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Extreme Learning Machine (ELM) is a fast-learning algorithm for a single-hidden layer feedforward neural network (SLFN). It
o
en has good generalization performance. However, there are chances that it might over�t the training data due to having more
hidden nodes than needed. To address the generalization performance, we use a heterogeneous ensemble approach. We propose
an Advanced ELM Ensemble (AELME) for classi�cation, which includes Regularized-ELM, �2-norm-optimized ELM (ELML2),
and Kernel-ELM. 	e ensemble is constructed by training a randomly chosen ELM classi�er on a subset of training data selected
through random resampling.	e proposed AELM-Ensemble is evolved by employing an objective function of increasing diversity
and accuracy among the �nal ensemble. Finally, the class label of unseen data is predicted using majority vote approach. Splitting
the training data into subsets and incorporation of heterogeneous ELM classi�ers result in higher prediction accuracy, better
generalization, and a lower number of base classi�ers, as compared to other models (Adaboost, Bagging, Dynamic ELM ensemble,
data splitting ELM ensemble, and ELM ensemble).	e validity of AELME is con�rmed through classi�cation on several real-world
benchmark datasets.

1. Introduction

An ensemble learning is a machine learning process to get
better prediction performance by strategically combining the
predictions frommultiple learning algorithms [1]. Ensembles
are known to reduce the risk of selecting the wrong model by
aggregating all the candidate models [2, 3].

In the process of improving ensemble accuracy and
stability, di
erent techniques have been established. 	ese
techniques vary in their approach to treat the training data,
the type of algorithms used, and the combination methods
followed. Bagging [4], Boosting [5], and their variants,
such as Adaboost [6], are some of the popular ensembling
techniques.

Traditional neural network-based classi�ers usually su
er
from over�tting and local optimum issues and have remained
an active research subject for performance improvement
by di
erent ensemble methods. However, recently Extreme

Learning Machine (ELM) has gained popularity for solving
classi�cation problems. ELM is a single-hidden layer feed-
forward network (SLFN) extension. Unlike the traditional
classic gradient based learning algorithms, which only work
for di
erentiable activation functions and are prone to issues
like local optimum, improper learning rate, and over�t-
ting, etc., ELM can deal with nondi
erentiable activation
functions and tends to reach the solution straightforward
without such trivial issues [7]. Random initialization of
input to hidden layer parameters in ELM helps evade the
tuning process for hidden layer parameters, which extensively
shortens the learning time.AlthoughELM is fast and achieves
good generalization performance, there is still a lot of room
for improvement. Several modi�cations have been recently
introduced in the base of ELM algorithm to improve accu-
racy and generalization, such as optimally pruned Extreme
Learning Machine (OP-ELM) [8] and Regularized-ELM [9–
12].

Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 3405463, 11 pages
https://doi.org/10.1155/2017/3405463

https://doi.org/10.1155/2017/3405463


2 Computational Intelligence and Neuroscience

On the contrary, ensemble learning o
ers an inexpen-
sive alternative due to its performance optimization. Sev-
eral approaches were proposed to generate ensembles-based
ELM, such as DELM [13], EnELM [14], and DSELME [15].
Such Ensembles of Extreme Learning Machine classi�ers
were successful in achieving good performance for hyper-
spectral image classi�cation and segmentation in a semisu-
pervised and spatially regularized process [16]. Bagging-
ELM (B-ELM) [17] is another ELM ensemble classi�er,
which leverages the bag of little bootstraps technique and
has been found e�cient for large-scale data classi�cation.
An online sequential-ELM (OS-ELM) based framework
supports ensemble methods including Bagging, subspace
partitioning, and cross-validating [18].

Diversity among the performance of each single classi�er
in the ensemble is essential for combining the predictions
from several member classi�ers. Di
erent techniques are
followed to introduce diversity among member classi�ers. A
cross-validation [13, 14] to validate each ELM before adding
it to the ensemble is used. 	e proposed work related to
ELM ensembles in the literature used a homogeneous base
classi�er algorithm for members’ training in the model [13–
15]. Motivated by the accuracy achievement of enhanced
ELM algorithms and ensemble approach; we propose a het-
erogeneous ensemble model with di
erent ELM algorithms
for members’ training. More speci�cally, we adopt three
types of ELM algorithms, namely, Regularized-ELM [10],
ELML2 [11], and Kernel-ELM [19]. 	ese ELM algorithms
are brie�y described in Section 2.	ese base classi�ers are an
enhancement for the standard ELMalgorithm and are chosen
on the basis of their better generalization, regularization, and
resilience to the outliers. A random resampling strategy is
chosen to split the training data into subsets. Each member
classi�er is learned on a randomly chosen data subset through
a randomly selected base ELM algorithm. 	e proposed
ensemble algorithm evolves by monitoring the diversity and
generalization performance of the updated ensemble during
training. Majority voting method is used for combining the
predictions from several member classi�ers in AELME. Ten
real-world benchmark datasets (Iris, Climate, Credit, Wave,
Satellite, Letter, Firm, Colon, Liver, and Vowel) are used for
detailed performance analysis and comparison. Experimental
results, as reported in this work, show that the proposed
AELME approach gives better classi�cation accuracy on the
benchmark datasets.	e remainder of this paper is organized
as follows: AELME ensemble algorithm and implementa-
tion details are elaborated under Section 3. Performance
analysis of the proposed AELME algorithm (see Algo-
rithm 1) is reported in Section 4, by comparing its accuracy
with base classi�ers {RELM,ELML2,KELM,ELM, SVM} and
other ensemble methods, which include DELM, DSELME,
and EnELM. Finally, the paper is concluded in Section 5.

2. Background

2.1. �e Base Classi�ers. 	ree types of ELM classi�ers,
namely, ELML2, RELM, and KELM, are used as base
classi�ers to build AELME ensemble. Here we will brie�y
introduce the strengths of the selected base ELM classi�ers.

ELML2 [10] is a regularized algorithm-based ELM, which
has all the basic ELM advantages of regression, binary, and
multiclass classi�cation. Moreover, it introduced a Lagrange
multiplier based constraint optimization method. 	erefore,
the resultant solution is more stable and has a better gener-
alization performance with di
erent types of hidden nodes
(feature mappings). KELM [19] is an optimization method-
based Extreme Learning Machine, which links the ELM
minimal weight norm property to Support Vector Machines
(SVM) maximal margin for classi�cation. It is shown that,
through standard optimization for ELM, a so-called support
vector network with better generalization property can be
obtained by ELM Kernels. However, in comparison with
standard SVM, the Kernel-ELM is less sensitive to the user-
speci�ed parameters and has fewer optimization constraints.
RELM [11] is a constrained and optimized algorithm-based
ELM for regression and multiclass classi�cation. For better
generalization, RELM makes a tradeo
 between the struc-
tural (weight norm) and empirical risk (least square error)
by regulating a proportion of them during optimization.
To achieve this balance, the empirical risk in the objective
function is weighted by a regulating factor gamma. For more
details, the reader can refer to [10, 11, 19].

2.2. ELM �eory. According to the ELM theorem, the
Extreme LearningMachine is built by random hidden nodes.

Given a training dataset {(��, ��) | �� ∈ ��, �� ∈ ��, � =1, . . . , �}, where �� is the training data vector, �� is the target
of the training data and the number of hidden nodes (�).
Di
erent from other learning algorithms, ELM theory target
is to reach the smallest training error with the smallest norm
of the output weights [10, 20]. 	e minimization goal is

				
				��1 + �				�
 − 
∘				��2, (1)

where �1 > 0, �2 > 0, �, � = 0, (1/2), 1, 2, . . . , +∞ and �
represents the output of hidden layer matrix:
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∘ is the target of the input data:


∘ =
[[[[
[

��1
...
��	

]]]]
]
= [[[[
[

�11 ⋅ ⋅ ⋅ �1�
... d

...
�	1 ⋅ ⋅ ⋅ �	�

]]]]
]
. (3)

	ree steps summarize ELM training algorithm [7]:

(1) Randomly assign input weights �� and biases ��, � =1, . . . , �.
(2) Compute the hidden layer output matrix.

(3) Compute the output vector:


 = �†
∘, (4)
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Training phase ( )
Input: Original training dataset�; # of hidden nodes�;

# of iterations�; and # of parts .
Output: Ensemble classi�er model !.
(1) Split the original training dataset: � = {�1, �2, . . . , ��};

Initialization
(2) for " ← 1, do
(3) Set�

sub = � − �� → Reconstruct training data �tr by re-sampling on�sub

(4) Random Select a member of ELM (%1) type out of three types {RELM,KELM,ELML2}.
(5) Train a member of ELM (%1 on�tr)
(6) Test the selected member of ELM (%1 on�sub)
(7) Add classi�er %1 to the ensemble !1
(8) AccOld = Accuracy of !1
(9) DivOld = Diversity of !1
(10) ! = !1
(11) for � ← 1,� do
(12) for " ← 1, do
(13) Set�

sub
= � − �� → Reconstruct training data �

tr
by re-sampling on�

sub

(14) Random Select a member of ELM (%�) type out of three types {RELM,KELM,ELML2}.
(15) Train a member of ELM (%� on�tr)

(16) Test the selected member of ELM (%� on�sub)

(17) Add classi�er %� to the ensemble !

(18) Add !
 to the Ensemble !
(19) AccNew = Accuracy of !
(20) DivNew = Diversity of !
(21) if ((AccNew > AccOld) and (DivNew > DivOld)) then
(22) AccOld = AccNew
(23) DivOld = DivNew
(24) else
(25) Exclude !
 from !
Prediction phase( )
Input: Unknown sample&, ensembles classi�er model: ! = {!1, !2, . . . , !�}
Output: Class label of sample&.
(26) Loop for ! = {!1, !2, . . . , !�}
(27) Vote on all the outputs ' = ['1, '2, . . . , '�], then output the class label of & with the highest votes.

Algorithm 1: AELME.

where �† represents Moore–Penrose (MP) generalized

inverse of matrix� and 
∘ = [�1, . . . , �	]�.
To compute MP inverse by applying the orthogonal

projection, �† = (���)−1��, if ��� is nonsingular. A

positive value (1/�) is added to the diagonal of��� or���
in the calculation of the output weights 
 as ridge regression
theory stated. At the end, we have a solution which is equiv-
alent to the ELM optimization solution [7, 19], with �1 =�2 = 2, which is more stable and has better generalization
performance. So, to enhance the stability of ELM, 
 and the
output function are computed, respectively, by


 = �� (1� + ���)
−1

3 (�) = ℎ (�) 
 = ℎ (�)�� (1� + ���)
� .

(5)

Given the above-mentioned advantages of ELM, we
propose using it in ensemble to achieve better classi�cation
results. Naturally, there is nothing to gain by combining
identical models while doing precisely the same actions.

Consequently, the base classi�ers must commit their errors
on di
erent instances, which is the informal meaning of the
term diversity. We use three variants of ELM to improve
diversity among the base classi�ers. Overall, the proposed
ensemble is designed to improve performance in terms of
accuracy and it is more stable.

3. Advanced Ensemble for Classification Using
Extreme Learning Machines

Unlike designing a single classi�er in traditional pattern
recognition �eld, ensemble learning aims at constructing
multiple diverse classi�ers and combines their outputs to
form a hybrid predictive model. Consequently, the overall
classi�cation performance of ensemble classi�er tends to
be better than when using a single classi�er. As ELM uses
random weights, it o
en has a low misclassi�cation rate.
To improve the classi�cation rate performance, a number
of multiclassi�ers based on ensemble learning have been
proposed in [21, 22]. In this work, we use data splitting of
training data and three types of ELM algorithms as the base
learners to build a classi�er on split data and majority voting



4 Computational Intelligence and Neuroscience

D1

D1

Majority vote on all base

AELME Ensemble

Original
data

Train all subsets using a

randomly selected classifier

RELM KELM ELML2

If
classifier increases accuracy
and diversity then add it to

ensemble; else
exclude it

classifiers and output the

class with the largest votes

D2

D2

Dm

Dm

m subsets
Splitting m − 1 out of

· · ·

· · ·

Figure 1: 	e general scheme of the proposed AELME.

to combine outputs from all member classi�ers in ensemble
pool. Di
erent training parameters of base ELM learning
algorithms allow each member classi�er to generate di
erent
decision boundaries. Hence di
erent errors are made result-
ing in a reduced overall error for the ensemble. Training data
distribution has an e
ect on the generalization of the learning
classi�er. For example, a training set may contain instances
from a particular class such that the feature values of those
instances are skewed towards a particular intraclass member.
To address this issue, we divide training dataset into di
erent
parts as it tends to preserve the original data distribution
by using random resampling on the dataset. Consequently,
classi�ers with large diversity and di
erent errors are pro-
duced. For example, if we divide training data � into 3
parts � = {�1, �2, �3} then we have three training subsets:{�2, �3}, {�1, �3}, and {�1, �2}. A su�cient and necessary
condition for the ensemble to outperform its base members
is that component learners should be simultaneously accurate
and diverse; therefore, a new member is added to AELME
if it increases both diversity (in terms of disagreement) and
accuracy of the model. General description of the model is
shown as �owchart in Figure 1.

3.1. Architecture. 	e training dataset is divided randomly
into  equal size subsets. If we have � samples, then the
size of each subset will be (�/ ). To maximize the diversity
among reconstructed training datasets, each new training set
is obtained through resampling on  − 1 out of  subsets.
	en, training with each subset is done using one out of
the three base classi�er learners, which is selected randomly.
	e trained classi�er is added to the ensemble and the
process is repeated for all the remaining subsets. In the next
iteration, if diversity and accuracy of the current ensemble! are improved with the addition of !� (ensemble number�), then it will be retained in the updated ensemble and
excluded otherwise.	e �nal ensemble model is a mixture of
all classi�ers trained on all subsets. Ourmodel has three types
of ELM algorithms, speci�cally Regularized-ELM, ELML2,
and Kernel-ELM. Once the training is complete, labels for
tested data are obtained by majority voting method applied
to the member classi�ers’ outputs in the evolved ensemble.

3.2. Testing Stage

3.2.1. Majority Vote. 	e implementation procedure for the
ensemble construction and training stage is described in the
algorithm of AELME.

Given a testing instance (&, �), an ensemble of  × �
predictors is created. For pattern &, we use majority voting
to make the �nal decision. Suppose we have one 4-class’s
problem. If the 5th ELM in the ensemble predicts the pattern& as class4, we assign vote one to it and zero otherwise. Once
all the votes have been assigned, the class that receives the
highest votes from all predictors is considered the predicted
class.

3.2.2. Weighted Sum. Given a testing instance (&, �), an
ensemble of ×� predictors are created. In decisionmaking
on the ensemble, for pattern&, we use weighted sum tomake
the �nal decision. Suppose that there is 4-classe’s problem,
and we calculate the weighted sum for all classi�ers for all
classes. 	e class that receives the maximum weighted sum
from all predictors is considered as the predicted class:

4 (6) = argmax
�×�∑
�=1
8� ⋅ (3� (6) = 4) , (6)

where 8� is the weight of base learner and 3�(6) is the
prediction result.

4. Simulation and Discussion

4.1. Simulation Settings. To test the performance of the
model, we carry out our simulation experiments on ten
diverse datasets from several domains with di
erent charac-
teristics and diversity in size and input feature dimensions.
	e datasets come from machine learning repository (UCI)
[23] besides including one dataset from LIBSVM [24] which
is sourced in [25]. A brief description of the datasets is
included in Table 1; more details of what characterizes the
problem domains of the datasets can be found on the web
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Figure 2: Surface plot in terms of performance of AELME sensitivity to the user-speci�ed parameters (4, �): an example on Wave dataset.

Table 1: Datasets used in the experiments.

Dataset Number of Instances No. of Attributes No. of Classes

Iris 150 4 3

Climate 540 18 2

Credit 690 15 3

Wave 5000 21 3

Satellite 6435 36 7

Firm 10800 20 4

Letter 20000 17 26

Colon 62 2000 2

Liver 345 6 2

Vowel 990 10 11

pages of those repositories. 	e simulations of di
erent
algorithms on all the datasets are carried out in MATLAB
8.1.0 environment running on Intel� Core i5, 2.4GHZ CPU
with 4GB RAM. To remove any bias from the results, we
repeat the experiment 10 times and calculate the average
accuracy for all iterations. Training data is split into 2–8 equal
size subsets (according to the number of instances in the
datasets) using random resampling. For a fair evaluation, we
use the same split number of subsets for all ensembles.

4.2. User-Speci�ed Parameters. To achieve good generaliza-
tion performance, the cost parameter 4 and the Kernel
parameter � of the base ELM classi�ers (Regularized-ELM,
ELML2, and Kernel-ELM) need to be chosen appropriately.
We use search grid over 4 and � to determine optimal
values. For each dataset, we have used di
erent values of C
and di
erent values of �. 	e range of � is {0.1, 0.2, . . . , 10}
and the range of 4 is {2−50, 2−48, . . . , 250}. 	e number of
hidden nodes is selected from the range {10, 20, . . . , 1000}.
Optimal values of the selected parameters are shown in
Table 2. To study the generalization performance of AELME
on the combination of (4, �), we select a medium dataset size
(Wave). From Figure 2, it can be noticed that changing the
value of 4 and (�) parameters does not have a signi�cant

Table 2: Optimal values of ELMs’ parameters (nh: number of
hidden nodes).

Dataset 4 � nh

Iris 230 1.2 20

Climate 220 1.2 20

Credit 210 1.2 20

Wave 232 1.2 310

Satellite 232 1.4 310

Firm 232 1.2 310

Letter 232 1.2 700

Colon 2−16 0.3 80

Liver 230 1.2 20

Vowel 230 1.2 200

e
ect on the accuracy. So, the model seems to have less
sensitivity towards the combination parameters (4, (�)).
4.3. Metrics. We use a set of measures to evaluate the
e�ciency of AELMEmodel.We use accuracy as an indication
of the classi�cation output correctness. Standard deviation
of the accuracy rates is used as an indication of ensemble
stability; the lower standard deviation the method has, the
more stable the method is.

	e cost of training a new (test) data should not have a sig-
ni�cant change on the ensemble accuracy when we train the
ensemble with any training set of size a bit more or less than
the original data. We use the decrease or increase in average
absolute error averaged over all our datasets, assuming they
represent a reasonable real-world distribution of datasets.	e
average relative error reductionmeasure is also used. For two
algorithms [26] A and B with errors %1 and %2, the decrease
in relative error between A and B is (%1 − %2)/%1. 	e average
relative error is the average (over all our datasets) of the
relative error between the pair of algorithms compared. We
compared our model with all other approaches. A negative
value for the error implies that ourmodel reduces error, while
positive values correspond to increase in error for our model.
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Table 3: Disagreement measurement between base classi�ers in
AELME.

Dataset Disagreement

Iris 0.0169

Climate 0.0530

Credit 0.0946

Wave 0.1083

Satellite 0.0568

Firm 0.0751

Letter 0.1607

Colon 0.0500

Liver 0.0289

Vowel 0.0130

Time costs of Adaboost, Bagging, EnELM [14], DSELME [15],
DELM [10], and AELME are also compared.

4.4. Diversity Measures. It is not straightforward to express
actual diversity among classi�ers in an ensemble through
standard diversity measure. While there are some measures
with which to approximate its value, there is no perfect one
[27, 28]. Here, we use disagreement to measure diversity and
also <-Statistic which is recommended in [29].

4.4.1. Disagreement. 	ediversity within the whole ensemble
is calculated by averaging disagreement measure [30] over all
pairs of base classi�ers:

Dis = 
∑
�=1


∑

=�+1

dis�,
, (7)

where � is the number of base classi�ers, dis�,
 is the dis-
agreement between classi�er " and classi�er 5. 	is measure
is de�ned based on the intuition that two diverse classi�ers
perform di
erently on the same training data. Disagreement
measure is used to test the diversity within the whole set of
base classi�ers. 	e diversity increases with the value of the
disagreement measure.

4.4.2.<-Statistic. Yule’s<-Statistic [31] measures the similar-
ity between two classi�ers (4� and 4�). It can be calculated as
follows:

<�,� = � ∗ � − @ ∗ A� ∗ � + @ ∗ A , (8)

where (�, �) represents the number of samples for which
both the classi�ers are making (correct, wrong) classi�cation,
respectively. Similarly, (@, A) represents the number of sam-
ples forwhich both the classi�ers are committing errors.	en
the averaged <� value for more than two classi�ers can be
calculated as follows:

<� = 2
4 (4 − 1)

�−1∑
�=1

�∑
�=�+1

<��, (9)

where 4 is the number of classi�ers and <� ∈ [−1, 1]. When<� equals zero, it implies that the classi�ers are independent.
And if <� equals one, it implies identical (dependent)
classi�ers. A positive value of <� means that the classi�ers
have classi�ed the same input correctly and negative value
of <� means that the classi�ers have committed errors on
di
erent inputs. Diversity increases if<� value decreases and
vice versa. However, it is not easy to attain large negative <�
value [29] for more than two classi�ers. For <� calculations,
we use the diversity measure toolbox (http://pages.bangor
.ac.uk/∼mas00a/ensemble_diversity.html).

4.5. Statistical Tests

4.5.1. Wilcoxon Test. 	e Wilcoxon test is a nonparametric
statistical test [32]. 	e purpose is to compare between two
models and several data samples to measure the di
erence
between them and to know if one is signi�cant or both are
equal. It is insensitive to the sample size and outliers. Our
null hypothesis (�0) is that “there is no di
erence between
our model and the one to which it is being compared.”
	e alternative hypothesis (�1) is that our model is more
signi�cant than the compared model. We use a signi�cance
level of 95% (threshold is equal to 0.05). Small values of � (�
value) cast doubt on the verity of the null hypothesis. A small� value veri�es that one approach is more signi�cant than
the other. 	e procedure is as follows: �nd the performance
(Pf) di
erence between the two compared algorithms. Rank
the absolute values of Pf in ascending order (the smallest
value = 1, the second value = 2, and so on). If there are
two equal values, then assign the average rank for all equal
values. Compute the negative and the positive rank sum
according to the Pf sign. Find the minimum of the two sums
(Wilcoxon statistic:C). Find the critical value ofC [33] that
corresponds to the dataset number with a level of signi�cance
used to examine if the null hypothesis can be rejected. For
more details, the reader can refer to [34].

4.5.2. Friedman Test. Friedman test is a nonparametric sta-
tistical test [35]. 	e purpose is to compare the performance
of multiple models and several data samples to measure the
di
erences between them and to determine whether there is
a signi�cant di
erence or they are equal. Our null hypothesis(�0) is that there is no di
erence between AELME and other
algorithms. 	e alternative hypothesis (�1) is that there is a
signi�cant di
erence between at least two of the compared
models.	e signi�cance level used is 95% (threshold is equal
to 0.05).

4.6. Statistical Results. 	e(� value) result ofWilcoxon test of
AELMEcomparedwith all algorithms is shown inTable 5. It is
less than 0.05 in all cases; that implies the null hypothesis (�0)
is rejected, and the alternative hypothesis (�1) is accepted.
	ere is enough evidence that our model is more signi�cant
as compared to othermodels reported in thiswork.Moreover,
the result of Friedman test value is 22.08, with � value that
equals 0.0086. We reject the null hypothesis and accept the
alternative hypothesis that there are di
erences between the
compared models.

http://pages.bangor.ac.uk/~mas00a/ensemble_diversity.html
http://pages.bangor.ac.uk/~mas00a/ensemble_diversity.html


Computational Intelligence and Neuroscience 7

T
a
b
le

4
:C

o
m
p
ar
is
o
n
s
o
f
th
e
av
er
ag
e
ac
cu
ra
cy

ra
te
s
w
it
h
th
ei
r
co
rr
es
p
o
n
d
in
g
st
an
d
ar
d
d
ev
ia
ti
o
n
s
o
f
al
lt
h
e
al
go
ri
th
m
s
o
n
th
e
d
at
as
et
s.

D
at
as
et

A
E
L
M
E

SV
M

E
L
M
L
2

R
E
L
M

E
L
M
K

B
ag
gi
n
g

D
E
L
M

E
n
E
L
M

D
SE

L
M
E

A
d
ab
o
o
st

E
L
M

Ir
is

0
.99

0
6
±

0
.01

3
2

0.96
70±

0.71
00

0.98
73±

0.02
87

0.99
01±

0.03
38

1±
0.00

0.96
56±

0.00
99

0.96
25±

0.00
0.96

88±
0.02

11
0.95

00±
0.12

34
0.97

50±
0.02

21
0.98

56±
0.01

51
C
li
m
at
e

0
.91

0
0
±

0
.00

9
1

0.90
00±

0.44
70

0.89
67±

0.01
11

0.89
33±

0.00
64

0.90
00±

0.00
0.90

00±
0.01

63
0.87

07±
0.01

58
0.86

40±
0.01

76
0.89

20±
0.02

50
0.90

00±
0.07

61
0.89

53±
0.00

95
C
re
d
it

0
.75

6
9
±

0
.00

4
7

0.75
00±

1.20
3

0.74
95±

0.00
94

0.74
22±

0.01
06

0.74
26±

0.00
0.72

45±
0.02

37
0.74

85±
0.00

89
0.74

657
±

0.01
43

0.74
51±

0.01
22

0.70
34±

0.02
80

0.74
41±

0.01
09

W
av
e

0
.86

7
4
±

0
.00

2
2

0.85
10±

1.68
0.85

63±
0.03

45
0.84

95±
0.03

23
0.85

89±
0.00

0.81
09±

0.00
70

0.87
12±

0.00
26

0.86
82±

0.00
49

0.86
28±

0.00
51

0.73
41±

0.00
36

0.85
87±

0.02
45

Sa
te
ll
it
e

0
.90

1
7
±

0
.00

5
1

0.88
03±

2.17
6

0.88
16±

0.03
83

0.89
03±

0.03
45

0.82
04±

0.00
0.83

60±
0.00

31
0.85

93±
0.00

14
0.87

89±
0.01

79
0.84

54±
0.00

17
0.82

35±
0.00

51
0.85

95±
0.03

99
F
ir
m

0
.90

0
0
±

0
.00

0
7
2

0.88
88±

1.12
0.88

244
±

0.02
19

0.85
441

±
0.05

83
0.90

01±
0.00

0.68
73±

0.00
60

0.89
93±

0.00
21

0.89
3±
0.00

25
0.89

445
±

0.00
19

0.82
11±

0.00
26

0.88
31±

0.04
14

L
et
te
r

0
.93

5
3
±

0
.01

3
3

0.92
37±

0.26
0.81

03±
0.32

65
0.93

00±
0.25

38
0.93

15±
0.00

0.84
00±

0.00
85

0.82
46±

0.00
11

0.82
21±

0.00
16

0.90
06±

0.00
22

0.83
38±

0.00
74

0.82
00±

0.92
87

C
o
lo
n

0
.89

0
0
±

0
.02

1
1

0.84
38±

0.00
0.85

00±
0.07

07
0.84

00±
0.11

37
0.80

00±
0.00

0.85
000

±
0.00

82
0.84

50±
0.01

58
0.83

50±
0.04

74
0.86

00±
0.02

11
0.87

00±
0.02

11
0.82

00±
0.08

82
L
iv
er

0
.74

2
0
±

0
.01

5
5

0.69
00±

2.6
0.65

80±
0.04

54
0.67

30±
0.04

97
0.72

00±
0.00

0.70
00±

0.01
94

0.69
50±

0.01
65

0.65
40±

0.04
33

0.66
30±

0.03
50

0.70
00±

0.02
36

0.66
66±

0.05
06

V
o
w
el

0
.66

2
0
±

0
.01

8
3

0.56
60±

3.24
0.51

20±
0.04

88
0.58

10±
0.08

42
0.63

80±
0.00

0.67
00±

0.11
80

0.63
33±

0.00
213

0.56
80±

0.03
06

0.55
80±

0.04
73

0.66
73±

0.03
74

0.58
60±

0.04
00



8 Computational Intelligence and Neuroscience

Table 5: Wilcoxon signed rank statistical test result of AELME
versus all the algorithms upon all data sets. � values are small which
implies the signi�cance of the AELME approach as compared to the
other algorithms (here Alg means Algorithm).

AELME versus Alg � value
ELML2 0.0009770

RELM 0.0009766

ELMK 0.0097000

Bagging 0.0019500

DELM 0.0029200

EnELM 0.0019500

DSELME 0.0009766

Adaboost 0.0019500

ELM 0.0009765

SVM 0.0009760

Table 6: Accuracy rates of AELME upon the datasets using
weighted sum method.

Dataset Accuracy

Iris 0.9930

Climate 0.9067

Credit 0.7696

Wave 0.8748

Satellite 0.898

Firm 0.9008

Letter 0.9058

Colon 0.9

Liver 0.74

Vowel 0.71

Table 7: Standard deviation of accuracy rates of AELME and base
classi�ers {ELM,ELMR,ELML2} upon Climate dataset. 200 + 8,200 + 16, 200 + 32, 200 + 64, and 200 + 128 instances are selected in
sequence, corresponding to 1st to the 5th group, respectively.

Group AELME ELM ELMR ELML2

1st 0.034577 0.116800 0.081347 0.110030

2nd 0.025810 0.098455 0.153540 0.0769327

3rd 0.044799 0.126870 0.085248 0.096722

4th 0.021785 0.048463 0.056345 0.039907

5th 0.026814 0.055462 0.050303 0.062163

4.7. <-Statistic Experiments. We use Wave, Liver, and Satel-
lite datasets to do experiments; we do not prespecify the
individual accuracy nor the individual dependency. Wave
data is three-class data; we divide training data into subsets
of 4, 4, and 2 features (500 parts). 	en train three classi�ers{RELM,KELM,ELML2} one on each subset of features. 	e
Liver is two-class data with 6 dimensions. Satellite is a
seven-class data with 10 dimensions. We split data randomly
into training/testing subsets. 	e training/test sets split is
470/230 for Wave data, 230/115 for Liver data, and 800/400
for Satellite data. We generate 2500 ensembles for all data.
	e setting of our experiments is shown in Table 8. We

Table 8: Description of <-Statistic experiments. (� is number of
samples, #Att. is number of attributes, #Class is number of classes,
and #Ens. is number of ensembles).

Dataset � #Att. #Class #Ens.

Liver 345 6 2 700

Satellite 1200 10 7 1300

Feature subspace method

Dataset Wave

� 700

#Att. 10

#Class 3

#Ens. 500

	e set of 10 features was divided into
permutations subsets (�rst 500 permutations) of

4, 4, and 2.

Table 9: Maximum improvement (Max-Impr) of ensemble accu-
racy over the single best classi�er (Ensemble Accuracy −Maximum
individual accuracy) with their corresponding <-values.
Dataset Max-Impr <
Liver 0.320 −0.8924
Wave 0.175 −0.0600
Satellite 0.498 −0.4000

observe from experiments a general trend of improvement
in accuracy towards low values of <. In all experiments, the
maximum improvement corresponds to negative values of <
as shown in Table 9. However, at the same time there exists
a range of improvements against these < values, while the
top-improvements are dispersed across a wide spectrum of
negative <-values. Almost all ensembles in our experiments
show accuracy improvement over the single best classi�er
(Ensemble Accuracy −Maximum individual accuracy). Nev-
ertheless, we cannot draw a conclusion that there is strong
relationship between accuracy and diversity for all ensembles,
because it depends on the experiment settings. Moreover,
there is a need for more dedicated, in-depth research to
investigate the relationship between accuracy and diversity.

4.8. Performance Analysis and Discussion. 	e classi�ca-
tion experiments on datasets are performed using Bag-
ging, Adaboost, Regularized-ELM (RELM) [10], ELML2
[11], Kernel-ELM (ELMK) [19], EnELM [14], DELM [13],
DSELME [15], and AELME algorithms. 	e average clas-
si�cation accuracy rates with their corresponding standard
deviations of the experiments over ten runs are shown in
Table 4. Accuracy rates on the tested datasets show the
strength of the model, as we can observe from results that
our model achieves the highest accuracy rates in most cases.
	e base classi�ers of our model ELML2, Regularized-ELM,
and Kernel-ELM have accuracy rates less than the ensemble
model. From Table 4 we observe that the accuracy rates on
almost all datasets of Bagging and Adaboost algorithms are
lower than our model and they have low accuracy rates on
Wave, Credit, and Firm datasets. Moreover, we use weighted
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Table 10: Mean Absolute Error (MAE), Relative Reduction Error (RErRed) and their Averages (AvgAbsEr, AvgRErRed, resp.), and Standard
Deviation (STD) of all Algorithms.

Dataset Measure AELME DELM DSELME EnELM Adaboost Bagging

Iris

MAE 0.0094 0.0375 0.05 0.0312 0.025 0.0344
RErRed (%) −299 −432 −232 −166 −266

STD 0.0132 0 0.1234 0.0211 0.0221 0.0099
Climate

MAE 0.09000 0.1293 0.1080 0.1360 0.1000 0.1000
RErRed (%) −44 −20 −51 −11 −11

STD 0.0091 0.0158 0.0250 0.0176 0.0761 0.0163
Credit

MAE 0.2431 0.2515 0.2549 0.2534 0.2966 0.2755
RErRed (%) −3 −5 −4 −22 −13

STD 0.0047 0.0089 0.0122 0.0143 0.0280 0.0237
Wave

MAE 0.1326 0.1288 0.1372 0.1318 0.2659 0.1891
RErRed (%) 3 −3 1 −101 −43

STD 0.0022 0.0026 0.0051 0.0049 0.0036 0.0070
Satellite

MAE 0.0983 0.1407 0.1546 0.1211 0.1765 0.1640
RErRed (%) −43 −57 −23 −80 −67

STD 0.0051 0.0014 0.0017 0.0179 0.0051 0.0031
Firm

MAE 0.1000 0.1007 0.1056 0.1070 0.1789 0.3127
RErRed (%) −1 −6 −7 −79 −213

STD 0.00072 0.0021 0.0019 0.0025 0.0026 0.0060
Letter

MAE 0.0647 0.1754 0.0994 0.1779 0.1662 0.1600
RErRed (%) −171 −54 −175 −157 −147

STD 0.0133 0.0011 0.0022 0.0016 0.0074 0.0085
Colon

MAE 0.8500 0.1550 0.1400 0.1650 0.1300 0.1500
RErRed (%) 82 84 81 85 82

STD 0.0211 0.0158 0.0211 0.0474 0.0211 0.0082
Liver

MAE 0.6580 0.3050 0.3370 0.3460 0.3000 0.3000
RErRed (%) 54 49 47 54 54

STD 0.0155 0.0165 0.0350 0.0433 0.0236 0.0194
Vowel

MAE 0.5120 0.3667 0.4420 0.4320 0.3327 0.3300
RErRed (%) 28 14 16 35 36

STD 0.0183 0.0213 0.0473 0.0306 0.0374 0.1180
AvgAbsEr 0.2758 0.1791 0.1829 0.1901 0.1972 0.2016
AvgRErRed −39 −43 −35 −44 −59

sum method in all base classi�ers to test AELME on unseen
data. Table 6 shows the accuracy rates using weighted sum.
We observe from results weighted sum method outperforms
majority vote inmost datasets. Stability is an important factor
related to whether the ensemble classi�er can improve the
accuracy rate of classi�cation. To analyze the stability of
AELME, we repeat the experiments for 10 times on Climate
dataset. 200 + 8, 200 + 16, 200 + 32, 200 + 64, and 200 + 128
instances are selected in sequence, corresponding to 1st to
the 5th group, respectively. 	e standard deviation of the
accuracy rates is calculated based on these 10 runs. Stable
classi�ers are less likely to over�t. To make use of the varia-
tions of the training set, the base classi�er should be unstable
[35]; otherwise, the resultant ensemble will be a collection
of almost identical classi�ers. As shown in Table 7, our
ensemble classi�er is more stable than all the base classi�ers.
Disagreement is a measure of diversity. As shown in Table 3,

it is mostly increased as the size of the dataset increases.
	is demonstrates that diversity is increased between base
classi�ers in AELME.

	emean average error (MAE) of ourmodel is the lowest
one among all algorithms on all the datasets as shown in
Table 10. 	ere is a relative error reduction of our model
compared to almost all other ensembles tested on all the
datasets in this research. For example, for Letter dataset,
there is an error reduction of 147% compared to Bagging,
157% compared toAdaboost, 175% compared to EnELM, 54%
compared to DSELME, and 171% compared to DELM. 	e
average absolute error of our model is 0.2758 which is the
smallest among all ensembles as shown inTable 10.	ere is an
average error reduction of 39% for DELM, 43% for DSELME,
35% for EnELM, 44% for Adaboost, and 59% for Bagging.We
compare the time costs of Bagging, Adaboost, and AELME
algorithms. 200+8, 200+16, 200+32, 200+64, and 200+128



10 Computational Intelligence and Neuroscience

Table 11: Average training time (×103 s) of the datasets in seconds.

Dataset AELME EnELM DSELME DELM Ada Bag ELM RELM ELML2 ELMK

Iris 0.00004 0.0008 0.00046 0.0003 0.00012 0.00106 0.000025 0.000036 0.00005 0.000013

Climate 0.0002 0.0022 0.00126 0.0018 0.00404 0.03736 0.000052 0.000204 0.00005 0.000095

Credit 0.0008 0.0044 0.00225 0.002 0.01219 0.10610 0.000047 0.001170 0.00007 0.000134

Wave 0.138 0.028 0.008 0.0107 0.1329307 1.09000 0.000222 0.001234 0.00028 0.004964

Satellite 0.1458 0.032 0.017 0.026 0.36782 2.30770 0.000304 0.210789 0.00038 0.012488

Firm 0.182 0.045 0.0393 0.11487 3.98310 3.9797 0.000373 0.401937 0.00046 0.019656

Letter 0.878 0.229 0.287 0.2911 6.68 6.88 0.000638 1.238600 0.00075 0.066160

Colon 0.000148 0.000808 0.000148 0.003449 0.000096 0.000131 0.000033 0.000080 0.000069 0.000005

Liver 0.000142 0.0001045 0.000509 0.002902 0.012979 0.0130564 0.000027 0.000076 0.0000421 0.000039

Vowel 0.0007082 0.0004571 0.0016411 0.0029796 0.1480 0.151 0.000075 0.001246 0.0000764 0.000184
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Figure 3: Training time of Adaboost, Bagging, and AELME.

instances are selected in sequence, corresponding to 1st to the
5th group, respectively, as shown in Figure 3. For Climate
dataset, we observe that Adaboost algorithm is the most
time-consuming algorithm, and the time cost of the AELME
algorithm is less than the Bagging algorithm and Adaboost.
	e average training time of all algorithms is compared by
taking the average of ten runs of the ten datasets. Table 11
shows average training time for the di
erent algorithms. We
observe that our algorithm training time on some datasets is
higher than other ensembles due to the computations in our
algorithm.

5. Conclusion

In this work, we have discussed an advanced approach
for classi�cation using di
erent ELM algorithms, namely,
Regularized-ELM, ELML2, and Kernel-ELM. Each learner
member is independent of the other to achieve diversity
within the proposed ELM ensemble (AELME). By using
di
erent types of ELM algorithms in the ensemble and by
using di
erent training datasets for each classi�er, it allows
the base classi�ers to generate di
erent decision boundaries
and di
erent errors while reducing the total error. So, a
combination of all the classi�ers achieves better classi�cation

accuracy and the generalization performance of the ensem-
ble increases. Experimental results show that the proposed
AELME model is accurate and stable and outperforms other
models. It would be an interesting future work to identify
the optimal number of classi�ers to be used in an ensemble
for improving overall accuracy. Furthermore, in the future
we will discuss the applications of the proposed method in
some practical �elds, for example, the Internet of 	ings and
cyberphysical systems [36, 37].
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