.5 shows the contribution to IPC improvement made by each of the cache con-
figurations relative to the previously defined perfect memory. For example, Config-
uration B increases the baseline IPC of gzip graphic to approximately 40% of the
increase that would be achieved with a perfect memory. Subsequent cache configura-
tions (C to I) do little more to help, with Configuration I lagging the perfect memory
by approximately 55%.

Changing cache configurations typically increases performance, but the size of the in-
crease is very variable depending on the benchmark and the cache configuration being
considered. Some benchmarks (e.g. vpr place, twolf and galgel) benefit greatly
from Configuration A, whereas others (e.g. mcf, mesa and facerec) require Configu-
ration E or later to obtain significant performance improvements. Even Configuration
I, the most extreme configuration, still leaves much room for further improvement for
many benchmarks.

Cache L1 Caches L2 Cache
Configuration Size Associativity Size Associativity

Baseline 128 kB 2-way 1024 kB 8-way
A 128 kB 2-way 2048 kB 8-way
B 256 kB 4-way 2048 kB 16-way
C 256 kB 4-way 4096 kB 16-way
D 512 kB 8-way 4096 kB 32-way
E 512 kB 8-way 8192 kB 32-way
F 1024 kB 16-way 8192 kB 32-way
G 1024 kB 16-way 16384 kB 64-way
H 2048 kB 32-way 16384 kB 64-way
I 2048 kB 32-way 32768 kB 128-way

Table 3.4: Cache hierarchy configurations



58 3.3. QUANTIFYING THE IMPACT OF MEMORY LATENCY

Benchmark	

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

P
er

ce
n

ta
g

e 
co

n
tr

ib
u

ti
o

n
 t

o
 I

P
C

 o
f 

a 
p

er
fe

ct
 m

em
o

ry
	

0

20

40

60

80

100

Config A

Config B

Config C

Config D  

Config E  

Config F  

Config G  

Config H  

Config I  

Remainder  

Figure 3.5: Contribution of different cache configurations towards the IPC of a perfect
memory

In an isolated number of cases, increasing the cache associativity without increasing
the cache size, e.g. for the L2 cache from Configuration A to Configuration B, can lead
to small decreases in IPC since there is potentially more contention for fewer uniquely
addressable cache lines. Such cases are of too small magnitude to be apparent in Figure
3.5.

In reality, access latencies could not be kept constant and would increase if cache size
and/or associativity were increased, thus these results are very optimistic and IPC
would rise far more slowly, probably decreasing in some cases as the performance
detriment of an increased latency overtook the performance benefit of a decreased miss
rate.

Figure 3.5 shows relative improvements in performance, and as such needs to be in-
terpreted carefully. Recalling Figure 3.1, some benchmarks (e.g. gzip, eon, mesa and
fma3d) show very little benefit from even a perfect memory, and typically have low
miss rates in all three caches. Therefore even a large IPC improvement relative to that
of a perfect memory may not correspond to a large absolute increase in performance.
Other benchmarks (e.g. vpr, gcc, art and facerec) show large benefit from a perfect



CHAPTER 3. CACHE UTILISATION 59

memory, typically have higher miss rates in all three caches, and are helped by increas-
ing cache size and associativity. This is most likely due to more conflict and capacity
misses being made, compared to compulsory misses. One final group of benchmarks
(e.g. wupwise, swim, mgrid, applu, ammp and lucas) also show large benefit from
a perfect memory, also typically have higher miss rates in all three caches, but are not
helped by increasing cache size and associativity. This is most likely due to more com-
pulsory misses being made, compared to conflict or capacity misses. These latter cases
demonstrate that even optimistic cache scaling rarely comes close to the performance
improvements that would be made by a perfect cache, hinting that such naı̈ve scaling,
with associated power consumption and reliability concerns, is not the best approach
to improving overall performance.

3.4 Describing the Lifetime of a Cache Line

In this section a set of definitions is developed to describe the lifetime of a cache line,
using similar terminology to previous work by Hu et al. [HKM02]. A cache line is
born when it is fetched from a lower level in the memory hierarchy and placed in
the cache. Subsequent read and write hits occur during which time the cache line is
known as live, with the period between consecutive hits being known as the access
interval. At some later point in time the cache line is evicted to make space for a new
line, and throughout the period between the last hit and the eviction the line is known
as dead. Thus the period of time from the cache line being fetched until its last hit is
the live time, and the period of time from its last hit until its eviction is the dead time.
The whole period of time that the cache line is resident in the cache is known as its
generation. These definitions are illustrated in Figure 3.6.

Figure 3.6: Cache line lifetime metric definitions

These metrics are now recorded for each of the benchmarks in the SPEC CPU2000
suite for the baseline configuration. For each cache and benchmark combination, the
cumulative distribution of the metric is plotted. A cumulative plot is used in order
to simultaneously examine the behaviour of multiple benchmarks since a traditional
histogram would be unwieldy with 48 different benchmarks. Those benchmarks of



60 3.4. DESCRIBING THE LIFETIME OF A CACHE LINE

specific interest are highlighted in the legend. In addition, to capture both large and
small scale behaviour, the majority of plots use a logarithmic scale on the x-axis. Some
benchmarks demonstrate clustering of values, indicated by flat sections on the cumu-
lative plot. One of the simplest cases is a bimodal distribution, observed by Hu et
al. for all of the metrics on average [HKM02]. In this type of distribution, there are
two clusters of values, usually at opposing ends of the range under examination. The
boundary between these two clusters appears as a “step” on the cumulative plot. More
than two clusters leads to multiple steps. Note that the use of the logarithmic scale can
be misleading, and care must be taken to verify the rate of change of apparent steps,
particularly those appearing towards the right-hand side of the plot.

Each of the cache line lifetime metrics is now examined in turn, and the cumulative
distributions for each of the three caches in the memory hierarchy is examined and
discussed. Critically, the live and dead times of a cache line can only be determined
once that line has been evicted, since at an arbitrary point in time the next event for
a cache line may be a hit (indicating that the line was live) or an eviction (indicating
that the line was dead). At the end of the simulation, the generations of each cache line
are artificially ended to ensure that cache lines with very long live or dead times are
not inadvertently missed, since these values will only be known when the cache line is
evicted. By assuming cache lines are dead at the end of the simulation, an inaccuracy
is potentially introduced. However, given the vast number of different generations
encountered during the benchmark compared to those still resident in the cache at the
end of the simulation, this inaccuracy is negligible.

3.4.1 Live Time Distributions

Figures 3.7, 3.8 and 3.9 show the cumulative distributions of live times for the DL1, IL1
and L2 caches respectively. All three plots use a logarithmic scale on the x-axis and
show a wide variety of differing behaviour for the different benchmarks. Each of the
three caches is now discussed in turn.

DL1 Cache

Figure 3.7 shows the cumulative distributions of live times for the DL1 cache for each
of the benchmarks. The proportion of cache lines with very short live times (de-
fined here as less than 10 cycles) varies considerably between benchmarks, from 2.5%
(gcc integrate) to 99.3% (ammp). Conversely, the proportion of cache lines with
very long live times (defined for the L1 caches as 10,000 cycles or more) varies almost
as much, from 0.0016% (art 1) to 61% (eon 3). In between, a variety of behaviour is
observed. Some benchmarks show multiple steps characteristic of a clustered distribu-
tion (e.g. gcc 166 and mgrid) whereas others show more continuous behaviour (e.g.
crafty and gzip program).

Hu et al. report that, on average, 58% of live times are less than 100 cycles [HKM02]. At
the same boundary, Figure 3.7 shows substantial variation between benchmarks, di-
minishing the significance of quoting just an average figure, with between 14% (mgrid)
and 99.4% (ammp) of cache lines having live times less than 100 cycles.



CHAPTER 3. CACHE UTILISATION 61

Live time (cycles)

<=10 100 1,000 10,000 100,000 >1,000,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

0

20

40

60

80

100

gzip_program

gcc_166

gcc_integrate

crafty

eon_3

mgrid

art_1

ammp

others

Figure 3.7: Cumulative distributions of live times for the DL1 cache

IL1 Cache

Figure 3.8 shows the cumulative distributions of live times for the IL1 cache for each of
the benchmarks. The range of very short live times is slightly narrower than the range
for the DL1 cache, whereas the range of very long live times is considerably wider than
the DL1 cache, with 7.4% (perlbmk 2) to 93% (applu) of cache lines having live times
greater than 10,000 cycles.

The overall trend is for IL1 live times to be considerably longer than DL1 live times.
This is to be expected since the instruction cache typically exhibits more repetitive
access patterns, hence better cache line reuse than the data cache, so cache lines are
resident longer whilst actively being referenced. At the 100 cycle boundary previously
discussed, between 4.9% (applu) and 82% (art 1 and art 2) of lines are live.

Compared to the DL1 results, there are fewer pronounced steps other than for a few
selected benchmarks (e.g. swim and fma3d) indicating that the IL1 live times are not
as clustered as the DL1 live times.

L2 Cache

Figure 3.9 shows the cumulative distributions of live times for the L2 cache for each of
the benchmarks. The first observation is that the proportion of cache lines with very
short live times varies hugely between benchmarks, from 0.62% (perlbmk 2) to 99.2%



62 3.4. DESCRIBING THE LIFETIME OF A CACHE LINE

Live time (cycles)

<=10 100 1,000 10,000 100,000 >1,000,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

0

20

40

60

80

100

perlbmk_2

swim

applu

art_1

art_2

fma3d

others

Figure 3.8: Cumulative distributions of live times for the IL1 cache

(ammp). Almost all benchmarks show no live times between 10 and 10,000 cycles as
indicated by the flat lines on the cumulative plot. Above 10,000 cycles, some bench-
marks show sudden increases (e.g. facerec, mesa and fma3d) whereas the increase
in the proportion of cache lines with longer live times is slower for other benchmarks
(e.g. vortex 2 and crafty).

The proportion of cache lines with long live times shows similar behaviour as for the
IL1 cache, with between 0% (swim) and 99.4% (perlbmk 2) of cache lines having live
times greater than 1,000,000 cycles. The overall tendency is for L2 live times to be
considerably longer than both DL1 and IL1 live times. This is to be expected since the
L2 cache reference stream is filtered by the inclusive L1 caches, therefore cache accesses
are fewer and sparser, leading to longer live times.

3.4.2 Dead Time Distributions

Figures 3.10, 3.11 and 3.12 show the cumulative distributions of dead times for the DL1,
IL1 and L2 caches respectively. Note that like the live time plots previously discussed,
Figures 3.10 and 3.11 use a log scale on the x-axis, however, Figure 3.12 uses a linear
scale due to the nature of the distribution. The first general observation is that dead



CHAPTER 3. CACHE UTILISATION 63

Live time (cycles)

<=10 100 1,000 10,000 100,000 >1,000,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

0

20

40

60

80

100

crafty

perlbmk_2

vortex_2

swim

mesa

facerec

ammp

fma3d

others

Figure 3.9: Cumulative distributions of live times for the L2 cache

times are, on average, considerably longer than live times, indicating generational
behaviour. This term is borrowed from the field of garbage collection and is defined
by Kaxiras et al. as “a flurry of use when first brought in, and then a period of dead
time between their last access and the point where a new data item is brought into
that cache location” [KHM01]. Generational behaviour was also found by Hu et al.
[HKM02]. The distributions of dead times are also highly variable between different
benchmarks and caches, and the details of each is now discussed in turn.

DL1 Cache

Figure 3.10 shows the the cumulative distributions of dead times for the DL1 cache for
each of the benchmarks. Compared to the live times for the DL1 cache, dead times
are, on average, one to two orders of magnitude larger. Hu et al. consider a dead
time of less than 100 cycles to be small, finding 31% of dead times less than this value.
Figure 3.10 shows that between 0% (art 1 and art 2) and 12% (equake) of cache
lines have dead times less than this threshold. Some steps are visible on the plot (e.g.
gcc 166, lucas and perlbmk 6), indicative of clustering. The proportion of cache
lines with dead times between 10,000 and 100,000 cycles rises rapidly for the majority



64 3.4. DESCRIBING THE LIFETIME OF A CACHE LINE

Dead time (cycles)

<=10 100 1,000 10,000 100,000 >1,000,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

0

20

40

60

80

100

gcc_166

perlbmk_2

perlbmk_6

swim

art_1

art_2

equake

lucas

others

Figure 3.10: Cumulative distributions of dead times for the DL1 cache

of benchmarks. Between 0.44% (swim) and 99.6% (perlbmk 2) of cache lines have
dead times greater than 100,000 cycles.

IL1 Cache

Figure 3.11 shows the the cumulative distributions of dead times for the IL1 cache for
each of the benchmarks. Two distinct behaviours are apparent — approximately half
of the benchmarks (e.g. eon 2 and perlbmk 1) have a distribution of IL1 dead times
shorter than the DL1 dead times while the other half of the benchmarks (e.g. gzip log

and bzip2 program) have a distribution of dead times considerably longer than the
DL1 dead times. At the 100 cycle boundary previously discussed, the IL1 behaviour is
somewhat similar to the DL1 behaviour, with 0% (vpr place and several others) to
3.5% (eon 1) of cache lines having dead times less than 100 cycles. From the 1,000 cycle
point onwards, the proportion of cache lines with longer dead times rises quickly for
some benchmarks but much more slowly for others, with between 0.054% (fma3d) and
99.9% (art 1 and art 2) of cache lines have dead times greater than 100,000 cycles.

L2 Cache

Figure 3.12 shows the cumulative distributions of dead times for the L2 cache for
each of the benchmarks. Again, it is clear that overall dead times are considerably



CHAPTER 3. CACHE UTILISATION 65

Dead time (cycles)

<=10 100 1,000 10,000 100,000 >1,000,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

0

20

40

60

80

100

gzip_graphic

vpr_place

eon_1

eon_2

perlbmk_1

bzip2_program

art_1

art_2

fma3d

others

Figure 3.11: Cumulative distributions of dead times for the IL1 cache

longer than live times. Unlike the live time distribution for the L2 cache, the pro-
portion of cache lines having short dead times (less than 100 cycles) is very small,
from 0% (gzip log and numerous others) to 0.00011% (crafty). Some benchmarks
show evidence of clustering between dead times of 200,000 and 400,000 cycles (e.g.
art 2, swim and mesa) whereas others show more continual increases (e.g. facerec,
bzip2 graphic and sixtrack). The proportion of cache lines with dead times
greater than 900,000 cycles varies widely, from 0.015% (swim) to 99.9% (eon 3).



66 3.4. DESCRIBING THE LIFETIME OF A CACHE LINE

Dead time (cycles)

<=10 100,000 200,000 300,000 400,000 500,000 600,000	 700,000 800,000 900,000 >1,000,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

0

20

40

60

80

100

gzip_log

crafty

eon_3

bzip2_graphic

swim

mesa

art_2

facerec

sixtrack

others

Figure 3.12: Cumulative distributions of dead times for the L2 cache



CHAPTER 3. CACHE UTILISATION 67

3.4.3 Access Interval Distributions

Figures 3.13, 3.14 and 3.15 show the cumulative distributions of access intervals for
the DL1, IL1 and L2 caches respectively. All three plots use log scales on the x-axis,
however the range of the DL1 and IL1 plots is considerably narrower than previously
(up to 10,000 cycles) whereas the L2 plot uses the full range (up to 1,000,000 cycles).
Compared to the live and dead time distributions previously discussed, there is gen-
erally more consistency between benchmarks, particularly for the DL1 and IL1 caches.
As would be expected from their definition, access intervals are much smaller than ei-
ther live or dead times, indicating that cache lines are repeatedly accessed numerous
times prior to eviction. The access interval distributions for each of the caches is now
discussed in turn.

DL1 Cache

Figure 3.13 shows the cumulative distributions of access intervals for the DL1 cache for
each of the benchmarks. For all benchmarks there is a significant proportion of cache
lines with very short access intervals (in this case defined to be less than 10 cycles).
This value varies from 45% (art 1 and art 2) to 92% (gcc 166). From the start, the
rate of increase across all benchmarks remains reasonably constant and by 150 cycles
all benchmarks are within 20% of each other. There is little evidence of steps in the
plot, other than for galgel, indicating that access intervals for the DL1 cache are not
generally clustered. Between 0.0018% (art 1) and 2.5% (gzip random) of cache lines
have access intervals in excess of 10,000 cycles.

IL1 Cache

Figure 3.14 shows the cumulative distributions of access intervals for the IL1 cache
for each of the benchmarks. Similar trends are shown as for the DL1 cache, though
with slightly less consistency between benchmarks. Between 57% (vortex 3) and
95% (galgel) of cache lines have access intervals of less than 10 cycles. The cumu-
lative proportion of cache lines with a given access interval then increases somewhat
uniformly across benchmarks. Few clear steps are observed, indicating again that ac-
cess intervals for the IL1 cache are not generally clustered. Some benchmarks show
remarkably uniform increases over a wide range (e.g. vortex 3) whereas others are
more sporadic (e.g. mgrid). At the upper limit of the x-axis, between 0.0040% (lucas)
and 1.6% (perlbmk 3) of cache lines have access intervals greater than 10,000 cycles.

L2 Cache

Figure 3.15 shows the cumulative distributions of access intervals for the L2 cache for
each of the benchmarks. Note that this figure is plotted over a larger range of access
intervals than the previous two figures. There is considerably more variation between
benchmarks than the previous distributions for the DL1 and IL1 caches. As would be
expected, the access intervals for the L2 cache are significantly longer than the access
intervals for the DL1 and IL1 caches, reflecting the fact that the L2 cache is accessed



68 3.4. DESCRIBING THE LIFETIME OF A CACHE LINE

Access interval (cycles)

<=10 100 1,000 10,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

40

50

60

70

80

90

100

gzip_random

gcc_166

galgel

art_1

art_2

others

Figure 3.13: Cumulative distributions of access intervals for the DL1 cache

Access interval (cycles)

<=10 100 1,000 10,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

50

60

70

80

90

100

perlbmk_3

vortex_3

mgrid

galgel

lucas

others

Figure 3.14: Cumulative distributions of access intervals for the IL1 cache



CHAPTER 3. CACHE UTILISATION 69

Access interval (cycles)

<=10 100 1,000 10,000 100,000 >1,000,000

C
u

m
u

la
ti

v
e 

p
er

ce
n

ta
g

e 
o

f 
ca

ch
e 

li
n

es

0

10

20

30

40

50

60

70

80

90

100

crafty

perlbmk_6

bzip2_source

swim

mgrid

art_1

art_2

equake

ammp

fma3d

apsi

others

Figure 3.15: Cumulative distributions of access intervals for the L2 cache

much less frequently due to the filtering effect of the L1 caches. The proportion of cache
lines with short access intervals (defined here as less than 1,000 cycles) varies between
0% (art 1 and art 2) and 50% (equake). Some benchmarks show steps on the cumu-
lative plot, indicating clustered behaviour (e.g. fma3d, apsi and mgrid) whereas oth-
ers show more continuous increases (e.g. crafty, perlbmk 6 and bzip2 source).
At the limit of the x-axis, between 0.14% (ammp) and 96% (swim) of cache lines have
access intervals in excess of 900,000 cycles, though the majority of benchmarks exhibit
a proportion of less than 30%.



70 3.5. CACHE UTILISATION

3.5 Cache Utilisation

Having distinguished live and dead cache lines, it is now possible to determine what
proportion of the overall cache is actively in use at any point in time, an indication of
how well utilised or effective the cache is.

One simple metric is to take the ratio of the cumulative live time to the cumulative
generation time (i.e. the sum of the cumulative live time and the cumulative dead
time) for the whole cache. These formulas are formally defined in Equations 3.1 and
3.2.

Cache utilisation =
Cumulative live time

Cumulative generation time
(3.1)

Cumulative generation time = Cumulative live time + Cumulative dead time (3.2)

Such a metric takes no account of varying behaviour over time, but does provide an
estimate of the potential for improving cache performance or decreasing power con-
sumption by exploiting such information. This ratio is now examined for the cache
hierarchy of the baseline configuration.

Based on the metrics previously discussed, namely the cache miss rate and the overall
IPC, it is not immediately clear what utilisation results are to be expected. A high
utilisation, caused by long live times compared to dead times, may be accompanied
by a low miss rate (high data reuse throughout the cache) or a high miss rate (much
“churn” in the cache with many evictions). A low utilisation, caused by short live
times compared to dead times, may be accompanied by a low miss rate (high data
reuse but concentrated on a small portion of the cache) or a high miss rate (low data
reuse throughout the cache). Thus utilisation is influenced not only by the magnitude
of the hit rate, but also how widely distributed in the cache those hits are being made.

3.5.1 DL1 Cache

Figure 3.16 shows the cache utilisation of the DL1 cache for each benchmark. The
utilisation varies greatly over the benchmarks, from 0.29% (art 1 and art 2) to 72%
(perlbmk 3). Somewhat surprisingly, cache utilisation also varies considerably within
applications, but with different workloads where similar results might be expected e.g.
for the gzip benchmarks. The average utilisation across all benchmarks is 25%.

In general, if a benchmark has a low miss rate, it will have a high utilisation and vice
versa, but this relationship is not always consistent across all benchmarks. For example,
while art 1, art 2 and lucas all have high miss rates and low utilisation, gap has a
low miss rate and low utilisation.



CHAPTER 3. CACHE UTILISATION 71

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

Figure 3.16: Cache utilisation in the DL1 cache

3.5.2 IL1 Cache

Figure 3.17 shows the cache utilisation of the IL1 cache for each benchmark. The utili-
sation is generally more consistent than in the DL1 cache, with numerous benchmarks
between 60% and 75%, peaking at 78% for perlbmk 3. Interestingly, perlbmk 3 also
has the highest miss rate. A few benchmarks show comparatively poor utilisation,
with minima of 7.7% (art 1 and art 2), 13% (wupwise) and 16% (gzip random).
No clear relationship between the cache miss rate and utilisation is apparent. The av-
erage utilisation is 48%, considerably higher than for the DL1 cache.

3.5.3 L2 Cache

Figure 3.18 shows the cache utilisation of the L2 cache for each benchmark. The overall
range is similar to the range of the DL1 cache utilisation, from 2.9% (lucas) to 79%
(crafty and sixtrack) with an average of 27%. However, the relationship of low
miss rates being coupled with high utilisation and vice versa observed in the DL1 cache
is not as apparent in the L2 cache. In numerous cases (e.g. eon, gap and mesa), a low
miss rate accompanies a low utilisation.



72 3.5. CACHE UTILISATION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

Figure 3.17: Cache utilisation in the IL1 cache

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

Figure 3.18: Cache utilisation in the L2 cache



CHAPTER 3. CACHE UTILISATION 73

3.5.4 Relationship Between Cache Miss Rate and Cache Utilisation

The relationship between cache miss rate and cache utilisation warrants further in-
vestigation, since the majority of current cache performance optimisations are aimed
at decreasing the miss rate rather than improving utilisation. Figures 3.19, 3.20 and
3.21 plot the cache utilisation against the cache miss rate (expressed as the number of
misses per 1,000 instructions) for the DL1, IL1 and L2 caches respectively. Since only
the general trends are of interest, rather than specific results, and for clarity, individual
benchmarks are not labelled.

DL1 Cache

Figure 3.19 plots the cache utilisation against the cache miss rate of the DL1 cache for
each benchmark. For benchmarks with low miss rates, cache utilisation is variable,
from approximately 5% to 70%, while for benchmarks with higher miss rates, cache
utilisation is generally low, below approximately 20%. There are no benchmarks with
high cache miss rates and correspondingly high cache utilisations.

Misses per 1,000 instructions

0 25 50 75 100 125 150 175 200

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.19: Cache utilisation vs miss rate in the DL1 cache

IL1 Cache

Figure 3.20 plots the cache utilisation against the cache miss rate of the IL1 cache for
each benchmark. Since the miss rate varies greatly, a logarithmic scale is used on the



74 3.5. CACHE UTILISATION

Misses per 1,000 instructions

0.00001 0.0001 0.001 0.01 0.1 1 10

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.20: Cache utilisation vs miss rate in the IL1 cache

x-axis. In this case, there is a clear trend that a high cache miss rate tends to have a
correspondingly high cache utilisation. Benchmarks with a low miss rate have a util-
isation under approximately 20%, while those with a high miss rate have a utilisation
over approximately 70%. Benchmarks with moderate miss rates have a more variable
utilisation, from approximately 30% to 70%. There are no benchmarks with a low miss
rate and a high utilisation, nor a high miss rate and a low utilisation.

L2 Cache

Figure 3.21 plots the cache utilisation against the cache miss rate of the L2 cache for
each benchmark. Again, since the miss rate varies greatly, a logarithmic scale is used
on the x-axis. The results for this cache are more variable than those for either of the
L1 caches. There are no benchmarks with a low miss rate and a high utilisation, like-
wise nor are there any benchmarks with a high miss rate and a high utilisation. For
moderate miss rates, cache utilisation varies from approximately 5% to 80%, while for
particularly low or high miss rates, it is typically below 20%.

3.5.5 Impact of Scaling Cache Size on Utilisation

The above results for the DL1, IL1 and L2 caches indicate that there is no simple re-
lationship between cache utilisation and cache miss rate, therefore the impact of con-



CHAPTER 3. CACHE UTILISATION 75

Misses per 1,000 instructions

0.0001 0.001 0.01 0.1 1 10 100 1000

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.21: Cache utilisation vs miss rate in the L2 cache

ventional techniques to reduce the cache miss rate on cache utilisation is difficult to
anticipate. For this reason, cache utilisation is now examined against scaling cache
size and associativity. Unlike Section 3.3.1, cache size and associativity are scaled in-
dependently in an attempt to separate their behaviour.

DL1 Cache

Figure 3.22 plots cache utilisation against cache size (from 8 kB to 1024 kB) for the
DL1 cache for each benchmark. For ease of analysis, the benchmarks are clustered into
four separate groups, each of which shows similar behaviour. Group A (top-left, 17
benchmarks) shows a single peak of cache utilisation for each benchmark, typically
from 32 kB to 256 kB. Either side of this peak cache utilisation falls markedly. Group
B (top-right, 14 benchmarks) shows a single trough of cache utilisation for each bench-
mark, typically from 64 kB to 256 kB. Either side of this trough cache utilisation rises
markedly. Group C (bottom-left, 9 benchmarks) shows continually decreasing cache
utilisation, for some benchmarks this decrease is sharp while for others it is very shal-
low. Finally, Group D (bottom-right, 8 benchmarks) shows more varied behaviour for
each benchmark, with differing magnitudes and direction of change.

It might be expected that the most common behaviour, that of a single peak in Group A,
would be more common. Scaling cache size without changing utilisation will result in
decreasing the number of capacity misses, up to a point at which the number of conflict



76 3.5. CACHE UTILISATION

Cache size (kB)
8 16 32 64 128 256 512 1024

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Cache size (kB)
8 16 32 64 128 256 512 1024

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Cache size (kB)
8 16 32 64 128 256 512 1024

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

Cache size (kB)
8 16 32 64 128 256 512 1024

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.22: Cache utilisation vs cache size for the DL1 cache. Similar trends are clus-
tered into four different groups (A, B, C, D) from top-left to bottom-right.

misses becomes prevalent. Further increasing the cache size results in falling utilisation
since there are fewer additional hits being made in the additional cache lines. To some
extent, this may account for the continually decreasing behaviour of Group C, if it is
assumed that a peak in cache utilisation lies at cache sizes smaller than 8 kB. However,
the behaviour of Groups B and D, comprising almost half of the benchmarks, is more
difficult to explain in such a simplistic manner.

IL1 Cache

Figure 3.23 plots cache utilisation against cache size (from 8 kB to 1024 kB) for the IL1
cache for each benchmark. For ease of analysis, the benchmarks are clustered into three
separate groups, each of which shows similar behaviour. Group A (top-left, 29 bench-
marks) shows a single peak of cache utilisation for each benchmark, typically from 32
kB to 128 kB. Either side of this peak, cache utilisation falls steeply in most cases, but
more gently in others. Group B (top-right, 15 benchmarks) shows continually decreas-
ing cache utilisation, which is steep in almost every case. Finally, Group C (bottom, 4
benchmarks) shows more varied behaviour for each benchmark, with differing mag-
nitudes and directions of change. Groups A and B for the IL1 cache correspond to the
same behaviours exhibited by Groups A and C of the DL1 cache respectively, and a
similar explanation may be inferred.



CHAPTER 3. CACHE UTILISATION 77

Cache size (kB)
8 16 32 64 128 256 512 1024

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Cache size (kB)
8 16 32 64 128 256 512 1024

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Cache size (kB)
8 16 32 64 128 256 512 1024

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.23: Cache utilisation vs cache size for the IL1 cache. Similar trends are clus-
tered into three different groups (A, B, C) from top-left to bottom.

L2 Cache

Figure 3.24 plots cache utilisation against cache size (from 128 kB to 32768 kB) for the
L2 cache for each benchmark. For ease of analysis, the benchmarks are clustered into
five separate groups, each of which shows similar behaviour. Group A (top-left, 18
benchmarks) shows a single peak of cache utilisation for each benchmark, typically
from 1024 kB to 8192 kB, although with a fair degree of variation. Either side of this
peak, cache utilisation falls markedly. Group B (top-right, 3 benchmarks) shows con-
tinually decreasing cache utilisation at a relatively slow rate. Group C (middle-left, 6
benchmarks) shows continually increasing cache utilisation, mostly at an increasing
rate but in one case at a decreasing rate. Group D (middle-right, 4 benchmarks) shows
a single trough of cache utilisation. Either side of this trough, cache utilisation in-
creases at varying rates. Finally, Group E (bottom, 17 benchmarks) shows very varied
behaviour for each benchmark.

The above results show that there is no single clear trend between cache utilisation and
cache size. Depending on the benchmark, cache utilisation may rise or fall as the cache
size is changed. For some benchmarks, long-term trends (e.g. peaks, troughs, continual
increase or continual decrease) are apparent, but for some benchmarks, particularly in
the L2 cache, no long-term trend is apparent.



78 3.5. CACHE UTILISATION

Cache size (kB)

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Cache size (kB)

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Cache size (kB)

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Cache size (kB)

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Cache size (kB)

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

C
a
ch

e
 u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.24: Cache utilisation vs cache size for the L2 cache. Similar trends are clustered
into five different groups (A, B, C, D, E) from top-left to bottom.



CHAPTER 3. CACHE UTILISATION 79

Cache associativity
1 2 4 8 16 32 64 128 256

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Cache associativity
1 2 4 8 16 32 64 128 256

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Cache associativity
1 2 4 8 16 32 64 128 256

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Cache associativity
1 2 4 8 16 32 64 128 256

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.25: Cache utilisation vs cache associativity for the DL1 cache. Similar trends
are clustered into four different groups (A, B, C, D) from top-left to bottom-right.

3.5.6 Impact of Scaling Cache Associativity on Utilisation

Figures 3.25, 3.26 and 3.27 plot cache utilisation against cache associativity for the DL1,
IL1 and L2 caches respectively.

DL1 Cache

Figure 3.25 plots cache utilisation against cache associativity (from 1 to 256 way) for the
DL1 cache for each benchmark. For ease of analysis, the benchmarks are clustered into
four separate groups, each of which shows similar behaviour. Group A (top-left, 33
benchmarks) shows very little variation over the whole range of cache associativities
examined. Group B (top-right, 8 benchmarks) shows continually mildly increasing
cache utilisation. Group C (bottom-left, 6 benchmarks) shows continually decreasing
cache utilisation. Finally, Group D (bottom-right, 1 benchmark) shows a single peak of
cache utilisation for a 4-way cache with cache utilisation falling markedly either side.

The predominant behaviour is for cache utilisation to remain constant over the range
of cache associativities examined. This is slightly unexpected, since increasing cache
associativity without increasing cache size would be expected to decrease the num-
ber of conflict misses, resulting in an overall increase in cache utilisation since conflict
misses have been shown to have shorter dead times than capacity misses [HKM02].



80 3.5. CACHE UTILISATION

Cache associativity
1 2 4 8 16 32 64 128 256

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Cache associativity
1 2 4 8 16 32 64 128 256

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Cache associativity
1 2 4 8 16 32 64 128 256

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.26: Cache utilisation vs cache associativity for the IL1 cache. Similar trends
are clustered into three different groups (A, B, C) from top-left to bottom.

IL1 Cache

Figure 3.26 plots cache utilisation against cache associativity (from 1 to 256 way) for the
IL1 cache for each benchmark. For ease of analysis, the benchmarks are clustered into
three separate groups, each of which shows similar behaviour. Group A (top-left, 26
benchmarks) shows cache utilisation continually increasing, mostly at a slow rate, over
the entire range of cache associativities examined. Group B (top-right, 19 benchmarks)
shows little variation of cache utilisation over the entire range of cache associativities
examined. Finally, Group C (bottom, 3 benchmarks) shows more varied behaviour.

L2 Cache

Figure 3.27 plots cache utilisation against cache associativity (from 1 to 1024 way) for
the L2 cache for each benchmark. For ease of analysis, the benchmarks are clustered
into four separate groups, each of which shows similar behaviour. Group A (top-left,
35 benchmarks) shows little variation of cache utilisation over the entire range of cache
associativities examined. Group B (top-right, 9 benchmarks) shows continually de-
creasing cache utilisation, almost always at a very slow rate. Group C (bottom-left,
3 benchmarks) shows continually increasing cache utilisation, again almost always at
a very slow rate. Finally, Group D (bottom-right, 1 benchmark) shows more varied
behaviour.



CHAPTER 3. CACHE UTILISATION 81

Cache associativity

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Cache associativity

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Cache associativity

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Cache associativity

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

C
ac

h
e 

u
ti

li
sa

ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Figure 3.27: Cache utilisation vs cache associativity for the L2 cache. Similar trends are
clustered into four different groups (A, B, C, D) from top-left to bottom-right.

Scaling of cache associativity tends to produce a more consistent impact on cache util-
isation than scaling of cache size, with the most common outcome being little overall
change in cache utilisation.



82 3.6. SUMMARY

3.6 Summary

This chapter started by detailing the simulation method used to generate the results
presented in this dissertation. Cache performance was shown to have a significant
impact on overall system performance by comparing the performance of the baseline
processor configuration to that which would be achieved with varying levels of perfect
caches. Having discussed the miss rates of the individual caches and benchmarks, the
results of a projected scaling of cache size and associativity were shown to still lag the
performance of a perfect memory hierarchy considerably, indicating that naı̈ve scaling
alone cannot continually improve performance.

Having defined metrics to describe the lifetime of cache lines, the distributions of these
metrics were discussed and much variation found, something which has not been con-
sidered by previous work. Using the live and dead times previously defined, a simple
metric for cache utilisation was formulated. Cache utilisation was shown to vary con-
siderably between benchmarks and caches, with the instruction cache (average 48%)
showing much better utilisation than the data caches (average 26%). This is to be ex-
pected, since access patterns to the instruction cache are typically much more regular
than those to the data caches.

The relationship between cache miss rates and utilisation was also investigated, with
no simple relationship being applicable for all benchmarks and caches. This indicates
that traditional techniques to decrease cache miss rates do not necessarily increase util-
isation. The impact of scaling cache size on cache utilisation was examined, as was
the impact of scaling cache associativity. The former was found to result in a variety
of long-term trends depending on the particular benchmark and cache combination,
while the latter was found to generally have little impact.

Subsequent chapters will describe methods to predict cache line lifetime metrics, as
well as applications of those predictors. The general intention is to improve cache
utilisation, and the impact on cache miss rates will also be detailed.



Prediction 4

4.1 Overview

The aim of this chapter is to devise methods to accurately predict two useful cache
line lifetime-related properties using reasonable additional hardware constructs. These
predictors will be used in two performance-enhancing applications detailed in Chapter
5.

The chapter begins by examining the inherent predictability of cache line lifetime met-
rics by looking at how future cache line behaviour relates to that observed in the past.
Two predictability metrics are defined and evaluated over the set of benchmarks. Hav-
ing determined the innate predictability of cache line lifetime metrics, two specific pre-
dictor requirements are characterised in order to support the applications which will
be detailed in Chapter 5. The first predictor is a binary predictor, a family of predictors
which have been examined in great depth by previous research into branch prediction.
The second predictor is a value predictor, again a family of predictors which have been
examined by previous research. Potential implementations of the two predictors are
discussed, both those based upon previous work as well as several novel predictor
implementations. Actual evaluation of specific predictor implementations, which is
dependent on the application, is left until Chapter 5.

4.2 Introduction

Prediction, or speculation, is a technique widely employed by computer architects
in applications to both improve performance and decrease power consumption. For
example, branch prediction is widely used to avoid pipeline stalls in modern micro-
processors. This technique predicts whether a branch instruction will be taken (or not)
and fetches the subsequent instruction sequence accordingly. When the actual outcome
of the branch is known, if the prediction was found to be incorrect, the state changes
made by the incorrect instructions being executed must be rolled back and the correct
instruction sequence fetched and executed. Due to the highly repetitive behaviour of
typical programs, branch prediction usually achieves very high accuracy and so mis-
predictions are fortunately rare. Another form of prediction is load value prediction,
introduced by Lipasti et al. [LWS96], which seeks to reduce the average memory access
latency by predicting the contents of a memory location before the actual contents can
be supplied by the memory hierarchy.

Prefetching is another speculation technique that predicts which memory addresses
will be accessed in the near future and proactively fetches those addresses into higher
levels of the memory hierarchy, before the actual memory instruction accessing those

83



84 4.3. PREDICTABILITY OF CACHE LINE BEHAVIOUR

Executing
Speculatively

Correct

Incorrect

Make 
Prediction

Use Prediction

Verify
Prediction

?

Update 
Predictor

State

Rollback
Speculative

Changes

Continue
Execution

Figure 4.1: Overview of general speculation

addresses is encountered. Prefetching can be considered a form of speculative ex-
ecution, albeit without requiring any support for rolling back processor state, since
prefetches are always safe as errors such as page faults are ignored. However, a poor
prefetching implementation can cause a negative performance and/or power impact
by competing with regular memory accesses for both cache space and bus bandwidth.
Aggressive prefetching is widely deployed in both hardware and software in modern
computer systems and has already been detailed in Section 2.6.2.

Figure 4.1 shows a generic overview of speculation in computer architecture. Once a
prediction is made and used, the processor may not be executing the correct instruc-
tions with the correct operands. At some later point when the validity of the prediction
can be established, these speculatively executed instructions may be either committed
if the prediction was correct or squashed should the prediction turn out to have been
incorrect. In either case, the predictor state is updated and execution can continue un-
til the next prediction is required. In a dynamically scheduled superscalar processor,
rollback of incorrectly speculated instructions can be expensive, involving discarding
all instructions dependent on that incorrect prediction. Thus, for example, accurate
branch prediction is critical to achieving high performance in such processors.

4.3 Predictability of Cache Line Behaviour

Most methods of predicting events in computer architecture rely upon making obser-
vations of past events and using these observations to infer what future events will



CHAPTER 4. PREDICTION 85

occur. For example, at a high level, many branch predictors look at how often a par-
ticular branch was taken in the recent past and use this information to decide whether
that particular branch will be taken next time it is encountered. Such an approach relies
upon past events being indicative of future events. In this section, cache line lifetime
behaviour is examined to determine if this is the case. Hu et al. [HKM02] examined
one of the simplest metrics for predictability — the difference between consecutive val-
ues for each unique cache line address1. This same metric is now used to examine the
predictability of live times, dead times and access intervals for all three caches in the
baseline configuration.

For each cache, a categorised distribution indicating the magnitude of difference val-
ues falling into various ranges is plotted. The central category represents a difference
of zero i.e. the previous value was the same as the current. Moving outwards in both
the positive and negative directions (right and left respectively), the differences are
clustered such that, for example, the data point numbered 60 corresponds to the per-
centage of differences between 51 (one more than the previous data point) and 60. Such
distributions may conventionally be plotted as histograms, however, such a represen-
tation is unwieldy when dealing with many benchmarks concurrently. The categories
are defined such that the x-axis uses a partially logarithmic scale.

Given regular reference patterns, one might expect cache line lifetime metrics to be
very consistent, so that the difference observed is small, illustrated by a peak in the
centre of the difference distribution plots which follow. Less regular reference patterns
will lead to a wider range of differences being observed, spreading the distribution
over a wider range.

4.3.1 Live Time Predictability

Figures 4.2, 4.3 and 4.4 show the categorised distributions of live time differences for
each benchmark for the DL1, IL1 and L2 caches respectively. Many benchmarks show
evidence of clustering of live time differences around zero, while some show signifi-
cant clusters at other points. This behaviour is now discussed for each cache in turn.

DL1 Cache

Figure 4.2 shows the categorised distributions of live time differences for the DL1 cache
for each benchmark. There were enough cache replacements made by all benchmarks
to provide previous live times, so all benchmarks are represented. Numerous bench-
marks exhibit a pronounced central peak in the 0 (i.e. identical) difference category, led
by ammp and perlbmk 2 with 99.4% and 96.8% respectively. Some benchmarks have
a much smaller central value, including gap and applu with 0.47% and 1.45% respec-
tively. The mean proportion of identical successive live times across all benchmarks is
36.9%.

Moving outwards, there are few other significant peaks until the extremes of the distri-
butions are reached. A few benchmarks show considerable proportions of live time dif-
ferences falling outside the range under study. These include eon 3 and gzip program

1A unique cache line address is simply the memory address aligned to the size of a cache line



86 4.3. PREDICTABILITY OF CACHE LINE BEHAVIOUR

Live time difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

10

20

30

40

50

60

70

80

90

100

gzip_program

eon_3

perlbmk_2

gap

applu

ammp

lucas

fma3d

others

Figure 4.2: Categorised distributions of live time differences for the DL1 cache

with a significant number of differences being larger than 100,000 cycles (28.7% and
26.4% respectively). The mean proportion of differences in this category is 6.51%.

At the other extreme, differences less than -100,000 cycles, eon 3 and gzip program

also lead, with 28.4% and 25.0% respectively. The mean proportion of differences in
this category is 6.38%, similar to the other extreme.

Several benchmarks exhibit interesting symmetrical distributions, such as applu and
gap. This may indicate the presence of alternating live time values. For example, the
sequence 10,5,10,5,10,5 would give rise to differences of -5,5,-5,5,-5.

IL1 Cache

Figure 4.3 shows the categorised distributions of live time differences for the IL1 cache
for each benchmark. At first glance, the distributions seem rather similar to those ob-
served for the DL1 cache with large central peaks for many benchmarks and relatively
large values at the extremes for a few others.



CHAPTER 4. PREDICTION 87

Live time difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

10

20

30

40

50

60

70

80

90

100

gzip_graphic

gzip_random

parser

perlbmk_3

swim

mesa

apsi

others

Figure 4.3: Distributions of live time differences for the IL1 cache

Several benchmarks demonstrated sufficiently repetitive behaviour that all of their live
times were identical to their previous values. These benchmarks include gzip graphic

and gzip random, as well as mcf, art 1 and art 2. However, recalling Figure 3.3,
these benchmarks have very low IL1 cache miss rates, so make very few IL1 cache re-
placements, thus these live time differences cover very few actual pairs of live times.
Equally, other benchmarks with similarly low IL1 cache miss rates exhibited very small
proportions of live times in this central category. One example of this is parser, with
only 3.14% of identical live time differences, while the next smallest benchmark in this
category, perlbmk 3 with 4.46%, actually has the highest IL1 cache miss rate. The
mean proportion of identical successive live times across all benchmarks is 47.5%.

Moving away from the central peaks, the distributions are rather similar to the DL1
cache, although the proportion of differences between the extremes and the central
maxima are somewhat reduced. This is to be expected since recalling Figures 3.7 and
3.8, on average, IL1 cache live times are longer than DL1 cache live times, thus their
consecutive differences will be, on average, larger.

Both swim and apsi exhibit small symmetrical peaks around +2,000 and -2,000 cycles
difference, again perhaps due to alternating behaviour.



88 4.3. PREDICTABILITY OF CACHE LINE BEHAVIOUR

A few benchmarks have a significant proportion of differences in each of the extreme
categories. At the negative extreme, less than -100,000 cycles, parser and mesa lead
with 42.5% and 28.6% of differences respectively. The mean proportion of differences
in this category across all benchmarks is 8.7%.

The behaviour at the positive extreme of the distribution is largely similar, with the
maximum proportion of differences again belonging to parser and mesa, with 38.2%
and 27.9% of live time differences being larger than 100,000 cycles respectively. The
mean proportion of live time differences in this category is 8.11%, very similar to the
negative extreme.

L2 Cache

Figure 4.4 shows the categorised distributions of live time differences for the L2 cache
for each benchmark. The overall appearance is similar to that of the DL1 and IL1
caches, with large central peaks for many benchmarks and relatively little significant
proportions encountered until the extremes are reached.

Again, several benchmarks demonstrated sufficiently repetitive behaviour that all of
their live times were identical to their previous values. These benchmarks were eon 1,
eon 2 and eon 3 and recalling Figure 3.2, these benchmarks had a very low L2 cache
miss rate. Other benchmarks with a large proportion of consecutive live times being
identical are ammp, gzip random and gzip graphic, with 99.6%, 99.2% and 98.8%
respectively. A few benchmarks have a very small number of differences in this cate-
gory, including perlbmk 2, gap and mesa with 0.068%, 0.23% and 7.74% respectively.
The mean proportion of identical successive live times across all benchmarks is 49.4%.

There are very few significant peaks encountered between the central category and
the extremes, other than a pair of symmetrical peaks for swim at -50,000 and 50,000
cycles. Compared to the DL1 and IL1 cache results, significantly more differences fall
outside the range under study, which is to be expected since recalling Figures 3.7, 3.8
and 3.9, L2 cache line live times are considerably longer than DL1 cache line live times,
and somewhat longer than IL1 cache line live times, therefore the magnitude of their
successive differences is likely to be larger.

At the negative extreme, less than -100,000 cycles, perlbmk 2 and fma3d have the
largest proportion of differences, with 64.7% and 61.5% respectively. The benchmarks
previously reported as having significant central peaks clearly have very small propor-
tions in this category. The mean proportion of live time differences in this category is
23.4%, considerably larger than that in the corresponding categories of either the DL1
or IL1 distributions.

At the positive extreme, more than 100,000 cycles, similarly large proportions of differ-
ences are encountered, led by gap, crafty and parser with 50.9%, 44.6% and 44.0%.
The mean proportion in this category is 16.6%, also considerably higher than that in
the corresponding categories of either the DL1 or IL1 distributions.

4.3.2 Dead Time Predictability

Figures 4.5, 4.6 and 4.7 show the categorised distributions of differences between con-
secutive dead times for each benchmark for the DL1, IL1 and L2 caches respectively.



CHAPTER 4. PREDICTION 89

Live time difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

10

20

30

40

50

60

70

80

90

100

gzip_graphic

gzip_program

parser

gap

swim

ammp

others

Figure 4.4: Distributions of live time differences for the L2 cache

Like the previous live time differences, dead time differences show evidence of cluster-
ing around small values, but overall dead times differences seem slightly larger than
live time differences. This is to be somewhat expected since the magnitude of dead
times is considerably larger than the magnitude of live times as discussed in Section
3.4.2. Each of the dead time difference distributions is now discussed in turn.

DL1 Cache

Figure 4.5 shows the categorised distributions of dead time differences for the DL1
cache for each benchmark. Like the live time differences shown in Figure 4.2, signifi-
cant numbers of cache lines have small dead time differences, illustrated by the central
peaks in the distribution. The largest peak occurs in the central category of zero dif-
ference for ammp with 82.8% and gcc 166 with 51.5%. Other benchmarks have much
smaller values in this category, the smallest being gap with only 0.00025%. Indeed the
average proportion of differences in this category is 8.13%, considerably smaller than
the 36.9% in the same category for live time differences.

Moving outwards, there are few significant clusters encountered other than for swim,



90 4.3. PREDICTABILITY OF CACHE LINE BEHAVIOUR

Dead time difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

10

20

30

40

50

60

70

80

90

100

gcc_166

gap

swim

ammp

others

Figure 4.5: Distributions of dead time differences for the DL1 cache

which exhibits asymmetrical peaks around -30,000 and 30,000 cycles. The proportion
of differences falling outside the positive extreme, more than 100,000 cycles, varies
from 38.7% for gap to 0.025% for swim, with an average of 13.5%.

At the other extreme, less than -100,000 cycles, the proportion of differences varies
from 56.9% for gap again, to 0.19% for ammp, with an average of 14.4%. In general,
as would be expected, those benchmarks with a large proportion of small differences
have a small proportion of large differences and vice versa.

IL1 Cache

Figure 4.6 shows the categorised distributions of dead time differences for the IL1 cache
for each benchmark. The same set of benchmarks previously found to have all their live
times to be identical also find all their dead times to be identical. Other benchmarks
with high proportions of identical dead times include gzip source and wupwise

with 99.9% and 99.8% respectively. Behaviour in this category varies significantly, with
applu and perlbmk 3 having 0% and 0.014% of identical dead times. The average
proportion of identical dead times is 41.1%, however, as has already been indicated,



CHAPTER 4. PREDICTION 91

Dead time difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

10

20

30

40

50

60

70

80

90

100

gzip_graphic

gzip_random

gzip_source

vpr_place

perlbmk_2

bzip2_source

wupwise

fma3d

apsi

others

Figure 4.6: Distributions of dead time differences for the IL1 cache

this proportion is highly variable between benchmarks.

Moving outwards, several benchmarks show small symmetrical clusters around -20
and 20 cycles, -200 and 200 cycles, -2,000 and 2,000 cycles and -20,000 and 20,000 cycles.
At the positive extreme, more than 100,000 cycles, the proportion of differences varies
from 46.3% for parser to 0% for those benchmarks with all identical dead times. The
average proportion of differences in this category is 6.4%. At the negative extreme,
less than 100,000 cycles, the proportion of differences varies from 45.2% for parser
again, to 0% for the same set of benchmarks previously listed. The average proportion
of differences in this category is 6.9%. The proportions of differences at the extremes
are comparable to those found for the IL1 live time differences, and smaller than the
DL1 dead time differences.

L2 Cache

Figure 4.7 shows the categorised distributions of dead time differences for each bench-
mark for the L2 cache. Overall, the general behaviour is similar to that of the L2 cache



92 4.3. PREDICTABILITY OF CACHE LINE BEHAVIOUR

Dead time difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

20

40

60

80

100

gzip_random

eon_1

perlbmk_2

vortex_3

swim

ammp

others

Figure 4.7: Distributions of dead time differences for the L2 cache

live time differences, with significant clusters in the centre and at the extremes of the
distributions. Three benchmarks, eon 1, eon 2 and eon 3, find all their dead times
to be identical, indicated by a value of 100% in the central category. Recalling Fig-
ure 3.2, these benchmarks have tiny L2 miss rates, therefore the number of genera-
tions contributing to these distributions will be very small. Most benchmarks have a
much smaller proportion of identical dead times, including all the gzip benchmarks,
crafty, parser, perlbmk 2, gap and fma3d which have none. The average propor-
tion of identical dead times is 13.0%.

Moving further outwards from the centre of the distributions, few significant clusters
are encountered before the extremes are reached. The proportion of differences at the
positive extreme, more than 100,000 cycles, varies from 99.8% for gzip random to
0% for the eon benchmarks. The average proportion of differences in this category is
38.5%. The proportion of differences at the other extreme, less than -100,000 cycles,
varies from 78.0% for perlbmk 2 to 0%, again for the eon benchmarks. The average
proportion of differences in this category is 30.5%. The proportion of dead time dif-
ferences at the extremes is larger than those found at the extremes of the L2 live time
difference distributions, as well as those found at the extremes of the DL1 and IL1 dead
time difference distributions.



CHAPTER 4. PREDICTION 93

Access interval difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

5

10

15

20

25

30

35

40

gcc_166

gcc_integrate

gap

swim

galgel

lucas

others

Figure 4.8: Distributions of access interval differences for the DL1 cache

4.3.3 Access Interval Predictability

Figures 4.8, 4.9 and 4.10 show the categorised distributions of access interval differ-
ences for each benchmark for the DL1, IL1 and L2 caches respectively. Overall, access
interval differences seem considerably more varied than either live or dead time dif-
ferences, and this is reflected in the fact that the y-axis scale is truncated. Each of the
caches is now discussed in turn.

DL1 Cache

Figure 4.8 shows the categorised distributions of access interval differences for the DL1
cache for each benchmark. Unlike the previous distributions of live time or dead time
differences, the central clusters are more widely spread. Indeed, the largest single clus-
ter is found for gcc 166 with 38.5% of access interval differences being between -1
and -10 cycles. For this benchmark, there is an almost identical symmetrical peak in
the cluster from 1 to 10 cycles, with 38.0% of differences. Such symmetrical clusters
are also exhibited by other benchmarks including gcc integrate, swim, galgel



94 4.3. PREDICTABILITY OF CACHE LINE BEHAVIOUR

Access interval difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

5

10

15

20

25

30

35

40

vpr_route

gap

swim

mgrid

galgel

art_1

art_2

others

Figure 4.9: Distributions of access interval differences for the IL1 cache

and lucas. As previously discussed, symmetrical values such as these indicate al-
ternating values of access intervals. The largest proportion of identical access interval
differences is found for gap with 31.4%, although the average proportion in this cate-
gory is only 9.77%, considerably less than the averages of 23.0% and 23.9% found in the
neighbouring categories of -10 and 10 respectively. Indeed, fully 80% of access interval
differences are found between -100 and 100 cycles. There are negligible proportions of
differences at the extremes of the distributions.

IL1 Cache

Figure 4.9 shows the categorised distributions of access interval differences for the IL1
cache for each benchmark. Like the distributions of DL1 cache access interval differ-
ences, the vast majority of differences are concentrated around the central area. Again,
the largest single cluster is found in the -10 category, with art 1 and art 2 both hav-
ing 39.5% of their overall differences. The next largest proportion comes for galgel
with 36.2% of access intervals being identical. The average proportion of identical ac-
cess intervals is 19.8%, considerably higher than the corresponding value of 9.77% for



CHAPTER 4. PREDICTION 95

the DL1 cache access interval differences. The neighbouring categories, -10 and 10 cy-
cles, both have an average of 17.7%. On average, 79% of access interval differences
are found between -100 and 100 cycles, almost identical to the proportion for the DL1
cache.

Fewer symmetrical peaks are apparent, although those for swim and mgrid are par-
ticularly large. Again, there are negligible proportions of differences at the extremes of
the distributions.

L2 Cache

Figure 4.10 shows the distributions of access interval differences for the L2 cache for
each benchmark. Compared to the DL1 and IL1 distributions, far fewer differences
have small values, indicated by the lack of central clusters. Recalling Figure 3.15, L2
cache access intervals are far larger than DL1 or IL1 cache access intervals, primarily
due to the filtering effect of these first-level caches. Therefore, their differences are
expected to be correspondingly larger.

Only two benchmarks show a significant proportion of identical access intervals, fac-
erec and mgrid with 38.4% and 34.1% respectively. Most other benchmarks show a
negligible proportion in this category, with an average of 2.64%. Compared to the DL1
and IL1 cache access interval difference distributions which found, on average, ap-
proximately 80% of their differences from -100 to 100 cycles, the L2 distribution finds
only 7.56% in the same range. Further out, perlbmk 2, art 1, art 2 and swim show
small clusters, some of which are symmetrical. However, the bulk of the distributions
is found at the extremes.

At the positive extreme, more than 100,000 cycles, the proportion of differences varies
from 41.3% for twolf to 0.111% for ammp, with an average of 20.2%. At the negative
extreme, less than 100,000 cycles, the proportion varies from 64.1% for lucas to 0.166%
for ammp, with an average of 21.1%.

4.3.4 Summary

Using the same predictability metric as Hu et al. [HKM02], namely the difference be-
tween consecutive values for each unique cache line, it is clear the predictability of live
times, dead times and access intervals varies considerably depending on the particu-
lar cache line lifetime metric, the particular cache and the particular benchmark under
examination. The following high-level conclusions can be drawn from the results pre-
sented above.

• Live times are typically more similar than dead times.

• IL1 cache behaviour is typically more predicable than either DL1 or L2 cache
behaviour, particularly for dead times.

• DL1 and IL1 cache access intervals are typically far more similar than L2 cache
access intervals, and more similar than any live or dead times.



96 4.4. ALTERNATIVE PREDICTABILITY METRIC

Access interval difference category (cycles)

L
es

s

−
90

,0
00

−
70

,0
00

−
50

,0
00

−
30

,0
00

−
10

,0
00

−
8,

00
0

−
6,

00
0

−
4,

00
0

−
2,

00
0

−
90

0

−
70

0

−
50

0

−
30

0

−
10

0

−
80

−
60

−
40

−
20 0 20 40 60 80 10
0

30
0

50
0

70
0

90
0

2,
00

0

4,
00

0

6,
00

0

8,
00

0

10
,0

00

30
,0

00

50
,0

00

70
,0

00

90
,0

00

M
o

re

P
er

ce
n

ta
g

e 
o

f 
d

if
fe

re
n

ce
s 

w
it

h
in

 c
at

eg
o

ry

0

5

10

15

20

25

30

35

40

45

50

55

60

65

perlbmk_2

twolf

swim

mgrid

art_1

art_2

facerec

ammp

lucas

others

Figure 4.10: Distributions of access interval differences for the L2 cache

4.4 Alternative Predictability Metric

The predictability metric used in the preceding section, namely the difference between
consecutive values, is one simple method to assess predictability. However, this ap-
proach does not take the magnitude of the original value into account. A small differ-
ence may be significant if the original value was small, but relatively insignificant if the
original value was large. Instead, this section attempts to take the magnitude of values
into account by investigating the ratio of the current value to the previous value.

Figure 4.11 clusters this ratio into various ranges using interval notation. For example,
the [1, 2) range indicates that the ratio is greater or equal to one, and less than two. For
brevity, live times, dead times and access intervals for all three caches are shown in a
single figure using multiple subfigures. The three rows correspond to live times, dead
times and access intervals, from top to bottom respectively. The three columns corre-
spond to the DL1, IL1 and L2 caches, from left to right respectively. Unlike the previous
discussion of predictability, individual benchmarks are not highlighted, rather general
trends are discussed. The results for each benchmark are normalised and expressed as
a percentage falling into each range.



CHAPTER 4. PREDICTION 97

DL1 cache live time ratio category

<
1/

16

[1
/

16
,1

/
8)

[1
/

8,
1/

4)

[1
/

4,
1/

2)

[1
/

2,
1)

[1
,2

)

[2
,4

)

[4
,8

)

[8
,1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

IL1 cache live time ratio category

<
1/

16

[1
/

16
, 1

/
8)

[1
/

8,
 1

/
4)

[1
/

4,
 1

/
2)

[1
/

2,
 1

)

[1
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

L2 cache live time ratio category

<
1/

16

[1
/

16
, 1

/
8)

[1
/

8,
 1

/
4)

[1
/

4,
 1

/
2)

[1
/

2,
 1

)

[1
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

DL1 cache dead time ratio category

<
1/

16

[1
/

16
, 1

/
8)

[1
/

8,
 1

/
4)

[1
/

4,
 1

/
2)

[1
/

2,
 1

)

[1
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

IL1 cache dead time ratio category

<
1/

16

[1
/

16
, 1

/
8)

[1
/

8,
 1

/
4)

[1
/

4,
 1

/
2)

[1
/

2,
 1

)

[1
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

L2 cache dead time ratio category

<
1/

16

[1
/

16
, 1

/
8)

[1
/

8,
 1

/
4)

[1
/

4,
 1

/
2)

[1
/

2,
 1

)

[1
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

DL1 cache access interval ratio category

<
1/

16

[1
/

16
, 1

/
8)

[1
/

8,
 1

/
4)

[1
/

4,
 1

/
2)

[1
/

2,
 1

)

[1
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

IL1 cache access interval ratio category

<
1/

16

[1
/

16
, 1

/
8)

[1
/

8,
 1

/
4)

[1
/

4,
 1

/
2)

[1
/

2,
 1

)

[1
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

L2 cache access interval ratio category

<
1/

16

[1
/

16
, 1

/
8)

[1
/

8,
 1

/
4)

[1
/

4,
 1

/
2)

[1
/

2,
 1

)

[1
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

≥1
6

P
er

ce
n

ta
g

e 
o

f 
ra

ti
o

s 
w

it
h

in
 r

an
g

e

0

20

40

60

80

100

Figure 4.11: Proportions of live time, dead time and access interval ratios falling into
various ranges for different caches. Rows are live times, dead times and access inter-
vals from top to bottom. Columns are DL1, IL1 and L2 caches from left to right.

Reviewing the three high-level conclusions drawn in Section 4.3.4 using the original
predictability metric, it is clear that the apparent predictability using this alternative
metric is different and should be modified as follows.

• Live times are more similar than dead times for the DL1 cache, but less similar
for the IL1 and L2 caches.

• DL1 cache live times are more similar than IL1 or L2 cache live times.

• IL1 cache dead times are more similar than DL1 cache dead times, and similar to
L2 cache dead times.



98 4.4. ALTERNATIVE PREDICTABILITY METRIC

• Access interval behaviour for the DL1 and IL1 cache is similar, with approxi-
mately one third of ratios falling in each of the centre category and two extreme
categories of the distributions.

• L2 cache access intervals are more similar than DL1 or IL1 cache access intervals.

The two different metrics of predictability give rather conflicting results, indicating
that such an abstract attempt to assess the likely performance of a predictor depends
highly on how predictability is defined. Indeed, these two predictability metrics are
only applicable to timekeeping-based predictors such as those proposed by Hu et al.
[HKM02]. For signature-based predictors, the approach taken by Lin and Reinhardt
[LR02] would be more appropriate. Counter-based predictors, proposed by Kharbutli
and Solihin [KS05] but not examined in this dissertation, would require yet another
predictability metric. Instead, a more practical approach is now taken to implement
and assess predictors of cache line lifetime metrics.



CHAPTER 4. PREDICTION 99

4.5 Predictors

Having examined the predictability of live times, dead times and access intervals us-
ing two different predictability metrics, the following sections detail mechanisms for
efficient online prediction of cache line lifetime behaviour. The questions of what to
predict, when to predict it and crucially how to predict it are addressed, including a
discussion of how to evaluate such predictors. The various predictors presented are
heavily influenced by the mature fields of branch prediction and value prediction, two
topics which are also reviewed.

What to Predict

Chapter 3 detailed several metrics describing the lifetime of cache lines within the
memory hierarchy. These were the live times, dead times and access intervals, as de-
fined in Section 3.4. The primary aim of this dissertation is to show that predicting
these, or closely related, metrics enables a number of performance optimisations, and
that suitable predictors may be implemented using reasonable additional hardware re-
sources. Chapter 5 details two performance enhancements which rely on the following
predictors, while Chapter 6 outlines other potential applications of these predictors.

The specific predictor examined in this dissertation is a liveness predictor, which pre-
dicts whether a specific cache line is live i.e. will be referenced again prior to eviction.
Liveness predictors may be direct, in which the liveness of a cache line is predicted
exactly, or indirect in which another cache line lifetime metric is predicted from which
a liveness prediction can be inferred.

Related work sometimes uses different terms for what are essentially the same predic-
tors and these terms will be mentioned where necessary.

When to Predict

It is initially tempting to try and compare predictors in isolation without regarding
their potential applications. However, such an approach soon runs into a practical
difficulty — when should the predictor be invoked? For branch prediction, the answer
to this question is simple — a prediction is required whenever a branch instruction
is fetched, in order to maintain a constant stream of instructions in the processor’s
pipeline. Thus the performance of a branch predictor is dependent not only upon its
structure, but also upon the distribution of branches in the instruction stream. Unlike
branch prediction, cache line lifetime predictors have different applications, and both
the mode of predictor invocation and the cache lines on which the predictor is invoked
will vary between applications.

In addition, when assessing the suitability of a predictor for a particular application,
the penalty for a misprediction must be taken into account. The implementation must
also justify additional hardware resources — for example, the addition of a prediction
scheme should not only improve overall performance, but also the additional die area
overhead should not be better used by simply expanding the existing cache size.



100 4.6. BINARY PREDICTION

While most previously proposed predictors are invoked on every access to a cache line,
Liu et al. argue that prediction should be delayed as long as possible in order to exploit
additional historical events that may take place between the prediction being made,
and the result of the prediction being required [LFHB08].

For these reasons, while candidate predictors are described in this chapter, actual eval-
uation of predictors is deferred until their precise applications are determined in Chap-
ter 5.

How to Predict

Having addressed the questions of what and when to predict, the critical question of
how to make predictions is now considered. Section 4.3 demonstrated that consecutive
values of live times, dead times and access intervals are reasonably consistent, so a
prediction mechanism which uses this historical information to predict future events
would seem appropriate.

Two approaches are considered — the first uses binary prediction, to directly predict
the liveness of a cache line, while the second uses value prediction to indirectly predict
the liveness of a cache line through prediction of the live time or access interval for the
cache line. These two approaches are now considered in turn.

4.6 Binary Prediction

Direct liveness predictors are examples of a binary predictor i.e. a predictor for an
event with only two definitive outcomes. The two definitive outcomes of a binary pre-
dictor are correct (the prediction matched the observation) and incorrect (the predic-
tion differs from the observation). A third outcome, unknown, is possible in the case
that the predictor is unable to make a definitive prediction at the time it is required.
This latter case may occur during the initial training phase when there is insufficient
history of past events to make a timely prediction. These possible outcomes are com-
bined to yield the traditional accuracy and coverage metrics used widely in computer
architecture to evaluate binary predictors.

Accuracy is defined as the fraction of predictions made which turn out to be correct i.e.

accuracy =
correct

correct+ incorrect

Coverage is defined as the fraction of predictions which are able to be made i.e.

coverage =
correct+ incorrect

correct+ incorrect+ unknown

Binary predictors with high accuracy and coverage are frequently required for the task
of branch prediction, a very mature field which is now briefly reviewed.



CHAPTER 4. PREDICTION 101

4.6.1 Branch Prediction

Branch prediction is one example of speculative execution whereby a continuous stream
of instructions is fetched into the processor’s pipeline before determining whether the
correct stream of instructions is being followed. A branch predictor has a binary out-
put, predicting only whether a particular branch will be taken or not-taken before
the actual branch condition can be checked. Since accurate control flow speculation
is paramount to achieving high performance in dynamically scheduled superscalar
processors, instruction fetch units are being integrated with branch prediction and
prefetch units, leading to the development of trace caches, proposed by Rotenberg
et al., which store streams of decoded instructions in the order in which they have been
previously executed rather than conventional program order [RBS96].

Note that computation of the target address (dependent on the prediction) takes place
later in the pipeline, so a separate structure, a branch target buffer may be used in
an attempt to further reduce the branch penalty. Similarly, a return address predictor
may be used to cope with the common and important special case of indirect branches
returning from procedure calls.

Static Branch Prediction

The simplest form of branch prediction is static i.e. independent of any run-time pro-
cessor state. Examples of such a predictor include an always-taken (or equally never-
taken) predictor, separate branch instructions used by a compiler to hint whether a par-
ticular branch will be taken (or not), or the simple heuristic that “backwards branches
are taken, forwards branches are not taken” which copes reasonably well with simple
nested looping constructs.

Dynamic Branch Prediction

Dynamic branch prediction takes previous run-time program behaviour into account
when predicting whether a particular branch will be taken (or not) and as such, relies
heavily upon past program behaviour being indicative of future behaviour.

One of the simplest dynamic branch predictors is a table of bimodal counters, indexed
by the significant low-order bits of the program counter of a branch instruction. Just
two bits are usually used in each counter, which is incremented if a branch is known
to be taken and decremented if a branch is known to be not taken, saturating at 0 and
3. A branch is predicted as being taken if the corresponding counter entry is 2 or 3,
otherwise it is predicted as not being taken.

Alternatively, a local history predictor may be used. One example of such a predic-
tor uses a table of n-bit shift registers, indexed by the significant low-order program
counter bits. Each shift register stores the taken (1) or not-taken (0) history for the cor-
responding branches. The value of the shift register is then used to index a second table
containing bimodal counters as previously described. Such a configuration is termed
”Per address history table, global pattern table“ or PAg by Yeh et al. [YP92]. Other sim-
ilar configurations are illustrated in Figure 4.12 using Yeh et al.’s classification which



102 4.6. BINARY PREDICTION

Global Branch
History Register

Global Pattern
History Table

GAg

Global Pattern
History Table

PAg

Per-address Branch
History Table

Per-address Branch
History Table

PAp

Per-address
Pattern
History
Tables

Figure 4.12: Branch predictor classification proposed by Yeh et al. [YP92]

differentiates between storing state per-address (or subset of addresses) and globally
(i.e. for all addresses).

Global state may also be combined with per-address state by concatenating (gselect)
or XORing (gshare) global branch history with significant low-order program counter
bits. Finally, independent global and per-address predictors may be combined as pro-
posed by McFarling , with a third meta or choice predictor to choose between the
available predictions should they disagree [McF93].

4.6.2 Static Direct Liveness Predictors

First considering the simple static predictors, Table 4.1 shows some approximate equiv-
alents to each of the static branch predictors previously described when applied as a
liveness predictor.

Branch Predictor Liveness Predictor Name

Always taken Always live AlwaysLive

Never taken Never live NeverLive

Compiler taken / Compiler live/ n/a
not taken hints dead hints
”Backwards taken, “Stack references live, StackLive

forwards not taken” heuristic heap references dead” heuristic HeapDead

Table 4.1: Equivalent static branch and liveness predictors

The AlwaysLive and NeverLive predictors correspond to applications in which the
speculative action is either always or never performed and are included for complete-
ness rather than actual implementation, and these scenarios are evaluated without the
prediction overhead.



CHAPTER 4. PREDICTION 103

Those predictors which require compiler interaction necessitate potentially complex
compile-time analysis and are considered out of the scope of this dissertation, however,
remain interesting areas for future work.

The novel StackLiveHeapDead heuristic predictor is indirectly motivated by Lee
and Tyson’s region-based caching [LT00] which partitions the cache depending on the
memory region (stack, global or heap) being accessed. Lee and Tyson show that aver-
age generation time (measured in terms of the number of accesses) and average miss
rates for the three memory regions varies considerably, with stack addresses exhibiting
long generation times and low miss rates while heap addresses exhibit shorter genera-
tion times and higher miss rates.

4.6.3 Dynamic Direct Liveness Predictors

Static direct liveness predictors are simple to implement and provide complete cov-
erage, however they are expected to perform poorly in general-purpose applications
since they are unable to adapt to the dynamic run-time behaviour of the application.
Predictors which directly predict liveness are more commonly known as Last-Touch
Predictors (LTPs), which predict if a particular memory operation is the last one to
touch a cache line prior to its eviction. Lai and Falsafi proposed the first last-touch
predictors, for the application of self-invalidation in a cache coherent multiprocessor
system [LF00]. Their approach builds up a trace of accesses to a cache line, encoded
as a signature, and attempts to match this signature against previously observed sig-
natures of last-touch references. Each element within Lai and Falsafi’s trace is simply
the program counter of each instruction touching the cache line, and the signature is
formed by truncated addition of these values. The previously observed signatures can
either be stored per cache line (in a PAp-like organisation) or globally (in a PAg-like
organisation). The advantage of the PAg-like organisation is that storage is more effec-
tively utilised since the number of signatures per cache line may vary widely across
cache lines. However, there is a risk of subtrace aliasing whereby sections of two oth-
erwise different traces may be identical, resulting in identical signatures and potential
mispredictions. Attempting to gain the benefits of both organisations, Lai et al. propose
hashing the signature with the address being accessed in their Dead-Block Predictor
(DBP) [LFF01]. While the dead-block predictor uses the same signatures as Lai and
Falsafi’s last-touch predictor, the Dead-Block Correlating Prefetcher (DBCP) adds the
two most recent addresses previously mapped to the cache line [LFF01].

Extending signature construction further, Lin and Reinhardt investigate a variety of
different signatures to predict last-touch references [LR02]. Table 4.2 lists the signature
elements they consider.

Different numbers of these elements may be combined in different ways. Lin and
Reinhardt investigate thirteen combinations using concatenation to combine elements
while Lai et al. [LFF01] and Lai and Falsafi [LF00] use truncated addition2 to com-
bine multiple elements in a trace. Concatenation is clearly highly space inefficient,
requiring approximately one machine word per element, but allows unique signature
identification while truncated addition risks the potential of interference between two

2Truncated addition adds two words of the same size but ignores any carry from the most significant
bit



104 4.6. BINARY PREDICTION

Name Description

Addr The target address of the current reference
AddrAny The target address of the previous reference

to any target address
AddrSet The target address of the previous reference

to the current cache set
AddrPC The target address of the previous reference

with the current program counter
PC The program counter of the current reference
PCAny The program counter of the previous reference

to any address
PCSet The program counter of the previous reference

to the current cache set
PCAddr The program counter of the previous reference

to the current address
PCAnyPrev The program counter of the second most recent reference

to any target address
PCSetPrev The program counter of the second most recent reference

to the current cache set
PCAddrPrev The program counter of the second most recent reference

to the current address

Table 4.2: Elements of signatures investigated by Lin and Reinhardt [LR02]

traces with different signature elements but the same overall signature. Such inter-
ference may be constructive (identical signatures corresponding to the same type of
event), increasing accuracy, or destructive (identical signatures corresponding to dif-
ferent events), decreasing accuracy. Somewhat paradoxically, both forms of interfer-
ence increase coverage.

Even if the number of elements in each signature is limited to three, the total number
of potential signatures is over 150 which doubles if the two methods of combining ele-
ments is considered. Rather than an exhaustive comparison of signatures, a list of pre-
viously proposed signatures which have been shown to perform well are considered,
as listed in Table 4.3. The 1PC2PAddr signature, shown to perform well by Lin and
Reinhardt’s rather theoretical study, is omitted from consideration since implementa-
tion would require tracking the previous address accessed by every single memory
instruction.

Note that Hu et al.’s signatures are not used as a conventional last-touch predictor, but
to index into a table of predicted live times, as described shortly in Section 4.7.2.

Last-touch Predictor Implementation

Lin and Reinhardt [LR02] concentrate on the inherent predictability of last-touches us-
ing signatures, so consider an unbounded store of signatures. Other related work is
more concerned with implementing signature-based predictors for particular applica-
tions, so detail the specific structure used to store signatures. Hu et al. observe little



CHAPTER 4. PREDICTION 105

Name Elements Citation

1Addr Address of current reference [LR02]
2SAddr Address of current reference [HKM02]

Address of previous reference to the same set
1Addr3APC Address of current reference [LF00]

PC of current reference [LFF01]
PCs of two previous references to same address

1PC2Addr Address of current reference [LR02]
PC of current reference
Address of previous reference to any address

1PC PC of current reference [LF00]

Table 4.3: Signature combinations investigated in this dissertation

variation with size so use an 8kB, 8-way set associative address correlation table, in-
dexed by part of the signature [HKM02]. The remainder of the signature is used as a
tag to disambiguate potentially conflicting entries. Lai et al. consider two implementa-
tions — a 2 MB, 8-way set-associative on-chip correlation table and a 7.6 MB, 16-way
set-associative off-chip correlation table [LFF01]. Approximately 60% of the storage
is occupied by tags and history, the rest is used to predict which cache line to prefetch
in their particular performance optimisation. As previously described, Lai and Falsafi
use a two-level structure inspired by branch predictors, adding up to 1 MB of storage
[LF00].

Each predictor is made up of two logical tables. The first table stores the current signa-
ture associated with each cache line, while the second stores previously-observed sig-
natures which lead to a dead cache line, known as last-touch signatures. On each cache
access, the current signature table is updated for the corresponding cache line(s). On a
cache miss, the signature of the cache line being replaced is transferred to the last-touch
signature table. On predictor invocation, the last-touch signature table is searched for a
signature corresponding to the cache line under consideration. This leads to the obser-
vation that unlike much previous work, predictor update (on each cache access) and
predictor invocation (dependent on application) can potentially be decoupled. This
allows more history to be included before the prediction is made, potentially improv-
ing accuracy and coverage, as well as allowing more complex, highly-associative but
slower structures to store previously-observed signatures.

The last-touch predictor implementation chosen is similar to that used by Hu et al.,
with the signature used to index a set-associative table of previously observed signa-
tures. The last-touch signature table is very similar to the tag array of a conventional
cache and is illustrated in Figure 4.13. If the signature is found in the last-touch sig-
nature table, the cache line is predicted to be dead, otherwise it is predicted to be live.
Entries in the last-touch signature table are managed using a least-recently used re-
placement policy. It is desirable to add a bimodal counter to reduce hysteresis, as used
in branch prediction. However, this would require frequent updates of the last-touch
signature table which may not be possible.

The last-touch predictor actions can be summarised as follows:

• On cache hit: Update current signature.



106 4.7. VALUE PREDICTION

Current Signature TableSignature
Tag Index

=? =? =? =?

Figure 4.13: Four-way set-associative last-touch signature table

• On cache miss: Update current signature & transfer to last-touch signature table.

• On prediction: Query the last-touch signature table for the current signature of
the corresponding cache line.

Other Related Work

Lee et al. propose a scheme to even out writeback traffic by speculatively writing back
dirty cache lines before they are evicted from the cache [LTF00]. The cache lines cho-
sen for early writeback are those in the least-recently used position in the replacement
stack already maintained for each cache line. Cache lines may either become eligible
for early writeback when transitioning into the LRU state, or periodically via an au-
tonomous eager writeback scheme. This predictor may easily be cast into the liveness
predictor framework by considering a predictor which considers some fraction of the
LRU stack to be live or dead. In the MRUlive predictor, the n most recently used lines
are considered to be live. The primary advantage of this predictor is that it requires
very little additional hardware above that which is already implemented for the LRU
cache replacement algorithm.

4.7 Value Prediction

As previously described, branch prediction takes place in the instruction decode (ID)
stage of the classic RISC five-stage pipeline. However, even in this relatively shal-
low pipeline, it is unable to entirely eliminate the penalty of a taken branch, since the



CHAPTER 4. PREDICTION 107

branch predictor is only invoked once the branch instruction has been decoded, dur-
ing which time the next instruction has already been fetched from the incremented
program counter location, which for a taken branch is the incorrect address. In order
to further reduce the taken branch penalty, branch prediction may be moved into the
instruction fetch (IF) stage, the first stage in the classic RISC five-stage pipeline. In this
case, a branch target buffer (BTB) is used which augments the existing branch predic-
tor by speeding up delivery of the predicted instruction stream. The BTB is indexed
by the current program counter and if a match is found, the corresponding instruction
is predicted to be a branch, with each BTB entry containing data to help reduce the
branch penalty. Perleberg examines the design space and complexity of BTBs, ranging
from low-complexity containing just prediction information for each entry, through
medium-complexity incorporating predicted target addresses for each entry and fi-
nally to high-complexity which also incorporate instructions from the predicted target
address [PS93]. The degree of complexity of the BTB determines the extent to which it
can reduce or entirely eliminate branch penalties, but equally the hardware resources
required for implementation. Since mispredictions may occur, the processor pipeline
must support squashing incorrect instructions, and also updating of the BTB contents
if either the predicted direction or the predicted branch target address is incorrect.

Branch target prediction is an example of value prediction3, whereby the event being
predicted can have numerous possible definitive outcomes, in contrast to the previ-
ously discussed family of binary predictors which only have two possible definitive
outcomes. In the case of branch targets, the number of possible outcomes is theoreti-
cally any instruction in the entirety of the program. However, the extremely repetitive
behaviour exhibited by many programs allows branch target prediction to exhibit ac-
ceptable performance.

Another example of value prediction is the technique of load value prediction, first
introduced by Lipasti et al. [LWS96]. This approach speculatively predicts the value of
memory locations before the actual value can be provided by the memory subsystem.
If the prediction is correct, the access latency of that memory reference can be elimi-
nated. However, if the prediction is incorrect, that load instruction and any dependent
instructions must be replayed. This technique was soon extended by Lipasti and Shen
to apply to all register-producing instructions and is now known simply as value pre-
diction [LS98]. This corresponds to the most general case of predictor, since any value
within the range of a register may be possible as an outcome. For a typical machine,
this may be 232 or 264 but again, due to the repetitive behaviour exhibited by many
programs, acceptable performance is achievable.

Yet another example of value prediction is the technique of prefetching, as previously
detailed in Section 2.6.2. Again, the range of potential outcomes is vast, essentially any
memory address, but the repetitive behaviour exhibited by many programs allows
reasonable performance to be achieved. Prefetching implementations are always safe,
in the sense that a misprediction never results in incorrect control or data flow, so no
rollback support is required. However, poor prefetching accuracy will have significant
negative performance and power consumption effects due to contention with demand
fetch instructions.

Rather than directly predicting the liveness of a cache line, value predictors may be

3The term value prediction is being used here in a more general sense than that implied by the
original value prediction work of Lipasti and Shen [LS98]



108 4.7. VALUE PREDICTION

used to predict the value of a particular cache line lifetime parameter, which can be
converted into a prediction of liveness by considering other information such as the
time a cache line was brought into the cache, as well as the current time. As with
binary predictors, these predictors may be split into static predictors (which are inde-
pendent of run-time behaviour) and dynamic predictors (which depend upon run-time
behaviour). These two classes of predictor are now discussed in turn.

4.7.1 Static Indirect Liveness Predictors

Previous work by both Kaxiras et al. [KHM01] and Hu et al. [HKM02] propose a
simple static dead line predictor which predicts that cache lines which have not been
accessed for more than a fixed number of cycles are dead. Kaxiras et al. determine
this threshold by considering the field of competitive algorithms and using the generic
policy of taking action when the extra cost incurred by not taking action up until the
current time is equal to the extra cost that would be incurred if action is taken and
that action turns out to be wrong. This policy bounds the worst case cost within a
factor of two of the optimal algorithm. The costs referred to in this policy vary by
application and like Kaxiras et al., a variety of fixed thresholds will be examined in the
Threshold predictor. Hu et al. examine the distributions of access intervals and dead
times, settling on a fixed threshold between the two of 5120 cycles in order to yield
adequate coverage and accuracy.

The performance of a given threshold may be estimated by considering the cumulative
distribution of live and dead times for each cache, Figures 3.7, 3.8, 3.9, 3.10, 3.11 and
3.12. Intuitively, if the threshold is too low, the accuracy of the predictor will be low
while the coverage will be high. Conversely, if the threshold is too high, the coverage
of the predictor will be low while the accuracy will be high. The Threshold predictor
effectively predicts a cache line as dead if it has not been accessed for more than the
threshold number of cycles. It can equally be applied as a liveness predictor, predicting
a cache line to be live if it has not been accessed for less than the threshold number of
cycles.

Besides the actual value of the threshold used, the Threshold predictor has another
parameter, the point in time which the threshold value is relative to. Both Hu et al. and
Kaxiras et al. use the time at which the cache line was last accessed. Alternatively, the
time at which the cache line was first brought into the cache may be used, referred to
as the fetch time, and effectively yielding a predictor of a cache line’s live time. The
various options for the Threshold predictor are summarised in Table 4.4.

Value Predicted Threshold Semantics Citation
Reference

Access Interval Last Reference (now − lastref) < threshold → live [KHM01]
[HKM02]

Live Time Fetch time (now − fetchtime) < threshold → live Novel

Table 4.4: Threshold predictor semantics



CHAPTER 4. PREDICTION 109

4.7.2 Dynamic Indirect Liveness Predictors

Rather than operating with a single fixed threshold, Kaxiras et al. investigate dynamic
approaches whereby the threshold is modified at run-time in response to observed
behaviour [KHM01]. The threshold is increased if the current value is judged to be too
pessimistic, and decreased if the current value is judged to be too optimistic. Kaxiras
et al. assume a misprediction has occurred if a cache line is accessed shortly after being
predicted as dead. However, this approach is unsuitable for the applications described
in Chapter 5, since once a cache line has been predicted as dead, the optimisation
has already taken place thus tracking mispredictions with Threshold predictors is
difficult without resorting to duplicating large architectural elements such as the cache
tag array.

Dynamic Live Time Predictor

Instead, the approach taken by Hu et al. is followed and considerably extended. Rather
than adaptively varying a threshold, the live time of a cache line is directly predicted.
Thus knowing when the cache line was brought into the cache, together with the cur-
rent time, the predicted liveness can be inferred. The history for a cache line is sum-
marised using a trace-based signature which indexes a live time prediction table, sim-
ilar to the last-touch predictor. Recalling Figure 4.11, the live time for a DL1 or IL1
cache line is often less than twice the previous live time for that cache line, therefore
the predicted live time will be twice the previous live time, the same heuristic used by
Hu et al.

The dynamic live time predictor actions can be summarised as follows:

• On cache hit: Update current signature.

• On cache miss: Calculate live time of the outgoing cache line & transfer to live
time prediction table, indexed by current signature.

• On prediction: Query the live time prediction table with the current signature of
the corresponding cache line.

The method by which the live-time prediction table is organised is similar to that used
for the last-touch prediction table, illustrated in Figure 4.13. If a live time cannot be
found for a particular signature, the corresponding cache line is assumed to be dead.

Unlike the DL1 and IL1 cache live times, predictability of consecutive L2 cache live
times is considerably lower so an alternative method is sought.

Dynamic Access Interval Predictor

As well as dynamic prediction of live times using trace-based signatures, access inter-
vals can also be predicted. Figure 4.11 shows that consecutive access intervals to the L2
cache are far more predictable than consecutive live times, therefore a novel alternative
dynamic access interval predictor is more applicable.

The dynamic access interval predictor actions can be summarised as follows:



110 4.8. SUMMARY

• On cache hit: Update current signature, calculate new access interval & transfer
to access interval prediction table, indexed by previous signature.

• On cache miss: Do nothing.

• On prediction: Query the access interval prediction table with the current signa-
ture of the corresponding cache line.

As with the dynamic live time predictor, the previously observed access interval is
doubled and combined with the time of the last access to a cache line and the current
time, providing a predictor for liveness as required.

4.8 Summary

This chapter began by examining the inherent predictability of live times, dead times
and access intervals using two different predictability metrics. The questions of what
to predict, when to predict it and crucially how to predict it were addressed, followed
by a detailed examination of a variety of different predictors. Binary predictors of
liveness were presented, inspired by branch prediction, as well as value predictors of
live times and access intervals. Implementation details and tradeoffs were discussed,
but final choices depend upon the particular applications which are described in the
next chapter.

The various predictors introduced in this chapter are summarised in Table 4.5. The
StackLiveHeapDead and DualThresholdLiveTime predictors are described in
Chapter 5.

Direct Indirect

Static AlwaysLive ThresholdLiveTime

NeverLive ThresholdAccessInterval

StackLive DualThresholdLiveTime

HeapDead

StackLiveHeapDead

Dynamic LastTouch * LiveTime *
MRULive AccessInterval *

Table 4.5: Summary of predictors



Applications 5

5.1 Overview

The aim of this chapter is to demonstrate that prediction of cache line lifetime metrics
may be used in two different applications to decrease cache miss rates, and to improve
overall cache utilisation and system performance.

Having previously defined various cache line lifetime metrics in Chapter 3 and de-
scribed methods to predict them in Chapter 4, this chapter shows how these predictors
may be applied in two different applications. The first application is a filtered vic-
tim cache, in which allocation of an outgoing cache line to the victim cache is made
depending on its predicted live or dead state. The second application is selection of
prefetch victims, in which a victim cache line is chosen for replacement depending
upon its predicted live or dead state. Accuracy and coverage of predictors for both
applications are examined in detail, with full results presented for the best-performing
predictors together with a comparison against relevant previous research.

5.2 Victim Cache Management

Section 2.6.1 described the well-established concept of a victim cache, a small highly-
associative cache placed in the refill path of a conventional main cache which retains
cache lines recently evicted from the main cache, and which aims to reduce the number
of conflict misses by effectively adding further associativity to selected cache sets. In
this application, a liveness predictor is invoked during the management of a victim
cache. The liveness predictor speculates whether a cache line being replaced in the
main cache is still live (i.e. will be accessed again prior to eviction) and if so, the cache
line is stored in the victim cache rather than being immediately evicted to the next level
in the memory hierarchy.

A conventional victim cache design allocates all cache lines being replaced in the main
cache to the victim cache, regardless of usage patterns. It is anticipated that the pro-
posed Filtered Victim Cache (FVC) can increase the benefits provided by a conven-
tional victim cache by making more efficient use of the limited storage available through
only retaining those cache lines which will be shortly reused.

5.2.1 Method

As previously, results are presented from simulations over the entire SPEC CPU2000
integer and floating-point benchmark suite. The benchmarks are executed using the

111



112 5.2. VICTIM CACHE MANAGEMENT

CPU
Address
Data In Data Out

L2 Cache

Victim CacheDL1 Cache

Figure 5.1: Simple victim cache design. Adapted from Hennessy and Patterson [HP03].

reference set of inputs, with the first one billion cycles executed using a simplified
processor model to warm up the caches and to bypass any initialisation code before
running the next two billion cycles with a detailed processor model.

Victim caches are mostly beneficial alongside main caches of limited associativity with
high numbers of conflict misses, such as the L1 caches of the baseline system config-
uration. The L2 cache has higher associativity, hence fewer conflict misses, hence a
victim cache would be less beneficial. In addition, the IL1 cache generally has a very
low overall miss rate, hence a victim cache would only provide very limited benefit.

Even limiting the victim cache to implementation alongside the DL1 cache, limited
benefits are anticipated since the baseline DL1 cache miss rate is still relatively low. In-
stead, the DL1 cache size and associativity are decreased to 32 kB and direct-mapped
respectively, in order to best gain any benefits from a victim cache. This revised
baseline configuration is similar to that used by Hu et al. with similar benchmarks
[HKM02].

The benefits provided by a conventional victim cache are first investigated. The accu-
racy and coverage of various predictors are then evaluated, and full results for the best
performing predictors are evaluated against relevant previous research.

5.2.2 Conventional Victim Cache

Figure 5.1 shows the design of a simple victim cache (VC), adapted from Hennessy and
Patterson [HP03].

The victim cache is accessed in parallel with the DL1 cache1 and despite its high degree
of associativity, its small size allows similar latency compared to accessing the larger
main cache. If an access misses in the DL1 cache but hits in the victim cache, the
corresponding cache lines are swapped. If an access misses in both the DL1 cache and
the victim cache, the requested cache line is fetched from the L2 cache and placed in the
DL1 cache, potentially evicting a cache line which is placed in the victim cache. This

1Note that some victim cache designs access the DL1 cache and victim cache sequentially to reduce
power consumption. However, in this section, it is assumed that they are accessed in parallel to min-
imise latency and hence maximise performance.



CHAPTER 5. APPLICATIONS 113

may evict another cache line from the victim cache to the L2 cache. Thus, as shown in
Figure 5.1, datapaths are required as follows:

• From the DL1 cache to the CPU

• From the CPU to the DL1 cache

• Between the DL1 cache and the victim cache (bidirectional)

• From the L2 cache to the DL1 cache

• From the victim cache to the L2 cache

While an additional bypass datapath from the victim cache directly to the CPU may be
included (shown dashed in Figure 5.1), it would add to the critical path of a DL1 cache
hit, which is hopefully the most frequent occurrence. Therefore the latency of a victim
cache hit is the sum of the time taken to access the victim cache itself and the time taken
to swap cache lines between the DL1 and victim caches. In line with previous work, it
is assumed that the latter component can be satisfied in a single cycle. The access time
of the victim cache itself is estimated by the CACTI 4.2 cache modelling tool [TTJ06],
the most recent version of CACTI to support fully-associative caches, assuming a 45
nm fabrication process. Using this tool, the largest victim cache which can be accessed
in a single cycle has eight cache line entries, and when added to the single cycle to
swap cache lines gives an overall victim cache latency identical to the DL1 main cache.

A variety of replacement policies may be used for the victim cache, but again, in
line with previous work, traditional least-recently used (LRU) is assumed. The per-
formance of the conventional victim cache configuration is now assessed using three
different metrics.

Miss Rate

Figure 5.2 shows the percentage decrease of the DL1 cache miss rate for the conven-
tional victim cache configuration, compared to the revised baseline configuration, for
each benchmark. As previously, the miss rate is measured as the number of Misses
Per Thousand Instructions (MPKI). As would be expected, for every benchmark the
conventional victim cache configuration reduces the miss rate. The average reduction
in miss rate is 23%, and varies from 1.4% for swim and 1.5% for art 1 and art 2, to
97% for perlbmk 2 and 57% for eon 3.

Cache Utilisation

Figure 5.3 shows the percentage point change of the DL1 cache utilisation for the con-
ventional victim cache configuration, compared to the revised baseline configuration.
Note that since cache utilisation is already measured as a percentage, Figure 5.3 shows
the percentage point change, i.e. the numerical difference between the two respective
percentages.

The general trend is that the conventional victim cache configuration has very little
impact on DL1 cache utilisation. This is not surprising, since only a small number of



114 5.2. VICTIM CACHE MANAGEMENT

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

P
er

ce
n

ta
g

e 
d

ec
re

as
e 

in
 M

P
K

I 
v

s 
re

v
is

ed
 b

as
el

in
e

0

10

20

30

40

50

60

70

80

90

100

Figure 5.2: DL1 percentage miss rate decrease for conventional victim cache configu-
ration vs revised baseline configuration

additional cache lines are provided by the victim cache, hence the time for which a
cache line is resident in the victim cache is short, hence the potential impact on cache
utilisation is small. The average change in cache utilisation is 0.042%, ranging from
-0.65% for perlbmk 6 to 4.0% for perlbmk 2.

Instructions Committed per Cycle

Having examined the impact of the conventional victim cache configuration on the
DL1 cache miss rate and the DL1 cache utilisation, the overall system performance is
examined using the number of Instructions committed Per Cycle (IPC) metric previ-
ously discussed. Figure 5.4 shows the percentage change in IPC for the conventional
victim cache configuration, compared to the revised baseline configuration.

The overall trend is that the conventional victim cache configuration improves IPC,
although generally by a small amount. Recalling Figure 3.1, this behaviour is to be
expected, since very limited IPC improvements were encountered even with perfect L1
caches, indicating that the overall system is tolerant of the L1 cache latency and miss
rates.



CHAPTER 5. APPLICATIONS 115

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
siP

er
ce

n
ta

g
e 

p
o

in
t 

ch
an

g
e 

in
 c

ac
h

e 
u

ti
li

sa
ti

o
n

 v
s 

re
v

is
ed

 b
as

el
in

e

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 5.3: DL1 cache utilisation percentage point change for conventional victim cache
configuration vs revised baseline configuration

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

P
er

ce
n

ta
g

e 
ch

an
g

e 
in

 I
P

C
 v

s 
re

v
is

ed
 b

as
el

in
e

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

Figure 5.4: IPC change for conventional victim cache configuration vs revised baseline
configuration



116 5.2. VICTIM CACHE MANAGEMENT

The average IPC improvement is 1.2%, ranging from -5.3% for facerec and -0.66%
for gcc 166, to 4.6% for vortex 3 and 8.0% for perlbmk 2. The small decreases in
IPC, also observed by Hu et al. [HKM02], are most likely due to second-order effects,
including reordering of memory load operations and the fact that the simulation is run
for a fixed number of cycles, not instructions, therefore the revised baseline and con-
ventional victim cache configurations will run a slightly different mix of instructions.

5.2.3 Predictor Coverage & Accuracy

The relevant predictors described in Chapter 4 are now evaluated, measuring their
coverage and accuracy as previously defined. The filtered victim cache is simulated,
together with its associated predictor, however, actual filtering of cache lines into the
victim cache is not performed in order to determine the definitive state of each cache
line.

Whenever a cache line is placed in the victim cache through the eviction of a cache line
from the DL1 cache, a prediction is attempted for that cache line. The prediction is
verified when the cache line is either accessed in the victim cache (i.e. it was live at the
time of prediction) or it is evicted from the victim cache (i.e. it was dead at the time of
prediction).

A prediction could be made whenever an access misses in the DL1 cache but hits in
the victim cache, resulting in the two cache lines being swapped. However, in such a
situation it is unclear what action to take with the result of the prediction. Cache lines
which are predicted to be dead could be speculatively written back to the L2 cache,
however, as observed by Lee et al. [LTF00], this is likely to provide very limited benefit
in general-purpose applications.

The various predictors are now evaluated in turn. For this filtered victim cache ap-
plication, dynamic predictors which require large storage overheads are very unlikely
to be as effective as simply enlarging the existing DL1 cache or victim cache. For this
reason, only static predictors are considered. Also note that the MRUlive predictor
is not evaluated for this application since the cache lines evicted from the DL1 cache
are always the least recently used due to the direct-mapped DL1 cache of the revised
baseline configuration.



CHAPTER 5. APPLICATIONS 117

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

A
lw

ay
sL

iv
e 

p
re

d
ic

to
r 

ac
cu

ra
cy

0

10

20

30

40

50

60

70

Figure 5.5: AlwaysLive predictor accuracy

AlwaysLive Predictor

The AlwaysLive predictor, included for completeness, predicts that a cache line is
always live. As such, it has full coverage since it does not rely upon any history being
tracked. It is equivalent to always allocating a victim cache line for every cache line
being replaced in the DL1 cache. Figure 5.5 shows the accuracy of the AlwaysLive
predictor applied to the DL1 victim cache.

In general, the AlwaysLive predictor accuracy is low, indicating that allocation of a
victim cache line for every cache line being replaced in the DL1 cache is frequently the
wrong choice, since that cache line will not be referenced during its time in the victim
cache. Predictor accuracy varies considerably between different applications, but is
reasonable consistent within applications but with different workloads. The average
accuracy is 11%, and varies from 0.27% for ammp to 52% for eon 1.

NeverLive Predictor

The NeverLive predictor is the converse of the AlwaysLive predictor, and predicts
that a cache line is never live, hence should never be allocated space in the victim
cache. Again, it has full coverage since it does not rely upon any history being tracked.



118 5.2. VICTIM CACHE MANAGEMENT

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

A
lw

ay
sD

ea
d

 p
re

d
ic

to
r 

ac
cu

ra
cy

60

70

80

90

100

Figure 5.6: NeverLive predictor accuracy

Figure 5.6 shows the accuracy for the NeverLive predictor applied to the DL1 victim
cache. As would be expected, the results are the opposite of those previously obtained
for the AlwaysLive predictor, confirming the observation that allocation of a victim
cache line is frequently the wrong choice and indicating that a filtered victim cache has
much potential.

StackLiveHeapDead Predictor

The StackLiveHeapDead heuristic predictor predicts that a cache line is live if its
address falls into the stack segment of the address space, and dead if its address falls
into the heap segment of the address space. If its address falls into any other address
space, a prediction cannot be made. This approach provides almost complete coverage,
since addresses outside the heap and stack segments are typically very rarely encoun-
tered in the DL1 cache for the benchmarks considered. Figure 5.7 shows the accuracy
of the StackLiveHeapDead predictor applied to the DL1 victim cache, the observed
coverage being indistinguishable from complete.

Accuracy is fairly high but very variable, with an average of 83%, and ranging from
5% for gcc 166 to 99.6% for ammp. The observed accuracy is lower than that of the
NeverLive predictor, indicating that the heuristic assumption may not be correct.



CHAPTER 5. APPLICATIONS 119

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

S
ta

ck
L

iv
eH

ea
p

D
ea

d
 p

re
d

ic
to

r 
ac

cu
ra

cy

0

10

20

30

40

50

60

70

80

90

100

Figure 5.7: StackLiveHeapDead predictor accuracy

The validity of the heuristic assumption can be assessed by splitting the predictor into
two different components.

The StackLive predictor considers the location of the cache line within a program’s
address space and predicts it to be live if the cache line corresponds to the stack seg-
ment, otherwise a prediction cannot be made. Figure 5.8 shows the coverage and ac-
curacy of the StackLive predictor applied to the DL1 victim cache.

Coverage is generally very low, and varies widely from 0.0014% for art 1 and art 2

to 95% for gcc 166, with an average of 13%. Likewise, accuracy is generally low, with
an average of 35%, varying widely from 0% for art 1 and art 2 to 99.8% for lucas.
The low coverage indicates that most benchmarks make relatively few stack references,
while the low accuracy indicates that cache lines in the stack address space are more
likely to be dead than live, as is the general overall trend.

The HeapDead predictor considers the location of the cache line within a program’s ad-
dress space and predicts it to be dead if the cache line corresponds to the heap segment,
otherwise a prediction cannot be made. Figure 5.9 shows the coverage and accuracy of
the HeapDead predictor applied to the DL1 victim cache.

Coverage is mostly very high, over 90%, although is low for the gcc and eon bench-
marks, indicating these benchmarks make few heap references. The average coverage



120 5.2. VICTIM CACHE MANAGEMENT

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

S
ta

ck
L

iv
e 

p
re

d
ic

to
r 

co
v

er
ag

e 
an

d
 a

cc
u

ra
cy

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Figure 5.8: StackLive predictor coverage and accuracy

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

H
ea

p
D

ea
d

 p
re

d
ic

to
r 

co
v

er
ag

e 
an

d
 a

cc
u

ra
cy

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Figure 5.9: HeapDead predictor coverage and accuracy



CHAPTER 5. APPLICATIONS 121

is 87%, and ranges from 5.2% for gcc 166 to 100% for art 1 and art 2. Accuracy is
consistently high, with an average of 92%, ranging from 79% for sixtrack to 100%
for ampp.

For most benchmarks, the number of heap references greatly exceeds the number of
stack references, indicated by the coverage results for the individual StackLive and
HeapDead predictors. This means that the StackLiveHeapDead predictor very often
predicts a cache line to be dead, hence its performance tends towards that of the Nev-
erLive predictor. Indeed, the infrequently occurring but mostly incorrect StackLive
predictions mean that the performance is slightly worse than that of the NeverLive
predictor.

ThresholdLiveTime Predictor

The ThresholdLiveTime predictor predicts that a cache line is live if the time inter-
val since it was brought into the cache is less than the threshold value, otherwise the
cache line is predicted as dead. The particular value for the threshold parameter can be
determined by considering the distribution of live and dead cache lines in the victim
cache.

Figure 5.10 shows the distribution of live and dead cache lines, entering the victim
cache, clustered by their live time when entering the victim cache, for the gzip graphic

benchmark which has been chosen as being representative of the general behaviour.
The threshold value must be chosen to maximise the number of dead cache lines cor-
rectly predicted as dead (the red area to the right of the threshold value) whilst min-
imising the number of live cache lines incorrectly predicted as dead (the green area to
the right of the threshold). For the filtered victim cache application, incorrectly predict-
ing a live cache line as dead will lead to an additional cache miss, whereas incorrectly
predicting a dead cache line as live only may lead to an additional cache miss, should
it evict a live cache line prematurely.

As has already been observed from the AlwaysLive and NeverLive predictors, the
vast majority of cache lines in the victim cache turn out to be dead. Detailed examina-
tion of the data presented in Figure 5.10 indicates that a threshold of 512 cycles is most
appropriate.

DualThresholdLiveTime Predictor

Further careful examination of Figure 5.10 indicates that the behaviour of live cache
lines in the victim cache exhibits a bimodal distribution, with significant numbers of
live cache lines having both very small and very large live times, but very few in be-
tween. This behaviour cannot be captured with the ThresholdLiveTime predic-
tor previously proposed, since only a single threshold is available for consideration.
Instead, a DualThresholdLiveTime predictor is evaluated, which predicts that a
cache line is live if its live time is less than the lower threshold or more than the upper
threshold, otherwise the cache line is predicted as dead. From Figure 5.10, the lower
threshold remains at 512 cycles, while the upper threshold is at 100,000 cycles.

Figure 5.11 compares the accuracy of the ThresholdLiveTime and DualThresh-

oldLiveTime predictors for the revised baseline configuration. The ThresholdLive-



122 5.2. VICTIM CACHE MANAGEMENT

Live time on entering victim cache

10
00

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

N
u

m
b

er
 o

f 
li

v
e 

o
r 

d
ea

d
 c

ac
h

e 
li

n
es

      0

 500000

1000000

1500000

2000000

2500000

Live

Dead

Figure 5.10: Distribution of live and dead cache lines in the victim cache clustered by
live time for gzip graphic

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

0

10

20

30

40

50

60

70

80

90

100

ThresholdLiveTime

DualThresholdLiveTime

Figure 5.11: Accuracy of the ThresholdLiveTime and DualThresholdLiveTime

predictors



CHAPTER 5. APPLICATIONS 123

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

P
ro

p
o

rt
io

n
 o

f 
li

v
e 

ca
ch

e 
li

n
es

 m
is

p
re

d
ic

te
d

 a
s 

d
ea

d

0

5

10

15

20

25

30

35

40

ThresholdLiveTime

DualThresholdLiveTime

Figure 5.12: Proportion of live cache lines mispredicted as dead by the Thresh-

oldLiveTime and DualThresholdLiveTime predictors

Time predictor and DualThresholdLiveTime predictor accuracies are usually sim-
ilar and fairly high, with an average of 86% and 81% respectively. The accuracy of the
ThresholdLiveTime predictor usually exceeds that of the DualThresholdLive-
Time predictor, but for a few benchmarks the converse is observed. In two cases,
perlbmk 2 and gap, the accuracy of the DualThresholdLiveTime predictor is con-
siderably lower than that of the ThresholdLiveTime predictor.

As has already been mentioned, mispredicting a live cache line as dead will result in
an additional cache miss. Figure 5.12 compares the proportion of such occurrences for
the revised baseline configuration with the ThresholdLiveTime and DualThresh-

oldLiveTime predictors. While the overall accuracy of the DualThresholdLive-
Time predictor is lower than that of the ThresholdLiveTime predictor, the Du-

alThresholdLiveTime predictor makes far fewer expensive mispredictions of live
cache lines as dead, with an average of 4.6% compared to 7.4%.

ThresholdAccessInterval Predictor

The ThresholdAccessInterval predictor predicts that a cache line is live if the
time interval since it was last referenced is less than the threshold value, otherwise the
cache line is predicted as dead. The particular value for the threshold parameter can be
determined by considering the distribution of live and dead cache lines in the victim



124 5.2. VICTIM CACHE MANAGEMENT

Access interval on entering victim cache

10
0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

N
u

m
b

er
 o

f 
li

v
e 

o
r 

d
ea

d
 c

ac
h

e 
li

n
es

      0

 200000

 400000

 600000

 800000

1000000

1200000

Live

Dead

Figure 5.13: Distribution of live and dead cache lines in the victim cache clustered by
access interval for twolf

cache.

Figure 5.13 shows the distribution of live and dead cache lines, entering the victim
cache, clustered by their access interval when entering the victim cache, for the twolf
benchmark which has been chosen as being representative of the general behaviour.
As with the ThresholdLiveTime predictor, the threshold value must be chosen to
maximise the number of dead cache lines correctly predicted as dead (the red area
to the right of the threshold value) whilst minimising the number of live cache lines
incorrectly predicted as dead (the green area to the right of the threshold). Compared
to Figure 5.10, live and dead cache lines seem more separable using access intervals
rather than live times. In this case, the threshold value is chosen as 32 cycles.

Unlike the ThresholdLiveTime predictor, the live cache lines do not exhibit a bi-
modal distribution, hence the ThresholdAccessInterval predictor is adequate.
Figure 5.14 shows the accuracy of the ThresholdAccessInterval predictor for the
revised baseline configuration for each benchmark. Accuracy is generally high for
most benchmarks, with an average of 92% and ranging from 73% for eon 1 to 99.8%
for ammp. Accuracy of the ThresholdAccessInterval predictor is considerably
higher than that of the ThresholdLiveTime or DualThresholdLiveTime predic-
tors.

Figure 5.15 shows the proportion of live cache lines mispredicted as dead by the Thresh-
oldAccessInterval predictor. The average proportion of live cache lines mispre-
dicted as dead is 6.7%, and ranges from 0.21% for swim to 27% for eon 1. This is
considerably higher than the average of 4.6% observed for the DualThresholdLive-
Time predictor, but less than the average of 7.4% observed for the ThresholdLive-



CHAPTER 5. APPLICATIONS 125

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

T
h

re
sh

o
ld

A
cc

es
sI

n
te

rv
al

 p
re

d
ic

to
r 

ac
cu

ra
cy

60

65

70

75

80

85

90

95

100

Figure 5.14: Accuracy of the ThresholdAccessInterval predictor

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

P
ro

p
o

rt
io

n
 o

f 
li

v
e 

ca
ch

e 
li

n
es

 m
is

p
re

d
ic

te
d

 a
s 

d
ea

d

0

5

10

15

20

25

30

Figure 5.15: Proportion of live cache lines mispredicted as dead by the ThresholdAc-
cessInterval predictor



126 5.2. VICTIM CACHE MANAGEMENT

Time predictor.

5.2.4 Overall Performance

The most promising predictors evaluated above are the ThresholdLiveTime, Du-
alThresholdLiveTime and ThresholdAccessInterval predictors. These three
predictors are now evaluated in terms of the change in DL1 cache miss rate and the
change in IPC. Due to the limited effect of the victim cache on overall cache utilisation,
this metric is not examined.

Miss Rate

Figure 5.16 shows the percentage change in the number of misses per thousand instruc-
tions (MPKI) for a filtered victim cache compared to the conventional victim cache. In
almost all cases, all three predictors substantially reduce the miss rate, by an average
of 23%, 24% and 21% respectively. Their performance is usually similar, and where
it differs, the novel DualThresholdLiveTime predictor typically outperforms the
novel ThresholdLiveTime predictor and the ThresholdAccessInterval predic-
tor previously proposed by Hu et al. [HKM02]. In addition, the novel predictors do not
require updating on every cache hit, hence are potentially more power-efficient. In one
case, perlbmk 1, the cache miss rate increases substantially for all three predictors.

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

C
h

an
g

e 
in

 M
P

K
I 

v
s 

co
n

v
en

ti
o

n
al

 v
ic

ti
m

 c
ac

h
e

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

ThresholdLiveTime

DualThresholdLiveTime

ThresholdAccessInterval

Figure 5.16: Percentage change in MPKI vs conventional victim cache



CHAPTER 5. APPLICATIONS 127

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

C
h

an
g

e 
in

 I
P

C
 v

s 
co

n
v

en
ti

o
n

al
 v

ic
ti

m
 c

ac
h

e

−30

−20

−10

0

10

20

30

40

50

60

70

80

ThresholdLiveTime

DualThresholdLiveTime

ThresholdAccessInterval

Figure 5.17: Percentage change in IPC vs conventional victim cache

Instructions Committed per Cycle

Figure 5.17 shows the percentage change in the number of Instructions committed Per
Cycle (IPC) for a filtered victim cache compared to the conventional victim cache. In
most cases, the IPC increases similarly for each of the three predictors. The average
change in IPC is 5.6%, 5.6% and 5.8% for the ThresholdLiveTime, DualThresh-
oldLiveTime and ThresholdAccessInterval predictors respectively. The aver-
age change in IPC between the baseline system configuration and the conventional
victim cache is just 1.2%, hence the filtered victim cache improves the average perfor-
mance significantly with little hardware overhead.

For perlbmk 1 which saw a substantial rise in miss rate, the IPC is correspondingly
lowered by approximately 20%. One other benchmark, gcc scilab, shows a similar
decrease in IPC but no corresponding increase in miss rate. This warrants further in-
vestigation, and may be due to the fact that not all memory operations are of the same
criticality, as found by Srinivasan et al. [SJLW01].

Storage Overhead

The three predictors evaluated above each require a timestamp to be stored for each
cache line, corresponding to the time at which the cache line was brought into the
cache (for the ThresholdLiveTime and DualThresholdLiveTime predictors), or



128 5.3. PREFETCHING VICTIM SELECTION

the time at which the cache line was last accessed (for the ThresholdAccessInter-
val predictor). This timestamp is stored with per-cycle precision using a 64-bit value.
Therefore the additional storage overhead is 4 kB, which could equally well be used
to increase the size of the DL1 cache, or increase the size of the victim cache. How-
ever, a much coarser timestamp would probably suffice, as used by Hu et al. [HKM02],
leading to negligible storage overhead.

5.3 Prefetching Victim Selection

Section 2.6.2 described the concept of prefetching, proactively fetching cache lines
from the next level in the memory hierarchy before a corresponding demand fetch
instruction is encountered. Prefetching is most effective when there are a large number
of compulsory misses; indeed, it is the only common cache improvement technique
which can reduce the number of compulsory misses. However, prefetching can po-
tentially harm overall system performance in two respects. First, prefetch accesses
compete with demand fetch accesses for bus bandwidth. Second, and more signifi-
cant, prefetch accesses compete with demand fetch accesses for cache space. It is this
second aspect which is addressed here.

Previous work has combined prediction of dead cache lines with a prefetcher to select
prefetch targets which can replace predicted dead cache lines, known as prefetch vic-
tims, for example in Lai et al.’s Dead Block Correlating Prefetcher (DBCP) [LFF01]. An
alternative approach is pursued here, in which prefetch target selection and prefetch
victim selection are decoupled. An aggressive conventional prefetcher issues prefetches,
providing the prefetch targets. When a prefetch request is satisfied, it is placed in the
cache set in the least-recently used position which is predicted to contain a dead cache
line. If no such position exists, the prefetched cache line is discarded.

Many prefetching algorithms of varying complexity have been proposed. In this dis-
sertation, tagged prefetching is used since it is simple to implement and can provide
significant performance gains, but also significant performance losses. Tagged prefetch
issues a prefetch for cache lines i+1, i+2...i+n whenever cache line i is demand-fetched
or upon the first reference to the previously prefetched cache line i. The parameter
n is known as the degree of prefetching, and determines how many cache lines are
prefetched at a time.

5.3.1 Method

As previously, results are presented from simulations over the entire SPEC CPU2000
integer and floating-point benchmark suite. The benchmarks are executed using the
reference set of inputs, with the first one billion cycles executed using a simplified
processor model to warm up the caches and to bypass any initialisation code before
running the next one billion cycles with a detailed processor model for predictor eval-
uation, otherwise two billion cycles are used. Previous simulations in this dissertation
have run the detailed processor model for two billion cycles, but this is reduced in
order to reduce the overall simulation time with numerous different predictors.



CHAPTER 5. APPLICATIONS 129

Prefetching is generally of most benefit if the latency to access the lower level of mem-
ory is high, and there is adequate capacity to store prefetched cache lines without ex-
cessive cache pollution. For this reason, prefetching is evaluated in the L2 cache of the
baseline system configuration.

The benefits provided by conventional tagged prefetching are first investigated. The
accuracy and coverage of various predictors are then evaluated, and full results for the
best performing predictors are evaluated against relevant previous research.

The MRULive predictor is not evaluated since it would require significant changes to
the replacement policy of the cache to avoid thrashing when inserting prefetched cache
lines. The question of where to place both demand-fetched and prefetched cache lines
in the least-recently used (LRU) stack is still open, and an additional area where live-
ness predictors may be applicable [QJP+07].

5.3.2 Conventional Tagged Prefetching

Conventional tagged prefetching is now evaluated using the miss rate, cache utilisa-
tion and instructions committed per cycle metrics. The degree of prefetching is chosen
to be four, which is a fairly aggressive value. Candidate prefetches are allowed to check
the DL1 and IL1 cache before being issued, and the latency of calculating prefetch ad-
dresses is just a single cycle. The prefetcher is invoked on every cache access. Up to
100 prefetches may be queued at once.

Miss Rate

Figure 5.18 shows the percentage change in the L2 cache miss rate, measured as the
number of misses per thousand instructions (MPKI), for the conventional tagged prefetch
configuration. For the majority of benchmarks, a significant reduction is observed, up
to -94% for gcc integrate, with an average of -31%. However, a few benchmarks
show a significant increase in miss rate, up to 143% for perlbmk 3.

As with the conventional victim cache, some care must be taken when interpreting
these figures, and the absolute miss rate must be considered as well as the percentage
change. For example, while perlbmk 3 shows the largest percentage increase in miss
rate, the miss rate both in the baseline configuration and with the conventional tagged
prefetcher is actually very small.

Cache Utilisation

Figure 5.19 shows the percentage point change in cache utilisation for the conventional
tagged prefetcher compared to the baseline configuration. The general trend is that the
conventional tagged prefetcher decreases cache utilisation, by a maximum of -44% for
fma3d and an average of -6%. In some cases, cache utilisation increases slightly, by
up to 6% for gcc scilab. The interpretation of these results is that in most cases
the prefetcher is bringing dead lines into the cache, as well as prematurely evicting
live cache lines. The decoupled prefetch victim selection scheme investigated here can
help with the latter issue, but not with the former since that largely relies upon a better
prefetching algorithm.



130 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

P
er

ce
n

ta
g

e 
ch

an
g

e 
in

 M
P

K
I 

v
s 

b
as

el
in

e

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Figure 5.18: Percentage change in L2 cache miss rate vs baseline

Benchmark

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

P
er

ce
n

ta
g

e 
p

o
in

t 
ch

an
g

e 
in

 c
ac

h
e 

u
ti

li
sa

ti
o

n
 v

s 
b

as
el

in
e

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Figure 5.19: Percentage point change in L2 cache utilisation vs baseline



CHAPTER 5. APPLICATIONS 131

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

A
v

er
ag

e 
n

u
m

b
er

 o
f 

In
st

ru
ct

io
n

s 
C

o
m

m
it

te
d

 p
er

 C
y

cl
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Baseline

Baseline with prefetcher

Figure 5.20: IPC for conventional tagged prefetcher compared to baseline configuration

Instructions Committed per Cycle

Figure 5.20 shows the average number of Instructions committed Per Cycle (IPC) for
the conventional tagged prefetcher compared to the baseline configuration. In most
cases, the conventional tagged prefetcher increases IPC by up to 84% for facerec,
with an average of 13%. For perlbmk 3 which showed a significant percentage in-
crease in the cache miss rate, no change in IPC is observed since the absolute change in
cache miss rate was negligible. Several benchmarks show a small decrease in IPC, up to
-20% for mcf. Those benchmarks which most benefit from the conventional prefetcher
tend to be the floating-point benchmarks on the right-hand side of Figure 5.20, with
typically more regular access patterns than the integer benchmarks on the left-hand
side.

5.3.3 Static Liveness Predictors

NeverLive Predictor

Figure 5.21 shows the accuracy of the NeverLive predictor applied to prefetch vic-
tim selection in the baseline prefetching configuration. Overall accuracy is generally
high, indicating that the least-recently used cache line in each set of the L2 cache is
frequently dead. The average accuracy is 95%, and varies from 64% for gcc 166 to
100% for the eon benchmarks and fma3d. However, for these latter benchmarks, ex-
ceedingly few prefetched cache lines are either referenced or evicted during execution
of the benchmark, and are omitted from subsequent results.



132 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
eo

n
_1

eo
n

_2
eo

n
_3

p
er

lb
m

k
_1

p
er

lb
m

k
_2

p
er

lb
m

k
_3

p
er

lb
m

k
_4

p
er

lb
m

k
_5

p
er

lb
m

k
_6

p
er

lb
m

k
_7

g
ap

v
o

rt
ex

_1
v

o
rt

ex
_2

v
o

rt
ex

_3
b

zi
p

2_
g

ra
p

h
ic

b
zi

p
2_

p
ro

g
ra

m
b

zi
p

2_
so

u
rc

e
tw

o
lf

w
u

p
w

is
e

sw
im

m
g

ri
d

ap
p

lu
m

es
a

g
al

g
el

ar
t_

1
ar

t_
2

eq
u

ak
e

fa
ce

re
c

am
m

p
lu

ca
s

fm
a3

d
si

x
tr

ac
k

ap
si

N
ev

er
L

iv
e 

p
re

d
ic

to
r 

ac
cu

ra
cy

55

60

65

70

75

80

85

90

95

100

Figure 5.21: NeverLive predictor accuracy

Other Static Liveness Predictors

The StackLiveHeapDead, ThresholdLiveTime and ThresholdAccessInter-

val predictors previously evaluated for the filtered victim cache application were also
evaluated for selection of prefetch victims. The results, not presented here for reasons
of space, were generally poor, with low accuracy over most benchmarks. This is most
likely due to the inability to adjust the threshold for a particular benchmark or phase of
a benchmark. As has already been seen in Chapter 3, results for the L2 cache are more
variable than those for the DL1 cache, hence the remainder of this section concentrates
on dynamic predictors.

5.3.4 Dynamic Direct Liveness Predictors

The dynamic direct liveness predictors evaluated in this section are also known as
Last-Touch Predictors (LTPs) or Dead Block Predictors (DBPs). Section 4.6.3 described
how various elements from historical addresses and program counter values could be
combined into a signature. A last-touch signature table contains signatures which
have previously been observed to have been last-touches. In this section, an 8-way
set-associative last-touch signature table is used, with a total of 16,384 sets. The tag
for each signature is stored as a 49-bit value, and the four least significant bits are
ignored during tag comparison in order to promote constructive interference. In total,



CHAPTER 5. APPLICATIONS 133

approximately 1 MB of signature storage is provided. The access time of the last-touch
signature table, estimated using the CACTI 4.2 cache modelling tool [TTJ06] assuming
a 45 nm fabrication process, is 10 cycles.

LastTouch 1Addr Predictor

Figure 5.22 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the LastTouch 1Addr predictor. As with victim cache
filtering, mispredicting a live cache line as dead has a much larger potential negative
impact than the converse, since a mispredicted dead cache line will cause an additional
cache miss, whereas a mispredicted live cache line may cause an additional cache miss
if an access is made to the prefetch target.

The average accuracy is 65%, but varies considerably between benchmarks, from 24%
to 93%. Coverage generally tracks accuracy, with an average of 68% and ranging from
23% to 99%. The proportion of mispredicted dead prefetch victims is low for most
benchmarks, with an average of 4.2%, but is considerable for several benchmarks with
a maximum of 33%.

LastTouch 2SAddr Predictor

Figure 5.23 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the LastTouch 2SAddr predictor. The average accuracy is
55%, but varies considerably between benchmarks, from 10% to 95%. Again, coverage
generally tracks accuracy, with an average of 54% and ranging from 6.9% to 95%.

Again, the proportion of mispredicted dead prefetch victims is low for most bench-
marks, with an average of 2.4% and a maximum of 21%, less than the values for the
LastTouch 1Addr predictor.



134 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.22: LastTouch 1Addr predictor performance

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.23: LastTouch 2SAddr predictor performance



CHAPTER 5. APPLICATIONS 135

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.24: LastTouch 1Addr3APC predictor performance

LastTouch 1Addr3APC Predictor

Figure 5.24 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the LastTouch 1Addr3APC predictor. The average accu-
racy is 56%, but varies considerably between benchmarks, from 20% to 91%. Again,
coverage mostly closely tracks accuracy, with an average of 56% and ranging from
19% to 91%. Again, the proportion of mispredicted dead prefetch victims is low for
most benchmarks, with an average of 3.4% and a maximum of 30%.

LastTouch 1PC2Addr Predictor

Figure 5.25 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the LastTouch 1PC2Addr predictor. Accuracy is high for
several benchmarks, low for several others, and varies considerably for the remainder.
The average accuracy is 43%, ranging from 5% to 85%. Again, coverage tracks accuracy
with an average of 42%, ranging from 5.4% to 85%. Again, the proportion of mispre-
dicted dead prefetch victims is usually low, with an average of 2.2% and a maximum
of 19%.



136 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.25: LastTouch 1PC2Addr predictor performance

LastTouch 1PC Predictor

Figure 5.26 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the LastTouch 1PC predictor. Accuracy is very high for
most benchmarks, with an average of 94%, ranging from 65% to 99%. Coverage is also
very high, with an average on 99.7% and ranging from 98.0% to 99.9%. The proportion
of mispredicted dead prefetch victims is usually very low, with an average of 5.4%, but
significant for a few benchmarks with a maximum of 35%.

Summary

Overall, the LastTouch 1PC predictor performs best over the set of benchmarks eval-
uated. It combines high accuracy and coverage with relatively few mispredicted dead
prefetch victims.

5.3.5 Dynamic Live Time Predictors

The dynamic live time predictor extends the previously evaluated dynamic direct live-
ness predictor by storing the previously observed live time with each corresponding
entry in the signature table. The current live time is predicted to be double that previ-
ously observed, the same heuristic used by Hu et al. [HKM02]. Live times are stored



CHAPTER 5. APPLICATIONS 137

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.26: LastTouch 1PC predictor performance

at a resolution of a single cycle — a much coarser resolution is probably acceptable,
but remains an area for future work. The same signature table size, organisation and
latency is used for the dynamic live time predictors as for the dynamic direct live-
ness predictors. If a matching signature cannot be found in the signature table, the
cache line is predicted as dead. This is based upon the earlier observation that most
cache lines which are candidate prefetch victims are dead, but is the converse of the
behaviour of the dynamic direct liveness predictor.

LiveTime 1Addr Predictor

Figure 5.27 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as
dead which are actually live for the LiveTime 1Addr predictor. Accuracy is gener-
ally moderate but variable, with an average of 64% and ranging from 20% to 93%.
Coverage mostly tracks accuracy, but is significantly different in a few cases. The aver-
age coverage is 67%, ranging from 20% to 98%. The proportion of mispredicted dead
prefetch victims is usually very low, with an average of 4.4%, but significant for a few
benchmarks with a maximum of 26%.

LiveTime 2SAddr Predictor

Figure 5.28 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as



138 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.27: LiveTime 1Addr predictor performance

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.28: LiveTime 2SAddr predictor performance



CHAPTER 5. APPLICATIONS 139

dead which are actually live for the LiveTime 2SAddr predictor, as used by Hu et al.
[HKM02]. Accuracy is fairly low, with an average of 47% and ranging from 4.9% to
91%. Coverage mostly follows accuracy, with an average of 50%, ranging from 4.9% to
94%. The proportion of mispredicted dead prefetch victims is, as usual, low, with an
average of 4.4% and a maximum of 30%.

LiveTime 1Addr3APC Predictor

Figure 5.29 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the LiveTime 1Addr3APC predictor. As with the previous
LiveTime 2SAddr predictor, accuracy is fairly low, with an average of 46%, ranging
from 8.5% to 82%. Coverage follows accuracy fairly closely, with an average of 48%,
ranging from 8.5% to 83%. The proportion of mispredicted dead prefetch victims is
low, with an average of 3.7% and a maximum of 21%.

LiveTime 1PC2Addr Predictor

Figure 5.30 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the LiveTime 1PC2Addr predictor. Accuracy is higher
than that for the previous LiveTime 1Addr3APC and LiveTime 2SAddr predictors,
with an average of 58%, ranging from 15% to 95%. Coverage tracks accuracy for most
benchmarks, with an average of 61%, ranging from 15% to 95%. The proportion of
mispredicted dead prefetch victims is generally low, with an average of 4.6% and a
maximum of 31%.

LiveTime 1PC Predictor

Figure 5.31 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the LiveTime 1PC predictor.

Accuracy and coverage are both generally very low, with an average of 11% and 10%
respectively. The proportion of mispredicted dead prefetch victims is generally low,
with an average of 2.4% and a maximum of 22%.

Summary

Overall, the novel LiveTime 1Addr predictor performs best over the set of bench-
marks evaluated. The LiveTime 2SAddr predictor proposed by Hu et al. is signifi-
cantly worse [HKM02]. However, the LiveTime 1Addr predictor does not perform
as well as the best LastTouch predictor examined.



140 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.29: LiveTime 1Addr3APC predictor performance

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.30: LiveTime 1PC2Addr predictor performance



CHAPTER 5. APPLICATIONS 141

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.31: LiveTime 1PC predictor performance

5.3.6 Dynamic Access Interval Predictors

The dynamic access interval predictor extends the previously evaluated dynamic di-
rect liveness predictor by storing the previously observed access interval with each cor-
responding entry in the signature table. The current access interval is predicted to be
double that previously observed, a similar heuristic to that used by Hu et al. [HKM02].
Access intervals are stored at a resolution of a single cycle — a much coarser resolution
is probably acceptable, but remains an area for future work. The same signature table
size, organisation and latency is used for the dynamic access interval predictors as for
the dynamic direct liveness predictors and dynamic live time predictors. Again, if a
matching signature cannot be found in the signature table, the cache line is predicted
as dead.

AccessInterval 1Addr Predictor

Figure 5.32 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the AccessInterval 1Addr predictor. Overall accuracy
is fairly high, with an average of 65%, but a disappointing minimum of 20% and a
maximum of 92%. As previously, coverage mostly follows accuracy, with an average of
67%, ranging from 20% to 98%. The proportion of mispredicted dead prefetch victims
is generally low, with an average of 4.1% and a maximum of 20%.



142 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.32: AccessInterval 1Addr predictor performance

AccessInterval 2SAddr Predictor

Figure 5.33 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the AccessInterval 2SAddr predictor.

Accuracy is fairly high, with an average of 68%, ranging from 34% to 94%. As usual,
coverage generally tracks accuracy, with an average of 72%, ranging from 34% to 97%.
The proportion of mispredicted dead prefetch victims is, as usual, generally low, with
an average of 4.9% and a maximum of 29%.

AccessInterval 1Addr3APC Predictor

Figure 5.34 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as dead
which are actually live for the AccessInterval 1Addr3APC predictor. Accuracy is
generally fairly high but disappointing low in one case. The average accuracy is 70%,
ranging from 22% to 91%. Coverage mostly follows accuracy, with an average of 72%,
ranging from 22% to 99%. The proportion of mispredicted dead prefetch victims is
generally low, with an average of 4.4% and a maximum of 24%.



CHAPTER 5. APPLICATIONS 143

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.33: AccessInterval 2SAddr predictor performance

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.34: AccessInterval 1Addr3APC predictor performance



144 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.35: AccessInterval 1PC2Addr predictor performance

AccessInterval 1PC2Addr Predictor

Figure 5.35 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as
dead which are actually live for the AccessInterval 1PC2Addr predictor. Accuracy
is fairly high, with an average of 75% and ranging 45% to 95%, considerably higher
than any of the previous AccessInterval predictors evaluated. Coverage mostly
follows accuracy, but is considerably higher in a few cases. The average coverage is
75%, ranging from 45% to 99%. The proportion of mispredicted dead prefetch victims
is generally low, with an average of 4.9% and a maximum of 29%.

AccessInterval 1PC Predictor

Figure 5.36 shows the predictor accuracy, coverage (in terms of the proportion of times
a cache line is predicted to be dead) and the proportion of cache lines predicted as
dead which are actually live for the AccessInterval 1PC predictor. Accuracy is
generally fairly low, with an average of 44%, ranging from a disappointing 5.7% to
72%. Coverage tracks accuracy, with an average of 45% and with the same minimum
and maximum values as for accuracy. The proportion of mispredicted dead prefetch
victims is generally low, with an average of 3.5% and a maximum of 21%.



CHAPTER 5. APPLICATIONS 145

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

P
re

d
ic

to
r 

ac
cu

ra
cy

, c
o

v
er

ag
e 

&
 m

is
p

re
d

ic
te

d
 d

ea
d

0

10

20

30

40

50

60

70

80

90

100

Accuracy

Coverage

Mispredicted dead

Figure 5.36: AccessInterval 1PC predictor performance

Summary

Overall, the novel AccessInterval 1PC2Addr predictor performs best over the set
of benchmarks evaluated, and indeed performs better than any of the novel or previously-
proposed LiveTime predictors, although it does not perform as well as the Last-

Touch 1PC predictor.

5.3.7 Overall Performance

The best performing predictors in each of the previous categories are the LastTouch 1PC,
LiveTime 1Addr and AccessInterval 1PC2Addr predictors whose overall per-
formance is now evaluated for selection of prefetch victims using the usual miss rate,
cache utilisation and instructions committed per cycle metrics. Note that these results
are not directly comparable to those presented in Section 5.3.2 since these simulations
were run for a shorter period of time.

Miss Rate

Figure 5.37 shows the change in miss rate, measured as the number of misses per
thousand instructions, for the LastTouch 1PC, LiveTime 1Addr and AccessIn-

terval 1PC2Addr predictors compared to the conventional prefetcher. The change
in miss rate varies substantially between benchmarks, and also between predictors.



146 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

C
h

an
g

e 
in

 M
P

K
I 

v
s 

co
n

v
en

ti
o

n
al

 p
re

fe
tc

h
er

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

LastTouch_1PC

LiveTime_1Addr

AccessInterval_1PC2Addr

Figure 5.37: Percentage change in miss rate vs conventional prefetcher

The average change in miss rate is -6.2%, 10.5% and 0.8% for the three predictors re-
spectively, although for some benchmarks the miss rate decreases substantially (e.g.
-86% for equake), for other benchmarks it increases substantially (e.g. up to 150%
for sixtrack), while for the remaining benchmarks very little change is observed.
As always, care must be taken to ensure that proportional changes in the miss rate
actually correspond to significant changes in the absolute value of the miss rate it-
self. For example, while the miss rate for sixtrack increases substantially, the ac-
tual numerical value of the miss rate in all cases is very small. Comparing the three
predictors, the LastTouch 1PC predictor performs best, followed by the AccessIn-
terval 1PC2Addr predictor, followed by the LiveTime 1Addr. The unimpressive
average performance of the latter two benchmarks is heavily influenced by sixtrack,
mgrid and perlbmk 1, whose miss rates only increase by a very small amount in
absolute terms.

Comparing the change in miss rate to the predictor performance measured in terms of
accuracy and the number of mispredicted dead prefetch victims, no clear correlation
is apparent, other than the better performing predictors tend to have a better change
in miss rate. Some benchmarks with a high proportion of mispredicted dead prefetch
victims tend to have a worse change in miss rate, but not all. This is most likely due to
the small absolute L2 cache miss rates for some benchmarks, leading to the appearance
of large relative changes, but little absolute change.



CHAPTER 5. APPLICATIONS 147

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

C
h

an
g

e 
in

 L
2 

ca
ch

e 
u

ti
li

sa
ti

o
n

 v
s 

co
n

v
en

ti
o

n
al

 p
re

fe
tc

h
er

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

20

LastTouch_1PC

LiveTime_1Addr

AccessInterval_1PC2Addr

Figure 5.38: Cache utilisation percentage point change vs conventional prefetcher

Cache Utilisation

Figure 5.38 shows the percentage point change in the L2 cache utilisation for the Last-
Touch 1PC, LiveTime 1Addr and AccessInterval 1PC2Addr predictors compared
to the conventional prefetcher. There is a substantial decrease in cache utilisation for
the gzip benchmarks and perlbmk 3, otherwise cache utilisation either increases
moderately or is unchanged. The average percentage point change in cache utilisation
is -3.6%, -2.0% and -3.1% for the three predictors respectively, although this average
value is heavily influenced by the substantial decreases already mentioned. The three
predictors generally perform similarly, although for a few benchmarks, the Live-

Time 1Addr predictor significantly outperforms the other two predictors. Again, there
is no simple relationship between cache utilisation and the previously observed pre-
dictor performance in terms of accuracy and the number of mispredicted dead prefetch
victims.

Instructions Committed per Cycle

Figure 5.39 shows the number of Instructions committed Per Cycle (IPC) for the Last-
Touch 1PC, LiveTime 1Addr and AccessInterval 1PC2Addr predictors compared
to the conventional prefetcher. The average change in IPC is 4.2%, -0.3% and 2.7% for
the three predictors respectively, although significant variation between both bench-



148 5.3. PREFETCHING VICTIM SELECTION

Benchmark

g
zi

p
_g

ra
p

h
ic

g
zi

p
_l

o
g

g
zi

p
_p

ro
g

ra
m

g
zi

p
_r

an
d

o
m

g
zi

p
_s

o
u

rc
e

v
p

r_
p

la
ce

v
p

r_
ro

u
te

g
cc

_1
66

g
cc

_2
00

g
cc

_e
x

p
r

g
cc

_i
n

te
g

ra
te

g
cc

_s
ci

la
b

m
cf

cr
af

ty
p

ar
se

r
p

er
lb

m
k

_1
p

er
lb

m
k

_2
p

er
lb

m
k

_3
p

er
lb

m
k

_4
p

er
lb

m
k

_5
p

er
lb

m
k

_6
p

er
lb

m
k

_7
g

ap
v

o
rt

ex
_1

v
o

rt
ex

_2
v

o
rt

ex
_3

b
zi

p
2_

g
ra

p
h

ic
b

zi
p

2_
p

ro
g

ra
m

b
zi

p
2_

so
u

rc
e

tw
o

lf
w

u
p

w
is

e
sw

im
m

g
ri

d
ap

p
lu

m
es

a
g

al
g

el
ar

t_
1

ar
t_

2
eq

u
ak

e
fa

ce
re

c
am

m
p

lu
ca

s
si

x
tr

ac
k

ap
si

A
v

er
ag

e 
n

u
m

b
er

 o
f 

In
st

ru
ct

io
n

s 
C

o
m

m
it

te
d

 p
er

 C
y

cl
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

Conventional prefetcher

LastTouch_1PC

LiveTime_1Addr

AccessInterval_1PC2Addr

Figure 5.39: IPC compared to conventional prefetcher

marks and predictors is observed. For two benchmarks, mcf and ammp, a significant
increase in IPC is observed, up to 70%. For eight more benchmarks, significant in-
creases in IPC are observed. For 25 benchmarks, little change in IPC is observed, while
for the remaining thirteen benchmarks, a moderate decrease in IPC is observed. The
change in IPC is related to the change in the absolute miss rate, combined with the
criticality of those misses towards overall performance.

Storage Overhead

As already detailed in Section 5.3.4, the three predictors examined above each add ap-
proximately 1 MB of storage overhead to the 1 MB L2 cache. This storage could equally
well be used to simply double the size of the L2 cache, resulting in fewer conflict and
capacity misses, but not compulsory misses. However, the large size and associativity
of the L2 cache means that conflict and capacity misses are expected to be relatively
rare.

Alternatively, the degree of prefetching could be increased, as well as the prefetch
queue size, resulting in more aggressive prefetching. However, overly-aggressive prefetch-



CHAPTER 5. APPLICATIONS 149

ing would lead to significant cache pollution and bus contention. The decoupled
prefetch victim selection scheme detailed here will help ameliorate the former issue,
but not the latter, and performance when scaling parameters such as the prefetch de-
gree and prefetch queue size remains an area for future work. Conventional tagged
prefetching was chosen as an aggressive, but relatively inaccurate, prefetcher. Numer-
ous other prefetchers described in Section 2.6.2 could also be investigated alongside
decoupled prefetch victim selection.

For the LiveTime 1Addr and AccessInterval 1PC2Addr, timestamps are stored
with per-cycle precision using a 64-bit value. Again, a much coarser timestamp would
probably suffice, as used by Hu et al. [HKM02], leading to either a smaller storage
overhead, or increased accuracy by reorganising the table of predicted live times or
access intervals.

5.3.8 Future Work

This section has evaluated a wide variety of predictors for use with decoupled prefetch
victim selection, presenting overall performance results for the best predictors evalu-
ated. However, a full comparison with other time-based prefetching optimisations
such as Hu et al.’s timekeeping address correlation table [HKM02] and Lai et al.’s dead
block correlating prefetcher remain an area for future work, in order to determine the
full value of decoupling prefetch target and prefetch victim selection. In addition, the
use of partial tag matching in the signature table is another area for future work. Fi-
nally, the size and organisation of the last-touch signature table is a third area for future
work.

A further area for future work is a more detailed analysis of the LiveTime and Ac-

cessInterval predictor performance, looking at the proportion of times a prediction
hits in the signature table in an attempt to separate the predictions made by the sig-
nature table contents from the default prediction made when no corresponding value
can be found in the signature table.

5.4 Summary

This section examined two applications of predicting the liveness of a cache line. The
first application, a filtered victim cache, was evaluated using only static predictors. In
terms of reducing the cache miss rate, the novel DualThresholdLiveTime predictor
typically outperformed the novel ThresholdLiveTime predictor and the Thresh-
oldAccessInterval predictor previously proposed by Hu et al. [HKM02]. All three
predictors gave similar results in terms of improving overall performance, increasing
IPC by an average of 7.0% compared to an increase of 1.2% for the conventional victim
cache when relative to the revised baseline configuration.

The second application, selection of prefetch victims, was evaluated using static and
dynamic predictors. Static prediction performance was found to be poor, while the
LastTouch 1PC, novel AccessInterval 1PC2Addr and novel LiveTime 1Addr



150 5.4. SUMMARY

predictors were found to outperform the LiveTime 2SAddr predictor previously pro-
posed by Hu et al.. The LastTouch 1PC and AccessInterval 1PC2Addr predic-
tors were found to increase overall performance by an average of 17% and 16% re-
spectively, compared to an increase of 13% for conventional prefetching, relative to the
baseline configuration. The LiveTime 1Addr decreased overall performance slightly.



Conclusions 6
The core of this thesis stems from the initial observations (in Chapter 3) that cache
utilisation, the proportion of the cache that will be referenced before eviction, is sur-
prisingly poor in current computer systems given that memory system performance is
now so critical (as discussed in Chapter 2).

Given that utilisation is so poor for current caches and benchmarks, it was then hypoth-
esised that improvements in cache utilisation might result in efficient improvements in
cache hit rates, thereby improving overall performance.

Key to improving cache utilisation is an accurate predictor of the state of a cache line.
The inherent predictability of cache line lifetime metrics was examined in Chapter 4,
using two different predictability metrics. This forms the second contribution of this
work. The questions of what to predict, when to predict and critically how to predict
were addressed. A broad range of predictors were then explored, including binary
predictors (inspired by successful branch prediction mechanisms), as well as value pre-
dictors of live times and access intervals. The precise choice of predictor is dependent
upon how it is to be applied, which is the subject of Chapter 5.

The next contribution is in Chapter 5 where the most appropriate predictors were
demonstrated in two applications. The first application makes improved use of limited
victim cache capacity by selectively allocating space depending on whether the cache
line is predicted as being live or dead, known as a filtered victim cache. Two novel pre-
dictors were evaluated, one of which frequently outperforms a previously proposed
predictor in terms of reducing the cache miss rate. The filtered victim cache improves
overall performance relative to the revised baseline system configuration by an av-
erage of 7.0%, compared to an average of just 1.2% for a conventional victim cache.
The filtered victim cache evaluated requires 4 kB of storage overhead, compared to the
32 kB DL1 cache. However, this storage overhead may be reduced by using consider-
ably coarser resolution timestamps. Victim caches target conflict misses, therefore with
higher associativity caches, their benefits are limited and even perfect filtering may not
appreciably improve performance.

The second application reduces cache pollution during aggressive prefetching by pre-
dicting whether the cache line potentially being replaced is live or dead. A variety of
predictors were evaluated, with several novel predictors outperforming a previously
proposed predictor in terms of accuracy and costly mispredictions. Three novel predic-
tors were further evaluated, and improved overall performance relative to the baseline
system configuration by an average of 17% (for the best predictor), compared to an
average of 13% for a conventional prefetcher alone. The predictor overhead was 1 MB
of storage, compared to the 1 MB L2 cache. While this storage could have been used to
double the size of the L2 cache, it is expected that compulsory misses dominate over
conflict and capacity misses for the L2 cache, therefore enabling better prefetching is
preferable. By decoupling prefetch target selection and prefetch victim selection, a

151



152 6.1. FUTURE WORK

more aggressive prefetcher may be used without excessive cache pollution, although
performance with different prefetchers remains an area for future investigation.

The final contribution is a preliminary examination of cache utilisation in a chip multi-
processor system, presented in the following section describing areas for future work.

6.1 Future Work

This final section begins by discussing a range of potential future work based upon the
cache line lifetime work described thus far. Two additional performance enhancements
are described, as well as approaches to reduce overall power consumption. Improved
measurement of cache utilisation, as well as the temporal aspects and visualisation of
cache line lifetime metrics are discussed. With the almost ubiquitous development of
chip multiprocessors, cache utilisation in this environment is also evaluated, indicat-
ing that the techniques developed throughout this dissertation are even more relevant
and applicable to such systems.

6.1.1 Non-Uniform Cache Architectures

Apart from the growing disparity between processor and memory speeds, several
other technology trends are necessitating more complicated cache architectures. As
process geometries shrink, the reachable area on-die within a single clock cycle shrinks
considerably, as demonstrated by Figure 6.1, reproduced from Ho’s PhD dissertation
[Ho03] which shows the proportion of die area reachable per 16 FO4 clock over a va-
riety of future processes. The signal is assumed to originate at the centre of the die
and is constrained to Manhattan routing, hence the diamond-shaped area of reachable
distance. The series of decreasing squares shows how the 0.18µm die scales when com-
pared to the other processes. While Ho’s model makes various technology assump-
tions, particularly regarding wire width, it demonstrates the latency of on-chip com-
munication due to wire delays is a highly significant factor when moving to smaller
process geometries.

Conventional caches occupy a significant proportion of die area, so the latency to ac-
cess a particular cache line in such a large on-chip cache is dependent on the exact
location of the cache line relative to the processor core. Based on this observation,
Kim et al. proposed Non-Uniform Cache Arrays (NUCA), an array of smaller fixed-
latency banks with policies to map data to banks, limit the number of banks that need
to be searched and migrate data between banks [KBK02]. Their model indicates that
the closest bank of a 16 MB, on-chip L2 cache fabricated using a 50 nm process can
be accessed in 4 cycles, while the furthest bank can only be accessed in 47 cycles, the
majority of the difference being due to routing to and from the bank, rather than the
bank access itself.

Cowell et al. later proposed improved policies for mapping, searching and migration
[CMB03]. Successful mapping, searching and migration of cache lines within a NUCA
cache depends upon accurate prediction of the future usage of cache lines which can
be provided by the cache line lifetime predictors described in Chapter 4 and evaluated
in Chapter 5. For example, an access interval predictor could be used to both place and



CHAPTER 6. CONCLUSIONS 153

Figure 6.1: Reachable area within a single clock cycle, reproduced from [Ho03].

migrate a cache line so that it is initially placed as far as possible from the processor core
(since further cache banks are more numerous), yet migrates towards the processor
core ready for when it will be reaccessed. Similarly, a more probabilistic approach to
predicting dead cache lines would allow those with higher probability of being dead to
be placed further from the processor core than those with a lower probability of being
dead.

6.1.2 Cache Replacement

The conventional least-recently used cache replacement policy has long been shown
to significantly lag that provided by an optimal algorithm [Bel66] [Puz85], and there
has been much previous research on improved cache replacement algorithms. Cache
line lifetime metrics may also be used to improve the cache replacement algorithm,
for example, choosing to evict cache lines predicted as being dead. However, such an
approach would likely require tracking future accesses to evicted cache lines, in or-
der to identify mispredictions. One solution is to use shadow tags, as proposed by
Puzak [Puz85], which identify if a particular cache access would have hit with a differ-
ent cache organisation, but does not provide the actual cache line contents. The size of
the shadow tag array can be significant, requiring a large area and power overhead.

6.1.3 Power Consumption

Besides applications designed to improve performance, there are also numerous ap-
plications of cache line lifetime metrics and utilisation predictors in reducing overall
power consumption. Increasing power consumption, as previously detailed in Sec-
tion 2.7, is now a primary design constraint, particularly with increased static power
consumption associated with smaller process geometries. As cache sizes grow, the to-
tal power consumed by a microprocessor is dominated by the static power consump-
tion of the cache. Liveness predictors may be used to identify those cache lines which



154 6.1. FUTURE WORK

are predicted to be dead, and either transition them into a state-preserving or state-
destroying low-power state, as already described in Section 2.7. Evaluation of the pre-
dictors described in Chapter 4 for applications to reduce power consumption may be
performed using the approach and tools described in Section 2.5.5.

6.1.4 Cache Utilisation Variation

The work described in this dissertation considered cache utilisation over the entire
execution of the benchmark, and for each cache as a whole. However, cache utilisation
can be broken down in a variety of different ways.

Cache Utilisation Over Time

It has long been observed that applications exhibit different phases of execution. Within
a single phase, the application exhibits similar behaviour, and between phases, the
application exhibits differing behaviour. This behaviour is normally described by pa-
rameters such as the cache miss rate, or the range of addresses accessed, but could
equally include the cache utilisation. One potential application would be to measure
the change in cache utilisation over time, and transition the cache into a low-power
state should the cache utilisation fall below some threshold value, indicating that the
cache contains a significant proportion of dead (and hence useless) cache lines.

Cache Utilisation Within Caches

Besides varying cache utilisation over time, it is expected that cache utilisation will
also vary between different sets within the cache, as well as between different ways
in a set-associative cache. For example, cache utilisation is likely to be lower for those
cache lines which are further down the least-recently used replacement stack. Again,
cache utilisation may be used as a metric to drive selected cache ways or selected cache
sets, two methods to decrease power consumption described in Section 2.7.

Cache Utilisation Visualisation

As cache utilisation over time and within specific cache sets and ways is examined,
numerous dimensions of data are encountered, leading to problems with visualisation.
One potential approach would be to use a heatmap, coloured to indicate the live or
dead state of a cache line, with cache lines grouped into two dimensions indicating the
set and way of each line. As the cache is sampled over time, the heatmap is updated
to reflect the current state of each line. However, this visualisation is clearly difficult to
convey in printed publications.

6.1.5 Low-Overhead Dynamic Threshold Predictors

The ThresholdLiveTime and ThresholdAccessInterval predictors described
in Chapter 4 and evaluated in Chapter 5 use a single fixed threshold for all cache lines



CHAPTER 6. CONCLUSIONS 155

and all benchmarks. If a link could be established between an easily observable cache
parameter, such as the cache miss rate, and the performance of the predictor at a par-
ticular threshold, a low-overhead dynamic scheme could be introduced.

6.1.6 Improved Measurement of Cache Utilisation

The use of simulation techniques can only provide an estimate of cache line lifetime
metrics and cache utilisation in a real system. The accuracy of this estimate clearly
depends upon the fidelity of the simulation, with a tradeoff between accuracy and the
time taken to perform the simulation, as discussed in Section 3.2.

More representative results of real systems may be obtained through the use of suit-
able hardware performance counters or through hardware bus monitoring, providing
a trace of program execution and memory operations. A trace of memory operations
may be used with a more specific cache simulator, allowing rapid architectural explo-
ration. The advantage of such an approach is that the trace is highly representative of a
real application, running on a real system. The primary disadvantage is that since the
full system is not simulated, only cache performance results can be obtained and not,
for example, the overall system performance. For this reason, trace-based simulation
was not used in this dissertation. In addition, second-order effects are not modelled,
so that reordering of memory operations due to differing cache performance is not
considered.

One potential solution is hardware-in-the-loop simulation, whereby the static aspects
of the system are provided by hardware, while the dynamic components under inves-
tigation are provided by a software emulation. For example, given a suitable platform,
the CPU pipeline could be implemented in hardware, providing a rigorous but static
simulation, while the cache could be implemented in software, providing a more flexi-
ble simulation. Due to the increased effort required for a hardware implementation of
a CPU pipeline, this approach is best-suited to using existing models.

6.1.7 Improved Predictor Analysis

The accuracy and coverage metrics reported for the predictors under evaluation are
most appropriate if the outcome of mispredictions is similar whether they are a false
positive or false negative. In the case of branch prediction, the cost of mispredicting a
not-taken branch as taken, or a taken branch as not-taken, is largely similar. However,
in the two applications discussed in Chapter 5, the cost of mispredicting a live cache
line as dead is considerably higher than mispredicting a dead cache line as live. This
asymmetry was partially addressed in Chapter 5, but a full examination using conven-
tional binary classifier performance metrics such as sensitivity and specificity, would
allow a more informed choice of predictor parameters to be made.

6.1.8 Towards Multicore

The work described so far in this dissertation has concentrated on the analysis and
prediction of cache line lifetime metrics and the resulting cache utilisation in single ap-
plication, single core systems, together with applications aimed at improving overall



156 6.1. FUTURE WORK

system performance. Multiprogramming in a single core environment is not expected
to significantly influence cache utilisation since the operating system scheduling quan-
tum size is much greater than live times, dead times or access intervals. Indeed the two
billion cycles simulated for each benchmark corresponds to 0.5 seconds at the baseline
clock frequency of 4 GHz, while a typical operating system scheduling quantum is
around 50 ms, hence the whole simulation corresponds to just ten quanta.

More interesting is multiprogramming in a multiprocessor environment with shared
caches. The trend towards Chip Multiprocessors (CMPs) discussed in Section 2.3.5
results in an architecture where the amount of cache allocated to each core is actually
smaller than in previous architectures, hence making increased cache utilisation ever
more important. Preliminary results for cache utilisation in CMPs are obtained as fol-
lows.

Method

The M5 Simulator System v1 previously used in this dissertation is unsuitable for sim-
ulating CMPs since it does not fully support full-system simulation. Fortunately, since
beginning the work described in this dissertation, a much revised version of the simu-
lator has been released, known as M5v2 [BDH+06].

The SPEC CPU2000 benchmark suite previously used in this dissertation is also un-
suitable for simulating CMPs since each benchmark only uses a single thread of execu-
tion. While multiple benchmarks could be run in parallel on a CMP, dedicated multi-
threaded benchmarks are more interesting. The Princeton Application Repository for
Shared-Memory Computers (PARSEC) benchmark suite consists of 13 modern multi-
threaded benchmarks intended for use with research CMPs [BKSL08]. Note that at the
time of writing, the full set of PARSEC benchmarks has not yet been fully validated on
the M5v2 simulator, hence these results should be considered as preliminary and may
change with newer releases of the simulator [GHF+09]. In particular, swaptions does
not run reliably with more than three threads so is omitted, and the remaining bench-
marks require validation against reference outputs having modified the simulator to
measure cache utilisation.

For each benchmark, the system is started with a simplified processor model with-
out any caches. Once the operating system has booted and the region of interest for
the benchmark is encountered, a checkpoint is taken which contains the entire system
state. This checkpoint is then read by a detailed processor model including the caches
and executed for two billion cycles, or to completion, using the simsmall input set.

The system configuration used to evaluate cache utilisation is based upon that used by
Blake and Mudge [BM07] which consists of four cores, each with a 64 kB DL1 and IL1
cache, and a shared 2 MB L2 cache. Note that these values are rather conservative for
the PARSEC benchmark suite. Each benchmark is run with four threads, to match the
number of cores available. Cache coherency is provided by the default M5v2 protocol.

Preliminary Results

Figure 6.2 shows the cache utilisation for the shared L2 cache of the CMP system con-
figuration for each of the PARSEC benchmarks. Direct comparisons with the previous



CHAPTER 6. CONCLUSIONS 157

Benchmark

b
la

ck
sc

h
o

le
s

b
o

d
y

tr
ac

k

ca
n

n
ea

l 

d
ed

u
p

 

fa
ce

si
m

 

fe
rr

et

fl
u

id
an

im
at

e 

fr
eq

m
in

e

ra
y

tr
ac

e 

st
re

am
cl

u
st

er

v
ip

s

x
26

4

S
h

ar
ed

 L
2 

ca
ch

e 
u

ti
li

sa
ti

o
n

 (
%

)

0

10

20

30

40

50

60

70

Figure 6.2: Shared L2 cache utilisation for CMP system configuration with PARSEC
benchmarks

SPEC CPU2000 results for the baseline system configuration are difficult due to the
significant differences between both the system configurations and benchmarks under
consideration, but it is clear that cache utilisation in the shared L2 cache is still low,
ranging from 5% to 57% with an average of 25%, and indicating that the techniques
developed to improve cache utilisation in this dissertation may be equally applicable
to CMP systems.



158 6.1. FUTURE WORK



Benchmarks A
Name Language Descriptiona

gzip C GNU zip compression algorithm, uses Lempel-Ziv coding (LZ77)
vpr C FPGA place and route
gcc C GNU C compiler, based on v2.7.2.2 targeting Motorola 88100
mcf C Combinatorial optimisation / single-depot vehicle scheduling
crafty C Chess programme
parser C Syntactic parser of English using link grammar
eon C++ Probabilistic ray tracer
perlbmk C Cut-down version of the Perl scripting language, v5.005 03
gap C Group theory interpreter
vortex C Single-user object-oriented database transaction benchmark
bzip2 C Compression algorithm based on Julian Seward’s bzip2 v0.1
twolf C Place and global routing package using simulated annealing

aAbridged from http://www.spec.org/cpu2000/CINT2000/

Table A.1: SPEC CPU2000 integer benchmarks

Name Language Descriptiona

wupwise Fortran 77 Quantum chromodynamics simulation using the BiCGStab
iterative method

swim Fortran 77 Finite-difference models of the shallow-water equations
mgrid Fortran 77 3D multi-grid potential field solver
applu Fortran 77 Solution of five coupled nonlinear PDEs
mesa C Software OpenGL library rendering a 3D object from a

2D scalar field
galgel Fortran 90 Numerical analysis of oscillatory instability of convection
art C Adaptive Resonance Theory 2 (ART 2) neural network
equake C Simulation of the propagation of elastic waves
facerec Fortran 90 Face recognition
ammp C Molecular dynamics of a protein-inhibitor complex

embedded in water
lucas Fortran 90 Lucas-Lehmer test to check primality of Mersenne numbers
fma3d Fortran 90 Finite element method to simulate solids and structures
sixtrack Fortran 77 Tracks particles in an accelerator to check the dynamic aperture
apsi Fortran 77 Weather prediction

aAbridged from http://www.spec.org/cpu2000/CFP2000/

Table A.2: SPEC CPU2000 floating-point benchmarks

159



160



Baseline Configuration B
Example of an entire M5 Simulator configuration file for the baseline configuration
executing the vortex benchmark.

[root]

type=Root

children=cpu0 cpu1 dcache hier icache l2 ram sampler toL2Bus

toMemBus

checkpoint=

clock=4000000000

max_tick=0

output_file=cout

progress_interval=0

[cpu0]

type=SimpleCPU

children=workload

clock=1

dcache=dcache

defer_registration=false

function_trace=false

function_trace_start=0

icache=icache

max_insts_all_threads=0

max_insts_any_thread=0

max_loads_all_threads=0

max_loads_any_thread=0

width=1

workload=cpu0.workload

[cpu0.workload]

type=LiveProcess

cmd=vortex00.peak.ev6 lendian1.raw

env=

executable=/anfs/bigdisc/jrs53/m5/alpha/bin/vortex00.peak.ev6

input=cin

output=cout

[cpu1]

type=FullCPU

161



162

children=branch_pred fupools iq

branch_pred=cpu1.branch_pred

chain_wire_policy=OneToOne

clock=1

commit_model=smt

commit_width=8

dcache=dcache

decode_to_dispatch=15

decode_width=8

defer_registration=false

disambig_mode=normal

dispatch_policy=mod_n

dispatch_to_issue=1

fault_handler_delay=5

fetch_branches=4

fetch_policy=IC

fetch_pri_enable=false

fetch_width=8

fupools=cpu1.fupools

icache=icache

icount_bias=

ifq_size=64

inorder_issue=false

iq=cpu1.iq

iq_comm_latency=1

issue_bandwidth=

issue_width=8

lines_to_fetch=999

loose_mod_n_policy=true

lsq_size=64

max_chains=64

max_insts_all_threads=0

max_insts_any_thread=0

max_loads_all_threads=0

max_loads_any_thread=0

max_wires=64

mispred_recover=3

mt_frontend=true

num_icache_ports=1

num_threads=0

pc_sample_interval=0

prioritized_commit=false

prioritized_issue=false

ptrace=Null

rob_caps=

rob_size=128

storebuffer_size=32

sw_prefetch_policy=enable



APPENDIX B. BASELINE CONFIGURATION 163

thread_weights=

use_hm_predictor=false

use_lat_predictor=false

use_lr_predictor=true

width=8

workload=cpu0.workload

[cpu1.branch_pred]

type=BranchPred

btb_assoc=4

btb_size=4096

choice_index_bits=12

choice_xor=false

conf_pred_ctr_bits=0

conf_pred_ctr_thresh=0

conf_pred_ctr_type=saturating

conf_pred_enable=false

conf_pred_index_bits=0

conf_pred_xor=false

global_hist_bits=12

global_index_bits=12

global_xor=false

local_hist_bits=10

local_hist_regs=1024

local_index_bits=10

local_xor=false

pred_class=hybrid

ras_size=16

[cpu1.fupools]

type=FuncUnitPool

children=FUList0 FUList1 FUList2 FUList3 FUList4 FUList5

FUList6 FUList7 FUList=cpu1.fupools.FUList0

cpu1.fupools.FUList1 cpu1.fupools.FUList2

cpu1.fupools.FUList3 cpu1.fupools.FUList4

cpu1.fupools.FUList5 cpu1.fupools.FUList6

cpu1.fupools.FUList7

[cpu1.fupools.FUList0]

type=FUDesc

children=opList0

count=6

opList=cpu1.fupools.FUList0.opList0

[cpu1.fupools.FUList0.opList0]

type=OpDesc

issueLat=1

opClass=IntAlu

opLat=1



164

[cpu1.fupools.FUList1]

type=FUDesc

children=opList0 opList1

count=2

opList=cpu1.fupools.FUList1.opList0

cpu1.fupools.FUList1.opList1

[cpu1.fupools.FUList1.opList0]

type=OpDesc

issueLat=1

opClass=IntMult

opLat=7

[cpu1.fupools.FUList1.opList1]

type=OpDesc

issueLat=9

opClass=IntDiv

opLat=10

[cpu1.fupools.FUList2]

type=FUDesc

children=opList0 opList1 opList2

count=4

opList=cpu1.fupools.FUList2.opList0

cpu1.fupools.FUList2.opList1 cpu1.fupools.FUList2.opList2

[cpu1.fupools.FUList2.opList0]

type=OpDesc

issueLat=1

opClass=FloatAdd

opLat=3

[cpu1.fupools.FUList2.opList1]

type=OpDesc

issueLat=1

opClass=FloatCmp

opLat=3

[cpu1.fupools.FUList2.opList2]

type=OpDesc

issueLat=1

opClass=FloatCvt

opLat=3

[cpu1.fupools.FUList3]

type=FUDesc

children=opList0 opList1 opList2



APPENDIX B. BASELINE CONFIGURATION 165

count=2

opList=cpu1.fupools.FUList3.opList0

cpu1.fupools.FUList3.opList1 cpu1.fupools.FUList3.opList2

[cpu1.fupools.FUList3.opList0]

type=OpDesc

issueLat=1

opClass=FloatMult

opLat=4

[cpu1.fupools.FUList3.opList1]

type=OpDesc

issueLat=12

opClass=FloatDiv

opLat=12

[cpu1.fupools.FUList3.opList2]

type=OpDesc

issueLat=20

opClass=FloatSqrt

opLat=20

[cpu1.fupools.FUList4]

type=FUDesc

children=opList0

count=0

opList=cpu1.fupools.FUList4.opList0

[cpu1.fupools.FUList4.opList0]

type=OpDesc

issueLat=1

opClass=MemRead

opLat=1

[cpu1.fupools.FUList5]

type=FUDesc

children=opList0

count=0

opList=cpu1.fupools.FUList5.opList0

[cpu1.fupools.FUList5.opList0]

type=OpDesc

issueLat=1

opClass=MemWrite

opLat=1

[cpu1.fupools.FUList6]

type=FUDesc



166

children=opList0 opList1

count=2

opList=cpu1.fupools.FUList6.opList0

cpu1.fupools.FUList6.opList1

[cpu1.fupools.FUList6.opList0]

type=OpDesc

issueLat=1

opClass=MemRead

opLat=1

[cpu1.fupools.FUList6.opList1]

type=OpDesc

issueLat=1

opClass=MemWrite

opLat=1

[cpu1.fupools.FUList7]

type=FUDesc

children=opList0

count=1

opList=cpu1.fupools.FUList7.opList0

[cpu1.fupools.FUList7.opList0]

type=OpDesc

issueLat=3

opClass=IprAccess

opLat=3

[cpu1.iq]

type=StandardIQ

caps=0 0 0 0

prioritized_issue=false

size=128

[dcache]

type=BaseCache

access_dist_bkt=10

access_dist_diff_bkt=10

access_dist_diff_max=100000

access_dist_max=1000000

access_dist_min=0

adaptive_compression=false

addr_range=0:18446744073709551615

assoc=2

block_size=64

compressed_bus=false

compression_latency=0



APPENDIX B. BASELINE CONFIGURATION 167

dead_dist_bkt=10

dead_dist_diff_bkt=10

dead_dist_diff_max=100000

dead_dist_max=1000000

dead_dist_min=0

diff_dist=true

do_copy=false

hash_delay=1

hier=hier

in_bus=Null

latency=2

lifo=false

live_dist_bkt=10

live_dist_diff_bkt=10

live_dist_diff_max=100000

live_dist_max=1000000

live_dist_min=0

max_miss_count=0

mem_trace=Null

mshrs=16

out_bus=toL2Bus

perfect_cache=false

prefetch_access=false

prefetch_cache_check_push=true

prefetch_data_accesses_only=false

prefetch_degree=1

prefetch_latency=10

prefetch_miss=false

prefetch_past_page=false

prefetch_policy=none

prefetch_serial_squash=false

prefetch_use_cpu_id=true

prefetcher_size=100

prioritizeRequests=false

protocol=Null

reload_dist_bkt=10

reload_dist_max=1000000

reload_dist_min=0

repl=Null

size=131072

split=false

split_size=0

store_compressed=false

subblock_size=0

tgts_per_mshr=16

trace_addr=0

two_queue=false

write_buffers=8



168

[exetrace]

print_cpseq=false

print_cycle=true

print_data=true

print_effaddr=true

print_fetchseq=false

print_iregs=false

print_opclass=true

print_thread=true

speculative=false

[hier]

type=HierParams

do_data=false

do_events=true

[icache]

type=BaseCache

access_dist_bkt=10

access_dist_diff_bkt=10

access_dist_diff_max=100000

access_dist_max=1000000

access_dist_min=0

adaptive_compression=false

addr_range=0:18446744073709551615

assoc=2

block_size=64

compressed_bus=false

compression_latency=0

dead_dist_bkt=10

dead_dist_diff_bkt=10

dead_dist_diff_max=100000

dead_dist_max=1000000

dead_dist_min=0

diff_dist=true

do_copy=false

hash_delay=1

hier=hier

in_bus=Null

latency=1

lifo=false

live_dist_bkt=10

live_dist_diff_bkt=10

live_dist_diff_max=100000

live_dist_max=1000000

live_dist_min=0

max_miss_count=0



APPENDIX B. BASELINE CONFIGURATION 169

mem_trace=Null

mshrs=8

out_bus=toL2Bus

perfect_cache=false

prefetch_access=false

prefetch_cache_check_push=true

prefetch_data_accesses_only=false

prefetch_degree=1

prefetch_latency=10

prefetch_miss=false

prefetch_past_page=false

prefetch_policy=none

prefetch_serial_squash=false

prefetch_use_cpu_id=true

prefetcher_size=100

prioritizeRequests=false

protocol=Null

reload_dist_bkt=10

reload_dist_max=1000000

reload_dist_min=0

repl=Null

size=131072

split=false

split_size=0

store_compressed=false

subblock_size=0

tgts_per_mshr=16

trace_addr=0

two_queue=false

write_buffers=8

[l2]

type=BaseCache

access_dist_bkt=10

access_dist_diff_bkt=10

access_dist_diff_max=100000

access_dist_max=1000000

access_dist_min=0

adaptive_compression=false

addr_range=0:18446744073709551615

assoc=8

block_size=64

compressed_bus=false

compression_latency=0

dead_dist_bkt=10

dead_dist_diff_bkt=10

dead_dist_diff_max=100000

dead_dist_max=1000000



170

dead_dist_min=0

diff_dist=true

do_copy=false

hash_delay=1

hier=hier

in_bus=toL2Bus

latency=12

lifo=false

live_dist_bkt=10

live_dist_diff_bkt=10

live_dist_diff_max=100000

live_dist_max=1000000

live_dist_min=0

max_miss_count=0

mem_trace=Null

mshrs=128

out_bus=toMemBus

perfect_cache=false

prefetch_access=false

prefetch_cache_check_push=true

prefetch_data_accesses_only=false

prefetch_degree=1

prefetch_latency=10

prefetch_miss=false

prefetch_past_page=false

prefetch_policy=none

prefetch_serial_squash=false

prefetch_use_cpu_id=true

prefetcher_size=100

prioritizeRequests=false

protocol=Null

reload_dist_bkt=10

reload_dist_max=1000000

reload_dist_min=0

repl=Null

size=1048576

split=false

split_size=0

store_compressed=false

subblock_size=0

tgts_per_mshr=16

trace_addr=0

two_queue=false

write_buffers=8

[ram]

type=BaseMemory

addr_range=0:18446744073709551615



APPENDIX B. BASELINE CONFIGURATION 171

compressed=false

do_writes=false

hier=hier

in_bus=toMemBus

latency=200

snarf_updates=true

uncacheable_latency=1000

[sampler]

type=Sampler

periods=1000000000 2000000000

phase0_cpus=cpu0

phase1_cpus=cpu1

[serialize]

count=10

cycle=0

dir=cpt.\%012d

period=0

[stats]

descriptions=true

dump_cycle=0

dump_period=0

dump_reset=false

ignore_events=

mysql_db=

mysql_host=

mysql_password=

mysql_user=

project_name=test

simulation_name=test

simulation_sample=0

text_compat=true

text_file=m5stats.txt

[toL2Bus]

type=Bus

clock=1

hier=hier

width=128

[toMemBus]

type=Bus

clock=2

hier=hier

width=16



172

[trace]

bufsize=0

dump_on_exit=false

file=cout

flags=

ignore=

start=0



Processor and Memory Trends C
Processor Year Clock Process Power Area Transistors

Frequency Geometry Consumption (mm2) (x1000)
(MHz) (µm) (W)

Intel 80286 1982 12.5 1.5 1 47 134
Intel 80386 1985 16 1.5 2 43 275
Intel 80486 1989 25 0.8 2.5 81 1,200
Intel Pentium 1993 66 0.8 15 90 3,100
Intel Pentium Pro 1997 200 0.35 45 308 5,500
Intel Pentium 4 2001 1500 0.18 55 217 42,000
Intel Pentium 4 EE 2006 2800 0.065 115 435 1,328,000

Table C.1: Processor Trends, 1982-2006

Processor Year L1 Cache L2 Cache L3 Cache
Sizea Latency Size Latency Size Latency

Intel 80286 1982 none n/a none n/a none n/a
Intel 80386 1985 16 kB n/a none n/a none n/a
Intel 80486 1989 8 kB n/a none n/a none n/a
Intel Pentium 1993 16 kB n/a 256 kB n/a none n/a
Intel Pentium Pro 1997 16 kB n/a 256 kB n/a none n/a
Intel Pentium 4 2001 24 kB 2 cycles 256 kB 7 cycles 1024 kB n/a
Intel Pentium 4 EE 2006 32 kB 4 cycles 2048 kB 20 cycles 16 MB n/a

aIn the case of split instruction and data caches, the total size is reported

Table C.2: Cache Trends, 1982-2006. “n/a” denotes data not available or not applicable

173



174

Memory Year Latencya Density

DRAM 1980 225 ns 0.06 Mb/chip
Page Mode DRAM 1983 170 ns 0.25 Mb/chip
Fast Page Mode DRAM 1986 125 ns 1 Mb/chip
Fast Page Mode DRAM 1993 75 ns 16 Mb/chip
Synchronous DRAM 1997 62 ns 64 Mb/chip
DDR SDRAM 2000 52 ns 256 Mb/chip
DDR2 SDRAM 2006 40 ns 1 Gb/chip

aLatency estimated as row access time plus column access time

Table C.3: Memory Trends, 1980-2006

Data for Tables C.1, C.2 and C.3 taken from [Pat04], [GBCH01], [Lud06] and [Mic06].



Bibliography

[AGVO05] Jaume Abella, Antonio González, Xavier Vera, and Michael F. P. O’Boyle.
IATAC: a smart predictor to turn-off L2 cache lines. ACM Transactions on
Architecture and Code Optimization, 2(1):55–77, 2005.

[AL03] Todd Austin and SimpleScalar LLC. Simplescalar 3.0d.
http://www.simplescalar.com/, 2003.

[Alb99] David H. Albonesi. Selective cache ways: On-demand cache resource allo-
cation. In MICRO 32: Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, pages 248–259, Washington, DC, USA, 1999.
IEEE Computer Society.

[ALE02] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure
for computer system modeling. IEEE Computer, February 2002.

[ALR02] Amit Agarwal, Hai Li, and Kaushik Roy. DRG-Cache: A data retention
gated-ground cache for low power. In DAC ’02: Proceedings of the 39th Confer-
ence on Design Automation, pages 473–478, New York, NY, USA, 2002. ACM
Press.

[ARM06] ARM Limited. ARM1136JF-S and ARM1136J-S Technical Reference Manual.
ARM Limited, 2006.

[AZMM04] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. Per-
formance evaluation of cache replacement policies for the SPEC CPU2000
benchmark suite. In ACM-SE 42: Proceedings of the 42nd Annual Southeast
Regional Conference, pages 267–272, New York, NY, USA, 2004. ACM Press.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, pages 164–177, New York, NY, USA, 2003.
ACM.

[BDH+06] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G.
Saidi, and Steven K. Reinhardt. The M5 simulator: Modeling networked
systems. IEEE Micro, 26:52–60, 2006.

[BEA+08] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, Liewei Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey,

175



176 BIBLIOGRAPHY

D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montene-
gro, J. Stickney, and J. Zook. TILE64 - Processor: A 64-Core SoC with Mesh
Interconnect. In Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of
Technical Papers. IEEE International, pages 88 –598, February 2008.

[Bel66] L. A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Syst. J., 5(2):78–101, 1966.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf, April 2005.

[BGK95] Douglas C. Burger, James R. Goodman, and Alain Kägi. The declining effec-
tiveness of dynamic caching for general-purpose microprocessors. Technical
Report 1261, University of Wisconsin-Madison Computer Sciences Depart-
ment, January 1995.

[BHR03] Nathan L. Binkert, Erik G. Hallnor, and Steven K. Reinhardt. Network-
oriented full-system simulation using M5. In CAECW Proceedings of the
Sixth Workshop on Computer Architecture Evaluation using Commercial Work-
loads. ACM Press, 2003.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
PARSEC benchmark suite: Characterization and architectural implications.
In Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[BM07] Geoffrey Blake and Trevor Mudge. Duplicating and verifying LogTM with
OS support in the M5 simulator. In WDDD ’07: Proc. 6th Workshop on Dupli-
cating, Deconstructing, and Debunking, June 2007.

[BMST06] Major Bhadauria, Sally A. McKee, Karan Singh, and Gary Tyson. A pre-
cisely tunable drowsy cache management mechanism. In Proceedings of the
Watson Conference on Interaction between Architecture, Circuits, and Compilers,
October 2006.

[Bor01] Shekhar Borkar. Low power design challenges for the decade (invited talk).
In ASP-DAC ’01: Proceedings of the 2001 Conference on Asia South Pacific Design
Automation, pages 293–296, New York, NY, USA, 2001. ACM Press.

[BTM00] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework
for architectural-level power analysis and optimizations. In Proceedings of the
27th Annual Symposium on Computer Architecture, pages 83–94, 2000.

[CB95] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data prefetch-
ing for high-performance processors. IEEE Trans. Comput., 44(5):609–623,
1995.

[CMB03] Christopher Cowell, Csaba Andras Moritz, and Wayne Burleson. Improved
modeling and data migration for dynamic non-uniform cache accesses. In
Proceedings of the Second Annual Workshop on Duplicating, Deconstructing and
Debunking, 2003.



BIBLIOGRAPHY 177

[CN10] H.W. Cain and P. Nagpurkar. Runahead Execution vs. Conventional Data
Prefetching in the IBM POWER6 microprocessor. In 2010 IEEE International
Symposium on Performance Analysis of Systems Software (ISPASS), pages 203
–212, March 2010.

[Cor99] Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Refer-
ence Manual. Compaq Computer Corporation, 1999.

[Cor06] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual. Intel
Corporation, 2006.

[CR95] M. Charney and A. Reeves. Generalized correlation-based hardware
prefetching. Technical Report EE-CEG-95-1, Cornell University, February
1995.

[CSK+99] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and
Yale N. Patt. Simultaneous Subordinate Microthreading (SSMT). In Proceed-
ings of the 26th Annual International Symposium on Computer Architecture, ISCA
’99, pages 186–195, Washington, DC, USA, 1999. IEEE Computer Society.

[CT99] Jamison D. Collins and Dean M. Tullsen. Hardware identification of cache
conflict misses. In Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO 32, pages 126–135, Washington, DC,
USA, 1999. IEEE Computer Society.

[CYFM04] Chi F. Chen, Se-Hyun Yang, Babak Falsafi, and Andreas Moshovos. Accu-
rate and complexity-effective spatial pattern prediction. In HPCA ’04: Pro-
ceedings of the 10th International Symposium on High Performance Computer Ar-
chitecture, page 276, Washington, DC, USA, 2004. IEEE Computer Society.

[DM97] James Dundas and Trevor Mudge. Improving Data Cache Performance by
Pre-executing Instructions Under a Cache Miss. In Proceedings of the 11th
International Conference on Supercomputing, ICS ’97, pages 68–75, New York,
NY, USA, 1997. ACM.

[EH03] Jan Edler and Mark D. Hill. Dinero IV trace-driven uniprocessor cache sim-
ulator. http://www.cs.wisc.edu/ markhill/DineroIV/, September 2003.

[FKM+02] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and
Trevor Mudge. Drowsy caches: Simple techniques for reducing leakage
power. In ISCA ’02: Proceedings of the 29th Annual International Symposium
on Computer Architecture, pages 148–157, Washington, DC, USA, 2002. IEEE
Computer Society.

[GAV95] Antonio González, Carlos Aliagas, and Mateo Valero. A data cache with
multiple caching strategies tuned to different types of locality. In ICS 1995:
Proceedings of the 9th International Conference on Supercomputing, pages 338–
347, New York, NY, USA, 1995. ACM Press.

[GBCH01] Stephen H. Gunther, Frank Binns, Douglas M. Carmean, and Jonathan C.
Hall. Managing the impact of increasing microprocessor power consump-
tion. Intel Technology Journal, 2001.



178 BIBLIOGRAPHY

[GHF+09] Mark Gebhart, Joel Hestness, Ehsan Fatehi, Paul Gratz, and Stephen W.
Keckler. Running PARSEC 2.1 on M5. Technical report, The University of
Texas at Austin, Department of Computer Science, October 2009.

[Hen00] John L. Henning. SPEC CPU2000: Measuring CPU performance in the new
millennium. IEEE Computer, July 2000.

[HHA+03] Heather Hanson, M. S. Hrishikesh, Vikas Agarwal, Stephen W. Keckler,
and Doug Burger. Static energy reduction techniques for microprocessor
caches. IEEE Trans. Very Large Scale Integr. Syst., 11(3):303–313, 2003.

[HKM02] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi. Timekeeping in the
memory system: Predicting and optimizing memory behavior. In ISCA ’02:
Proceedings of the 29th Annual International Symposium on Computer Architec-
ture, pages 209–220, Washington, DC, USA, 2002. IEEE Computer Society.

[HM94] Luddy Harrison and Sharad Mehrotra. A data prefetch mechanism for ac-
celerating general-purpose computation. Technical Report 1351, University
of Illinois at Urbana-Champaign, May 1994.

[Ho03] Ron Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis, Department of
Electrical Engineering, Stanford University, August 2003.

[HP03] John Hennessy and David A. Patterson. Computer Architecture, A Quantitative
Approach. Morgan Kaufmann, third edition, 2003.

[HR00] Erik G. Hallnor and Steven K. Reinhardt. A fully associative software-
managed cache design. In Proceedings of the 27th Annual International Sympo-
sium on Computer Architecture, pages 107–116. ACM Press, 2000.

[HS89] Mark D. Hill and Alan Jay Smith. Evaluating associativity in CPU caches. In
IEEE Transactions on Computers, volume 38, pages 1612–1630, 1989.

[JB07] C. R. Johns and D. A. Brockenshire. Introduction to the Cell Broadband En-
gine Architecture. IBM Journal of Research and Development, 51(5), September
2007.

[JG97] Doug Joseph and Dirk Grunwald. Prefetching using Markov predictors. In
ISCA ’97: Proceedings of the 24th Annual International Symposium on Computer
Architecture, pages 252–263, New York, NY, USA, 1997. ACM Press.

[JH97] Teresa L. Johnson and Wen-mei W. Hwu. Run-time adaptive cache hierarchy
management via reference analysis. In ISCA ’97: Proceedings of the 24th An-
nual International Symposium on Computer Architecture, pages 315–326, New
York, NY, USA, 1997. ACM Press.

[Jou90] Norman P. Jouppi. Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers. In Proceedings
of the 17th Annual Symposium on Computer Architecture, pages 364–373, 1990.

[JS97] L. John and A. Subramanian. Design and performance evaluation of a cache
assist to implement selective caching. In Proceedings of the 15th International
Conference on Computer Design, 1997.



BIBLIOGRAPHY 179

[JTSE10] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer.
High performance cache replacement using re-reference interval prediction
(RRIP). In ISCA ’10: Proceedings of the 37th Annual International Symposium on
Computer Architecture, pages 60–71, New York, NY, USA, 2010. ACM.

[KBK02] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip caches. In Pro-
ceedings of the 10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), October 2002.

[KHM01] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay: ex-
ploiting generational behavior to reduce cache leakage power. In ISCA ’01:
Proceedings of the 28th Annual International Symposium on Computer Architec-
ture, pages 240–251, New York, NY, USA, 2001. ACM Press.

[KJBF10] Samira M. Khan, Daniel A. Jiménez, Doug Burger, and Babak Falsafi. Us-
ing dead blocks as a virtual victim cache. In Proceedings of the 19th Inter-
national Conference on Parallel Architectures and Compilation Techniques, PACT
’10, pages 489–500, New York, NY, USA, 2010. ACM.

[KKL06] Ismail Kadayif, Mahmut Kandemir, and Feihui Li. Prefetching-aware cache
line turnoff for saving leakage energy. In ASP-DAC ’06: Proceedings of the
2006 Conference on Asia South Pacific Design Automation, pages 182–187, New
York, NY, USA, 2006. ACM Press.

[Kro81] David Kroft. Lockup-free instruction fetch/prefetch cache organisation. In
Proceedings of the 8th Annual Symposium on Computer Architecture, pages 81–
87, 1981.

[KS05] Mazen Kharbutli and Yan Solihin. Counter-based cache replacement algo-
rithms. In ICCD ’05: Proceedings of the 2005 IEEE International Conference on
Computer Design, pages 61–68, Los Alamitos, CA, USA, 2005. IEEE Computer
Society.

[KW98] Sanjeev Kumar and Christopher Wilkerson. Exploiting spatial locality in
data caches using spatial footprints. In ISCA ’98: Proceedings of the 25th An-
nual International Symposium on Computer Architecture, pages 357–368, Wash-
ington, DC, USA, 1998. IEEE Computer Society.

[Lab03] Francois Labonte. Microprocessors through the ages. http://www-
vlsi.stanford.edu/group/chips.html, April 2003.

[LAS+09] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.
Tullsen, and Norman P. Jouppi. McPAT: an integrated power, area, and tim-
ing modeling framework for multicore and manycore architectures. In MI-
CRO 42: Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 469–480, New York, NY, USA, 2009. ACM.

[LDV+04] Lin Li, Vijay Degalahal, N. Vijaykrishnan, Mahmut Kandemir, and
Mary Jane Irwin. Soft error and energy consumption interactions: A data



180 BIBLIOGRAPHY

cache perspective. In ISLPED ’04: Proceedings of the 2004 International Sym-
posium on Low Power Electronics and Design, pages 132–137, New York, NY,
USA, 2004. ACM Press.

[LF00] An-Chow Lai and Babak Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. In ISCA ’00: Proceedings of the
27th Annual International Symposium on Computer Architecture, pages 139–148,
New York, NY, USA, 2000. ACM Press.

[LFF01] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction & dead-
block correlating prefetchers. In ISCA ’01: Proceedings of the 28th Annual
International Symposium on Computer Architecture, pages 144–154, New York,
NY, USA, 2001. ACM Press.

[LFHB08] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache
bursts: A new approach for eliminating dead blocks and increasing cache
efficiency. In MICRO 41: Proceedings of the 41st annual IEEE/ACM International
Symposium on Microarchitecture, pages 222–233, Washington, DC, USA, 2008.
IEEE Computer Society.

[LKT+02] L. Li, Ismail Kadayif, Yuh-Fang Tsai, Narayanan Vijaykrishnan, Mahmut T.
Kandemir, Mary Jane Irwin, and Anand Sivasubramaniam. Leakage energy
management in cache hierarchies. In PACT ’02: Proceedings of the 2002 Inter-
national Conference on Parallel Architectures and Compilation Techniques, pages
131–140, Washington, DC, USA, 2002. IEEE Computer Society.

[LPZ+04] Yingmin Li, Dharmesh Parikh, Yan Zhang, Karthik Sankaranarayanan,
Mircea Stan, and Kevin Skadron. State-preserving vs. non-state-preserving
leakage control in caches. In DATE ’04: Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, pages 22–27, Washington, DC,
USA, 2004. IEEE Computer Society.

[LR02] Wei-Fen Lin and Steven K. Reinhardt. Predicting last-touch references under
optimal replacement. Technical Report CSE-TR-447-02, University of Michi-
gan, 2002.

[LS98] Mikko H. Lipasti and John Paul Shen. Exploiting value locality to exceed the
dataflow limit. Int. J. Parallel Program., 26(4):505–538, 1998.

[LT00] Hsien-Hsin S. Lee and Gary S. Tyson. Region-based caching: an energy-
delay efficient memory architecture for embedded processors. In CASES ’00:
Proceedings of the 2000 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pages 120–127, New York, NY, USA, 2000.
ACM.

[LTF00] Hsien-Hsin S. Lee, Gary S. Tyson, and Matthew K. Farrens. Eager writeback -
a technique for improving bandwidth utilization. In MICRO 33: Proceedings
of the 33rd Annual ACM/IEEE International Symposium on Microarchitecture,
pages 11–21, New York, NY, USA, 2000. ACM Press.

[Lud06] Christian Ludloff. sandpile.org - the world’s leading source for pure techni-
cal x86 processor information. http://www.sandpile.org/, October 2006.



BIBLIOGRAPHY 181

[LWS96] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Value lo-
cality and load value prediction. In ASPLOS-VII: Proceedings of the Seventh In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 138—147, 1996.

[LY09] Wanli Liu and Donald Yeung. Enhancing LTP-driven cache management
using reuse distance information. Journal of Instruction-Level Parallelism, 11,
April 2009.

[MBJ09] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi.
Cacti 6.0: A tool to model large caches. Technical Report HPL-2009-85, HP
Laboratories, 2009.

[McF92] Scott McFarling. Cache replacement with dynamic exclusion. In ISCA ’92:
Proceedings of the 19th Annual International Symposium on Computer Architec-
ture, pages 191–200, New York, NY, USA, 1992. ACM Press.

[McF93] Scott McFarling. Combining branch predictors. Technical Report TN-36,
Digital Western Research Laboratory, June 1993.

[Mic06] Micron. Micron DDR2 SDRAM Datasheet, August 2006.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[MSK05] Yan Meng, Timothy Sherwood, and Ryan Kastner. Exploring the limits of
leakage power reduction in caches. ACM Transactions on Architecture and
Code Optimization, 2(3):221–246, 2005.

[NMT+98] Koji Nii, Hiroshi Makino, Yoshiki Tujihashi, Chikayoshi Morishima, Ya-
sushi Hayakawa, Hiroyuki Nunogami, Takahiko Arakawa, and Hisanori
Hamano. A low power SRAM using auto-backgate-controlled MT-CMOS.
In ISLPED ’98: Proceedings of the 1998 International Symposium on Low Power
Electronics and Design, pages 293–298, New York, NY, USA, 1998. ACM Press.

[Par06] Jeff Parkhurst. From single core to multi-core to many core: are we ready for
a new exponential? In GLSVLSI ’06: Proceedings of the 16th ACM Great Lakes
Symposium on VLSI, pages 210–210, New York, NY, USA, 2006. ACM.

[Pat04] David A. Patterson. Latency lags bandwidth. Communications of the ACM,
47(10), October 2004.

[PK94] S. Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary
cache replacement. In ISCA ’94: Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 24–33, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

[PKK09] Pavlos Petoumenos, Georgios Keramidas, and Stefanos Kaxiras. Instruction-
based reuse-distance prediction for effective cache management. In
SAMOS’09: Proceedings of the 9th International Conference on Systems, Archi-
tectures, Modeling and Simulation, pages 49–58, Piscataway, NJ, USA, 2009.
IEEE Press.



182 BIBLIOGRAPHY

[PS93] C. H. Perleberg and A. J. Smith. Branch target buffer design and optimiza-
tion. IEEE Trans. Comput., 42(4):396–412, 1993.

[PSSK05] Salvador Petit, Julio Sahuquillo, Jose M. Such, and David Kaeli. Exploiting
temporal locality in drowsy cache policies. In CF ’05: Proceedings of the 2nd
Conference on Computing Frontiers, pages 371–377, New York, NY, USA, 2005.
ACM Press.

[Puz85] Thomas Roberts Puzak. Analysis of Cache Replacement Algorithms. PhD thesis,
University of Massachusetts Amherst, 1985.

[PYF+00] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N.
Vijaykumar. Gated-vdd: a circuit technique to reduce leakage in deep-
submicron cache memories. In ISLPED ’00: Proceedings of the 2000 Inter-
national Symposium on Low Power Electronics and Design, pages 90–95, New
York, NY, USA, 2000. ACM Press.

[QJP+07] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel
Emer. Adaptive insertion policies for high performance caching. SIGARCH
Comput. Archit. News, 35(2):381–391, 2007.

[RBS96] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: a low la-
tency approach to high bandwidth instruction fetching. In MICRO 29: Pro-
ceedings of the 29th Annual ACM/IEEE International Symposium on Microarchi-
tecture, pages 24–35, Washington, DC, USA, 1996. IEEE Computer Society.

[RD96] J.A. Rivers and E.S. Davidson. Reducing conflicts in direct-mapped caches
with a temporality-based design. ICPP: International Conference on Parallel
Processing, 1:154, 1996.

[RKB+09] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and
Yan Solihin. Scaling the bandwidth wall: challenges in and avenues for CMP
scaling. In Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 371–382, New York, NY, USA, 2009. ACM.

[RMS98] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based
prefetching for linked data structures. In ASPLOS-VIII: Proceedings of the
Eighth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 115–126, New York, NY, USA, 1998.
ACM Press.

[RTT+98] Jude A. Rivers, Edward S. Tam, Gary S. Tyson, Edward S. Davidson, and
Matt Farrens. Utilizing reuse information in data cache management. In ICS
’98: Proceedings of the 12th International Conference on Supercomputing, pages
449–456, New York, NY, USA, 1998. ACM Press.

[SJ01] Premkishore Shivakumar and Norman P. Jouppi. CACTI 3.0: An integrated
cache timing, power, and area model. Technical Report 2001/2, Compaq
WRL, August 2001.

[SJLW01] Srikanth T. Srinivasan, Roy Dz-ching Ju, Alvin R. Lebeck, and Chris Wilk-
erson. Locality vs. criticality. In Proceedings of the 28th annual international
symposium on Computer architecture, pages 132–143. ACM Press, 2001.



BIBLIOGRAPHY 183

[SLT02] Yan Solihin, Jaejin Lee, and Josep Torrellas. Using a user-level memory
thread for correlation prefetching. In ISCA ’02: Proceedings of the 29th Annual
International Symposium on Computer Architecture, pages 171–182, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[Smi82] Alan Jay Smith. Cache memories. Computing Surveys, 14(3), September 1982.

[SV94] Dimitrios Stiliadis and Anujan Varma. Selective victim caching: A method to
improve the performance of direct-mapped caches. Technical Report UCSC-
CRL-93-41, University of California, Santa Cruz, October 1994.

[TFMP95] Gary Tyson, Matthew Farrens, John Matthews, and Andrew R. Pleszkun.
A modified approach to data cache management. In MICRO 28: Proceedings
of the 28th Annual International Symposium on Microarchitecture, pages 93–103,
Los Alamitos, CA, USA, 1995. IEEE Computer Society Press.

[TH04] Masamichi Takagi and Kei Hiraki. Inter-reference gap distribution replace-
ment: an improved replacement algorithm for set-associative caches. In ICS
’04: Proceedings of the 18th Annual International Conference on Supercomputing,
pages 20–30, New York, NY, USA, 2004. ACM Press.

[TRS+99] Edward S. Tam, Jude A. Rivers, Vijayalakshmi Srinivasan, Gary S. Tyson,
and Edward S. Davidson. Active management of data caches by exploiting
reuse information. IEEE Trans. Comput., 48(11):1244–1259, 1999.

[TTJ06] David Tarjan, Shyamkumar Thoziyoor, and Norman P. Jouppi. CACTI 4.0.
Technical Report HPL-2006-86, HP Laboratories Palo Alto, 2006.

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed comput-
ing in practice: The Condor experience. Concurrency and Computation: Prac-
tice and Experience, 17(2–4), 2005.

[TVTD01] Edward S. Tam, Stevan A. Vlaovic, Gary S. Tyson, and Edward S. David-
son. Allocation by conflict: A simple, effective multilateral cache manage-
ment scheme. In ICCD 2001: Proceedings of the 2001 International Conference
on Computer Design, pages 133–140, 2001.

[VHR+07] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and
N. Borkar. An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS. In
Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers.
IEEE International, pages 98 –589, February 2007.

[VL99] Steven P. VanderWiel and David J. Lilja. A compiler-assisted data prefetch
controller. In ICCD ’99: Proceedings of the 1999 IEEE International Conference
on Computer Design, page 372, Washington, DC, USA, 1999. IEEE Computer
Society.

[VL00] Steven P. VanderWiel and David J. Lilja. Data prefetch mechanisms. ACM
Computing Surveys, 32(2):174–199, 2000.



184 BIBLIOGRAPHY

[VSP02] Sivakumar Velusamy, Karthik Sankaranarayanan, and Dharmesh Parikh.
Adaptive cache decay using formal feedback control. In WMPI ’02: Pro-
ceedings of the 2002 Workshop on Memory Performance Issues, May 2002.

[Wan04] Zhenlin Wang. Cooperative Hardware/Software Caching for Next-Generation
Memory Systems. PhD thesis, University of Massachusetts, Amherst, Febru-
ary 2004.

[WM95] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of
the obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24, 1995.

[WPO+07] John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu, Christo-
foros Kozyrakis, James C. Hoe, Derek Chiou, and Krste Asanovic. RAMP:
Research accelerator for multiple processors. IEEE Micro, 27(2):46–57, 2007.

[WSM+05] Joe Wetzel, Ed Silha, Cathy May, Brad Frey, Junichi Furukawa, and Giles
Frazier. PowerPC Virtual Environment Architecture. International Business
Machines Corporation, 2005.

[XIC09] Polychronis Xekalakis, Nikolas Ioannou, and Marcelo Cintra. Combining
thread level speculation helper threads and runahead execution. In Pro-
ceedings of the 23rd International Conference on Supercomputing, pages 410–420.
ACM, June 2009.

[YFPV02] Se-Hyun Yang, Babak Falsafi, Michael D. Powell, and T. N. Vijaykumar. Ex-
ploiting choice in resizable cache design to optimize deep-submicron proces-
sor energy-delay. In HPCA ’02: Proceedings of the 8th International Symposium
on High-Performance Computer Architecture, page 151, Washington, DC, USA,
2002. IEEE Computer Society.

[YP92] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adap-
tive branch prediction. In ISCA ’92: Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture, pages 124–134, New York, NY,
USA, 1992. ACM Press.

[ZTRC03] Huiyang Zhou, Mark C. Toburen, Eric Rotenberg, and Thomas M. Conte.
Adaptive mode control: A static-power-efficient cache design. Trans. on Em-
bedded Computing Sys., 2(3):347–372, 2003.


