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Abstract

Following the global COVID-19 pandemic, the number of sci-
entific papers studying the virus has grown massively, leading
to increased interest in automated literate review. We present a
clinical text mining system that improves on previous efforts
in three ways. First, it can recognize over 100 different entity
types including social determinants of health, anatomy, risk
factors, and adverse events in addition to other commonly used
clinical and biomedical entities. Second, the text processing
pipeline includes assertion status detection, to distinguish be-
tween clinical facts that are present, absent, conditional, or
about someone other than the patient. Third, the deep learn-
ing models used are more accurate than previously available,
leveraging an integrated pipeline of state-of-the-art pre-trained
named entity recognition models, and improving on the previ-
ous best performing benchmarks for assertion status detection.
We illustrate extracting trends and insights - e.g. most frequent
disorders and symptoms, and most common vital signs and
EKG findings – from the COVID-19 Open Research Dataset
(CORD-19). The system is built using the Spark NLP library
which natively supports scaling to use distributed clusters,
leveraging GPU’s, configurable and reusable NLP pipelines,
healthcare-specific embeddings, and the ability to train models
to support new entity types or human languages with no code
changes.

1 Introduction

The COVID-19 pandemic brought a surge of academic re-
search about the virus - resulting in 23,634 new publications
between January and June of 2020 (da Silva, Tsigaris, and
Erfanmanesh 2020) and accelerating to 8,800 additions per
week from June to November on the COVID-19 Open Re-
search Dataset (Wang et al. 2020). Such a high volume of
publications makes it impossible for researchers to read each
publication, resulting in increased interest in applying natural
language processing (NLP) and text mining techniques to
enable semi-automated literature review (Cheng, Cao, and
Liao 2020).

In parallel, there is a growing need for automated text
mining of Electronic health records (EHRs) in order to find
clinical indications that new research points to. EHRs are
the primary source of information for clinicians tracking the
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care of their patients. Information fed into these systems may
be found in structured fields for which values are inputted
electronically (e.g. laboratory test orders or results) (Liede
et al. 2015) but most of the time information in these records
is unstructured making it largely inaccessible for statistical
analysis (Murdoch and Detsky 2013). These records include
information such as the reason for administering drugs, previ-
ous disorders of the patient or the outcome of past treatments,
and they are the largest source of empirical data in biomedi-
cal research, allowing for major scientific findings in highly
relevant disorders such as cancer and Alzheimer’s disease
(Perera et al. 2014).

A primary building block in such text mining systems is
named entity recognition (NER) - which is regarded as a
critical precursor for question answering, topic modelling,
information retrieval, etc (Yadav and Bethard 2019). In the
medical domain, NER recognizes the first meaningful chunks
out of a clinical note, which are then fed down the processing
pipeline as an input to subsequent downstream tasks such as
clinical assertion status detection (Uzuner et al. 2011), clini-
cal entity resolution (Tzitzivacos 2007) and de-identification
of sensitive data (Uzuner, Luo, and Szolovits 2007) (see Fig-
ure 1). However, segmentation of clinical and drug entities is
considered to be a difficult task in biomedical NER systems
because of complex orthographic structures of named entities
(Liu et al. 2015).

The next step following an NER model in the clinical NLP
pipeline is to assign an assertion status to each named entity
given its context. The status of an assertion explains how
a named entity (e.g. clinical finding, procedure, lab result)
pertains to the patient by assigning a label such as present
(”patient is diabetic”), absent (”patient denies nausea”), con-
ditional (”dyspnea while climbing stairs”), or associated with
someone else (”family history of depression”). In the context
of COVID-19, applying an accurate assertion status detection
is crucial, since most patients will be tested for and asked
about the same set of symptoms and comorbidities - so lim-
iting a text mining pipeline to recognizing medical terms
without context is not useful in practice.

In this study, we introduce a set of pre-trained NER models
that are all trained on biomedical and clinical datasets within
a Bi-LSTM-CNN-Char deep learning architecture, and a Bi-
LSTM based assertion detection module built on top of the
Spark NLP software library. We then illustrate how to ex-



Figure 1: Named Entity Recognition is a fundamental building block of medical text mining pipelines, and feeds downstream
tasks such as assertion status, entity linking, de-identification, and relation extraction.

tract knowledge and relevant information from unstructured
electronic health records (EHR) and COVID-19 Open Re-
search Dataset (CORD-19) by combining these models in a
pipeline. Using state-of-the-art deep learning architectures,
Spark NLP’s NER and Assertion modules can also be ex-
tended to other spoken languages with zero code changes and
can scale up in Spark clusters. Moreover, by utilizing Apache
Spark, both training and inference of full NLP pipelines can
scale to make the most of distributed Spark clusters. Due
to brevity concerns, the implementation details and training
metrics of these models will be kept out of the scope of this
study.

The specific novel contributions of this paper are:

• Introducing a medical text mining pipeline composed of
state-of-the-art, healthcare-specific NER models

• Introducing a clinical assertion status detection model that
establishes a new state-of-the-art level of accuracy on a
widely used benchmark

• Describing how to apply these models in a unified, per-
formant, and scalable pipeline on documents from the
CORD-19 dataset.

The remainder of the paper is organized as follows: Sec-
tion 2 Introduces the Spark NLP library, summarizes the NER
and assertion detection model frameworks it implements, and
elaborates the named entities in each pre-trained NER model.
Section 4 explains how to build a prediction pipeline to ex-
tract named entities and assign assertion statuses from a set of
documents on a cluster with Spark NLP. Section 5 discusses
benchmarking speed and scalability issues and Section 6
concludes this paper by summarizing key points and future
directions.

2 Named Entity Recognition in Spark NLP

The deep neural network architecture for named entity recog-
nition in Spark NLP is based on the BiLSTM-CNN-Char
framework. It is a modified version of the architecture pro-
posed by Chiu et.al. (Chiu and Nichols 2016). It is a neural

network architecture that automatically detects word and
character-level features using a hybrid bidirectional LSTM
and CNN architecture, eliminating the need for most feature
engineering steps. The detailed architecture of the framework
in the original paper is illustrated at Figure 2 and a sample
predictions from a set of pre-trained clinical NER models
from a text taken from CORD-19 dataset is shown in 3.

Figure 2: Overview of the original BiLSTM-CNN-Char ar-
chitecture (Chiu and Nichols 2016).

In Spark NLP, this architecture is implemented using Ten-
sorFlow, and has been heavily optimized for accuracy, speed,
scalability, and memory utilization. This setup has been
tightly integrated with Apache Spark to let the driver node
run the entire training using all the available cores on the
driver node. There is a CuDA version of each TensorFlow
component to enable training models on GPU when available.
The Spark NLP provides open-source API’s in Python, Java,
Scala, and R - so that users do not need to be aware of the
underlying implementation details (TensorFlow, Spark, etc.)
in order to use it.



Figure 3: Sample predictions from pre-trained clinical NER models in Spark NLP for Healthcare

The full list of the entities for each pre-trained medical
NER model is available in Appendix D, the accuracy metrics
are given in Table 1 and a sample Python code for training a
NER model from scratch is in Appendix C.

Table 1: Validation metrics of the selected NER models
trained with clinical word embeddings in Spark NLP. These
NER models are trained with the datasets mentioned in the
original papers cited (Appendix D)

model
number of

entity
micro

F1
macro

F1

ner anatomy 10 0.750 0.851
ner bionlp 15 0.638 0.748
ner cellular 4 0.792 0.813
ner clinical 3 0.872 0.873
ner deid sd 7 0.896 0.942
ner deid enriched 17 0.762 0.934
ner diseases 1 0.960 0.960
ner drugs 1 0.963 0.964
ner events 10 0.690 0.801
jsl ner wip 76 0.842 0.863
ner posology 6 0.881 0.922
ner risk factors 8 0.593 0.728
ner human phenotype go 2 0.904 0.922
ner human phenotype gene 2 0.871 0.876
ner chemprot 3 0.785 0.817
ner ade 2 0.824 0.852

3 Assertion Status Detection in Spark NLP
The deep neural network architecture for assertion status de-
tection in Spark NLP is based on a Bi-LSTM framework,
and is a modified version of the architecture proposed by
Fancellu et.al. (Fancellu, Lopez, and Webber 2016). Its goal
is to classify the assertions made on given medical concepts
as being present, absent, or possible in the patient, condi-
tionally present in the patient under certain circumstances,
hypothetically present in the patient at some future point, and

mentioned in the patient report but associated with someone-
else (Uzuner et al. 2011).

In the proposed implementation, input units depend on the
target tokens (a named entity) and the neighboring words that
are explicitly encoded as a sequence using word embeddings.
Similar to Fancellu et.al. (Fancellu, Lopez, and Webber 2016)
we have observed that that 95% of the scope tokens (neigh-
boring words) fall in a window of 9 tokens to the left and 15
to the right of the target tokens in the same dataset. We there-
fore implemented the same window size and used learning
rate 0.0012, dropout 0.05, batch size 64 and a maximum sen-
tence length 250. The model has been implemented within
Spark NLP as an annotator called AssertionDLModel. After
training 20 epoch and measuring accuracy on the official test
set, this implementation exceeds the latest state-of-the-art
accuracy benchmarks as summarized as Table 2

Table 2: Assertion detection model test metrics. Our im-
plementation exceeds the benchmarks in the latest best
model (Uzuner et al. 2011) in 4 out of 6 assertion labels
- and in overall accuracy.

Assertion
Label

Spark
NLP

Latest
Best

Absent 0.944 0.937
Someone-else 0.904 0.869
Conditional 0.441 0.422
Hypothetical 0.862 0.890
Possible 0.680 0.630
Present 0.953 0.957

micro F1 0.939 0.934

A sample predictions from a clinical assertion detection
model can be seen at Table 3.



Figure 4: The flow diagram of a Spark NLP pipeline. When we fit() on the pipeline with a Spark data frame, its text column is
fed into the DocumentAssembler() transformer and a new column document is created as an initial entry point to Spark NLP
for any Spark data frame. Then, its document column is fed into the SentenceDetector() module to split the text into an array
of sentences and a new column “sentences” is created. Then, the “sentences” column is fed into Tokenizer(), each sentence is
tokenized, and a new column “token” is created. Then, Tokens are normalized (basic text cleaning) and word embeddings are
generated for each. Now data is ready to be fed into NER models and then to the assertion model.

Table 3: Sample predictions from the pre-trained clinical
assertion detection model in Spark NLP.

Sample text : Patient with severe fever and sore throat. He
shows no stomach pain and is maintained on an epidural
and PCA for pain control. He also became short of breath
with climbing a flight of stairs. After CT, lung tumor located
at the right lower lobe. Father with Alzheimer.

chunk entity assertion

severe fever PROBLEM Present
sore throat PROBLEM Present
stomach pain PROBLEM Absent
an epidural TREATMENT Present
PCA TREATMENT Present
pain control PROBLEM Present
short of breath PROBLEM Conditional
CT TEST Present
Lung tumor PROBLEM Present
Alzheimer PROBLEM Someone-else

4 Analysing the CORD-19 Dataset with

Pre-trained Models

Since assertion status labels are assigned to a medical concept
that is given as an input to the assertion detection model, NER
and assertion models must work together sequentially. In
Spark NLP, we handle this interaction by feeding the output
of NER models to an NER converter to create chunks from
labeled entities and then feed these chunks to the assertion
status detection model within the same pipeline. The flow
diagram of such a pipeline can be seen in Figure 4. As the
flow diagram shows, in Spark NLP each generated (output)
column is pointed to the next module as an input, depending
on its input column specifications. A sample Python code for
such a prediction pipeline can be seen at Appendix B.

This enables users to easily configure arbitrary pipelines
- such as running 20 NER pre-trained models within one
pipeline, as we do in this analysis of the CORD-19 dataset.

NLP pipelines configured this way are easily reproducible,
since they are seriablizable and directly expressed in code.
They also simplify experimentation - for example, comparing
multiple NER and assertion status models in the same run
(while benefiting from the fact that data and embeddings
are only loaded into memory once), or trying with different
text cleaning steps before the NER stage (such as stopword
removal, lemmatization, or automated spell correction).

While the CORD-19 text mining pipeline scales to process
an arbitrary number of articles, for purposes of concrete
demonstration the next two tables show results on a randomly
sampled of 100 articles. The number of recognized named
entities for the selected entity classes can be seen at Table 4.
The number of entities detected from each document (20
NER models, over 10 document) can be seen at Table 5. The
most frequent phrases from the selected entity types can be
found at Table 6. The predictions from the assertion status
detection model for Disease Syndrome Disorder is shown in
Table 7.

One benefit for this system compared to previous work
is the variety of medical entity types that be recognized: As
detailed in Appendix D, this NLP pipeline extracts over 100
entity types. While most clinical named entity recognition
focus on symptoms, treatments, and drugs, and most biomed-
ical focused projects focus on chemicals, proteins, and genes,
this pipeline goes beyond these and can also extract:

• Entities related to social determinants of health such as
age and gender, rate and ethnicity, diet, social history, em-
ployment, relationship status, alcohol use, sexual activity
and orientation

• Medical risk factors such as hypertension, smoking, choles-
terol, hyperlipidemia, weight and BMI, kidney disease,
pregnancy, and diabetes

• Specific vital signs and lab results such as pulse, tempera-
ture, O2 saturation,respiration, LDL and HDL

• Detailed biomedical entity types such as organ, tissue,
gene, human phenotype, chrmical, species, amino acid,
protein, cell, cell component, biological function, chemical,



Table 4: The number of entities for the selected entity classes per document from COR-19 dataset (10 documents sampled).
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Table 5: The total number of entities from the selected NER models per document from COR-19 dataset (10 documents sampled).
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substance, process

Table 4 shows that this variety is useful in practice in
the context of COVID-19 research. On just 10 randomly
selected documents and 20 entity types, there are over 60
cases of more than a hundred instances of one entity type
found within one paper. Only in fewer than 10% of the cells
there were fewer there 10 entities recognized for a specific
entity type in a specific document. This suggests that text
mining approaches that ignore these entity types fail to take
advantage of a lot of clinical insight that the COVID-19
research papers include.

Table 7 shows how an accurate assertion status detection
model can help in filtering this large amount of entities - in
order to focus researchers and downstream algorithms on
the most clinically relevant insights. In this small sample,
’systemic disease’ is a present clinical condition; ’infectious
diseases’ and ’disorders of immunity’ are hypothetical; while
’skin diseases and ’parvovirus’ are associated with someone
else.

Consider a common use case of building an automated
knowledge graph that links patient symptoms to drugs they

are taking, existing conditions, or past procedures. The differ-
ence between having assertion status detection results, and
being able to filter only to symptoms and drugs that positively
impact the patient, will have a substantial impact on the accu-
racy of the bottom-line results. Since more than a thousand
entities are recognized in each research paper, and hundreds
of thousands of published COVID-19 papers - doing this
automatically, accurately, and at scale is required.

5 Benchmarking Speed and Scalability

The design of Spark NLP pipelines as described in Figure 4,
where new columns are added to an existing (potentially
distributed) data frame with each additional pipeline step,
is optimized for parallel execution. It’s design for the case
where different rows may reside on different machines - ben-
efiting from the optimizations and design of Spark ML.

In order to evaluate how fast the pipeline works and how
effectively it scales to make use of a compute cluster, we
ran the same Spark NLP prediction pipelines in local mode
and in cluster mode. In local mode, a single Dell server with
32 cores and 32 GB memory was used. In cluster mode,



Table 6: The most frequent 10 terms from the selected entity types predicted through parsing 100 articles from CORD-19
dataset (Wang et al. 2020) with an NER model named jsl ner wip in Spark NLP. Getting predictions from the model, we can get
some valuable information regarding the most frequent disorders or symptoms mentioned in the papers or the most common vital
and EKG findings without reading the paper. According to this table, the most common symptom is cough and inflammation
while the most common drug ingredients mentioned is oseltamivir and antibiotics. We can also say that cardiogenic oscillations
and ventricular fibrillation are the common observations from EKGs while fever and hyphothermia are the most common vital
signs.

Disease Syndrome
Disorder

Communicable
Disease

Symptom
Drug

Ingredient
Procedure

Vital Sign
Findings

EKG
Findings

infectious diseases HIV cough oseltamivir resuscitation fever low VT
sepsis H1N1 inflammation biological agents cardiac surgery hypothermia cardiogenic oscillations
influenza tuberculosis critically ill VLPs tracheostomy hypoxia significant changes
septic shock influenza necrosis antibiotics CPR respiratory failure CO reduces oxygen transport
asthma TB bleeding saline vaccination hypotension ventricular fibrillation
pneumonia hepatitis viruses lesion antiviral bronchoscopy hypercapnia significant impedance increases
COPD measles cell swelling quercetin intubation tachypnea ventricular fibrillation
gastroenteritis pandemic influenza hemorrhage NaCl transfection respiratory distress pulseless electrical activity
viral infections seasonal influenza diarrhea ribavirin bronchoalveolar lavage hypoxaemia mildmoderate hypothermia
SARS rabies toxicity Norwalk agent autopsy pyrexia cardiogenic oscillations

Table 7: A sample assertion status labels for a set of entities
detected by an NER model as Disease Syndrome Disorder
out of CORD-19 dataset.

chunk assertion

systemic disease Present
skin diseases Someone-else
vascular disorders Possible
infectious diseases Hypothetical
disorders of immunity Hypothetical
infectious disease Hypothetical
word malacia Present
chapter-necrosis Hypothetical
parvovirus Someone-else

10 machines with 32 GB and 16 cores each were used, in
a Databricks cluster on AWS. The performance results are
shared in Figure 5.

These benchmarks show that tokenization is 20x faster
while the entity extraction is 3.5x faster on the cluster, com-
pared to the single machine run. It indicates that speedup
depends on the complexity of the task. For example, tokeniza-
tion provides super-linear speedup (i.e. growing machines
by 10x improves speed by more than 10x), while NER deliv-
ers sub-linear speedup (because it’s a more computationally
complex task).

6 Conclusion

In this study, we introduced a set of pretrained named entity
recognition and assertion status detection models that are
trained on biomedical and clinical datasets with deep learn-
ing architectures on top of Spark NLP. We then present how
to extract relevant facts from the CORD-19 dataset by ap-
plying state-of-the-art NER and assertion status models in a
unified & scalable pipeline and shared the results to illustrate
extracting valuable information from scientific papers.

The results suggest that papers present in the CORD-19
include a wide variety of the many entity types that this new
NLP pipeline can recognize, and that assertion status detec-

Figure 5: Comparing the Spark NLP document parsing
pipeline in standalone and cluster mode. Tests show that
tokenization is 20x faster while the entity extraction is 3.5x
faster in cluster mode when compared to standalone mode.

tion is a useful filter on these entities. This bodes well for
the richness of downstream analysis that can be done using
this now structured and normalized data - such as clustering,
dimensionality reduction, semantic similarity, visualization,
or graph-based analysis to identity correlated concepts. One
future research direction is to apply these downstream anal-
yses on the richer, scalable, and more accurate insights that
this NLP pipeline generates.

Since NER and assertion status models in Spark NLP are
trainable, it is easy to add support for a new language like
German, French, or Spanish, as long as there is a annotated
data for it. Spark NLP currently supports 46 languages and
3 languages for Healthcare - English, German and Spanish.
Spark NLP provides production-grade libraries for popular



programming languages - Python, Scala, Java and R - and
has an active community, frequent releases, public documen-
tation and freely available code examples. Future work in this
space includes adding support for additional languages, addi-
tional entity types, and extending the NLP pipeline further
by adding relation extraction and entity resolution models.
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Appendices

A NER Model Training Tagging Schema

BIO (Begin, Inside and Outside) and BIOES (Begin, Inside,
Outside, End, Single) schemes for encoding entity annota-
tions as token tags. Words tagged with O are outside of named
entities and the I-XXX tag is used for words inside a named
entity of type XXX. Whenever two entities of type XXX are
immediately next to each other, the first word of the second
entity will be tagged B-XXX to highlight that it starts another
entity. On the other hand, BIOES (also known as BIOLU) is
a little bit sophisticated annotation method that distinguishes
between the end of a named entity and single entities. BIOES
stands for Begin, Inside, Outside, End, Single. In this scheme,
for example, a word describing a gene entity is tagged with
“B-Gene” if it is at the beginning of the entity, “I-Gene” if
it is in the middle of the entity, and “E-Gene” if it is at the
end of the entity. Single-word gene entities are tagged with
“S-Gene”. All other words not describing entities of interest
are tagged as ‘O’.

B Defining a Spark NLP Pipeline

from sparknlp_jsl.annotator import *

documentAssembler = DocumentAssembler()\

.setInputCol("text")\

.setOutputCol("document")

sentenceDetector = SentenceDetector()\

.setInputCols(["document"])\

.setOutputCol("sentence")

tokenizer = Tokenizer()\

.setInputCols(["sentence"])\

.setOutputCol("token")

word_embeddings = WordEmbeddingsModel.

pretrained("embeddings_clinical", "en",

"clinical/models")\

.setInputCols(["sentence", "token"])\

.setOutputCol("embeddings")

clinical_ner = NerDLModel.pretrained("

ner_clinical", "en", "clinical/models")

\

.setInputCols(["sentence", "token", "

embeddings"]) \

.setOutputCol("ner")

ner_converter = NerConverter() \

.setInputCols(["sentence", "token", "ner"

]) \

.setOutputCol("ner_chunk")

clinical_assertion = AssertionDLModel.

pretrained("assertion_dl", "en", "

clinical/models") \

.setInputCols(["sentence", "ner_chunk",

"embeddings"]) \

.setOutputCol("assertion")

nlpPipeline = Pipeline(stages=[

documentAssembler,

sentenceDetector,

tokenizer,

word_embeddings,

clinical_ner,

ner_converter,

clinical_assertion

C Training an NER Model in Spark NLP

from pyspark.ml import Pipeline

import sparknlp

from sparknlp.training import CoNLL

from sparknlp.annotator import *

spark = sparknlp.start()

training_data = CoNLL().readDataset(spark, ’

BC5CDR_train.conll’)

word_embedder = WordEmbeddings.pretrained(’

wikiner_6B_300’, ’xx’) \

.setInputCols(["sentence",’token’])\

.setOutputCol("embeddings")

nerTagger = NerDLApproach()\

.setInputCols(["sentence", "token", "

embeddings"])\

.setLabelColumn("label")\

.setOutputCol("ner")\

.setMaxEpochs(10)\

.setDropout(0.5)\

.setLr(0.001)\

.setPo(0.005)\

.setBatchSize(8)\

.setValidationSplit(0.2)\

pipeline = Pipeline(

stages = [

word_embedder,

nerTagger

])

ner_model = pipeline.fit(training_data)

D Pretrained NER Models and Entities

Covered

ner anatomy coarse

(Pyysalo and Ananiadou 2014)

Entities: anatomy

ner anatomy

Entities: organism substance, organ, cellular component,
immaterial anatomical entity, tissue, organism subdivision,
anatomical system, cell, pathological formation, develop-
ing anatomical structure, multi



ner bionlp

(Nédellec et al. 2013)
Entities: cellular component, organ, cancer, or-

ganism substance, multi, simple chemical, tis-
sue, anatomical system, organism subdivision,
immaterial anatomical entity, organism, develop-
ing anatomical structure, amino acid, gene or gene product,
pathological formation, cell

ner cellular

(Kim et al. 2004)
Entities: dna, cell line, cell type, rna, protein

ner clinical

(Uzuner et al. 2011)
Entities: treatment, problem, test

ner deid

(Stubbs et al. 2015)
Entities: location, contact, date, profession, name, age, id

ner deid enriched

(Stubbs et al. 2015)
Entities: idnum, country, date, profession, medicalrecord,

username, organization, zip, id, healthplan, location, device,
hospital, city, email, doctor, street, state, patient, bioid, url,
phone, fax, age

ner diseases

(Doğan, Leaman, and Lu 2014)
Entities: disease

ner drugs

(Henry et al. 2020), (Segura Bedmar, Martı́nez, and Her-
rero Zazo 2013)

Entities: drug

ner events clinical

(Sun, Rumshisky, and Uzuner 2013)
Entities: test, problem, clinical dept, occurrence, date,

time, evidential, treatment, frequency, duration

jsl ner wip clinical

(in-house annotations from mtsamples and MIMIC-III (John-
son et al. 2016))

Entities: triglycerides, oncological, fe-
male reproductive status, form, time, date, alcohol,
medical history header, race ethnicity, temperature,
drug brandname, frequency, fetus newborn, sexu-
ally active or sexual orientation, disease syndrome disorder,
section header, social history header, strength, cerebrovas-
cular disease, family history header, employment, weight,
pregnancy, total cholesterol, diet, ekg findings, gender,
drug ingredient, vaccine, substance, oxygen therapy, inter-
nal organ or component, blood pressure, overweight, obe-
sity, birth entity, heart disease, diabetes, substance quantity,
treatment, death entity, route, modifier, test, clinical dept,

communicable disease, psychological condition, hyperten-
sion, direction, o2 saturation, hyperlipidemia, imagingfind-
ings, vs finding, allergen, dosage, kidney disease, bmi,
smoking, pulse, ldl, symptom, labour delivery, relation-
ship status, external body part or region, hdl, respiration,
procedure, height, vital signs header, relativetime, rela-
tivedate, injury or poisoning, medical device, test result,
duration, age, admission discharge, ner medmentions coarse,
pathologic function, geographic area, group, diagnos-
tic procedure, organic chemical, organism attribute,
mental or behavioral dysfunction, organization, re-
search activity, therapeutic or preventive procedure,
biomedical or dental material, mammal, genetic function,
body system, substance, daily or recreational activity, quan-
titative concept, health care activity, molecular function,
indicator, reagent, or diagnostic aid, body substance, virus,
eukaryote, disease or syndrome, spatial concept, anatom-
ical structure, body part, organ, or organ component,
laboratory procedure, sign or symptom, nu-
cleic acid, nucleoside, or nucleotide, food, men-
tal process, prokaryote, nucleotide sequence, profes-
sional or occupational group, cell, biologic function,
manufactured object, molecular biology research technique,
gene or genome, chemical, neoplastic process, phar-
macologic substance, tissue, qualitative concept,
amino acid, peptide, or protein, fungus, popula-
tion group, body location or region, clinical attribute,
injury or poisoning, medical device, cell component, plant

ner posology

(Henry et al. 2020)
Entities: form, dosage, strength, drug, route, frequency,

duration

ner risk factors

(Stubbs et al. 2015)
Entities: family hist, smoker, obese, medication, hyper-

tension, hyperlipidemia, phi, diabetes, cad

ner human phenotype go clinical

(Sousa, Lamurias, and Couto 2019)
Entities: go, hp

ner human phenotype gene clinical

(Sousa, Lamurias, and Couto 2019)
Entities: gene, hp

ner chemprot clinical

Entities: gene, chemical

ner ade clinical

Entities: ade, drug

ner chemicals

Entities: chem

ner bacterial species

Entities: species


