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RESEARCH Open Access

Improving clinical trial efficiency by
biomarker-guided patient selection
Ruud Boessen1*, Hiddo J Lambers Heerspink2, Dick De Zeeuw2, Diederick E Grobbee1, Rolf HH Groenwold1

and Kit CB Roes1

Abstract

Background: In many therapeutic areas, individual patient markers have been identified that are associated with

differential treatment response. These markers include both baseline characteristics, as well as short-term changes

following treatment. Using such predictive markers to select subjects for inclusion in randomized clinical trials could

potentially result in more targeted studies and reduce the number of subjects to recruit.

Methods: This study compared three trial designs on the sample size needed to establish treatment efficacy across

a range of realistic scenarios. A conventional parallel group design served as the point of reference, while the

alternative designs selected subjects on either a baseline characteristic or an early improvement after a short active

run-in phase. Data were generated using a model that characterized the effect of treatment on survival as a

combination of a primary effect, an interaction with a baseline marker and/or an early marker improvement. A

representative scenario derived from empirical data was also evaluated.

Results: Simulations showed that an active run-in design could substantially reduce the number of subjects to

recruit when improvement during active run-in was a reliable predictor of differential treatment response. In this

case, the baseline selection design was also more efficient than the parallel group design, but less efficient than

the active run-in design with an equally restricted population. For most scenarios, however, the advantage of

the baseline selection design was limited.

Conclusions: An active run-in design could substantially reduce the number of subjects to recruit in a randomized

clinical trial. However, just as with the baseline selection design, generalizability of results may be limited and

implementation could be difficult.

Keywords: Clinical trial designs, Biomarkers, Baseline selection, Active run-in

Background
Clinical trials are increasingly extensive and complex

[1,2]. They account for the bulk of time and money

invested into drug development [3-5]. To assure the effi-

cient and timely arrival of new and affordable drugs, it is

therefore essential to explore and implement innovative

approaches to the design of clinical trials [6,7].

In many therapeutic areas, prognostic research has

identified subject characteristics that are predictive of fu-

ture clinical outcomes or favorable/unfavorable treatment

response [8,9]. These characteristics can be categorized

as prognostic or predictive markers [10,11]. Prognostic

markers are associated with future clinical outcomes, ir-

respective of treatment status, while predictive markers

predict the response to treatment. Baseline albuminuria

is an example of a prognostic marker that is associated

with renal and cardiovascular outcomes, while unrelated to

the response to angiotensin receptor blockers [12]. On the

other hand, early albuminuria reduction after a relatively

short duration of exposure to treatment is a predictive

marker, proven to be associated with differential treatment

response on long-term renal and cardiovascular endpoints

in randomized clinical trials [13-15].

Information on markers associated with improved long-

term treatment outcomes could be of use in improving the

efficiency of clinical trials [16]. Predictive markers enable
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selection of patient subgroups for whom the expected ef-

fect of treatment (as compared to control) is particularly

beneficial. Restricting randomization to this subgroup

could reduce the sample size requirements needed to es-

tablish treatment benefit.

In this paper we distinguish selection using a baseline

marker from selection on short-term changes that follow

treatment. The former is applied in a baseline selection

design (BSD), whereby only a selection of the recruited

population (for example, those within a predefined range

on the baseline marker) is randomized at baseline. Selec-

tion on short-term marker changes is applied in an

active run-in design (ARD) whereby all the recruited sub-

jects initially receive treatment, and only those with a

predefined minimum improvement are subsequently se-

lected for random allocation to treatment or control. In

this case, improvement on the marker during active run-

in is used as a predictive marker to guide subject selec-

tion for the randomized phase. This design has some

resemblance to a randomized withdrawal design, in which

subjects are all treated with the experimental treatment

until response or recovery, are subsequently randomized

to treatment or control and then followed for a clinical

outcome (for example, a relapse). However, in the present

active run-in design, the initial period is much shorter

and only needed to observe a (minimum) response on a

marker to guide selection.

Both the BSD and the ARD intend to increase study

effect size and reduce its sample-size requirements.

However, both designs do so by randomizing only part

of the recruited population. Therefore, the number of

subjects to recruit will be larger than the number to ac-

tually randomize. As a result, it is not evident upfront

whether the BSD and ARD are more or less efficient

than a conventional parallel group design (PGD) in which

no selection is applied. Moreover, selection based on a pre-

dictive marker restricts the population to which the study

results apply, and thus limits generalizability.

This study uses statistical simulations to compare the

PGD, BSD and ARD on sample-size requirements and

the generalizability of study results. A range of realis-

tic scenarios are evaluated, including a scenario based

on empirical data from two clinical trials that assessed

the efficacy of antihypertensive treatments in diabetic

patients.

Methods

Study designs

In both PGD and BSD, subjects are randomized to treat-

ment or placebo at baseline and followed up until either

the clinical endpoint or the end of the study. In PGD,

the study population consists of a random sample from

an unrestricted patient population. In BSD, the study

population is restricted to subjects with a baseline value

on a predictive marker that exceeds a predefined cutoff.

Hence, only a fraction of the subjects who would have

been enrolled in the PGD are actually randomized in the

BSD. In ARD, all subjects start the study on active treat-

ment and only those for whom improvement on the

marker outcome after run-in exceeds a predefined min-

imal cutoff value are randomized to treatment or pla-

cebo in the second study stage. They are then followed

up until either the clinical endpoint or the end of the

study.

In both BSD and ARD, the proportion of the enrolled

population that continues into the randomized study

stage can be denoted by P, and is dependent on a selec-

tion criterion c. Supposing that both a lower baseline-

marker level and a greater improvement on the marker

during active run-in are associated with a reduced inci-

dence rate of the endpoint in the randomized study

stage. In that case, when the absolute value of c is large,

P is small since only few subjects meet the selection cri-

terion. Furthermore, the observed effect of treatment on

the endpoint will be relatively large in the randomized

population, but the fraction of the total population to

which these findings apply is reduced and generalizability

is limited. Conversely, when c is smaller, p is larger and the

observed effect in the randomized population is relatively

small, however generalizability improves. It is important to

note that the value of c is a design parameter that should

always be defined before the study starts to control the

type-I error rate of subsequent tests. In PGD, there is no

selection criterion and all recruited subjects are also ran-

domized for follow-up.

Simulations

A simulation study was conducted to assess the sample-

size requirements of PGD (NPGD), BSD (NBSD), and ARD

(NARD). In all designs, subjects were randomized in a 1:1

ratio of treatment to control, either at baseline (PGD and

BSD) or after an active run-in stage (ARD).

A single, large dataset (representing 100,000 subjects)

was generated. Included in this dataset was the treat-

ment status in the first (before randomization) and second

(after randomization) study stage (T1 and T2, respectively

with 0 representing placebo and 1 representing active treat-

ment), and the marker level at baseline (A0) and after the

end of the run-in stage (A1). Treatment status was inde-

pendent of marker levels.

For PGD and BSD, the treatment status of a subject

was the same in the first and second study stage (T1 =T2).

For ARD, all subjects were treated in the first stage (T1 = 1)

and randomized in the second. A0 and A1 were generated

as follows: first, two series were generated from a multi-

variate normal distribution ~N(3,1)) with correlation r.

The first series represented A0, and A1 was derived as the

second series minus Δ (the assumed mean improvement
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on the marker during the first stage). No average first-stage

improvement on the marker was assumed among subjects

on placebo, and so for this group Δ = 0.

Endpoint-free survival times were generated using the

method described by Bender et al. [17]. First, a linear

predictor (lp) was defined by:

lp ¼ β1T2 þ β2A0 þ β3T 2A0 þ β4T 2 A0−A1ð Þ ð1Þ

In which β1 represented the primary effect (the effect

that was not mediated through the marker) of treatment

in the second stage, β2 the main effect of baseline marker

level (the prognostic part of the baseline marker), β3 the

treatment status by baseline marker level interaction (the

predictive part of the baseline marker), and β4 the treat-

ment status by first-stage marker improvement interaction

(predictive part of change on the marker). Equation 1 can

be rewritten into:

lp ¼ β1 þ β3A0 þ β4 A0−A1ð Þ
� �

T 2 þ β2A0 ð2Þ

to show that the effect of treatment status in the second

stage is a combined function of β1, β3 and β4.

Based on the linear predictor, endpoint-free survival

times (S) were generated using:

S ¼ −

log Uð Þ

λ0exp lpð Þ
ð3Þ

where λ0 is the baseline hazard and U is a random num-

ber generated from the uniform distribution U(0,1).

The total follow-up duration was truncated at 100

units of time for all three designs. The run-in period was

set to comprise 12 percent of the total study duration

(corresponding to about 3 months in a study with a

2 year total follow-up duration). Hence, while the total

duration of the different designs was equal, the duration

of the randomized study stage was 12 percent shorter

for ARD as compared to PGD and BSD. Subjects who

experienced an event during the active run-in stage in

ARD were excluded from analysis, thus in principle po-

tentially reducing the efficiency of ARD in terms of sam-

ple size as compared to the other designs. In practice

this would typically result in a small number of subjects

excluded, since the active run-in phase is usually only a

relatively small part of the total study duration.

The performance of the three designs was evaluated

across three sets of scenarios which are presented in

Table 1. Within each set, multiple combinations of β3
and β4 (the predictive parts of the marker and change

on the marker during run-in) were defined, and the sets

differed in the values for β1 and β2 (primary treatment

effect and the prognostic part of the marker). In

addition, the sets differed in the value for the baseline

hazard (λ0), which was chosen to result in equal event

rates for the PGD placebo arm across the different

scenarios.

For every scenario a separate dataset was generated.

From this dataset, only subjects with A0 > cA0 (subjects

for whom the marker level at baseline exceeded the

threshold CA0) were randomized in the BSD, and only

those with A0-A1 > cA0-A1 (subjects for whom marker im-

provement exceeded the threshold cA0-A1) were random-

ized in the ARD. The values for cA0 and cA0-A1 were

chosen to result in P, representing a designated percent-

ile (100, 90, and so forth, down to 10 percent of the total

population). The cutoff values were based on the entire

unselected population. Obviously no subject selection

was applied in the PGD (P = 1.0).

For every value of P (1.0 - 0.1), the number of subjects

to include to significantly establish treatment efficacy in

the corresponding stratum was estimated based on a

log-rank test with 80 percent statistical power and a

nominal type-I error rate of 5 percent, two-sided. The

process of generating a dataset and estimating the re-

quired sample size for the various strata was repeated

100 times, and estimates were averaged across replica-

tions in order to reduce random simulation error. The

resulting value represented the number of subjects to be

randomized, and was multiplied by the inflation factor

1/P in order to obtain the number of subjects to be re-

cruited. For the PGD the same steps were performed,

but since no subject selection was applied, the number

of subjects to be randomized equaled the number to be

recruited.

The data simulated for subjects in a selected stratum

could be used to derive an (extrapolated) overall effect-

size estimate (hazard ratio) for the overall unrestricted

population based on the regression model, with parame-

ters estimated from the data in that particular replication.

Table 1 Parameters and parameter values that define the

various simulation scenarios

Scenario r Δ β1 β2 β3 β4

IA 0.7 0.5 0.0 0.0 0.0 −0.6

IB 0.7 0.5 0.0 0.0 −0.1 0.0

IC 0.7 0.5 0.0 0.0 −0.1 −0.6

IIA 0.7 0.5 −0.3 0.0 0.0 −0.6

IIB 0.7 0.5 −0.3 0.0 −0.1 0.0

IIC 0.7 0.5 −0.3 0.0 −0.1 −0.6

IIIA 0.7 0.5 0.0 0.5 0.0 −0.6

IIIB 0.7 0.5 0.0 0.5 −0.1 0.0

IIIC 0.7 0.5 0.0 0.5 −0.1 −0.6

r is the correlation between A0 and A1. ∆ is the assumed mean improvement

on the marker on treatment in the first design stage. β1 is the primary effect

of treatment in the second stage, β2 is the main effect of baseline marker

level, β3 is the treatment status by baseline marker level interaction and β4 is

the treatment status by first-stage marker improvement interaction.
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This reflects the situation whereby a particular selection

design is carried out and a treatment effect for the total

population is estimated from the results of that specific

trial. Obviously, this overall effect-size estimate becomes

less precise when it is derived from an increasingly re-

stricted subgroup. We evaluated the precision of these esti-

mates for the various strata in both ARD and BSD by

estimating the effect-size for the overall population from

the various strata and replicating this process 1000 times.

Empirical example of antihypertensive trials with

diabetic patients

We evaluated three designs for a scenario derived from

the data of two empirical studies. The Reduction in

End Points in NIDDM (noninsulin-dependent diabetes

mellitus) with the Angiotensin II Antagonist Losartan

(RENAAL) study and the Irbesartan Diabetic Nephropathy

Trial (IDNT) were both multinational, randomized,

double-blind trials with a renal endpoint (development of

end-stage renal disease or death from any cause), con-

ducted in patients in advanced stages of diabetic nephrop-

athy [18,19]. The RENAAL and IDNT trials involved 1513

and 1715 patients respectively. In the RENAAL trial,

patients received losartan (either 50 or 100 mg/day) or

placebo. In the IDNT trial, patients received irbesartan

(300 mg/day), amlodipine (10 mg/day) or a matched pla-

cebo. Both trials were designed to compare an angiotensin

receptor blocker based antihypertensive regimen with a

conventional blood pressure lowering regimen. To this

end, blood pressure was targeted to achieve a blood pres-

sure goal of less than 140/90 mmHg. If the blood pressure

target was not achieved, additional antihypertensive agents

(but not ACE-inhibitors or angiotensin receptor blockers)

were allowed throughout the study. The average follow-up

time was 3.4 years for the RENAAL study and 2.6 years

for IDNT. Several clinical and laboratory characteristics

were assessed at regular intervals during the trials. These

included a measurement of albuminuria at baseline and

after 3 months of follow-up. For the present study, the

data from the losartan and irbesartan arms were pooled

into a single active-treatment group and compared to the

pooled data from both placebo arms. For the purpose of

analysis, the amlodipine arm (567 subjects) of the IDNT

trial was excluded. The distribution of albuminuria levels

was first normalized by applying a log-transformation, and

then standardized and shifted three units upward, in order

to allow for comparisons with the results from our simula-

tions. Follow-up was truncated at 750 days (approximately

2 years), again to allow for comparisons.

The data were fitted to the model represented by

Equation 1, in order to estimate the effects of treatment,

biomarker levels, and their interactions on the outcome.

The other parameters used in the simulations (r, Δ,

and λ0) were also derived from the empirical data.

The resulting scenario was evaluated using the simula-

tion approach described above. This allowed us to deter-

mine the number of patients to recruit for the PGD and

for the various strata in the ARD and BSD for this par-

ticular empirical example.

Results
Simulation results for the first set of scenarios are pre-

sented in Figure 1. These scenarios did not include a pri-

mary effect of treatment unrelated to baseline marker

level or short-term marker improvement (β1 = 0), nor an

association between baseline marker level and outcome

incidence (β2 = 0). In other words, baseline marker level

was not included as a prognostic factor for survival, and

the full effect of treatment as compared to placebo could

be predicted from baseline marker levels or early marker

improvements during the run-in stage.

In scenario IA, the effect of treatment was fully

expressed as part of the interaction with early marker

improvement (β3 = 0, β4 ≠ 0). In this case, both ARD and

BSD had the potential to reduce sample-size require-

ments in comparison to PGD. For ARD in particular, the

increase in treatment effect from the unselected popula-

tion to more restricted patient strata outweighed the loss

of efficiency due to the exclusion of subjects that did

not meet the selection criteria. With optimal restriction

(P = 0.5), ARD required a little under one third of the

sample size that was required with PGD. Further restric-

tion reduced the comparative efficiency of ARD, since

the further increase in treatment effect no longer out-

weighed the exclusion of subjects after the run-in stage.

It should be noted that when P = 1, ARD required

slightly more subjects than either PGD or BSD (a general

picture seen in all evaluated scenarios), as events during

the active run-in stage were excluded in the analysis, lead-

ing to a slightly smaller total event rate in ARD. BSD was

also more efficient than PGD as the higher baseline

marker levels were correlated with larger marker improve-

ment and thus a larger effect on survival. As a result, sub-

jects in the more restricted strata generally displayed a

larger marker improvement and hence a stronger effect of

treatment. At the optimal level of restriction (P = 0.7),

BSD was about 30 percent more efficient than PGD, but

still less efficient when compared to ARD.

When the effect of treatment was fully expressed as

part of the interaction with baseline marker levels (β3 ≠ 0,

β4 = 0; scenario IB), neither BSD nor ARD were more

efficient than PGD for any value of P. In this case, the lar-

ger treatment effect in more restricted strata was can-

celled out by the increasing proportion of subjects that

were excluded after selection. ARD was less efficient than

BSD as improvement on the marker during run-in was

only partly related to baseline marker level, and hence to

an increase in effect size with more restricted strata. In
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general, subjects with a larger short-term improvement

had a higher baseline marker level to start with, and

while improvement in the marker in itself was unrelated

to survival in this scenario (β4 = 0), baseline marker level

was not (β3 ≠ 0).

When the treatment effect could be predicted by the

baseline marker level as well as short-term marker im-

provement (β3 ≠ 0, β4 ≠ 0; scenario IC), ARD and BSD

had some potential to increase efficiency when com-

pared to PGD, but considerably less than when the treat-

ment effect was only included as part of the interaction

with marker improvement (scenario IA). For ARD, the

increased treatment effect in more restrictive strata still

outweighed the exclusion of subjects after run-in, but

only up to a certain degree of restriction. Further restric-

tion (P < 0.2) dramatically reduced its efficiency relative

to PGD. The largest increase in efficiency of ARD corre-

sponded to approximately 25 percent fewer subjects

than PGD. For BSD, the maximum efficiency gain was

only 10 percent.

Figure 2 shows the results for the second set of scenar-

ios which all included a primary effect of treatment

(β1 ≠ 0), which meant that part of the long-term treat-

ment effect was unrelated to baseline marker level or

short-term marker improvement. These scenarios did

not include an association between baseline marker level

and outcome (β2 = 0). In this case, sample sizes were re-

duced overall since the total effect of treatment was a

combined function of β1, β3 and β4 (Equation 2), and

therefore larger than in the scenarios of the first set. In

general, the results showed the same patterns as ob-

served for the first set, but the potential for an efficiency

gain (for ARD and BSD as compared to PGD) was re-

duced over the whole range of P. This resulted from the

fact that the relative difference in treatment effect asso-

ciated with an increase in β3 and/or β4 was smaller.

Figure 3 presents the results for the third set of sce-

narios, which are very similar to those for the first set.

Scenarios IIIA-C included an association between base-

line marker level and outcomes (β2 ≠ 0), but no primary

A

B C

Figure 1 Improvement rates in the number of patients to recruit for ARD and BSD as compared to PGD under scenarios IA-C. Positive

improvement indicates smaller sample sizes and thus higher efficiency. The sample size requirements for the parallel group design were 1386,

800 and 318 for scenario IA-C, respectively. ARD, active run-in design; BSD, baseline selection design; PGD, parallel group design.
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effect of treatment independent of the interaction with

baseline marker level or short-term marker improvement

(β1 = 0). Equation 2 already demonstrates that β2 had no

influence on the treatment effect size, but instead resulted

in an overall increase in event rate (for both the control

and the treatment group), which was corrected for by a

lowering of the baseline hazard.

Figure 4 shows the estimates of the effect size in the

full (unselected) patient population as derived from the

various patient strata in ARD and BSD. As expected,

the imprecision of these effect-size estimates increased

when they were derived from increasingly restricted,

and thus smaller strata. In other words, there is an in-

creased risk that the extrapolated effect-size estimate

for the unselected population is biased when it is de-

rived from increasingly restricted strata. The impreci-

sion is larger for BSD than for ARD, because the time

between patient selection and end of follow-up was

shorter in ARD.

Finally, Figure 5 shows the results for the scenario that

was derived from empirical data. This scenario was char-

acterized by the following parameters: β1 = -0.25 (P =

0.51), β2 = 1.10 (P < 0.01), β3 = 0.05 (P = 0.61), β4 = -0.49

(P < 0.01), r = 0.79, Δ = 0.32, and λ0 = 7.7e−5. These results

indicate that baseline albuminuria is a strong prognostic

factor for endpoint-free survival, but not significantly as-

sociated with differential treatment response, while early

improvement in albuminuria is significantly associated

with differential response to treatment. In addition, the

primary effect of treatment was small and not significant.

Clearly, these estimates were derived from a model that

may not have been the most adequate representation of

these data. As a result, they should be interpreted with

care.

The simulation results indicate that BSD does not have

large potential to increase efficiency when compared to

PGD. In contrast, ARD did have the potential to increase

efficiency. With an unselected population (P = 1.0) the

A

B C

Figure 2 Improvement in the number of patients to recruit for ARD and BSD as compared to PGD under scenarios IIA-C. Positive

improvement indicates smaller sample sizes and thus higher efficiency. The sample size requirements for PGD were 298, 228 and 146 for scenario

IIA-C, respectively. ARD, active run-in design; BSD, baseline selection design; PGD, parallel group design.
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A

B C

Figure 3 Improvement in the number of patients to recruit for ARD and BSD as compared to PGD under scenarios IIIA-C. Positive

improvement indicates smaller sample sizes and thus higher efficiency. The sample size requirements for the PGD were 900, 692 and 236 for

scenario IIIA-C, respectively. ARD, active run-in design; BSD, baseline selection design; PGD, parallel group design.

Figure 4 Estimates of the hazard ratio for the overall (unrestricted) population as derived from the various patient strata in ARD and

BSD. Each circle represents the estimate from a single replication. The white dot is the average estimate over 1000 replications. ARD, active run-in

design; BSD, baseline selection design.
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ARD required about 20 percent more subjects than the

PGD, but with optimal restriction (P = 0.5) the advantage

was about 35 percent (Figure 5).

Discussion
This study evaluated the sample-size requirements (the

number of subjects to be recruited) to establish treat-

ment efficacy for three study designs across a range of

realistic scenarios. These scenarios characterized the ef-

fect of treatment on endpoint-free survival as a combin-

ation of an interaction with a baseline marker and/or

short-term marker improvements in addition to a pri-

mary effect that was unrelated to both. The designs

include: a conventional PGD with an unselected study

population, a BSD that is similar to the PGD, but ran-

domizes only a selection of the recruited population

based on a predictive baseline marker, and 3) an ARD that

exposes all subjects to a short treatment run-in phase and

randomizes only those with a predefined improvement on

the marker during the run-in stage.

Findings indicated that ARD is generally the most effi-

cient design to establish treatment efficacy when short-

term improvements during the active run-in stage are

a reliable predictor for the long-term effect of treat-

ment on survival. In the presence of a reliable base-

line predictor or a primary treatment effect (unrelated

to any observed marker value) the advantage of ARD

decreased.

When short-term improvements were strongly related

to long-term survival, BSD had an advantage over PGD

as higher baseline marker levels were correlated with lar-

ger short-term improvements. When only the baseline

marker level in itself was predictive of treatment efficacy,

the observed effect in BSD was larger than in PGD, but

did not result in a more efficient design as a portion of

the recruited population was excluded in the selection.

In none of these cases was there any meaningful advan-

tage of baseline selection.

An additional scenario was evaluated that was based

on empirical data from two diabetes trials. Here, baseline

albuminuria was a prognostic biomarker for endpoint-

free survival, and short-term reduction in albuminuria

after treatment was predictive of differential treatment

response on survival. In this scenario, ARD had the po-

tential to reduce sample-size requirements as compared

to PGD with up to 35 percent. This efficiency advantage

would have been achieved by randomizing only the top

50 percent of the recruited population with the largest

early reduction in albuminuria during the run-in phase.

While in this example patient selection was based on a

predictive biomarker, it could also be based on a gen-

omic marker [20] or a risk score from a prognostic

model [21]. The use of genomic-based predictive bio-

markers is an area of great research interest in oncology.

The discovery of genes that have been proven to be of

clinical relevance such as the Her2/neu gene in breast

cancer and epidermal growth factor 1 (EGFR1) in non-

small cell lung cancer has intensified interest in this

area. Mutations in these genes can be used for baseline

patient selection who are more susceptible for interven-

tion. It has been shown that Her2/neu positive tumors

are more aggressive. Patients with Her2/neu overex-

pressing tumors benefit from trastuzumab, a monoclonal

antibody against the Her2/neu receptor. It should be

noted that not all patients with positive Her2/neu status

respond to trastuzumab, which may be due to primary

or acquired resistance against trastuzumab [22,23]. With

regards to EGFR1, two small molecule tyrosine kinase

Figure 5 Sample-size requirements for ARD, BSD and PGD under the scenario based on empirical data from two clinical trials that

assessed the efficacy of antihypertensive treatments in diabetic patients. ARD, active run-in design; BSD, baseline selection design; PGD,

parallel group design.
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inhibitors (gefitinib and erlotinib) against EGFR1 are

available. Emerging data demonstrate that among non-

small-cell lung carcinoma patients mutations in the tyro-

sine kinase domain (exons 18, 19 and 21) are predictive

of the response to gefitinib and erlotinib [24,25]. Muta-

tions in the tyrosine kinsase domain stimulate EGFR1

signaling, thereby increasing susceptibility to EGFR1 in-

hibitors and amplifying clinical responsiveness. More ex-

amples about genomic predictive markers in oncology

are reviewed elsewhere [26]. With respect to enrichment

design, a recent study has suggested that among lung

cancer patients, selecting responder patients after two

cycles of chemotherapy in combination with histological

scoring may predict long-term survival benefit [27]. Fur-

ther studies are required to confirm these findings. An

example of predictive short-term change with treatment

includes the lowering of LDL cholesterol and the effect

of lipid-modifying therapies on the risk for cardiovascu-

lar events [28].

Both BSD and ARD apply selection based on an indi-

vidual patient measure that is associated with differential

treatment response. This measure is obtained either at

baseline (BSD) or after a relatively short exposure to

treatment in an active run-in stage (ARD). In statistical

terms, there is an interaction between this measure and

the long-term effect of treatment on the outcome. In

biological terms, there may be an undisclosed underlying

mechanism to explain the interaction. As a result, every

conceivable gain in efficiency (with BSD or ARD) is as-

sociated with a reduction in the generalizability of the

trial results. This results from the fact that the selected

and randomized subgroup is unrepresentative of the en-

tire patient population. Moreover, it becomes increas-

ingly difficult to extrapolate the observed effect to the

overall population when selection becomes increasingly

restrictive.

As a result, findings from BSD and ARD apply primarily

to the selected patient subgroup and cannot be readily ex-

trapolated to a broader population without running the

risk of introducing bias. This complicates general state-

ments on the efficacy of the investigated drug and illus-

trates an important concern regarding the use of these

designs in confirmatory clinical trials. In a sense, both

BSD and ARD generate a substantial amount of “missing

data”, which is to say, information on the (long-term) effi-

cacy and safety of the drug that will be missing for the

deselected population. In this respect, ARD has an advan-

tage over BSD in that it collects considerable information

on the short-term effects of the experimental treatment

during the run-in phase. Both ARD and BSD are likely

most beneficial in situations where a meaningful effect of

treatment in the total population is unlikely, but valid

markers are available to reliably identify patient subgroups

where benefit from treatment is improved.

There is also a difference in the clinical implications of

the results from both designs. BSD reflects a situation

whereby prescription of the drug is restricted to patients

with a specific baseline characteristic that is related to

its outcome, which is something that often occurs in

clinical practice as well. ARD, on the other hand, reflects a

situation where the drug is initially prescribed to everyone

and early improvement on a measurable marker decides

whether treatment is continued or aborted.

The practicality of BSD and ARD is obviously dependent

on the availability of a valid and reliable predictive marker

that can identify a patient subgroup most likely to benefit

from treatment. Appropriate markers are those on the

causal path from treatment to effect and are preferably

identified in earlier (pre-clinical) studies. If long-term effi-

cacy of the investigated treatment is unrelated to an avail-

able marker, the enrollment of only marker-positive

subjects may slow down recruitment, increase expenses,

and unnecessarily limit the size of the indicated popula-

tion. As to be expected, both ARD and BSD were also

found to be less efficient than PGD in this scenario

(results not shown). If the investigated treatment truly

benefits a specific subgroup but the marker used for selec-

tion is unfit to accurately identify that group, a beneficial

treatment could mistakenly be abandoned. It is however,

notoriously difficult to identify genuine predictors of dif-

ferential treatment response. Such evidence is usually ac-

cumulated slowly from secondary analyses of existing

trials and meta-analyses.

In the current study, data were generated using a fairly

straightforward model that divided the total effect of

treatment on long-term survival into three components

(a primary effect, an interaction with a baseline marker

and an interaction with short-term improvement on

treatment), and in addition included the baseline marker

as a prognostic marker for survival (unrelated to treat-

ment status).

When the effect of treatment was fully accounted for

by its interaction with the baseline marker, the increase

in efficiency that resulted from larger effect sizes in

more restricted strata was cancelled out by the exclusion

of recruited subjects after selection. In this case, both

BSD and ARD had very limited potential to increase

efficiency as compared to PGD. This resulted from the

fact that baseline marker levels were linearly associated

with the linear predictor (Equation 1) and exponentially

associated with the treatment vs. control hazard ratio

(Equation 3). Consequently, the additional reduction in

the number to randomize decreased exponentially with

further restriction of the indicated population. When re-

striction was more extreme, the exclusion of subjects

after selection started to outweigh the advantage of larger

effects in the more restricted strata. Under these circum-

stances, BSD was only more efficient than PGD when
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there was a very strong (and unrealistic) interaction effect

between baseline marker level and treatment status,

which was not included in the evaluated scenarios.

Some consideration regarding our model should be

mentioned. An increase in the prognostic effect of base-

line marker level increased the treatment effect size, and

hence reduced sample-size requirements despite adjust-

ment of the baseline hazard, to result in equal event

rates for the control group as observed in the other sce-

narios. When data were simulated based on a model that

included a prognostic effect of the baseline marker on

survival there was more variation in the individual haz-

ards. This caused some subjects to develop the endpoint

early in the trial, irrespective of their treatment status,

whereas others were very unlikely to experience the

endpoint during the trial. The net effect was that the

probability of the outcome after a certain period of

follow-up was lower among treated subjects compared

to the treated subjects in the simulations based on the

model without the prognostic effect of baseline marker

level on survival.

The model used is fairly flexible and fitted the experi-

mental data well. However, results and conclusions may

not hold to the same extent if a substantially different

model is used. This will particularly be the case if the

underlying proportional hazards assumption does not

apply.

It should also be noted that the improvement in effi-

ciency with BSD and ARD as reported in this study is

relative to a PGD that disregards baseline marker level

and early changes in the marker in response to treat-

ment as a covariate in the analysis of the data. Including

these factors as covariates in the final drug efficacy ana-

lysis would improve the efficiency of the PGD, and

hence reduce the comparative advantage of both ARD

and BSD.

Conclusions

In summary, our results suggest that an ARD can substan-

tially reduce the number of subjects to recruit in a clinical

trial when short-term improvement on the marker during

the run-in phase is a strong and reliable predictor of dif-

ferential treatment response. Under these conditions, BSD

was also potentially more efficient than PGD, but always

less efficient than ARD given equally restricted strata. For

all other scenarios evaluated, no meaningful advantage

was observed for BSD. Generalizability issues may limit

the applicability of ARD and BSD in practice. In addition,

valid markers must be available to reliably identify patient

subgroups with an increased likelihood to eventually bene-

fit from investigational treatment.
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