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Abstract

Motivation: Computational prediction of compound–protein interactions (CPIs) is of great import-

ance for drug design and development, as genome-scale experimental validation of CPIs is not

only time-consuming but also prohibitively expensive. With the availability of an increasing num-

ber of validated interactions, the performance of computational prediction approaches is severely

impended by the lack of reliable negative CPI samples. A systematic method of screening reliable

negative sample becomes critical to improving the performance of in silico prediction methods.

Results: This article aims at building up a set of highly credible negative samples of CPIs via an in

silico screening method. As most existing computational models assume that similar compounds

are likely to interact with similar target proteins and achieve remarkable performance, it is rational

to identify potential negative samples based on the converse negative proposition that the proteins

dissimilar to every known/predicted target of a compound are not much likely to be targeted by the

compound and vice versa. We integrated various resources, including chemical structures, chem-

ical expression profiles and side effects of compounds, amino acid sequences, protein–protein

interaction network and functional annotations of proteins, into a systematic screening framework.

We first tested the screened negative samples on six classical classifiers, and all these classifiers

achieved remarkably higher performance on our negative samples than on randomly generated

negative samples for both human and Caenorhabditis elegans. We then verified the negative sam-

ples on three existing prediction models, including bipartite local model, Gaussian kernel profile

and Bayesian matrix factorization, and found that the performances of these models are also

significantly improved on the screened negative samples. Moreover, we validated the screened

negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by

training an support vector machine classifier on the positive interactions annotated in DrugBank

and our screened negative interactions. The screened negative samples and the predicted inter-

actions provide the research community with a useful resource for identifying new drug targets

and a helpful supplement to the current curated compound–protein databases.
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1 Introduction

Compound–protein interactions (CPIs) are crucial to the discovery

of new drugs by screening candidate compounds and are also helpful

for understanding the causes of side effects of existing drugs.

Although various biological assays are available, experimental valid-

ation of CPIs remains time-consuming and expensive. Therefore,

there is a strong incentive to develop computational methods to de-

tect CPIs accurately. Meanwhile, with the rapid growth of public

chemical and biological databases, such as the PubChem (Wheeler

et al., 2006), DrugBank (Wishart et al., 2008), SIDER (Kuhn et al.,

2010), STITCH (Kuhn et al., 2014), STRING (Franceschini et al.,

2013) and Gene Ontology (GO) (Ashburner et al., 2013), various

kinds of resources, including drug features such as chemical struc-

tures, side effects and gene expression profiles under drug treatments

and protein features such as amino acid sequences, protein–protein

interaction (PPI) networks and functional annotations, become

available to the research community and consolidate the basis of

computational CPI prediction.

Traditional computational approaches fall roughly into two

categories: structure based and ligand based. The structure-based

methods depend on the structural information of target proteins

that are often unavailable for most protein families. Ligand-based

methods get poor performance for those proteins having few or

none of the known ligands. Recently, a variety of machine learning-

based methods have been proposed and achieved a considerable suc-

cess by taking the viewpoint of chemogenomics (Jaroch and

Weinmann, 2006), which integrates the chemical attributes of drug

compounds, the genomic attributes of proteins and the known CPIs

into a unified mathematical framework. The main rationale underly-

ing the chemogenomics approaches is that similar compounds tend

to bind similar proteins, so that the lack of known ligands for a

given protein can be compensated by the availability of known

ligands of similar proteins and vice versa.

Following the philosophy of chemogenomics, many methods

have been proposed by exploiting various types of features and clas-

sification algorithms (Tabei and Yamanishi, 2013; Yabuuchi et al.,

2011; Yamanishi et al., 2010). With the chemical structure similar-

ity and protein sequence similarity measures, Bleakley and

Yamanishi (2009) proposed the bipartite local model (BLM) to infer

CPIs by training local support vector machine (SVM) classifiers

based on known interactions. van Laarhoven et al. (2011) proposed

Gaussian interaction profile (GIP) kernels that exploit the topology

of CPI networks. However, these methods still suffer from the lack

of known interactions between the drugs and proteins of interest,

which often leads to the failure of prediction. Therefore, Mei et al.

(2013) improved BLM by exploiting the known interactions of

neighbors to compensate the lack of interaction information. van

Laarhoven and Marchiori (2013) also used the interaction profiles

of weighted nearest neighbors to improve the GIP method.

Instead of utilizing the attributes of drugs and proteins separ-

ately, more and more researchers combined these attributes into a

single feature vector by the concatenation or tensor product oper-

ators and then built classifiers based on the integrated features and

known CPIs. For example, Jacob and Vert (2008) proposed SVM

classifiers with pairwise kernels that were derived, respectively, from

similarity measures of drugs and proteins. Yamanishi et al. (2008)

proposed the bipartite graph inference that maps drugs and proteins

into a unified Euclidean feature space in which the distances between

drugs and proteins linked by known interactions are minimized and

otherwise maximized. The network-based inference originally pro-

posed for personal recommendation (Zhou et al., 2010) was also

used to identify CPIs (Alaimo et al., 2013; Cheng et al., 2012). Other

methods including kernel-based data fusion (Wang et al., 2011),

Kernelized Bayesian matrix factorization with twin kernels

(KBMF2K) (Gonen, 2012), restricted Boltzmann machine (Wang

and Zeng, 2013) and semi-supervised methods (Chen and Zhang,

2013; Xia et al., 2010) were successively proposed. In addition to

chemical structures and protein sequences, researchers also resorted

to other attributes of drugs and proteins to reveal their interacting as-

sociations, including the drug expression profiles (Carrella et al.,

2014; Iorio et al., 2010; Wolpaw et al., 2011), functional groups

(He et al., 2010) and side effects (Campillos et al., 2008; Mizutani

et al., 2012) of drugs, signaling pathways and GO annotations

(Jaeger et al., 2014) of proteins or even the combination of these

attributes (Gottlieb et al., 2011, 2012; Perlman et al., 2011).

Most previous approaches used experimentally validated CPIs as

positive samples and randomly generated negative samples to learn

the prediction models. However, the randomly generated negative

samples may include real positive samples not yet known. A classi-

fier trained by using such randomly generated negative samples may

yield high cross-validation accuracy but very possibly has poor

performance on independent, real test datasets. Screening highly re-

liable negative samples is therefore critical to improving the accur-

acy of computational prediction methods. The importance of true-

negative interactions was recently highlighted as one of the future

developments in predicting drug–target interactions (Ding et al.,

2014). Motivated by this, we set about to screen in silico highly

credible negative samples of CPIs. An assumption underlying most

computational methods for predicting CPIs is that similar drug com-

pounds are likely to interact with similar target proteins. Our

method is based on the converse negative proposition, i.e. the pro-

teins that are dissimilar to every known/predicted target of a given

compound are not much likely to be targeted by the compound and

vice versa. We integrated various resources of compounds and pro-

teins, including chemical structures, chemical expression profiles

and side effects of compounds, amino acid sequences, PPI networks

and GO functional annotations of proteins, to a systematic screen-

ing framework. We evaluated our method on both human and

Caenorhabditis elegans data. We first tested our screened negative

samples on six classical classifiers, including random forest, L1- and

L2-regularized logistic regression, naive Bayes, SVM and k-nearest

neighbor (kNN). All these classifiers achieved remarkably higher

performance on our negative samples than on randomly generated

negative samples. We also verified our negative samples on three

existing prediction models, including BLM (Bleakley and

Yamanishi, 2009), Gaussian kernel profile (van Laarhoven et al.,

2011) and Bayesian matrix factorization (Gonen, 2012), and found

that the performances of these models are also significantly im-

proved on the screened negative samples. Furthermore, we validated

our screened negative samples with a drug bioactivity dataset.

Finally, we derived two sets of new CPIs by training an SVM

classifier on the positive interactions annotated in DrugBank and

our screened negative interactions. These screened negative samples

and the predicted interactions can serve the research community as a

useful resource for identifying new drug targets and as a helpful sup-

plement to the current curated compound–protein databases.

2 Materials

2.1 Compound–protein interaction

CPIs were retrieved from DrugBank 4.1 (Wishart et al., 2008),

Matador (Gnther et al., 2008) and STITCH 4.0 (Kuhn et al., 2014).
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DrugBank and Matador are manually curated databases, and

STITCH is a comprehensive database that collects CPIs from four

different sources: experiments, databases, text mining and predicted

interactions. Meanwhile, STITCH provides a score ranging from

0 to 1000 for each interaction, which indicates the confidence of the

CPI supported by four types of evidence, i.e. experimental valid-

ation, manually curated databases, text mining and predicted inter-

actions. We assigned the interactions from DrugBank and Matador

the highest score 1000 because these interactions are supported by

biochemical experiments and the literature. Totally, we got

2 290630 interactions between 367 142 unique compounds and

19342 proteins of human, and 2141740 interactions between

276294 unique compounds and 11234 proteins of C.elegans. For

simplicity, we refer to the created assembly of CPIs as K and denote

by a triple ðci;pj;wijÞ 2 K the interaction between drug ci and pro-

tein pj with confidence score wij in the rest of the article.

2.2 Chemical data

2.2.1 Chemical structure similarity

Chemical structures (also referred to as fingerprints) of drugs were

obtained from the PubChem database (Wheeler et al., 2006). We

calculated the Jaccard score (Jaccard, 1908) of the fingerprints as

the chemical structure similarity between compounds. The Jaccard

score between compounds c and c0 is defined as jc \ c0j=jc [ c0j,

which is the ratio of the number of common substructures between

c and c0 over the total number of substructures in c and c0. There are

totally 881 kinds of substructures used in our analysis for human

and C.elegans. Applying this operation to all drug pairs, we thus

constructed a chemical similarity matrix.

2.2.2 Side effect similarity

Side effects of drugs were downloaded from the SIDER database

(Kuhn et al., 2010). For the drugs involving in CPIs but not included

in the SIDER database, we employed a recently proposed method

that predicts side effects based on chemical fragments (Pauwels

et al., 2011) to predict side effects. Similarly, we computed the

Jaccard score of each pair of drugs as side effect similarity based on

either their known side effects or top 10 predicted side effects in case

they are unknown (Perlman et al., 2011).

2.3 Protein data

2.3.1 Sequence similarity

Amino acid sequences of proteins were obtained from the UCSC

Table Browser. We computed sequence similarity between proteins

using a normalized version of Smith–Waterman score (Smith and

Waterman, 2010). The normalized Smith–Waterman score between

two proteins g and g0 is swðg; g0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

swðg; gÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

swðg0; g0Þ
p

where

swð:; :Þ means the original Smith–Waterman score. Applying this

operation to all protein pairs, we got the similarity matrix of protein

sequences.

2.3.2 Functional annotation semantic similarity

GO annotations were downloaded from the GO database

(Ashburner et al., 2013). Semantic similarity score between each

pair of proteins was calculated based on the overlap of the GO terms

that were associated with the two proteins (Coutoa et al., 2007). All

three types of ontologies were used in the computation as similar

drugs are expected to interact with proteins that act in similar biolo-

gical processes or have similar molecular functions or reside in simi-

lar compartments. We computed the Jaccard score with respect to

the GO terms of each pair of proteins as their similarity.

2.3.3 Protein domain similarity

Protein domains were extracted from PFAM database (Punta et al.,

2012). Each protein was represented by a domain fingerprint

(binary vector) whose elements encode the presence or absence of

each retained PFAM domain by 1 or 0, respectively. The numbers of

PFAM domains for human and C.elegans are 1331 and 3837,

respectively. We computed the Jaccard score of any two proteins via

their domain fingerprints as their similarity.

3 Methods

3.1 Integration of multiple similarities

We have computed multiple similarity measures from different

features for both drugs and proteins as mentioned above. For drugs

ci and cj, we formulate them into a single comprehensive similarity

measure as below:

CSij ¼ 1�
Y

n

ð1� cs
ðnÞ
ij Þ (1)

in which cs
ðnÞ
ij (n¼1, 2) represents the similarity measure derived

from features of chemical structure and side effect, respectively.

Note that similar formulation was also adopted by STITCH (Kuhn

et al., 2014), as it can be easily extended to integrate more similarity

measures. Similarly, we computed the comprehensive similarity be-

tween proteins pi and pj by

PSij ¼ 1�
Y

n

ð1� ps
ðnÞ
ij Þ; (2)

where ps
ðnÞ
ij (n¼1, 2, 3) represents the similarity measure derived

from sequence similarity, functional annotation semantic similarity

and protein domain similarity, respectively.

3.2 The screening framework

Most existing prediction methods for CPIs (positive samples) are

based on the assumption that similar compounds are likely to inter-

act with the proteins that are similar to the corresponding known

target proteins. Our basic idea was inspired by the converse negative

proposition of this assumption. Specifically, we assume that a pro-

tein dissimilar to every known/predicted target of a compound is not

much likely to be targeted by this compound, and on the other

hand, a compound not similar to any known/predicted compound

targeting a protein is not much likely to target this protein. For sim-

plicity, we refer them as protein dissimilarity rule and drug dissimi-

larity rule, respectively. Both rules are simultaneously applied in our

screening framework so as to identify the most reliable negative

samples of CPIs. Different from existing prediction methods that

often depend on known CPIs for making reliable predictions, our

negative sample screening framework exploits both validated and

predicted CPIs. Figure 1 shows the flowchart of our method. Here,

the three green dashed-line boxes show the data resources used in

our screening framework, and the protein dissimilarities and drug

dissimilarities are, respectively, computed so as to gain a combined

score for each candidate negative sample. We summarize the screen-

ing steps as follows:

1. Compute the integrated similarity of each pair of compounds/

proteins via Equation (1)/Equation (2). Build the assembly K of

known/predicted CPIs as mentioned above.

2. Build the set of candidate negative interactions from all possible

interactions excluding the created assembly K of known/

predicted CPIs. We take the candidate negative interaction

Improving compound–protein interaction prediction i223
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between compound k and protein j, denoted by ðck; pj;dkjÞ with

dkj indicating the distance between compound k and protein j, as

an example to demonstrate the screening process. Figure 2 is to

illustrate the process of calculating dkj.

a. For any protein pl targeted by ck in K, we compute the

weighted score spcjkl ¼ wkl � PSjl that indicates the possibility

of protein pj being targeted by compound ck in consideration

of the similarity between pj and pl. Taking into account the

similarity between pj and each known/predicted protein pl tar-

geted by compound ck, i.e. (ck; pl;wklÞ 2 K, we calculate the

combined score by summing up the weighted scores spcjkl
with respect to l, and thus obtain SPCjk ¼

P

lspcjkl.

b. Similarly, we compute the weighted score scpkji ¼ wij � CSik
that represents the possibility of compound ck targeting

pj in consideration of the similarity between ck and ci.

Considering the similarity between ck and each known/

predicted compound ci targeting protein pj, i.e.

(ci; pj;wijÞ 2 K, we calculate the combined score by summing

up the weighted scores spckji with respect to i and thus ob-

tain SCPkj ¼
P

iscpkji.

c. For compound ck and protein pj, we define the distance be-

tween ck and pj as below:

dkj ¼ e�ðSPCjkþSCPkjÞ: (3)

dkj is the final score representing the possibility that com-

pound ck does not target protein pj. The larger dkj is, the

higher the possibility of ck not targeting pj is.

3. Build the set of positive interactions from two manually curated

databases: DrugBank (Wishart et al., 2008) and Matador

(Gnther et al., 2008).

4. Rank the potential negative CPIs according to the scores ob-

tained by Equation (3), and those with the highest scores are

taken to form the set of negative sample candidates.

5. The negative sample candidates are further filtered by using fea-

ture divergence of compound and protein, as described in

Section 3.3.

6. Combining the positive interactions and negative interactions,

we get a gold standard set of CPIs. On the basis of the chemical

substructures and protein PFAM domains, we construct the ten-

sor product for each CPI, so that each interaction is represented

by a vector in the chemogenomical space.

7. Train a classifier (e.g. SVM) by using the chemogenomical fea-

ture vectors, tune the model parameters via cross-validation and

finally predict new CPIs.

Conceptually, the confidence values of the known/predicted inter-

actions wkl and wij are propagated to the candidate negative inter-

actions via similar proteins and compounds in Step 2(a) and Step

2(b). The protein similarity linking compound ck to protein j via

protein pl is formulated by spckjl in Step 2(a), and chemical similar-

ity linking protein pj to compound ck via compound ci is formulated

by scpkji in Step 2(b). In Step 2(c), the two resulting scores are com-

bined according to Equation (3), which embodies the protein dis-

similarity rule and the drug dissimilarity rules through a negative

exponent function. In particular, the known/predicted interactions

function as a bridge to link compounds and proteins that do not

form potential interactions of high probability.

Fig. 1. The flowchart of our negative CPI screening framework. Three green dashed-line boxes show the data resources used in our screening process, and the

red dashed-line boxes represent the screening steps that include multiple operations

Fig. 2. Schematic diagram of calculating the score dkj for a candidate com-

pound–protein negative sample ðck ;pj ;dkj Þ. Two colors, blue and red, are

used to differentiate the weights and similarities for calculating two combined

scores SPCjk and SCPkj, respectively

i224 H.Liu et al.
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3.3 Filtering by feature divergence

It is known that compounds with similar chemical features may

have greatly different binding bioactivity (activity cliff) (Sun and

Bajorath, 2012). On the other hand, compounds with completely

different core structures could potentially target similar proteins

(scaffold hopping) (Sun et al., 2012). When the number of validated/

predicted target proteins of a specific compound is small and thus

covers limited proteomic features, it is likely that some proteins

screened via proteomic feature dissimilarity based on all known

target proteins are actually the targets of the compound. From the

perspective of protein, similar situation maybe exists, when the

number of validated/predicted compounds targeting a protein is

small. Thus, we require that the number of validated/predicted inter-

actions participated by the protein and the compound of each nega-

tive sample candidate should be larger than some predefined

threshold. By setting the threshold to 15, we got 23 392 compounds

and 10757 proteins of human, 33 353 compounds and 7584

proteins of C.elegans, which were used to construct the negative

samples.

Moreover, we expect that the features of the proteins targeted by

a specific compound differ from each other as largely as possible, so

that our dissimilarity rules can exclude more specious candidates

that have similar features to known target proteins. Similarly, the

more different the chemical features of the compounds targeting a

specific protein are, the more false-positive targeting compounds

could be excluded by our dissimilarity rules. In other words, the

credibility of the screened negative samples is positively correlated

to the feature divergence of the proteins (compounds) in validated/

predicted interactions associated to a specific compound (protein).

Therefore, we exploited the feature divergence to further screen the

candidate negative samples. Since variance is a commonly used

measure for evaluating data divergence, we carried out statistical

test to check whether the similarity variance of the subset of proteins

(compounds) in interactions associated to each compound (protein)

in the candidate negative samples is significantly larger than the

population variance. Take compounds as example, the similarity

variance of the compound population is 0.0335, which can be easily

computed based on CSij (see Equation 1). For a subset of n com-

pounds interacting with a protein, the null hypothesis is that the

sample variance is less than the compound population variance, and

the alternate hypothesis is the opposite of the null hypothesis,

then the sample variance follows v2 distribution with degree of free-

dom n – 1. With a significance level 0.05, we filtered out more spe-

cious candidates and finally obtained 384 916 negative samples

between 14 613 unique compounds and 2229 unique proteins of

human by setting the threshold of dkj to 0.9 (� e�0:1). For C.elegans,

we finally got 88 261 negative samples between 2224 unique

proteins and 5278 unique compounds by setting the threshold of dkj
to 0.368.

4 Results

4.1 Performance evaluation protocol

To conduct an objective and fair evaluation on the negative CPIs

screened by our method, we first built the positive samples from the

manually curated databases DrugBank and Matador and then gener-

ated two sets of negative samples: one was generated by randomly

sampling compound–protein pairs not included in the positive sam-

ples, the other was extracted from the list of negative samples

screened by our method. We evaluated the screened negative sam-

ples by comparing the performances of both six classical classifiers

and three existing predictive methods on the same set of positive

samples combining with screened and randomly generated negative

samples, respectively. We selected the top 384 916 screened negative

samples (the dataset is available in the Supplementary Material)

from the ranking list as candidates and used some of them in the

experiments.

As shown in Supplementary Figure S1, the frequency distribution

of interactions is biased to only a small portion of compounds/

proteins, indicating that random sampling over the whole inter-

actions might cover only a limited number of compounds and pro-

teins. Therefore, as in Tabei and Yamanishi (2013) and Yamanishi

et al. (2014), we used two protocols: pairwise cross-validation and

blockwise cross-validation, to evaluate our negative samples against

randomly generated negative samples. Concretely, pairwise cross-

validation assumes that the aim is to detect missing interactions

between known ligand compounds and known target proteins with

information of interaction partners, while blockwise cross-

validation assumes that the goal is to detect new interactions for

new ligand compounds and target proteins with no information of

interaction partners. Pairwise cross-validation was performed in 3

steps: (i) the CPIs in the gold standard set are randomly split into

five subsets of roughly equal size; (ii) each subset is taken in turn as

a test set and the remaining four subsets are used to train a predict-

ive model, whose prediction accuracy on the test set is then eval-

uated and (iii) the average prediction accuracy over the 5-folds is

used as the final performance measure. Instead of splitting inter-

actions, blockwise cross-validation randomly splits the compounds

and proteins in the gold standard set into five subsets, respectively.

Each compound subset and each protein subset are taken in turn

and combined as a test set, and then a predictive model is trained on

the compound–target pairs included in the remaining four com-

pound subsets and four protein subsets and is further evaluated on

the test set. Finally, the average prediction accuracy over the 5-folds

is calculated.

Several performance measures are used in the following experi-

ments. Denote by TP and FP the numbers of correctly and falsely

predicted positive CPIs, TN and FN the numbers of correctly

and falsely predicted negative CPIs, the measures are precision

[or positive predictive values (PPV)]¼TP/(TPþFP), recall (or

sensitivity)¼TP/(TPþFN), specificity¼TN/(FPþTN) and AUC

(area under the ROC curve). Especially, the PPV measure reflects

the discriminatory power of a classifier to distinguish true positives

when the number of negative samples is far larger than that of posi-

tive samples. In addition, we report the precision–recall curve be-

cause it is rather informative when the number of positive examples

is small.

4.2 Evaluation on classical classifiers

4.2.1 Pairwise cross-validation

The human dataset that we used includes 3369 positive interactions

between 1052 unique compounds and 852 unique proteins, and the

C.elegans dataset includes 4000 positive interactions between 1434

unique compounds and 2504 unique proteins (the datasets are avail-

able in the Supplementary Material). Similar to Tabei and

Yamanishi (2013), we evaluated the performance of each classifier

when the ratio of negative samples to positive samples increases

from 1 to 5. The randomly generated negative samples were pro-

duced by randomly sampling pairs of compound and protein not

included in the positive samples. For screened negative samples, we

got the required number of interactions from the top 384916 candi-

dates in the ranking list produced by our method. We produced the

Improving compound–protein interaction prediction i225
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chemogenomical features of the positive and negative samples by

performing tensor product of chemical substructures and protein

domains.

We conducted performance evaluation on six classical classifiers

by comparing our screened negative samples against randomly gen-

erated negative samples. The six classical classifiers are naive Bayes,

random forest, L1-logistic regression, L2-logistic regression, SVM

and kNN. The naive Bayes, random forest and kNN were run by

using Weka 3.7 (Hall et al., 2009), L1- and L2-logistic regression

were run by liblinear 1.94 (Fan et al., 2008) and SVM was run by

libsvm 3.17 (Chang and Lin, 2011). All these methods were run on

default setting except for kNN where k is set to 1, 3 and 5, respect-

ively. As similar results were obtained for different k values, we re-

ported only the results of k¼1. Table 1 shows the AUC, recall and

precision measures of the six classifiers on human data. We found

that the performances of all six classifiers were significantly

improved on our screened negative samples in comparison to on

randomly generated negative samples. For example, for the six clas-

sifiers from naive Bayes to SVM, the average AUC improvement

achieved on our screened negatives over the randomly generated

negatives is 8.0%, 53.4%, 39.7%, 4.2%, 5.3% and 29.6%, respect-

ively. When the ratio of negative samples increases, the AUC values

of most classifiers keep steady or increase slightly. However, we also

noticed that the recall and precision measures of most classifiers de-

crease with the increase of the ratio of negative samples, this is

mainly due to the increasingly imbalanced ratio of the negative sam-

ples to the positive samples, which leads to the increasing bias of the

classification decision boundary against the positive ones. In add-

ition, we obtained similar results on C.elegans, as shown in

Supplementary Table S1. These empirical results demonstrate the

high reliability of our screened negative samples.

4.2.2 Blockwise cross-validation

Here the positive samples are the same as those used in pairwise

cross-validation. An equal number of random negative samples to

positive samples were selected by the random sampling procedure

mentioned above. Also, an equal number of screened negative sam-

ples were randomly extracted from the top 384916 candidates in

our ranking list. The six classical classifiers were run in the same

way as mentioned above, and the precision–recall curves and AUC

histograms are shown in Figure 3 and Supplementary Figure S2.

Compared with pairwise validation, the six classifiers perform

worse in blockwise cross-validation on both screened and randomly

generated negative samples, but their performances are still substan-

tially improved on the screened negative samples. In particular, on

randomly generated negative samples, the performance of each clas-

sifier deteriorates dramatically under blockwise cross-validation,

but most classifiers except for naive Bayes and kNN still achieved

relatively high AUC values on the screened negative samples:

L1- and L2-logistic regression and SVM achieved AUC values larger

than 0.8. As also shown in Supplementary Figure S3, all the six clas-

sifiers obtain larger AUC values on screened negative samples than

on random negative samples of C.elegans, whereas the overall per-

formances of these classifiers decrease slightly in comparison to that

on human dataset.

4.3 Evaluation on existing predictive methods

We further checked whether existing predictive methods can achieve

higher performance on screened negative samples than on randomly

generated negative samples. The evaluated existing methods include

BLM (Bleakley and Yamanishi, 2009), RLS-avg and RLS-Kron

classifiers with GIP kernels (van Laarhoven et al., 2011), KBMF2K-

classification and KBMF2K-regression (Gonen, 2012). RLS-avg and

RLS-Kron were run by setting two different groups of parameters,

(0.5, 0.5) and (1,1), respectively, and the others were run by default

settings. All these methods were originally evaluated on four widely

used human datasets involving Enzyme, Ion Channel, GPCR and

Nuclear Receptor proposed in Yamanishi et al. (2008). But these

four datasets are small scale and cover only a small number of nega-

tive samples screened by our method, so we built another relatively

larger dataset of human to evaluate these methods. We got the posi-

tive samples from DrugBank and then extracted the negative

Table 1. AUC/recall/precision values of six classical classifiers on screened and randomly generated negative samples of human (pairwise

cross-validation)

Measure Negative

sample ratio

Naive Bayes kNN Random Forest L1 logistic L2 logistic SVM

Screened Random Screened Random Screened Random Screened Random Screened Random Screened Random

AUC 1 0.672 0.622 0.860 0.563 0.940 0.647 0.908 0.874 0.911 0.868 0.910 0.752

3 0.672 0.622 0.904 0.593 0.954 0.694 0.917 0.879 0.920 0.873 0.942 0.705

5 0.671 0.622 0.913 0.589 0.967 0.709 0.916 0.877 0.920 0.872 0.951 0.713

Precision 1 0.624 0.591 0.798 0.570 0.861 0.613 0.881 0.858 0.891 0.862 0.966 0.733

3 0.361 0.338 0.716 0.458 0.847 0.529 0.823 0.786 0.837 0.787 0.969 0.700

5 0.252 0.237 0.684 0.500 0.830 0.514 0.793 0.732 0.804 0.739 0.969 0.732

Recall 1 0.575 0.413 0.927 0.564 0.897 0.599 0.893 0.836 0.913 0.850 0.950 0.745

3 0.560 0.376 0.882 0.306 0.824 0.306 0.749 0.622 0.773 0.631 0.883 0.261

5 0.555 0.364 0.844 0.205 0.825 0.199 0.649 0.524 0.666 0.522 0.861 0.112

Bold numbers represent the highest performance measures achieved by each method.

Fig. 3. Precision–recall curves of six classical classifiers on screened and ran-

domly generated negatives of human (blockwise cross-validation)
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samples whose compounds and proteins are both involved in the

positive samples from our ranking list. The resulting human dataset

includes 2315 positive interactions and 2576 negative interactions

between 821 unique compounds and 846 unique proteins, and the

C.elegans dataset includes 463 positive interactions and 1561 nega-

tive samples between 543 compounds and 504 proteins (the datasets

are available in the Supplementary Material). As these compared

methods take as input the chemical structure similarity matrix, pro-

tein sequence similarity matrix and CPI matrix, we built the similar-

ity matrices and the interaction matrix as mentioned in Section 2.

The AUC values achieved by these predictive methods on

screened and randomly generated negative samples of human are

shown in Figure 4. Clearly, all the methods achieved significantly

higher performance on the screened negative samples than on the

randomly generated negative samples. In particular, BLM had the

least AUC (0.679) on the randomly generated negative samples but

achieved a comparable AUC (0.932) to other methods on the

screened negative samples. KBMF2K-classification and KBMF2K-

regression had considerably high AUCs (0.868 and 0.846) on the

randomly generated negative samples, but their performances were

also significantly improved on the screened negative samples. On

C.elegans, the performance improvement is more notable than on

human for all methods except for KBMF2K-classification and

KBMF2K-regression, as shown in Supplementary Figure S4.

Although BLM and the four RLS algorithms performed only moder-

ately on the randomly generated negative samples, their perform-

ances were substantially boosted on the screened negative samples.

This result shows again that our screened negative samples are help-

ful for improving the performances of existing predictive methods.

4.4 Evaluation on drug bioactivity dataset

The quantitative drug–target bioactivity assays for kinase inhibitors

provide experimental observations of the bindings of drug molecules

to targets, which enable us to derive both positive and negative

interactions. As suggested by Pahikkala et al. (2015), recent kinase

bioactivity assay data from Davis et al. (2011) can be used as an in-

dependent benchmark test set for performance evaluation of drug–

target prediction methods. This assay reported the quantitative

interaction affinity as the dissociation constant (Kd), which reflects

how tightly a drug molecular binds to a target protein. The smaller

Kd is, the higher the interaction affinity between the chemical com-

pound and the target protein is.

The bioactivity assay included the interactions between 68

unique drugs and 442 unique proteins, from which 20 931

interactions with Kd�10000 were extracted as negative samples.

We got 3564 overlapping interactions between our screened nega-

tive samples and the experimentally supported ones. We calculated

the frequency distribution of overlapping negative samples with re-

spect to an increasing cutoff threshold of the confidence scores of

our screened negative samples, which is shown in Supplementary

Figure S5. It can be seen that the confidence scores of about 80%

overlapping negative samples are more than 0.5, i.e. the screened

negative samples with larger confidence scores are more likely sup-

ported by drug bioactivity experiments, which indicates the high

credibility of our screened negative samples. Furthermore, we used

the threshold 30.00nM of Kd suggested by Davis et al. (2011) to ex-

tract positive samples and obtained 1867 positive interactions.

Together with the same number of negative interactions, we got an

independent test set, which was used to evaluate the SVM and L2-

logistic classifiers trained on screened and randomly generated nega-

tive samples, respectively. We chose SVM and L2-logistic regression

for performance evaluation because they are, respectively, binary

classification and realistic regression representatives. Figure 5 pre-

sents their precision–recall curves, which show that the classifiers

trained on our screened negative samples greatly outperform those

trained on the random negative samples.

4.5 Prediction of new interactions

After confirming the quality of our screened negative samples, we

built two sets of predictions of potential CPIs on human. The first is

a relatively small-scale prediction set built based on a subset of com-

pounds and proteins included in DrugBank. Specifically, we ex-

tracted 2675 interactions from DrugBank as positive samples and

select an equal number of negative samples from our screened rank-

ing list and then train an SVM classifier based on the chemogenomi-

cal features to predict potential interactions. The trained SVM

classifier predicted about 390 838 new CPIs from all possible

896304 interactions whose compounds and proteins are included in

DrugBank. We extracted the top 50 interactions for each compound

to get a set of 35 425 interactions, in which 1093 predictions were

annotated in DrugBank and 3224 predictions (3224/35425�9.2%)

were annotated in STITCH. Note that only 18 580 interactions are

recorded in STITCH for all possible 896 304 (18 580/

896304�2.1%), thus our predictions rank these curated inter-

actions high and give priority to highly credible interactions.

As a confirmative example, we examined the predicted inter-

actions regarding Donepezil, a centrally acting reversible acetyl-

cholinesterase inhibitor compound that is therapeutically used in the

palliative treatment of Alzheimer’s disease (Birks and Harvey,

2006). Our method predicted 253 target proteins that include

Fig. 4. Histogram of the AUC values achieved by three existing predictive

methods on screened and randomly generated negative samples of human

Fig. 5. Precision–recall curves of the SVM and L2-logistic classifiers trained

on screened and randomly generated negative samples, evaluated on the

kinase bioactivity assay data (Davis et al., 2011)
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the cholinesterase coding genes ACHE and BCHE, which are two

main targets of Donepezil annotated in DrugBank and STITCH.

In fact, the set of target proteins covers all 17 interactions annotated

in STITCH whose associated proteins are included in the test set, as

shown in Figure 6. To confirm other new predictions, we inspected

the functional annotations of the top 125 target proteins by using

DAVID (Huang et al., 2009) and found that 45 proteins are highly

enriched in the neuroactive ligand-receptor interaction pathway

(P value¼4.7E-32). These proteins are closely related to many dis-

eases including multiple kinds of psychotic disorders. Furthermore,

these proteins are significantly associated in various mental and ner-

vous diseases, such as hypertension (P value¼1.5E-11), Alzheimer’s

disease (P value¼3.1E-4), Parkinson’s disease (P value¼3.0E-4)

and arteriosclerotic vascular disease (P value¼1.3E-3). Figure 6

gives an illustration of Donepezil’s target proteins and related func-

tional annotations (for the detailed list of proteins involved in the

pathways and diseases, please see the Supplementary Table S2).

In addition, to facilitate the research community, we built the se-

cond set (a large-scale one) of predictions by constructing a large train-

ing set that consists of all 6354 interactions included in DrugBank and

the equal number of screened negative samples. The trained SVM clas-

sifier predicts more than 6340000 CPIs (please refer to the

Supplementary Material for detail). These new predictions would be

helpful for identifying truly druggable targets in new drug design.

5 Discussion and conclusion

The identification of interactions between compounds and proteins

plays an important role in the genomic drug discovery. However,

experimental validation of CPIs is still laborious and expensive,

although various high-throughput biochemical assays are available.

In silico prediction methods are appealing to guide experimental de-

sign and to provide supporting evidence for the experimental results.

Methods based on machine learning have been proposed and dem-

onstrated encouraging performance. However, their performance

and robustness depend on the training set in which negative samples

have equal importance to positive samples. Unfortunately, our

knowledge of negative samples of CPIs is extreme limited which re-

stricts severely the performance of computational methods. This

problem motivated us to propose a systematic screening workflow

to identify reliable negative CPIs. To the best of our knowledge, this

is the first work devoted to screen reliable negative samples of CPIs.

Our screening framework is based on the assumption that the

proteins dissimilar to any known/predicted target of a given com-

pound are not much likely to be targeted by the compound and vice

versa. In the view of chemogenomical space, we managed to find

those compound–protein pairs that locate far from all positive sam-

ples in the chemogenomical space as negative samples, which really

contributed to the performance improvement of both classical classi-

fiers and existing computational methods. Furthermore, the com-

pounds and proteins associated with a small number of known

interactions were excluded to reduce the possibility of taking real

interactions as negative interactions due to activity cliff and scaffold

hopping. The feature divergence filtering further consolidated the

strength of our dissimilarity rules. Extensive experiments demon-

strated that our screened negative samples are highly credible and

helpful for identifying CPIs.

On the basis of the screened negative samples and positive samples

obtained from DrugBank, we carried out prediction of potential CPIs

on human and C.elegans by training SVM classifiers on the chemoge-

nomical features. Also, we gave a confirmative example that the newly

predicted target proteins of Donepezil are highly enriched in mental

and nervous pathways and diseases. In summary, our screened negative

samples and predictions provide the research community with a useful

resource for identifying drug targets and constitute a helpful supple-

ment to the current curated compound–protein databases.
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Fig. 6. Predicted target proteins of Donepezil and related functional annotations, including neuroactive ligand-receptor interaction pathways, diseases recorded

in DrugBank and STITCH
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