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Abstract

Background: Confounding due to cellular heterogeneity represents one of the foremost challenges currently facing

Epigenome-Wide Association Studies (EWAS). Statistical methods leveraging the tissue-specificity of DNA methylation

for deconvoluting the cellular mixture of heterogenous biospecimens offer a promising solution, however the

performance of such methods depends entirely on the library of methylation markers being used for deconvolution.

Here, we introduce a novel algorithm for Identifying Optimal Libraries (IDOL) that dynamically scans a candidate set

of cell-specific methylation markers to find libraries that optimize the accuracy of cell fraction estimates obtained from

cell mixture deconvolution.

Results: Application of IDOL to training set consisting of samples with both whole-blood DNA methylation data

(Illumina HumanMethylation450 BeadArray (HM450)) and flow cytometry measurements of cell composition revealed

an optimized library comprised of 300 CpG sites. When compared existing libraries, the library identified by IDOL

demonstrated significantly better overall discrimination of the entire immune cell landscape (p = 0.038), and resulted

in improved discrimination of 14 out of the 15 pairs of leukocyte subtypes. Estimates of cell composition across the

samples in the training set using the IDOL library were highly correlated with their respective flow cytometry

measurements, with all cell-specific R2 > 0.99 and root mean square errors (RMSEs) ranging from [0.97% to 1.33%]

across leukocyte subtypes. Independent validation of the optimized IDOL library using two additional HM450 data

sets showed similarly strong prediction performance, with all cell-specific R2 > 0.90 and RMSE < 4.00%. In simulation

studies, adjustments for cell composition using the IDOL library resulted in uniformly lower false positive rates

compared to competing libraries, while also demonstrating an improved capacity to explain epigenome-wide

variation in DNA methylation within two large publicly available HM450 data sets.

Conclusions: Despite consisting of half as many CpGs compared to existing libraries for whole blood mixture

deconvolution, the optimized IDOL library identified herein resulted in outstanding prediction performance across all

considered data sets and demonstrated potential to improve the operating characteristics of EWAS involving

adjustments for cell distribution. In addition to providing the EWAS community with an optimized library for whole

blood mixture deconvolution, our work establishes a systematic and generalizable framework for the assembly of

libraries that improve the accuracy of cell mixture deconvolution.
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Background
The past decade has witnessed an exponential increase

in epidemiologic studies of DNA methylation, driven in

large part by increasing appreciation for its critical role

in the development and progression of human diseases

together with the declining cost of high-throughput tech-

nologies for interrogating the epigenome. Following the

namesake adopted for genome-wide, genetic association

studies of disease phenotypes (GWAS), studies investigat-

ing the role of DNA methylation in human diseases and

exposures have been aptly dubbed epigenome-wide asso-

ciation studies (EWAS) [1]. While GWAS and EWAS data

share many of the same analytical challenges, the tissue

specificity of DNAmethylation presents an added layer of

complexity in the analysis, and particularly in the interpre-

tation of EWAS. Owing to the tissue specificity of DNA

methylation, it is now well established that comparisons

of methylation signatures assessed over heterogenous cell

populations are susceptible to confounding and misinter-

preted associations [2–5], issues that are believed by many

to be among the foremost challenges currently facing

EWAS [6–9].

Recent attempts aimed at minimizing the potential for

confounding in the analysis of DNA methylation data

have prompted some researchers to restrict methyla-

tion assessment to purified cell populations [10, 11], for

example, CD4+ or CD14+ cells isolated from peripheral

blood. Although such studies may be less prone to con-

founding by leukocyte-lineage heterogeneity compared

to those involving whole blood (WB) DNA methyla-

tion assessments, purification of cell populations carrying

these markers will not completely eliminate heterogene-

ity attributable to lineage differences [3]. Other attempts

to address the potential for confounding in blood-based

DNA methylation data have involved adjusting statis-

tical models with additional terms reflecting the cell

composition of study samples using, for example, mea-

surements from complete blood cell counts (CBC) or

fluorescence-activated cell sorting (FACS) [5, 12]. How-

ever, these measurements are not often collected as part

of EWAS (Additional file 1: Table S1), the reasons for

which commonly include: insufficient quantities of sub-

strate for both DNA methylation assessment and mea-

surements of cell composition, budgetary constraints, and

the inability of technologies - such as FACS - to accu-

rately measure biospecimens stored over extended time

periods. In addition, because EWAS typically represent

subsidiary studies, whose associated parent study predate

current understanding of the impact of cellular hetero-

geneity on DNA methylation analyses, direct measure-

ments of cell composition were unlikely to have been

performed when biospecimens were initially collected.

These considerations, together with the emerging consen-

sus concerning the need to account for cell composition

in the statistical analysis of DNA methylation data

[6–9] have served to motivate the development of novel

statistical/bioinformatic methodologies for addressing the

potential confounding effects driven by cell heterogene-

ity [13–15]. The first of such methodologies [13] and the

most widely applied within the EWAS literature lever-

ages the cell-specificity of DNA methylation as the basis

for estimating the cellular landscape of samples consisting

of heterogeneous cell populations. This approach, com-

monly referred to as cell mixture deconvolution (CMD),

is grounded on the assumption that the methylation sig-

nature for a given target sample (methylation profiled

across a diverse population of underlying cell types) can

be viewed as a weighted mixture of the unique methyla-

tion signature of each of its constituent cell types, with

weights reflecting the proportion of each cell type within

the target biospecimen. Under certain constraints, fairly

routine statistical procedures can be employed to esti-

mate such weights, thereby providing investigators with

a “prediction” of the cellular distribution for each target

sample to which it is applied. Much in the same way one

would adjust for cell composition if cell fractions were

measured directly, estimates of cell composition obtained

using CMD can be added as additional covariate terms

to control for the potential confounding effects associated

with cell heterogeneity [16–21].

The first and most critical step of CMD and the

impetus for this research, involves assembling a library

of cell-specific methylation biomarkers that collectively

reflect the unique methylomic fingerprint of each cell

type. In the case of leukocyte subtypes, we refer to

such cell-specific methylation biomarkers as leukocyte-

differentially methylated regions (L-DMRs) to convey

their differential methylation status across leukocyte sub-

types. Motivated by the critical role played by L-DMR

libraries and their relationship to the accuracy of cell com-

position estimates [8, 22], here we develop and evaluate

a novel, iterative algorithm for Identifying Optimal L-

DMR Libraries (IDOL) that improves the accuracy and

efficiency of cell composition estimates obtained by CMD.

In what follows, we aim to address three key ques-

tions: (i) does the optimal library identified from IDOL

result in improved estimates of cellular composition com-

pared to existing libraries, (ii) if so, are there discernible

differences between libraries that might offer an explana-

tion for their prediction performance, and lastly (iii), what

impact does the difference in prediction performance

between libraries have on EWAS when estimates of cell

mixture are desired. To address these important questions

we begin by applying IDOL to a training set consist-

ing of samples with both whole-blood DNA methylation

data (assayed using the Illumina HumanMethylation450

BeadArray (HM450)) and flow cytometry measurements

of cell composition in order to calibrate the selection of
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an optimal L-DMR library. To illustrate the utility of the

identified IDOL library as resource for future EWAS, we

benchmark its performance against existing libraries in

two independent HM450 data sets and conduct a thor-

ough comparison of libraries to gain insight into their

observed prediction accuracy. Finally, the impact of differ-

ent libraries on the false positive rate and statistical power

of EWAS is evaluated using both simulation studies and

a data application involving two large publicly available

HM450 data sets.

Results
The essential nature of library assembly and its impact

on the accuracy of cell composition estimates is high-

lighted in Fig. 1. Figure 1a,b depict heat maps generated

from hierarchical clustering the K = 6 major leukocyte

components of WB (i.e., CD4T cells, CD8T cells, natu-

ral killer (NK) cells, B cells, monocytes, and granulocytes)

based on their methylation signature across two differ-

ent L-DMR libraries [13, 23]. The first of these libraries

to appear in the literature (TopANOVA [13]) was assem-

bled using the 600 CpGs with the largest F-statistics

computed from a series of ANOVA models comparing

CpG-specific patterns of methylation across leukocytes

(Fig. 1a). The second library is the default library used

by the EstimateCellCounts function in the minfi Biocon-

dutor package [23]. While also comprised of 600 CpGs,

the EstimateCellCounts library is instead assembled using

the top 100 CpGs that uniquely distinguish each cell type

from the remaining K − 1 cell types (100 × K = 600

Total CpGs). While both libraries adequately discriminate

lymphoid-derived cells (CD4T, CD8T, NK, and B cells)

frommyeloid-derived cells (monocytes and granulocytes),

the EstimateCellCounts library exhibits far better dis-

crimination of lineage-specific cell types, particularly, NK,

CD4T, and CD8T lymphocytes (Fig. 1c). The net result

of its improved discrimination of lineage-specific sub-

types is uniformly better prediction performance across

the entire immune cell landscape, the largest of such gains

being associated with NK, CD4T, and CD8T lymphocytes

(Fig. 1d,e, Additional file 2: Figure S1).

The principle reason for the difference in discrimi-

nation power and prediction accuracy between libraries

is due entirely to the criteria used for their assembly.

While assembling libraries using ANOVA F-statistics

might seem reasonable, it is inherently susceptible to the

over-selection of CpGs that are capable of discriminat-

ing certain subsets of leukocytes (i.e., lymphocytes ver-

sus myeloid cell types), but provide poor discrimination

of other subsets (i.e., lineage-specific subtypes). On the

other hand, the EstimateCellCounts library is constructed

by imposing an equal representation of CpGs for each

cell type (top 100 cell-specific L-DMRs). This strategy

leads to better discrimination of lineage-specific cell types

and, as a result, improved estimation accuracy of those

cell types (Fig. 1d,e). Despite representing an obvious

improvement over TopANOVA, the prediction accuracy

associated with EstimateCellCounts demonstrates ample

room for improvement and suggests that further refine-

ments in the assembly of L-DMR libraries may provide the

solution.

Motivated by the critical role played by L-DMR libraries

on the accuracy of cell composition estimates, we focus

here on the development and evaluation of a novel iter-

ative algorithm (IDOL) for identifying L-DMR libraries

that improve the performance of CMD. A schematic dia-

gram illustrating the various steps of IDOL is given in

Fig. 2a. IDOL first involves the construction of a can-

didate set of L-DMRs consisting of CpG sites exhibiting

differential DNA methylation across leukocyte subtypes.

From this candidate set, subsets of L-DMRs are randomly

selected at each iteration, with each randomly selected

L-DMR being evaluated for its contribution to cell com-

position prediction accuracy. The contribution of each L-

DMR is then used to modify its probability of selection in

subsequent rounds of IDOL, where selection probabilities

are updated in a manner proportional to its contribution

to prediction accuracy. This is similar in principle to the

weight updating rule in supervised competitive learning

networks and the update rules employed in Learning Vec-

tor Quantization [24]. Specifically, L-DMRs found to con-

tribute favorably to prediction performance are updated

to have greater chance of being selected in subsequent

iterations, whereas L-DMRs that hinder or have no effect

on prediction performance are updated to have a reduced

chance of being selected (Fig. 2b,c). This dynamic pro-

cess is repeated thousands of times, with L-DMR selection

probabilities evolving at each iteration depending on how

they impact the accuracy of CMD estimates (Fig. 2d).

By updating selection probabilities in this way, randomly

selected L-DMR subsets at each sequential IDOL itera-

tion become enriched with L-DMRs that were previously

marked as beneficial to prediction accuracy. As a result,

the temporal evolution of IDOL witnesses the preferential

selection of L-DMR subsets that, as a whole, contribute

to improved accuracy of CMD estimates (Fig. 2e,f). Upon

termination, one is left with the subset consisting of the L-

DMRs with the largest selection probabilities, henceforth

referred to as the optimal IDOL library.

Training the selection of L-DMR libraries for cell mixture

deconvolution

To calibrate the selection of optimal L-DMR libraries,

we first applied IDOL to a training data set consisting

n = 6 non-diseased adults with WB DNA methyla-

tion and immune profiling data (Section ‘Adult whole

blood (WB) samples’). Flow cytometry estimated cell

fractions of CD4T, CD8T, natural killer (NK), B cells,
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Fig. 1 Impact of L-DMR library on the accuracy of cell composition estimation. a, b Hierarchical clustering heat maps of the mean methylation

signatures of isolated leukocyte subtypes [3] using (a) the top 600 ANOVA-ranked L-DMRs (TopANOVA library) and (b) the 600 L-DMRs that uniquely

distinguish each cell type from all other cell types (EstimateCellCounts default library). Column dendrograms are colored to reflect the cell-lineage of

leukocyte subtypes: lymphocytes (pink) and myeloid-derived cells (blue). c Image plot showing the difference in the dispersion separability criterion

(DSC) between the EstimateCellCounts and TopANOVA libraries. For a given pair of leukocyte subtypes, larger values of DSC difference (shades of

blue) indicate better discrimination associated with the EstimateCellCounts library, whereas smaller values of DSC difference (shades of red) indicate

better discrimination associated with the TopANOVA library. d Scatterplots of the CMD predicted and FACS cell fractions for the n = 6 AdultMixed

samples. Dashed lines indicate the line of unity, dotted lines represent the fitted regression lines based on cell predictions obtained using the

TopANOVA library, and solid lines represent the fitted regression lines based on cell predictions obtained using the EstimateCellCounts library.

e Cell-specific prediction performance for the AdultMixed samples based on the TopANOVA and EstimateCellCounts libraries

monocytes, and granulocytes across the training sam-

ples are depicted in Fig. 3a. On average, granulocytes

represented the most abundant cell type across the

training samples (mean = 57.4%, sd = 11.5%), fol-

lowed by CD4T (mean = 17.9%, sd = 5.7%), CD8T

(mean = 9.7%, sd = 4.5%), monocytes (mean = 6.7%,

sd = 1.2%), B cells (mean = 4.9%, sd = 1.9%), and NK

cells (mean = 3.5%, sd = 1.4%), in descending order of

abundance.

Since the objective of IDOL is to identify the best sub-

set (or subsets) of L-DMRs from a larger candidate set of

putative L-DMRs, we first focused on constructing this

candidate set by identifying CpG sites with differential

methylation across leukocytes. Using the DNA methyla-

tion profiles for isolated leukocyte subtypes reported in

[3], we first fit a series of two-sample t-tests to compare

CpG-specific DNA methylation patterns across the K =

6 immune cell subtypes. Specifically, the CpG-specific

methylation signature of each of cell type was compared

to the K − 1 remaining cell types and the top 150 CpGs

with largest and smallest t-statistics were combined into a

single candidate list consisting of 1,800 putative L-DMRs

(Additional file 3: Table S2). Following construction of the

candidate set, we next applied IDOL to identify optimal

libraries across a range of possible library sizes, from 100

to 800 CpG loci in increments of one-hundred. Across
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Fig. 2 Conceptual illustration of the IDOL algorithm. a Schematic diagram showing each step of IDOL. b, c Illustration of the scheme for updating
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IDOL. At iteration 0, L-DMRs have an equal probability of being selected for inclusion in the randomly assembled L-DMR subset. At each sequential
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the spectrum of library sizes considered, the average R2

and root mean square error (RMSE) between flow cytom-

etry measurements and predicted cell type proportions

obtained from the identified optimal libraries was very

stable, ranging from 0.98 to 1.00 for R2 and from 2.41% to

3.30% for RMSE (Additional file 4: Figure S2). As noted

in Additional file 4: Figure S2, a subtle drop-off in pre-

diction performance was observed libraries whose size

exceeded 500 CpGs. Given the general preference for pre-

diction models that use fewer features and because the

library consisting of 300 CpGs (Additional file 5: Table S3)

performed favorably both with respect to its average R2

and RMSE, this library was selected as the representative

IDOL library for all subsequent comparisons and analyses.

Hierarchical clustering of leukocytes based on their

mean methylation signature across the 300 CpGs in the

optimal IDOL library is given in Fig. 3b and clearly shows

better discrimination of lymphocyte subtypes compared

to the TopANOVA library (Fig. 1a). Using the IDOL

library for deconvoluting the cellular mixture of the train-

ing set samples revealed a high degree of concordance

between flow cytometry and predicted cell type propor-

tions, with nearly perfect R2 values across all cell types and

RMSEs ranging from as low as 0.97% for monocytes to

1.37% for CD4T cells (Fig. 3c). Across the six leukocytes,

the average R2 and RMSE between the predicted and flow

cytometry cell type proportions were estimated at 0.99

and 1.15%, respectively. When compared to the results
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Fig. 3 Results obtained from applying IDOL to the training set. a Stacked bar plots showing the FACS measured fractions of granulocytes (Gran),

monocytes (Mono), natural-killer cell (NK), B cells (Bcell), CD8T lymphocytes (CD8T), and CD4T lymphocytes (CD4T) across the 6 training samples.

b Hierarchical clustering heat map of the mean methylation signature of leukocyte cell-types (columns) based on the 300 optimized L-DMRs (rows)

identified by IDOL. The column dendrogram is colored to reflect the cell lineage of the leukocyte subtypes, where lymphocyte-derived subtypes are

colored pink and myeloid-derived cell types are colored blue. c Scatterplots of FACS measured cell fractions (x-axes) and predicted cell proportions

obtained using the optimized IDOL library (y-axes). Dotted lines indicate the line of unity and colored lines represent the regression line fit to the

FACS measured cell fractions and predicted cell fractions. d Overlap between IDOL and EstimateCellCounts libraries. e Image plot showing the

difference in the dispersion separability criterion (DSC) between the IDOL and EstimateCellCounts libraries for discriminating specific pairs of

leukocyte subtypes. For a given pair of leukocytes, larger values of DSC difference (shades of blue) indicate better discrimination associated with the
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f Histogram showing the results of a permutation-based testing procedure for examining the difference in the overall DSC between the IDOL and

EstimateCellCounts libraries

obtained from the application of both the EstimateCell-

Counts and TopANOVA libraries to training set (Fig. 1d,e,

Additional file 2: Figure S1), the IDOL library resulted bet-

ter prediction performance for all cell types except B cells,

whose predictions from EstimateCellCounts exhibited

slightly lower RMSE (0.98% versus 1.04%). Upon fur-

ther comparison, the greatest improvements in prediction

performance associated with the IDOL library occurred

for monocytes and among lymphocyte subtypes. Specifi-

cally, the IDOL library resulted in monocyte predictions

that explained approximately 70% more variation in the

flow cytometry measurements of monocytes compared

to EstimateCellCounts (Figs. 1e and 3c). Similarly, pre-

dictions of CD4T, CD8T, and NK cell type fractions

obtained from the IDOL library explained an average of

17% more variation in the flow cytometry derived frac-

tions of these cell types compared to EstimateCellCounts,

and were associated with RMSEs that were on average

3.3-fold lower.

Of the 300 CpGs encompassing the IDOL library, 128

(43%) were shared with 600 L-DMRs used by Estimate-

CellCounts (Fig. 3d, Additional file 5: Table S3). To

understand how differences between these two libraries

might explain their observed prediction performance,

we next compared libraries with respect to their abil-

ity to discriminate specific pairs of leukocytes. For each

library we computed the dispersion separability crite-

rion (DSC), defined here as the ratio of the average
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distance between cell-specific centroids and the overall

mean to the average distance between samples of the

same cell type. As such, increasing DSC values indi-

cate greater between-cell-type dispersion/discrimination.

Using the leukocyte-specific methylation data reported

in [3] as the basis for estimation, we found that the

IDOL library resulted in a significantly larger DSC

compared to the EstimateCellCounts library (permuta-

tion p = 0.038) (Fig. 3f). Furthermore, a compari-

son of the DSC values computed between each pair

of leukocytes showed that the IDOL library resulted in

larger DSC values in 14 out of the 15 comparisons, of

which 4 were associated with p-values that bordered

on statistical significance (p < 0.10) (Fig. 3e). Among

the 4 comparisons with marginally statistically signifi-

cant p-values, 3 involved specific pairs of lymphocyte

subtypes.

Independent validation of the optimal L-DMR set

To validate the IDOL library identified in the train-

ing set, we next examined its performance for accu-

rately deconvoluting the cellular composition of 12

additional samples spread across two independent test

sets: MethodA and MethodB sets. As described in

Section ‘Cell mixture reconstruction experiment’, the

MethodA and MethodB data sets were created by mix-

ing purified leukocyte subtype DNA from CD4T, CD8T,

NK, B cells, monocytes, and granulocytes in predeter-

mined proportions (Fig. 4a). As such, the true cellu-

lar mixture of the MethodA and MethodB samples are

known with a high degree of confidence, representing

ideal candidates in which to validate the optimal library

identified by IDOL in its application to the training

set.

As noted in Fig. 4a, whereas the MethodA samples are

characterized by a roughly equivalent fraction of each

cell type (mean CD4T = 11.8%; CD8T = 20.8%; NK =

15.0%; Bcell = 16.0%, monocyte = 19.2%, and granulo-

cyte = 17.2%), the cellular composition of the MethodB

samples were reconstructed to resemble the immune cell

landscape observed in healthy human adults [25] (mean

CD4T = 13.2%; CD8T = 6.0%; NK = 3.0%; Bcell =

2.7%, monocyte = 6.2%, and granulocyte = 69.0%). Sim-

ilar to the results obtained in the training set, cell type

predictions in the testing sets using the IDOL library were

highly correlated with true mixture fractions (Fig. 4b).

Specifically, the cell-specific R2 values computed across

both testing sets ranged from 0.94 (CD4T cells) to 1.00

(both, granulocytes and B cells), with an R2 of 0.97 aver-

aged across the six cell types. In addition, the cell-specific

RMSEs computed across the testing sets showed that in 4

out of the 6 cell types, predictions were, on average, within

2.0% of their true reconstructedmixture proportions. The

two exceptions being NK cells (RMSE = 2.5%) and CD8T

cells (RMSE = 3.4%). A comparison of the cell-specific R2

and RMSEs computed within the MethodA and MethodB

data sets separately revealed relatively minor differences

in prediction accuracy (Additional file 6: Table S4 and

Additional file 7: Figure S3 and Additional file 8: Figure

S4). For the MethodA set, cell-specific R2 and RMSE

ranged between [0.86, 1.00] and [1.09%, 4.11%] with

mean values of 0.96 and 2.14%, respectively. Similarly, in

the MethodB data set, cell-specific R2 and RMSE ranged

between [0.82, 0.98] and [1.44%, 2.52%] with mean values

of 0.91 and 1.68%. Furthermore, there appeared to be no

association between the prediction performance of a given

cell type and its true underlying fraction in the MethodA

and MethodB reconstructed mixture samples (Additional

file 7: Figure S3, Additional file 8: Figure S4 and Additional

file 9: Figure S5).

The prediction performance obtained using the IDOL

library compared favorably to the performance associated

with EstimateCellCounts, the predictions of which

explained, on average, 2% less variation in the under-

lying reconstructed mixture fractions compared to the

IDOL library (Additional file 6: Table S4 and Fig. 4c).

The largest difference in performance was observed

for CD4T cells, whose IDOL associated predictions

explained an estimated 12% more variation in the

reconstructed mixture proportions of CD4T cells and

were associated with a 2-fold lower RMSE compared

to EstimateCellCounts (Additional file 6: Table S4

and Fig. 4c).

Implications of cell composition adjustment methodology

for EWAS

In the overwhelming majority of the studies using CMD,

estimates of immune cell fractions are first obtained

for each study sample, followed by their inclusion as

additional covariate terms in statistical models to con-

trol for the potential confounding effects of cellular

heterogeneity [26–28]. For this reason, metrics such as

R2 and RMSE, while providing a useful starting point

for comparing different L-DMR libraries, say little about

how the prediction error associated with a given library

relates to its impact on the power and false discovery

rate (FDR) of EWAS. With this in mind, we conducted

a series of analyses aimed at examining how adjust-

ments for cellular mixture in the statistical modeling

of DNA methylation data impact the ability to cor-

rectly identify true negatives (FDR) and true positives

(power).

To understand the consequences of prediction error

in cell fraction estimates for EWAS, we first conducted

a simulation study comparing the FDR when different

strategies for cell composition adjustment were employed,

namely, when cell fraction estimates were obtained using

the IDOL and EstimateCellCounts libraries. For our
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Fig. 4 Results obtained from applying the optimal IDOL library to the testing sets. a Stacked bar plots showing the cell type fractions for each

testing set sample. b Scatter plots of the true reconstructed mixture fractions (x-axes) and the predicted cell fractions obtained using the optimized

IDOL library (y-axes). Circles indicate Method A samples and squares indicate Method B samples. Dotted lines indicate the line of unity and colored

lines represent the regression line fit to the true reconstructed mixture fractions and predicted cell fractions. c Box plots showing the predicted cell

(%) − observed cell (%) across leukocyte cell types, where blue boxes represent estimates obtained from the optimal IDOL library and red boxes

represent estimates obtained from the EstimateCellCounts library. (d, top panel) Estimated false discovery rate (FDR) for a two-group comparison of

DNA methylation as a function of the dissimilarity in the cellular distribution between groups (x-axes). Colored lines represent different approaches

for cell composition adjustment. (d, bottom panel) Difference in the FDR between the EstimateCellCounts and IDOL libraries where points above

the dotted line indicate that the EstimateCellCounts library resulted in more false positive results compared to the IDOL library. eMean difference in

the FDR for varying sample sizes when cell mixture was adjusted using cell fractions estimates from the EstimateCellCounts and IDOL libraries. Bars

represent the 95% bootstrap confidence intervals for each point estimate. Points to the right of the dotted line indicate that the EstimateCellCounts

library resulted in more false positive results compared to the IDOL librarys

simulations, we assumed simplistic study design that, typ-

ical of many EWAS, focused on the identification of

differentially methylated CpG sites between two groups,

i.e., case/control comparison. As described in Section

‘Simulation study comparing false discovery rates (FDR)

across different cell composition adjustment techniques’,

for each sample, methylation beta-values were simulated

for a total of 10,000 CpGs, assuming within-group sample

sizes that ranged from small/moderate (i.e., n = {50, 100})

to moderate/large (i.e., n = {250, 500}). Most importantly,

while the underlying cellular composition was permitted

to vary across groups, each cell type was assumed to

have an identical methylation signature between groups:

no group effect. As such, tests of CpG-specific differ-

ential methylation between groups with adjustments for

cellular composition should not be rejected and therefore

represent the basis for our estimates of FDR.

As expected, the FDR was appropriately controlled at

5% when adjustments for cell composition were carried

out using the “true simulated” cell distribution (Fig. 4d,

black lines). On the other hand, a clear inflation in the

FDR was observed when tests for differential methylation
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were unadjusted for cellular composition, the degree of

inflation depending heavily on the between-group dissim-

ilarity in cellular distribution (Fig. 4d, green lines). While

a subtle inflation in FDR was observed when cell type

adjustments were carried out using cell fraction estimates

obtained from the IDOL (blue lines) and EstimateCell-

Counts (red lines) libraries, the IDOL library tended to

result in a reduced number of false positive results across

the spectrum of simulation conditions (Fig. 4d). This

observation is more clearly illustrated in Fig. 4e which

depicts the average difference in FDR computed between

EstimateCellCounts and the IDOL libraries across the

range of assumed within group sample sizes. Compared

to EstimateCellCounts, the IDOL library resulted in, on

average, 2%–5% fewer false discoveries when within-

group sample sizes ranged from 50 to 500.

To further understand the implications of cell type pre-

diction methodology for EWAS, we made use of two of

the largest publicly-available WB DNA methylation data

sets [16, 29]. Our analysis of the Liu [16] and Hannum

[29] data sets was aimed at addressing two different but

related questions: (i) which cell prediction methodology

performed better at explaining variation in DNAmethyla-

tion within each data set and (ii) how does the additional

variation being explained relate to the statistical power of

each study. To address these questions we began by esti-

mating the cellular distribution of the samples in each data

set using both the IDOL and EstimateCellCounts libraries

(Fig. 5a,b).

As noted in Fig. 5a,b, a high degree of correlation was

observed in the cell fraction estimates obtained using

the IDOL and EstimateCellCounts libraries, with cell-

specific R2 ranging from [0.80, 0.99] and [0.84, 0.99] for

the Liu and Hannum data sets, respectively. In both data

sets, the predicted fraction of monocytes exhibited the

greatest variation between the the IDOL and Estimate-

CellCounts libraries, with the IDOL library resulting in

slightly smaller estimates of monocyte fractions compared

to EstimateCellCounts, on average: (5.4% versus 7.8%)

and (6.8% versus 8.7%) in the Liu and Hannum data sets,

respectively. Conversely, estimates of CD4T cells obtained

from the IDOL library were, on average, slightly larger

compared to those obtained from EstimateCellCounts;

(12.9% versus 8.3%) and (13.8% versus 9.1%) in the Liu

and Hannum data sets.

Array-wide comparisons of the proportion of CpG-

specific variation in DNA methylation explained by cell

composition estimates revealed that the IDOL library

tended to explain more variation compared to Estimate-

CellCounts (Fig. 5c,d). Specifically, cell estimates obtained

from the IDOL library explained more variation in DNA

methylation for 83.3% of the CpGs in the Liu data set and

74.8% of the CpGs in the Hannum data set, both of which

represent significantly larger proportions than would be

expected by random chance (permutation p < 0.001 for

both). To understand how these findings relate to sta-

tistical power of EWAS, we used the residual variance

estimates obtained from each methodology as the basis

for estimating the sample size required for detecting a

statistically significant difference in DNA methylation at

80% power (Section ‘Data application for exploring the

implications of cell composition adjustment in EWAS’).

Figure 5e,f show the number of additional samples needed

when cell type correction was carried out using esti-

mates from EstimateCellCounts (purple) or no cell type

correction (green), as a function of the desired differ-

ence to be detected in the mean methylation beta-values

between two groups. Using the residual variance esti-

mates computed in the Hannum data set, there were

only modest differences in the number of additional

samples needed when cell type correction was based

on estimates from EstimateCellCounts, with virtually no

difference between the IDOL library and EstimateCell-

Counts beyond effect sizes of 0.03 (on the beta-value

scale). However, using the residual variance estimates

obtained in the Liu data set showed that, for effect

sizes ranging from 0.03–0.05 (on the beta-value scale),

approximately 15 and 5 additional samples respec-

tively would be needed if the analysis was adjusted

for cell composition using estimates obtained from

EstimateCellCounts.

Discussion
In this manuscript, we have described and extensively

evaluated a novel, iterative algorithm for assembling L-

DMR libraries. Our objective was to present a methodol-

ogy that can identify libraries that improve the prediction

performance of CMD. Building off existing approaches

[8, 13], IDOL involves the targeted curation of libraries

whose constituent L-DMRs are selected on the basis of

their collective ability to optimize the accuracy and mini-

mize the prediction error associated with cell composition

estimates obtained through CMD. The principal differ-

ence between IDOL and the assembly of existing L-DMR

libraries is that IDOL makes use of a training data set

consisting of samples with both WB DNA methylation

signatures and immune profiling data as a means of cal-

ibrating the selection of L-DMRs. This in turn results in

libraries that enhance the accuracy of CMD estimates and,

as a consequence, improve the operating characteristics

of EWAS, i.e., decreased false positive rate and increased

statistical power.

In our application of IDOL to a training set, we assem-

bled optimal L-DMR libraries across a range of possible

library sizes (i.e., 100, 200, . . . , 800) in order to examine

the relationship between library size and the accuracy of

cell composition estimates. Although only modest differ-

ences in prediction performance were observed between
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Fig. 5 Cell mixture deconvolution of the Liu and Hannum blood data sets using the IDOL and EstimateCellCounts libraries. a, b Scatter plots of the

predicted cell type fractions obtained using EstimateCellCounts library (x-axes) and the IDOL library (y-axes) for the Liu and the Hannum data sets,

respectively. c, d Distribution of the difference in the R2 computed from the IDOL and EstimateCellCounts libraries for the (c) Liu and (d) Hannum

data sets. e, f Estimated number of additional samples needed (y-axis, left) and approximate additional cost (y-axis, right) as a function of the desired

difference in DNA methylation to be detected (x-axis) when correction for cell mixture was carried out using the EstimateCellCounts library. Variance

estimates were obtained from the (e) Liu and (d) Hannum data sets

the optimal libraries identified at each size considered,

our results showed a trend toward diminishing prediction

performance for sizes exceeding 500 L-DMRs. Though

caution should be exercised when drawing conclusions

on the basis of a single analysis, these results seem sug-

gest that when it comes to assembling libraries for CMD,

the quality of selected L-DMRs takes precedence over

their quantity (i.e., library size). Despite being half the

size, the prediction performance observed for the final

IDOL library was on par with, and in many cases bet-

ter than, EstimateCellCounts across both the training and

independent testing sets. We hypothesized that the bet-

ter performance associated with the IDOL library was a

result of its ability to find libraries that better characterize

the unique methylomic fingerprint of leukocyte subtypes.

To examine this hypothesis, we compared each library in

terms of how well it performed in discriminating each

pair of cell types by computing the DSC. The results of

this analysis showed that the IDOL library better discrim-

inated 14 out of the 15 pairs of leukocyte subtypes, with

significantly improved discrimination strength across the

entire immune cell landscape. This observation is note-

worthy in that it may suggest a framework for gauging the

prognostic potential of DMR libraries in the absence of

DNA methylation data sets with available immune profil-

ing information, the “gold-standard” for assessing the pre-

diction performance associated with different libraries.

More importantly, our results serve to illustrate a key fac-

tor underlying the accuracy of cell composition estimates

obtained via CMD, namely, that prediction accuracy is

strongly related to a library’s ability to provide a powerful

discrimination of the entire cellular landscape.
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While the library used by EstimateCellCounts is a

significant improvement over the TopANOVA approach

for library assembly, it imposes an equal number of cell-

specific L-DMRs for all cell types. In principle, this would

be reasonable if cell types were mutually distinct from

one another, however this is not the case for white blood

cell types whose DNA methylation signatures are lineage-

specific [3, 4, 13]. Because of the shared lineages of leuko-

cyte subtypes, more or fewer L-DMRs might be needed

for certain cell types depending on strength of their sig-

nal, within cell-type variability of those markers, and the

lineage relationships between cell types. The data-driven

approach for assembling libraries characteristic of IDOL

indirectly addresses this issue by iteratively searching for

the subset of L-DMRs that optimize the accuracy of CMD,

with no a priori constraints on the number of cell-specific

L-DMRs used in assembly of libraries. As demonstrated

here, this approach resulted in a library that demon-

strated highly accurate cell composition estimates in all

data sets considered in our examination. Although the

EstimateCellCounts library showed similar performance

across the testing sets, the results of our simulation study

and data applications showed that even modest improve-

ments to the overall accuracy of cell fraction estimates

results in non-negligible differences in the false posi-

tive rate and statistical power for EWAS. In particular,

our simulation studies showed that when differences in

the underlying cellular distribution between groups are

large, tests of differential methylation adjusted for cell

composition estimates obtained using the default Esti-

mateCellCounts library can lead to an estimated 5% infla-

tion in the false positive rate compared to adjustments

made using the IDOL library. On the scale of EWAS,

which typically involve testing hundreds of thousands to

millions of CpGs, this amounts to thousands to tens-of-

thousands of CpGs being incorrectly classified as differ-

entially methylated. Moreover, in both data applications

cell fraction estimates obtained using the identified IDOL

library demonstrated an improved ability to explain varia-

tion in whole-blood-derived DNAmethylation signatures.

This lead to increased statistical power, and as a result,

fewer samples needed when cell composition correction

was carried out using the IDOL library. Although the Liu

and Hannum data applications revealed relatively minor

differences in the number of samples needed between

libraries, the corresponding cost-differential for a single

study can be on the order of several thousand dollars con-

sidering the current cost of the Illumina HumanMethyla-

tion450 array (http://www.illumina.com/), a figure whose

magnitude becomes substantial when taken across the

entire spectrum of past, present, and future EWAS involv-

ing adjustments for cell composition via CMD.

Notwithstanding the potential of IDOL to identify L-

DMR libraries that enhance the accuracy of cell type

predictions obtained through CMD, this method is not

without certain limitations. As IDOL does not include

an evaluation of the prediction performance of all possi-

ble combinations of L-DMR libraries (i.e.,
(L
J⋆

)
), there is

no guarantee that IDOL will arrive at globally optimal

solutions. Because of the inherent computational bur-

den that would be required to ensure global optimality

in this case, we opted for a more computationally par-

simonious approach wherein libraries are identified by

sequentially selecting L-DMR subsets preferentially com-

prised of L-DMRs that were previously marked as bene-

ficial to prediction accuracy in previous IDOL iterations.

Our procedure resulted in a optimized library consist-

ing of 300 L-DMRs, which compared favorably to existing

L-DMR libraries and demonstrated excellent prediction

performance in two independent testing data sets. Thus,

while global optimality cannot be guaranteed our results

are encouraging and provide assurance of the capacity of

IDOL to identifying libraries that result in highly accurate

estimates of cell composition.

It also deserves mentioning the the ability of IDOL to

find libraries that better characterize the unique methy-

lomic fingerprint of leukocyte subtypes comes at the

expense of moderate increases in computational time

compared to existing techniques for library assembly.

Along these lines, the leave-one-out procedure employed

in Step 4 of IDOL may unnecessarily contribute to slower

convergence and thus increased computational demands.

To this end, bootstrap resampling [30] as a substitute for

our leave-one-out procedure may lead to faster conver-

gence of IDOL and represents a potential opportunity

for future enhancements to this methodology. Finally,

while the applications presented herein targeted the

HM450 BeadArray, we note that IDOL is generalizable to

other platforms (i.e., whole-genome bisulfite sequencing,

Illumina HumanMethylationEPIC BeadArray, ect.) pro-

vided that the reference methylomes for isolated leuko-

cyte subtypes are available on those platforms. As interest

in this area continues to grow, future studies should aim to

compare the L-DMR library identified here to those iden-

tified from technologies with expanded coverage of the

methylome.

Conclusions
Motivated by the critical importance of accounting for

cellular distribution when DNA methylation is assessed

in heterogeneous tissue types [6–9, 20], along with the

logistical and economic considerations that often ren-

der direct measurements of cell composition infeasible,

our work fills a critical gap in the EWAS literature by

reinforcing the importance of library assembly and its crit-

ical role in CMD. Further, we provide the epigenomics

research community with a L-DMR library, optimized

to improve the accuracy of cell distribution estimates in

http://www.illumina.com/
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blood-derived biospecimens from human adults. Impor-

tantly, while motivated by the problem of deconvoluting

the cellular mixture of whole blood, this research pro-

vides a framework for the systematic construction of DMR

libraries in general, and represents a viable approach for

library assembly for EWAS moving forward.

Methods
In what follows, we begin by describing the DNA methy-

lation array data sets used in this research as well as the

steps implemented in their preprocessing and quality con-

trol. We next provide an overview of cell mixture decon-

volution and the IDOL algorithm. Finally, we describe

our application of IDOL, metrics employed for assess-

ing and comparing cell type prediction performance, and

finish by describing a data application for exploring the

implications of cell composition adjustment in EWAS.

Cell mixture reconstruction experiment

Purified granulocytes, monocytes, CD4T, CD8T, natural

killer cells, and B cells from normal human subjects were

purchased from AllCells LLC (Emeryville, CA). As descri-

bed (http://www.allcells.com/normal-peripheral-blood/)

ethical approval, including all consents and protocols,

have been approved by an independent review board.

Both positive and negative selection for relevant cell sur-

face proteins was conducted by AllCells using antibodies

conjugated to magnetic beads and protocols from Mil-

tenyi Biotec, Inc. (Auburn, CA). DNA was extracted from

purified blood leukocyte subtypes using the DNeasy blood

and tissue kit (QIAGEN, Valencia CA) or the AllPrep

DNA/RNA/Protein Mini Kit (QIAGEN) using previously

described protocols [31]. DsDNA was quantified using

a Qubit 3.0 fluorometer (Life Technologies). Following

quantification, DNA extracted from purified leukocyte

subtypes were mixed in predetermined proportions to

reconstruct two distinct sets, consisting of n = 6 samples

each. The first set of reconstructed samples used mixtures

of purified leukocyte subtype DNA in relatively equiva-

lent proportions across the leukocyte subtypes, hereafter

referred to as the MethodA samples. For the second set

of six samples, the proportion of DNA for each leukocyte

subtype were selected to resemble their relative fractions

in the peripheral blood of normal human adult subjects

(MethodB samples). All DNA samples were bisulfite mod-

ified using the Zymo EZ DNA Methylation kit (Irvine,

CA) and epigenome-wide DNA methylation assessment

was performed using the Illumina HumanMethylation450

array platform.

Adult whole blood (WB) samples

An additional n = 6 whole blood (WB) samples from

disease-free adult donors with available immune cell

profiling data from flow cytometry were purchased from

AllCells LLC. Inclusion and exclusion criteria for donors

as well as a statement describing the ethical approval of

such samples can be found on the AllCells LLC webpage

(http://www.allcells.com/normal-peripheral-blood/). We

hereafter refer to this data set as the AdultMixed set. DNA

extraction and bisulfite modification of the AdultMixed

samples followed an identical protocol to that described

above, with epigenome-wide DNA methylation profil-

ing performed using the Illumina HumanMethylation450

array platform.

Reference DNAmethylomes for isolated leukocyte

subtypes

To identify L-DMRs and as the basis of all applications of

CMD, we used a publicly available data set (GEO Acces-

sion ID: GSE35069) consisting of epigenome-wide DNA

methylation profiles for the same six leukocyte subtypes

used in our reconstruction experiments. Further details

concerning the study participants, purification of blood

cell populations, and DNA extraction have been previ-

ously described [3].

Additional DNAmethylation data sets

In addition to the aforementioned data sets, we also made

use of two of the largest publicly available blood-derived

DNA methylation data sets currently available on Gene

Expression Omnibus (Accession numbers: GSE42861 and

GSE40279). Collectively, these two data sets consist of

WB DNA methylation data on >1200 adult patients

and were used here for the purpose of understanding

the implications of cell mixture adjustment when mix-

ture fractions were estimated using differing L-DMR

libraries. The first data set (Liu) consisted of blood-

derived DNA methylation data on 689 human subjects,

including n = 354 rheumatoid arthritis and n = 335

non-diseased control patients [16]. The second data set

(Hannum) included blood-derived DNAmethylation data

on 656 non-diseased adults, ranging in age from 19 to 101

years old [29]. For both data sets, epigenome-wide DNA

methylation assessment was performed using the Illumina

HumanMethylation450 array platform.

Quality control and preprocessing of the DNAmethylation

data sets

For each of the data sets used in this research (Table 1),

background subtraction and normalization utilizing

various internal controls present on the Methylation450

BeadChip was conducted using the publicly available,

minfi Bioconductor package (http://bioconductor.org).

Every beta-value on the HumanMethylation450 array

platform is accompanied with a detection p-value, rep-

resenting the confidence that the signal intensities for

that locus exceed the background defined by the nega-

tive control probes. To ensure high-quality methylation

http://www.allcells.com/normal-peripheral-blood/
http://bioconductor.org
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Table 1 Summary of the data sets used in this research

Biospecimen Name Details N Training or
testing

GEO ID Description

Whole Blood (WB) AdultMixed Unfractioned peripheral
blood leukocytes (PBL)

6 Training GSE77797 DNAm profiling of WB
samples collected from 6
different healthy adult
donors.

MethodA Reconstructed cell mixtures 6 Testing GSE77797 DNAm profiled in samples
consisting of mixtures of
CD4T, CD8T, NK, B cells,
Monocytes, and Granulocytes,
mixed predetermined
proportions

MethodB Reconstructed cell mixtures 6 Testing GSE77797 DNAm profiled in samples
consisting of mixtures of
CD4T, CD8T, NK, B cells,
Monocytes, and Granulocytes,
mixed predetermined
proportions

Liu Unfractioned peripheral
blood leukocytes (PBL)

689 Testing GSE42861 DNAm profiled in WB
samples collected from
n = 354 rheumatoid
arthritis and n = 335 non-
diseased control patients
[16]

Hannum Unfractioned peripheral
blood leukocytes (PBL)

656 Testing GSE40279 DNAm profiled in WB
samples collected from a
total of 656 adults ranging
in age from 19–101 years
old [29]

Isolated cell types (Reference set) Granulocytes (Gran) Purified CD16+ cells 6 Both GSE35069 DNAm profiling in purified
cell types [3]

Monocytes (Mono) Purified CD14+ cells 6 Both GSE35069 DNAm profiling in purified
cell types [3]

B cells (Bcell) Purified CD19+ cells 6 Both GSE35069 DNAm profiling in purified
cell types [3]

Natural Killer (NK) Purified CD56+ cells 6 Both GSE35069 DNAm profiling in purified
cell types [3]

CD8T Purified CD3+CD8+ cells 6 Both GSE35069 DNAm profiling in purified
cell types [3]

CD4T Purified CD3+CD4+ cells 6 Both GSE35069 DNAm profiling in purified
cell types [3]

data, CpG loci having a sizable fraction (>25%) of

detection p-values above a predetermined threshold

(detection p > 10−5) were excluded from our analysis

[20]. Also, we employed Subset quantile within array-

normalization (SWAN) to adjust the beta-values of type

2 design probes into a statistical distribution charac-

teristic of type 1 probes [32]. Finally, the presence of

batch-effects, or technical sources of variability induced

by plate and/or BeadChip, was assessed using principal

components analysis (PCA) [33, 34]. Specifically, PCA

was fit to the background subtracted and normalized

methylation data and the top S principal components

(S determined using a previously described approach

[35]) were examined in terms of their association with

plate and BeadChip. If plate and/or BeadChip was

found to be significantly associated with any of the

top S principal components (p < 0.05), we applied

ComBat [36, 37], an empirical Bayes batch-adjustment

methodology that has become a standard pre-processing

technique for array-based DNA methylation data

[7, 20, 38].

Cell mixture deconvolution

To motivate the IDOL algorithm, we provide a brief

description of CMD, referring interested readers to

Houseman et al. (2012) for further details. Let Yi =

[Yi1,Yi2, . . . ,YiJ⋆ ] represent the methylation beta-values

across J⋆ CpG loci for target sample i. Further assume that

for target sample i, DNA methylation was assessed over a

heterogeneous cell population, comprised of a mixture of

K underlying cell types whose proportions within sample

i are given by: ωi =[ωi1,ωi2, . . . ,ωiK ].
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As first described in Houseman et al. (2012), the methy-

lation signature of sample i is assumed to arise as a

weighted mixture of the DNA methylation signature of

each of the K underlying cell types:

E[Yi]= ωiμ
′, 0 ≤ ωik ≤ 1 and

K∑

k=1

ωik ≤ 1 (1)

where μ is a J⋆ × K matrix of mean methylation beta-

values whose rows represent the same ordering of the J⋆

CpGs in Yi and whose columns represent the K distinct

cell types. Thus, the (jk)th element of μ represents the

population mean beta-value for CpG j among cell type

k. Following from Eq. (1), the objective of CMD involves

estimating the mixture weights ω̃i that minimize:

argminωi
||Yi − ωiμ

′||2 (2)

subject to the aforementioned constraints on ωi. Because

μ is unobserved in practice, it is substituted with its

sample mean M, estimated from one of several possible

existing reference methylation data sets [3, 13].

The mainstay of CMD is that knowledge of the methy-

lomic fingerprint of each cell type - represented by the col-

umn space of M - can be used to estimate their fractions

within a sample consisting of a heterogenous mixture of

those same cell types, Yi. As such, the ability to accu-

rately estimate the underlying mixture composition of a

given target sample depends entirely on the J⋆ CpGs (i.e.,

L-DMR library) being used as the basis of CMD. Ideally,

L-DMR libraries should consist of CpGs whose methyla-

tion signature is maximally distinct across the K cell types

and whose within-cell-type variation is minimal. Hence,

efforts to improve the accuracy of cell composition esti-

mates obtained through CMD should focus on identifying

L-DMR libraries that satisfy the above criteria. To date,

several strategies have been been proposed for assembling

L-DMR libraries.

The first of such strategies involved assembling libraries

using the J⋆ ≪ J CpGs with the largest F-statistics com-

puted from a series of ANOVA models fit to the DNA

methylation profiles of purified isolated leukocyte cell

types [13]. While reasonable in principle, using ANOVA

F-statistics as the criteria for constructing libraries has

the major limitation that libraries can become oversat-

urated with CpGs that discriminate certain leukocyte

subsets (i.e., lymphoid- versus myeloid-cell-types), but

lack sufficient signal for distinguishing closely related

cell types. Recent attempts to address the limitations of

the “ANOVA-based” strategy have instead used the top

L hyper- and hypomethylated CpGs for each cell type,

selected from a rank ordering of CpGs by their t-statistic

computed from two-sample t-test comparisons of the

methylation signature of each cell type against all other

cell types [8]. This procedure is implemented in the Bio-

conductor package minfi:EstimateCellCounts [23], where,

by default, the top 50 hyper- and hypomethylated CpGs

for each cell type (i.e., CD4T, CD8T, NK, B cell, monocyte,

granulocyte) are used to assemble the L-DMR library. By

imposing an equal representation L-DMRs for each cell

type, this strategy is much less prone to the oversaturation

problem characteristic of the “ANOVA-based” approach;

the net effect being improved discrimination of closely

related cell types and as a result, more accurate estimates

of cell composition.

Algorithm for the optimal selection of L-DMRs

While the strategy for library assembly used by Esti-

mateCellCounts is less susceptible to the types of issues

that can arise when rank ordering CpGs using the F-

statistic, it has several limitations that may curtail the

accuracy of cell fraction estimates. In particular, because

CpGs are selected irrespective of any evaluation of their

contribution to the accuracy of cell fraction estimates,

the EstimateCellCounts library may not necessarily coin-

cide with the optimal set of CpGs for cell composi-

tion prediction. In addition, EstimateCellCounts uses a

library that is comprised of an equal number of cell-

specific L-DMRs (i.e, top 50 hyper- and hypomethylated

cell-specific CpGs). While preventing scenarios where

libraries are oversaturated with CpGs that only discrimi-

nate certain subsets of leukocytes, the assumption of an

equal number of cell-specific CpGs may not necessar-

ily correspond with optimal prediction accuracy. Finally,

although using top hyper- and hypomethylated CpGs

across each cell type for library assembly is an intuitive

and sensible approach, it is possible that there exists a

non-overlapping set of L-DMRs that outperform the top

hyper- and hypomethylated CpGs in terms of prediction

accuracy.

To address the limitations of existing L-DMR libraries,

we propose IDOL, an algorithm that iteratively searches

for libraries that improve the accuracy and precision of

CMD. It is important to note that IDOL requires a train-

ing data set for calibrating the selection of optimal DMR

libraries. For example, when focus is centered on identi-

fying optimal DMR libraries for deconvoluting peripheral

blood, training data sets should consist of samples with

both WB DNA methylation signatures and direct mea-

surements of the underlying cell distribution of those

samples; i.e., CBC, FACS, etc. In what follows, we pro-

vide a detailed description of each step of the IDOL

algorithm.

Step 0: Construction of the candidate L-DMR search

space

a. Similar to [8], a series of two-sample t-tests (or
similar methodology) are fit to the J arrayed CpGs
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and used to compare the mean methylation

beta-values between each cell type against the mean

beta-values computed across all other cell types.

b. Identify the L/2CpGs with the largest t-statistics and
the L/2 CpGs with the smallest t-statistics for each
of the K cell types, where L is a tuning parameter

representing the number of cell-specific L-DMRs.

c. Construct a setQ, which consists of the L
cell-specific L-DMRs identified in (b). Thus,Q is

comprised of P = L × K putative L-DMRs, and

represents the candidate search space for the

subsequent steps of IDOL. It should be noted that

there are trade-offs in the selection of L. Whereas

large values of L broaden the candidate space in

which to search for optimal L-DMR libraries, this

comes at the expense of increased computational

burden. Conversely, while small L results in lower

computational costs, this comes with the risk

missing potentially predictive L-DMRs due to a

narrower candidate search space. Since the IDOL

algorithm needs to be applied only when the

reference methylomes for “new” cell types are added

to those that currently exist (i.e., CD4T, CD8T, NK,

Bcell, Monocytes, and Granulocytes), or if one

wishes to identify optimized L-DMR libraries based

on different technologies for interrogating the

methylome (i.e., Illumina Human Methylation EPIC

BeadArray, whole genome bisulfite sequencing, etc.),

we advise users to select L to be arbitrarily large to

ensure a broad enough candidate search space.

d. In addition to pre-selecting L, the user also needs to

pre-select J⋆ ≪ P, representing the library size. It is

important to note that special care should be given

in the selection of J⋆, as the accuracy and precision

of cell proportion estimates are sensitive to its

specification [22]. We provide specific suggestions

its selection at the end of this section.

Step 1: Random assembly of L-DMR libraries

a. At iteration ℓ, J⋆ CpGs are randomly selected from

Q with probability π
(ℓ)
j , j = 1, 2, . . . ,P. At iteration

0, every CpG among the P candidate L-DMRs has an

equal chance of being selected, i.e., π
(0)
j = 1/P,

∀j ∈ Q.

b. LetQ(ℓ) ⊂ Q represent the randomly assembled

L-DMR library, comprised of the J⋆ randomly

selected CpGs at iteration ℓ.

Step 2: Cell composition estimation using randomly

assembled library

a. Using the randomly assembled libraryQ(ℓ), apply

CMD to a training set to obtain cell composition

estimates: ω̃i, where i = 1, . . . ,N1 and N1 represents

the number of training samples.

b. The resulting set of predictions are given as

�̃ =[ ω̃1, ω̃2, . . . , ω̃N1 ], where 0 ≤ ω̃i ≤ 1 is a K × 1

vector of the predicted cell proportions for training

sample i. Further define �̃k =[ ω̃1k , ω̃2k , . . . , ω̃N1k] as

the predicted proportions for cell type k across the

N1 training samples.

Step 3: Assessing the accuracy of cell composition

estimates: Given the strengths and limitations of purely

relative and absolute measures for assessing prediction

performance [39], we propose using both the R2 and root

mean square error (RMSE) as the basis for our assess-

ments. Let � = [ω1,ω2, . . . ,ωN1 ] represent the observed

cell proportions for the N1 target samples obtained via

CBC, FACS, etc. The proportion of variation in the

observed fraction of cell-type k (�k) explained by its

predicted fraction (�̃k) is computed as:

R2
k = 1−

1′
N1

(�k − �̂k)
′(�k − �̂k)1N1

1′
N1

(�k − �̄k)
′(�k − �̄k)1N1

, 0 ≤ R2
k ≤ 1

where �̄k =
∑N1

i=1 �k/N1 is an estimate of the mean

observed fraction of cell-type k and �̂k represents the

linear predictor obtained from regressing �k on �̃k . In

particular,

�̂k = β̂k�̃k

where, β̂k = (�̃k
′
�̃k)

−1�̃k
′
�k . Thus, R̄

2 = 1
K

∑K
k=1 R

2
k

represents an estimate of the mean coefficient of deter-

mination across the K cell types. Additionally, the RMSE

for cell type k = 1, 2, . . . ,K is computed here using the

following expression:

RMSEk =

√
1′
N1

(�k − �̃k)
′(�k − �̃k)1N1

N1
,

0 ≤ RMSEk < ∞

with M̄ = 1
K

∑K
k=1 RMSEk representing an estimate of

the mean RMSE across the K cell types. Given the above,

IDOL seeks to find L-DMR libraries whose cell-type

predictions minimize M̄ and maximize R̄2. As described

in further detail below, both M̄ and R̄2 are used for deter-

mining the contribution of each CpG in Q(ℓ) on overall

prediction performance.

Step 4: Leave-one out procedure: In order to assess the

individual contribution of each CpG in Q(ℓ), we imple-

ment the following leave-one-out procedure:
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a. Each of the J∗ CpGs contained inQ(ℓ) are iteratively

removed to obtain the following setsQ
(ℓ)
−j , which

include all CpGs inQ(ℓ), except for CpG j.

b. Steps 2–3 are repeated for each reduced libraryQ
(ℓ)
−j

and used to obtain (M̄−j, R̄
2
−j); estimates of the

overall RMSE and coefficient determination when

CpG j is excluded from the L-DMR library.

Conceptually, when R̄2
−j is small relative to R̄2, this

suggests that withholding CpG j fromQ(ℓ) resulted

in predictions that, on average, accounted for a

smaller proportion of variation in the observed cell

fractions. Conversely, when R̄2
−j > R̄2, withholding

CpG j fromQ(ℓ) resulted in predictions that

accounted for a larger proportion of variation in the

observed cell proportions. A similar argument holds

for the relationship between M̄−j and M̄.

c. From (b), it is clear that in subsequent IDOL

iterations we would want to preferentially keep

CpGs whose M̄ − M̄−j < 0 and R̄2 − R̄2
−j > 0. This

observation implies a framework for updating the

selection probabilities of each CpG.

Step 5: Updating selection probabilities:

a. Since R2 and RMSE are measured on different

scales, we begin by normalizing both M̄−j and R̄2
−j to

obtain U−j and V−j, j = 1, . . . J∗ respectively:

U−j =
M̄−j − M̄

sd
(
M̄−j

) , V−j =
R̄2

−j − R̄2

sd
(
R̄2

−j

)

where −∞ < U−j < ∞ and −∞ < V−j < ∞.

b. Noting that CpG j should be preferentially updated

to have a larger probability of selection when both

U−j and −V−j are large, we generate a composite

measure by first converting (U−j,−V−j) from the

Cartesian coordinate system to the polar coordinate

system:

r−j =

√
δU2

−j + (1 − δ)(−V−j)2

θ−j = atan2(−(1 − δ)V−j, δU−j)

where atan2 is a common variation of the arc

tangent function, r−j is the radial coordinate, θ−j is

the angular coordinate, and 0 ≤ δ ≤ 0 is a parameter

that controls the balance between relative and

absolute prediction performance. For example, when

δ = 1/2, a CpG’s influence on relative and absolute

prediction performance receives equal weight. When

δ → 1 a CpG’s influence on absolute prediction

performance receives more weight and when δ → 0,

a CpG’s influence on relative prediction performance

receives more weight. The increment for modifying

the selection probability of CpG j is given as:

p−j = r−jcos(θ−j − π/4), −∞ ≤ p−j ≤ ∞

For the purpose of exposition, when δ = 1/2, CpGs

with the largest increment in selection probability

(i.e., large p−j) are those with large r−j and θ−j close

to π/4 radians (Fig. 2b,c). Conversely, CpGs with the

largest decrease in selection probability (i.e., small

p−j) are those with large r−j and θ−j close to 5π/4.

When p−j ≈ 0, this implies that either r−j is small or

θ−j is close to (3π/4, −π/4) radians and suggests

that withholding CpG j fromQ(ℓ) is neither helpful

nor detrimental to prediction performance. In these

situations, the selection probability should remain

unchanged.

c. This brings us to the following procedure for

updating selection probabilities,

π
(ℓ+1)
j =

ρ
(ℓ+1)
j

∑
j∈Q ρ

(ℓ+1)
j

, 0 ≤ π
(ℓ+1)
j ≤ 1 (3)

where,

ρ
(ℓ+1)
j =

{
π

(ℓ)
j expit(p−j) + π

(ℓ)
j /2 if j ∈ Q(ℓ)

π
(ℓ)
j if j �∈ Q(ℓ)

(4)

and expit is the inverse-logit function, i.e.,

expit(x) = exp(x)/(1 + exp(x)). Thus, selection

probabilities for each j ∈ Q(ℓ) are modified based on

how beneficial/not beneficial each CpGs was

determined to be in the presence of the remaining

J⋆ − 1 CpGs. As noted from Eqs. (3 and 4), the

probability of selection is unchanged for CpGs

j �∈ Q(ℓ) as well as for CpGs where p−j ≈ 0.

Step 6: Continue Iteration: Using the updated proba-

bilities, π
(ℓ+1)
j , j = 1, . . . ,P, repeat steps 1-5. The final

solution consists of the library comprised of the J⋆ CpGs

with the largest selection probabilities (Fig. 2).

As previously described, because the accuracy and pre-

cision of cell proportion estimates are sensitive to the

specification of J⋆, special treatment should be given

towards its selection. Although computationally demand-

ing, our strategy for determining J⋆ involves fitting IDOL

across a range of possible values for J⋆, (i.e., J⋆ =

{50, 100, 200, . . .}) followed by a comparison of prediction

performance across each of the specified values. Under

such a framework, we select the smallest value of J⋆ upon

which the gains in prediction performance for increasing

values of J⋆ is minimal, (i.e., within some predetermined

tolerance of the performance metrics).
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Application and assessment of IDOL

Training the L-DMR selection algorithm

To examine the robustness of IDOL, we employed

a training and testing procedure and benchmarked

theprediction performance of the library identified by

IDOL against the widely used EstimateCellCounts func-

tion in the minfi Bioconductor package. Specifically, we

first applied IDOL to the AdultMixed samples (Training

Set) to identify “optimal” L-DMR libraries for decon-

voluting the cell distribution of whole blood. As pre-

viously described, the AdultMixed samples consisted of

both flow cytometric measurements and whole blood

DNA methylation data derived from the same set of

biospecimens used for flow cytometry. To examine the

sensitivity of prediction performance based on the num-

ber of L-DMRs used for deconvoluting cellular mixture,

we applied IDOL to the training samples assuming a

range of possible values for J⋆, specifically assuming J⋆ =

{100, 200, 300, 400, 500, 600, 700, 800}. The final selection

of J⋆ and the representative IDOL library used in our

subsequent validation analyses was chosen to be the

value J⋆ that resulted best prediction performance in

the training set. Finally, in training the IDOL algorithm,

selection probabilities of putative L-DMRs were updated

assuming equal weights in terms of their contribu-

tion to relative and absolute prediction performance,

i.e., δ = 1.

Following the application of IDOL to the training set,

we next examined the overlap between the “optimal”

IDOL library and the 600 L-DMRs currently used by

EstimateCellCounts. In order to comprehend the nature

of the difference between these libraries and how such

differences might influence their propensity for accurate

cell fraction estimates, we computed the dispersion sepa-

rability criterion (DSC). The DSC was initially developed

as a metric for quantifying the extent of batch effects

in ’omic data sets, and is computed as the ratio of the

average distance between batch centroids and the global

mean (Dbetween) and the average distance between sam-

ples belonging to the same batch (Dwithin). Larger val-

ues of DSC indicate greater dispersion between batches

than within batches; i.e., samples within batches are more

homogeneous compared to samples in different batches.

In the same way, the DSC can be used for quantifying

the dispersion between and within specific leukocyte sub-

types based on a given set of L-DMRs, substituting batch

with cell-type identity of a given sample. Using refer-

ence DNA methylation data profiled across the six major

leukocyte components of whole blood [3], we computed

the overall DSC and the DSC between each pair of cell

types (i.e., CD4T vs CD8T, CD4T vs NK, etc.) using both

the “optimal” IDOL library and the EstimateCellCounts

library. Equation 5 provides the DSC formula for pair-

wise comparisons, where (r, s) denotes the two cell types

being compared, D
(r, s)
between represents the the average dis-

tance between cell type centroids and the global mean,

and D
(r, s)
within represents average distance between samples

of the same cell type.

DSC(r, s) =
D

(r, s)
between

D
(r, s)
within

, (r, s) ∈ {(1, 2), . . . ,

(1,K), . . . , (K − 1,K)}

(5)

In order to assess which L-DMR library exhibited better

performance at discriminating specific pairs of cell types

(i.e., (r, s)), we computed the difference betweenDSCs cal-

culated from the IDOL and EstimateCellCounts libraries

(Eq. 6).

	(r, s) = DSC
(r, s)
IDOL − DSC

(r, s)
EstimateCellCounts (6)

Based on Eq. 6, 	(r, s) = 0 signifies no difference

between the IDOL and EstimateCellCounts libraries for

discriminating cell types r and s, whereas large posi-

tive or negative values of 	(r, s) signify improved dis-

crimination associated with the IDOL library (former)

or the EstimateCellCounts library (latter). To test the

hypothesis that 	(r, s) = 0, we conducted a non-

parametric, randomization-based test. Specifically, p-

values were computed by comparing the observed DSC

differences to the empirical null distribution, gener-

ated through repeated random permutations of the data.

Randomization-based p-values less than 0.05 were treated

as statistically significant.

Independent validation of the optimal L-DMR set

To validate IDOL, we applied CMD to two independent

test sets (MethodA and MethodB sets) using the optimal

IDOL library identified in the training set. Our choice to

use the MethodA and MethodB samples as our testing

sets was motivated by the fact that the samples in both

sets were obtained by mixing leukocyte subtype-specific

DNA in known, predetermined proportions. Thus, for

a given sample, the underlying leukocyte fractions are

known with high confidence and are likely less prone to

the measurement error associated cell sorting/counting

techniques. As such, the MethodA and MethodB sets

represent ideal data sets for validating the prognostic per-

formance of the optimal L-DMR library identified in the

training set.

To assess the performance of our cell type predic-

tions, we estimated the proportion of variation of the

known, reconstructed mixture fractions explained by our

cell type predictions (i.e., R2) as well as the average devi-

ation between the reconstructed mixture fractions and

our predictions (i.e., RMSE). R2 and RMSE were com-

puted for each cell type individually, across all testing

samples and within each testing set separately. The ratio-

nale for latter was to examine the robustness of the IDOL
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library when the underlying cellular landscape differed

(see Section ‘Cell mixture reconstruction experiment’

for further details on the MethodA and MethodB recon-

struction experiment). As an additional comparison and

to benchmark the performance of the IDOL library

for accurately deconvoluting cellular mixture, we also

applied the minfi:EstimateCellCounts function (using its

default options). In a similar manner, cell-specific R2 and

RMSE were computed based on the cell type predic-

tions obtained from EstimateCellCounts, both within and

across the two MethodA and MethodB sets.

Simulation study comparing false discovery rates (FDR)

across different cell composition adjustment techniques

To understand the consequences of prediction error in

cell fraction estimates for EWAS, we conducted a sim-

ulation study to compare the false discovery rate (FDR)

when different strategies for cell composition adjustment

were employed. For our simulations, we assumed simplis-

tic study design that, typical of many EWAS, focused on

the identification of differentially methylated CpG sites

between two groups, i.e, case/control comparison. To

determine if the relationship between cell composition

adjustment method and FDR was sensitive to the study

sample size (i.e., n = n1+n2), we conducted separate sim-

ulations that ranged from small/moderately sized studies

(i.e., n1, n2 = {50, 100}) to large studies (i.e., n1, n2 =

{250, 500}). In addition to varying the sample sizes of each

group, we also examined the relationship between FDR as

a function of the dissimilarity in the true, simulated cell

distribution between the two groups.

To motivate the design of our simulation study, we

assumed that the methylation beta-value for CpG j among

target sample i, Yij, follows a beta-distribution with expec-

tation and variance given by:ωiμ
′
j and

(1−ωiμ
′
j)ωiμ

′
j

1+φj
, respec-

tively. As previously, ωi is vector of length K representing

the true underlying cell fractions for sample i, μj is a

vector whose elements represent the population mean

beta-values for CpG j across the K cell types, and φj > 0 is

the unobserved dispersion parameter for CpG j. LettingXi

denote the group membership for sample i, many EWAS

involve fitting regression models that have the following

form:

Yij = α0j + α1jXi +

K−1∑

k=1

γkjωik + ǫij,

E[ ǫij]= 0 and V[ǫij]= σ 2
j

(7)

where the term
∑K−1

k=1 γkjωik is introduced to control for

cell composition differences across subjects and ǫij cap-

tures the remaining variation in methylation after taking

group status and cellular composition into account. In the

above regression model, interest is typically centered on

testing the hypothesis of no difference in DNA methy-

lation levels between groups, i.e., α1j = 0. However, in

practice ωik is unknown and typically substituted with its

estimate ω̃ik , obtained for example by CMD [13]. Since ω̃ik

is an estimate and therefore subject to uncertainty, tests

of hypothesis and confidence intervals based on model 7

can become unreliable and prone to inflated Type 1 and 2

error rates.

To examine how cell type prediction errors associated

with the IDOL and EstimateCellCounts libraries impact

the FDR for testing α1j, we first estimated the uncertainty

of cell fraction predictions for each method by squaring

the RMSEs computed across the MethodA and MethodB

testing sets to obtain the mean squared prediction errors

(MSPEs):

τ̂ 2kl = MSPEkl = RMSE2kl =

√√√√ 1

N

N∑

i=1

(ωik − ω̃ikl)
2,

k = 1, 2, . . .K

(8)

where l is an index representing the library used for CMD

(i.e., l = {EstimateCellCounts, IDOL}) and N represents

the total sample size for the testing data (i.e., N = 12

for the MethodA andMethodB sets). After obtaining esti-

mates of precision, τ̂ 2kl, we implemented the following

seven steps in our simulation study:

1. Randomly sample G = 10, 000 CpGs from the

Illumina HumanMethylation450 array.

2. Estimate the dispersion parameter within the

combined testing sets for each of the G randomly

selected CpGs, φ̂g , g = 1, 2, . . .G. In addition, using

the reference leukocyte methylation data [3], estimate

cell-specific mean methylation beta-values for each of

the G CpGs,mkg , g = 1, 2, . . .G and k = 1, 2, . . .K .

Parameter estimation was carried out using method

of moments estimation.

3. Randomly generate the cell distribution for groups 1

and 2.

a. For group 1, simulate the cell distribution, ω(1),

from a Dirichlet distribution with concentration

parameters, ν(1) =[ ν
(1)
1 , ν

(1)
2 , . . . ν

(1)
K ].

b. For group 2, simulate the cell distribution, ω(2),

from a Dirichlet distribution with concentration

parameters, ν(2) =[ ν
(2)
1 , ν

(2)
2 , . . . ν

(2)
K ].

4. For both groups, simulate methylation beta-values for

each of the G CpGs from a beta-distribution.

a. For each of the n1 samples in group 1, randomly

sample beta-values Y
(1)
ig from a beta-distribution

with mean ω(1)m′
g and variance

(1−ω(1)
m

′
g )ω

(1)
m

′
g

1+φ̂g
.
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b. For each of the n2 samples in group 2, randomly

sample beta-values Y
(2)
ig from a beta-distribution

with mean ω(2)m′
g and variance

(1−ω(2)
m

′
g )ω

(2)
m

′
g

1+φ̂g
.

5. Randomly sample cell type predictions for each

sample (i.e., ω̃
(1)
il and ω̃

(2)
il ) based using the

cell-specific uncertainty estimates (Eq. 8) associated

with the EstimateCellCounts and Optimized L-DMR

methods.

a. For each of the n1 samples in group 1, obtain ω̃
(1)
il

by randomly sampling from a multivariate normal

distribution with mean ω(1) and variance-

covariance, �
(1)
l = diag(̂τ 2kl), k = 1, 2, . . .K and

l = (EstimateCellCounts or IDOL).

b. For each of the n2 samples in group 2, obtain ω̃
(2)
il

by randomly sampling from a multivariate normal

distribution with mean ω(2) and variance-

covariance, �
(2)
l = diag(̂τ 2kl), k = 1, 2, . . .K and

l = (EstimateCellCounts or IDOL).

6. Fit model 7 to each of the G CpGs, adjusting for cell

composition using the cell type predictions generated

in Step 4. Based on the model fit, test the hypothesis,

H0 : α1g = 0, for g = 1, 2, . . . ,G.

7. Calculate the FDR for each method assuming a

nominal p-value cutoff of 0.05 for declaring CpGs as

statistically significant.

8. Repeat steps 1-7.

Since the beta-values for groups 1 and 2 were simulated

assuming no group effect (i.e., assuming α1g = 0),

the methylation profile for groups 1 and 2 differ only

with respect to the dissimilarity in the cell composition

between groups, Dissimilarity := ||ω(1) − ω(2)||. Thus,

rejections of the hypothesis H0 : α1g = 0 based on fitting

model 7 to the simulated data signify Type 1 errors. As a

measure to ensure that the FDR was correctly controlled

at 5% in models that controlled for the true, simulated

cell distributions, we also augmented our simulation study

with models that included adjustment for terms, ω(1) and

ω(2).

Data application for exploring the implications of cell

composition adjustment in EWAS

To further understand the implications of cell type

prediction methodology for EWAS (particularly, those

using blood-derived DNA methylation data), we made

use of two of the largest, publicly available, blood-derived

DNA methylation data sets [16, 29]. Our analysis of these

data sets was aimed at addressing two different but related

questions: (i) which cell prediction methodology per-

formed better at explaining variation in DNAmethylation

within each data set and (ii) how do differences in the

variation being explained relate to the statistical power

of such studies. To address these questions, we began

by applying CMD [13] for estimating the immune cell

composition of the samples in the Liu and Hannum data

sets. CMDwas applied using both the EstimateCellCounts

(default settings) and the optimal IDOL library, giving rise

to two sets of cell type predictions for each of the two

data sets. For each data set, linear regression models were

fit to the J CpG loci independently, modeling methyla-

tion beta-values as the response against the predicted cell

distribution. Based on the fitted regression models, we

estimated the variation in methylation unaccounted for

by our estimates of cell mixture (i.e., residual variance)

as well as the proportion of variation in methylation

explained by cell mixture estimates: R2
jl, j = 1, 2, . . . , J and

l = {EstimateCellCounts, IDOL}). Using these estimates,

the difference in R2 between models adjusted for cell

mixture using the optimal IDOL library versus Estimate-

CellCounts were computed for each of the J CpGs; i.e.,

Dj = R2
j,IDOL − R2

j,EstimateCellCounts.

To answer the first of our questions - which cell pre-

diction methodology performs better at explaining varia-

tion in DNA methylation? - we computed the proportion

of CpG loci where the IDOL library resulted in more

variation in DNA methylation explained compared to

EstimateCellCounts, i.e., 1
J

∑J
j=1 I(Dj > 0). To assess

whether the observed proportion was greater than would

be expected at random, we employed a non-parametric

randomized-based test with a p-value cutoff of 0.05 to

determine statistical significance.

We next sought to compare the impact of different

L-DMR libraries on the statistical power of EWAS.

Similar to our simulation study (Section ‘Simulation

study comparing false discovery rates (FDR) across

different cell composition adjustment techniques’), we

assumed a simple study design that was aimed at

identifying differences in the mean methylation levels

between two groups. Using the residual variance estimates

obtained above, we computed the sample size required

for identifying differences in the mean methylation levels

between groups that ranged from 0.01 to 0.05 on the beta-

value scale. For our sample size estimates, we assumed a

two-sample t-test, 80% power, and Bonferroni corrected

type 1 error rate (i.e, α/400, 000) to account for issue of

multiple testing encountered in EWAS. Within both the

Liu and Hannum data sets, we randomly sampled the

residual variance estimates for 1000 CpG loci obtained for

each cell mixture correction methodology and computed

the sample size needed for detecting a difference in

mean methylation based on the previously mentioned

assumptions. For a given difference in mean methylation,

the sample size estimates based on the 1000 randomly

sampled residual variance estimates were summarized by
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computing the mean, which formed the basis for our

comparisons.

To highlight the economic implications of our findings,

we also estimated the cost-differential for EWAS when

cell mixture correction was carried out using the IDOL

library versus EstimateCellCounts based on our esti-

mates of the required sample sizes for each methodol-

ogy. Cost-differential estimates were obtained by using

the current per-sample cost of the Illumina Human-

Methylation450 array of approximately 300 US dollars

(http://www.illumina.com/).
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