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Abstract 

A Block Matrix based Multiple Regularization (BMMR) 

technique is proposed for improving conductivity image quality in 

Electrical Impedance Tomography (EIT). The response matrix 

(JTJ) has been partitioned into several sub-block matrices and the 

largest element of each sub-block matrix has been chosen as 

regularization parameter for the nodes contained by that sub-

block. Simulated boundary data are generated for circular domains 

with circular inhomogeneities of different geometry and the 

conductivity images are reconstructed in a Model Based Iterative 

Image Reconstruction (MoBIIR) algorithm. Conductivity images 

are reconstructed with BMMR technique and the results are 

compared with the Single-step Tikhonov Regularization (STR) 

and modified Levenberg-Marquardt Regularization (LMR) 

methods. Results show that the BMMR technique improves the 

impedance image and its spatial resolution for single and multiple 

inhomogeneity phantoms of different geometries. It is observed 

that the BMMR technique reduces the projection error as well as 

the solution error and improves the conductivity reconstruction in 

EIT. Results also show that the BMMR method improves the 

image contrast and inhomogeneity conductivity profile by 

reducing background noise for all the phantom configurations.  

 

Keywords: EIT, MoBIIR, Jacobian, Block Matrix-based Multiple 

Regularization (BMMR), simulated boundary data, conductivity 

imaging, STR, LMR, normalized projection error, normalized 

solution error. 

 

 

Introduction 

 

Electrical Impedance Tomography (EIT) [1-4] is a 

computed tomographic technique in which the electrical 

conductivity or resistivity distribution in a closed domain 

(Ω) is reconstructed from the boundary potentials 
developed by a constant current signal injected at the 

domain boundary (∂Ω) (Fig.-1). EIT has been researched 

extensively in medical diagnosis [5-11] and other fields of 

science and engineering [12-15] due to its number of 

advantages [16-18]. A practical EIT system has, generally, 

poor signal to noise ratio [19] and poor spatial resolution 

[20] due to the factors associated with it. The boundary data 

profile [21] of the practical phantom [22-26] is highly 

sensitive to modeling parameters [27] such as the phantom 

structure [23, 26], surface electrodes geometry [21], 

experimental errors [23, 26, 28] and errors of the EIT-

instrumentation [29-32]. That is why there are a number of 

opportunities and challenges in EIT to make this 

technology as an efficient medical imaging modality like 

other popular tomographic techniques available [33] by 

improving its image quality. Reconstructed image quality 

depends on the boundary data error and the performance of 

the reconstruction algorithm. The performance of the 

reconstruction algorithm again depends on the Jacobian 

matrix (J), response matrix (J
T
J), regularization technique 

used and the regularization parameter (λ).  
EIT is a nonlinear ill-posed inverse problem [27] in 

which a small amount of noise in the boundary 

measurement data can lead to enormous errors in the 

estimates. Regularization techniques [27, 34-35] are, 

generally, incorporated in the reconstruction algorithm to 

constrain its solution domain by making the problem well-

posed. Hence the image quality in EIT greatly depends on 

the regularization technique and the regularization 

parameter (λ) used in the reconstruction algorithm. The 

regularization parameter (λ) in Single-step Tikhonov 

regularization (STR) [27] is taken as a constant value along 

the diagonal elements of the response matrix J
T
J. On the 

other hand, in the Levenberg-Marquardt regularization 

(LMR) [36] method, λ is taken as the largest element of the 

response matrix J
T
J (max(max(J

T
J))) or any other suitable 

constant real number and then it is gradually decreased by a 

factor of 10  or any other suitable constant from iteration to 

iteration. Hence, in the STR and LMR methods, the 

regularization parameter is set as a small constant number 

in all the iterations of the reconstruction process. Thus the 

regularization effect remains the same all over the domain 

(for all the nodal positions). As a result, the local or 

regional physiological attributes of the domain under test 

are not taken into account in the STR and LMR methods.  

In this paper, the local physiological information is 

preserved through the multiple regularization process which 

is then integrated to the ill-posed inverse problem to make 

the regularization more effective and optimum for the 

whole domain. In this direction a regional block matrix 

based multiple regularization (BMMR) method [37] is 

proposed for EIT. The BMMR regularization technique 

preserves the spatial information over the domain and gives 

contrast regularization along the diagonal nodes of the 
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system matrix. The BMMR method is integrated in a Model 

Based Iterative Image Reconstruction (MoBIIR) algorithm 

[38] developed and the impedance image reconstruction is 

studied using simulated data. Conductivity images are 

reconstructed for different phantom configurations using 

the BMMR technique and the results are compared with the 

STR and LMR methods.  

 

 
 

Fig.1: Current injection and voltage measurement in EIT for a 

closed domain (Ω) surrounded by surface electrodes at the 
domain boundary (∂Ω) (red and blue electrode represent the 
current and voltage electrodes respectively). 

 

Materials and methods 

 

Regularized Reconstruction in EIT 

 

For a low frequency (<100 kHz) sinusoidal constant 

current injection at the boundary (∂Ω) of a closed domain 

(Ω) containing a homogeneous and isotropic medium with 

low magnetic permeability (biological tissue) and electrical 

conductivity (σ), the electrical potential (Φ) developed at a 

point P (P = P (x, y) in Cartesian coordinate system) within 

Ω can be represented as [4, 18, 39-40]: 

 

( ) ( ) 0yx, yx,σ =Φ∇•∇                    (1) 

 

where ∇ is the gradient operator in the system. 

 

This nonlinear partial differential equation relating the 

conductivity to the potential in the closed domain (volume 

conductor) under test is known as the Governing Equation 

of EIT [4, 18, 39-40] and has an infinite number of 

solutions. Boundary conditions [4, 18, 39-40] are applied to 

restrict the solutions of the Eq.-1 which may be either the 

Dirichlet type or the Neumann type or a mixture of the 

previous two. Due to the insufficient known variables and 

the inherent ill-posedness of the system, direct analytical 

methods fail to get the unique solution of this problem and 

hence a minimization algorithm [39-41] is found as the best 

way to obtain its approximate solution. In the minimization 

algorithm, an objective function, formed by the difference 

between the experimental or measured data (Vm) and the 

model predicted data (Vc), is minimized by the Gauss-

Newton method [39-43] to find the approximate solution.  

Conductivity reconstruction in EIT is a nonlinear, 

highly ill-posed [39-43] inverse problem in which a small 

amount of noise in the boundary data can lead to enormous 

errors in the estimates. Hence, EIT needs a regularization 

technique [39-43] with a suitable regularization parameter 

(λ) to constrain its solution space as well as to convert the 

ill-posed problem into a well-posed one. A regularized 

solution of the inverse problem not only decreases the ill-

posed characteristics of the inverse matrix but also, it 

improves the reconstructed image quality.  

Considering Vm as the measured voltage matrix and f 

as a function mapping an E-dimensional (E is the number 

of elements in the finite element mesh [44]) impedance 

distribution into a set of M (number of the measured data 

available) measured voltage data, an object function can be 

defined as the L-2 norm of the difference between Vm and f 

[39-43]:  
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where sr is the constrained least-square error of the 

reconstruction, G is the regularization matrix and λr is a 

positive scalar called as the regularization coefficient or 

regularization parameter. 

By the Gauss Newton (GN) method the conductivity 

update vector [Δσ] is given by: 
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Neglecting higher terms and replacing f′ by J and G
T
G by I 

(Identity matrix), the update vector reduces to 

 

( ) ( )( )IσλfVJIλJJΔσ rm

T1

r

T −−+=
−

          (4) 

 

where the term f′ = J is known as the Jacobian matrix of 

dimension (g × h) and is defined by [39-41]: 

 

[ ]
h

g

gh σ
f

fJ
∂

∂
=′=                          (5) 

 

Hence, the Gauss-Newton approach gives a general 

solution of the conductivity distribution for the k
th

 iteration 

as: 

 

( ) ( )( )krm

T1
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T

k1k IσλfVJIλJJσσ −−++=
−

+   (6) 

 

 

 

 



Bera et al.: Improving conductivity image quality using BMMR technique in EIT. J Electr Bioimp, 2, 33-47, 2011

35

MoBIIR Algorithm 

 

In the MoBIIR algorithm, a forward model based 

iterative image reconstruction approach based on linear 

perturbation equation is followed. The linear perturbation 

equations containing the first derivative of the forward 

operator are derived from the EIT governing equation 

(Eq.-1). It is then solved to calculate the boundary potential 

for known current conduction and conductivity using the 

finite element method (FEM) [45]. The solution of the 

forward problem is also used to compute the Jacobian (J) 

by adjoint method [46] using the Eq.-7:  
 

∫ ∇∇=
Ω ds dΩU.UJ                             (7) 

 

where Us is the forward solution for a particular source 

location and Ud is the forward solution for the adjoint 

source location (source at the detector location and detector 

at the source location). The simultaneous equation is solved 

using conjugate gradient search to obtain the update vector 

for electrical conductivities [Δσ]. 

The perturbation equation is updated by recomputing 

the first derivative after each update of the electrical 

conductivities.  

 

The MoBIIR algorithm starts with the forward solution of 

the EIT governing equation (Eq.-1) to calculate the 

boundary potential matrix [Vc] for a known current 

injection matrix [C] and a known (initial guess) 

conductivity matrix [σ0]. In the approximation algorithm a 

least square solution of the minimized object function (sr) is 

obtained which gives an estimation of a potential Vc from 

which ΔV (ΔV= Vm – Vc) is estimated for the next 

iterations. The voltage difference matrix [ΔV = Vm – Vc] is 

estimated and then it is used to calculate the conductivity 

update matrix [Δσ] using the Eq.-4. [Δσ] is used to improve 

the [σo] matrix a to new conductivity matrix [σ1 = σo + Δσ] 

(as shown in Eq.-6). In the second iteration, [σ1] is used to 

calculate a new boundary voltage matrix and a new update 

vector [Δσ1]. The [Δσ1] matrix is then used to update the 

[σ1] for obtaining a new conductivity matrix [σ2]. In this 

way at the (k
th

) iteration, the update vector becomes [Δσk] 

and the conductivity matrix becomes [σk+1 = σk + Δσk].  

 

Block Matrix based Multiple Regularization (BMMR) 

 

The measurement data for each projection in EIT can be 

written in the form of following system of equations: 
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where N is the number of nodes in the finite element mesh, 

xi (i = 1, 2, 3, …, N) is the conductivity at the 

corresponding nodes, aij is the coefficient of the xi 

(conductivity) at each node and b
m

 (m = 1, 2, 3, …, M) is 

the corresponding nodal potentials and M is the number of 

boundary measurements available. From the Gauss-Newton 

method (without incorporating the regularization technique) 

the normal equation [47] can be written as:  

 

[ ] [ ] [ ] 1N1NNN BxA ××× =                           (9) 

 

where,              

 

[ ] [ ] [ ] NMMN

T

NN JJA ××× =                     (10) 

 

and,            

 

[ ] [ ] [ ] 1MMN

T

1N bJB ××× =                         (11) 

 

Hence, for EIT, Eq.-8 reduces to:      

 

 [ ] [ ] [ ] [ ] [ ] 1MMN

T

1NNMMN

T ΔVJΔσJJ ××××× =      (12) 

 

To make the ill-posed problem well-posed, a 

regularization term λI is added to the matrix A (or J
T
J), 

where I is an identity matrix and λ is called the 

regularization parameter. In this context a block matrix 

based multiple regularization method is proposed which 

calculates the multiple regularization parameters from the 

system response matrix [J
T
J] and form a new response 

matrix called BMMR matrix ([ZBMMR]N×N) within each of 

the inner iterations of Conjugate Gradient Search (CGS). 

The matrix [ZBMMR]N×N is formed with the diagonal 

matrices [Wi]n×n (n=√N) containing all the diagonal 

elements equal to the largest element (ηi) of the adjoint 

matrices (of their corresponding positions) of [J
T
J]. 

The response matrix J
T
J is rearranged by separating all 

the adjoint matrices ([Lpq]n×n: p, q = 1, 2, 3, …, n) and a 

matrix A is formed as (Fig.-2a): 

 

NNnnpq ]]L[[A ××=                       (13) 

 

where, n=√N   
 

If the matrix A is further reformed as: 

 

qp  when,]a[L nn ijpq == ×  
qp  when,Matrix, NullLpq ≠=

 
 

Then, the matrix A is reduces to Y given by (Fig.-2b): 
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where, [Φ]n×n is a null matrix given by: 
 

[ ] [ ]
nnijnn aΦ

×× =                             (15) 

 

Where aij = 0 for all i and j.   

 

Now the maximum values (ηi: i=1, 2, 3, …, n) of all the 

block matrices (Lii) are calculated as:   
 

[ ]( )( )iii Lmaxmaxη =                             (16) 
 

Using ηi, n diagonal matrices ([Wi]: i=1, 2, 3, …, n) are 

formed in which all the diagonal elements of [Wi] are ηi 

and all the other elements are set as zero. Hence the [Wi] 

matrices are defined as: 
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Replacing all the diagonal adjoint block matrices ([Lii]: 

i = 1, 2, 3, …, n) by newly formed diagonal matrices [Wi] 

in matrix [Y], a matrix [ZBMMR] called the BMMR matrix is 

formed as: 
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Hence, the diagonal elements (nonzero elements) in the 

matrix [ZBMMR] are arranged in the following manner as 

shown as the schematic of the BMMR matrix (Fig.-2c). 

Therefore the expression of the conductivity update vector 

with BMMR technique reduces to: 

 

( ) ( )( )kBMMRm

T1

BMMR

T

k1k σλZfVJλZJJσσ −−++=
−

+     
   (19) 

The BMMR matrix incorporates the information produced 

by the local physiological changes in the system which is 

generally overshadowed in the STR or LMR method.   

 

 
 

 
 

 
 
Fig.2: BMMR matrix formation: (a) A matrix formation by 

defining several block matrices in JTJ matrix, (b) Y matrix 

formation from A matrix, (c) BMMR matrix or Z matrix 

formation from Y matrix. 

 

a 

b 

c 
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In the MoBIIR algorithm with STR regularization, a 

constant regularization parameter (λr= λ*η) is used where 
the η is a constant calculated as the largest element of the 

response matrix J
T
J (max(max(J

T
J))). Hence, in the STR 

method, the λr remains unchanged for all the iterations. On 

the other hand, in the MoBIIR with LMR method, η is 
taken as the largest element of the response matrix J

T
J to 

form the λr (λr= λ*η) in the first iteration. But for all the 

other iterations, λr is gradually decreased by a factor of  

10 . Hence, in both the STR and LMR methods, the 

regularization parameter (λr) remains a small constant 

number suitably calculated (as stated above) from the 

response matrix (J
T
J) in each of the iterations of the 

reconstruction process. Therefore, the local or regional 

physiological information of the nodal points in the domain 

under imaging are not taken into account in the STR and 

LMR methods. Hence, in both the STR and LMR methods, 

a constant regularization parameter is being used at each 

iteration and as a result the local or regional physiological 

attributes are not taken into account in them. Furthermore, 
due to the addition of constant regularization parameter to 

the matrix A, it perturbs the original system of equations 

and these perturbations are not based on the spectral 

information. Hence this perturbation may introduce a 

significant error in the solution as well as some unwanted 

solution could be obtained.  

For the entire study, a symmetric finite element mesh 

containing 512 triangular elements and 289 nodes is used in 

the MoBIIR both for the forward and inverse solution of the 

image reconstruction process. 
 

Image Reconstruction with Simulated Boundary Data 
 

Boundary potential data are generated by simulating a 

constant current (1 mA) injected to a circular phantom 

(Diameter (Dp) = 150 mm) with circular inhomogeneity 

with a conductivity of 0.02 S/m surrounded by a homo-

geneous background medium (conductivity = 0.58 S/m). 

Boundary data are generated with a number of phantom 

geometries simulated with circular inhomogeneities of 

different diameters (D) and situated at different distances 

(center to center distance, L) from the phantom center. Con-

ductivity images are reconstructed from all the boundary 

data in the MoBIIR with BMMR regularization technique 

and the results are compared with the STR and LMR 

methods. All the images are analyzed with their contrast 

parameters defined by their elemental conductivity profiles.  
 

Image Analysis with Contrast Parameters and Normalized 

Error Terms 
  

Contrast to noise ratio (CNR) [48], percentage of 

contrast recovery (PCR) [48], coefficient of contrast (COC) 

[48] and mean inhomogeneity conductivity (ICMean) are 

calculated for the images reconstructed by all the 

regularization techniques and regularization parameters to 

compare the reconstruction accuracy. To further analyze the 

proposed method, normalized projection error (error due to 

the voltage mismatch), EV [48] and the normalized solution 

error norm (Eσ) [48] are also calculated in the STR, LMR 

and BMMR methods for all the iterations with different 

values of λ. EV and Eσ are calculated in each iteration as: 

2

cmV VV
2

1
E −=                                (21) 

 

true

truetedreconstruc

σ σ
σσ

E
−

=                          (22) 

 

Results 
 

It is observed that the projection errors (EV) in STR and 

LMR becomes minimum at λ = 0.0001 (Fig.-3a) and λ = 
0.0001 (Fig.-3b), respectively. However, in the BMMR 

method the EV becomes minimum at λ = 0.01 (Fig.-3c).  

 

 

Fig.3: Projection errors (EV) calculated in the conductivity 

reconstruction at different iterations with different values of λ: 
(a) with STR, (b) with LMR, (c) with BMMR. 

a 

b 

c 
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Conductivity reconstructions show that the EV (Fig.-4a) and 

the Eσ (Fig.-4b) in STR and LMR are larger than in the 

BMMR technique.  

To compare the image reconstruction and image quality 

in the STR, LMR and BMMR methods, the conductivity 

reconstruction is conducted first with λ = 0.01 and then 
with λ = 0.0001. For further study, the conductivity 

reconstruction is also conducted with an intermediate value 

of λ (with λ = 0.00011 and λ = 0.0011). Imaging with λ = 
0.0001 in all the methods (STR, LMR and BMMR) gives a 

more clear aspect of the proposed method (BMMR) as STR 

and LMR methods show the best result at λ = 0.0001. The 

conductivity images are also reconstructed for the phantoms 

with inhomogeneities of different diameters and different 

geometric positions using the STR, LMR and BMMR 

methods with different values of λ.  = 0.0001. Conductivity 

imaging is also studied with single, double and triple 

inhomogeneity phantoms with the STR, LMR and BMMR 

methods and the results are compared.  

 

 

 

Fig.4: Error in different regularization methods for λ = 0.01: (a) 
normalized projection errors, (b) normalized solution error norm. 

 

Single Inhomogeneity Imaging 

 

Conductivity imaging of the phantoms with single 

inhomogeneity of different diameters at different positions 

shows that the BMMR technique gives better image 

reconstruction with less background noise. Reconstructed 

images obtained in STR, LMR and BMMR with λ = 0.01 
show that, for the phantom with a circular inhomogeneity 

(D = 30 mm, L = 37.5 mm) near electrode No.-3 (Fig.-5a), 

the CNRs of the reconstructed images in STR (Fig.-5b) and 

LMR (Fig.-5c) methods are 1.91 and 2.07, respectively 

(Table-1). On the other hand, for the BMMR method (Fig.-
5d), the CNR of the reconstructed image is 2.67 (Table-1). 

Results show that, for the same phantom, the PCRs of the 

reconstructed images with the STR and LMR methods are 

37.35 % and 34.72 %, respectively, whereas it is 49.06 % 

for the BMMR method (Table-1). For the same 
reconstruction, it is also observed that the COCs of the 

reconstructed images with the STR and LMR methods are 

1.52 and 1.49, respectively, whereas it is 2.14 in BMMR 

technique (Table-1). Results also show that ICMean of the 

reconstructed images in the STR and LMR methods are 

0.41 S/m and 0.40 S/m, respectively, whereas in the 

BMMR method it is 0.24 S/m (Table-1). 

 

 

 

 

 

Fig.5: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode No.-3 

(λ = 0.01): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 
Table-1: CNR, PCR and COC of the conductivity images of Fig.-5 

 

λ = 0.01 CNR PCR COC ICMean 

STR 1.91 37.35 1.52 0.41 

LMR 2.07 34.72 1.49 0.40 

BMMR 2.67 49.06 2.14 0.24 

 

Conductivity imaging in STR, LMR and BMMR with λ 
= 0.0001 shows that, for the phantom with a circular 

inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode 

No.-3 (Fig.-6a), the CNRs of the reconstructed images in 

the STR (Fig.-6b) and LMR (Fig.-6c) methods are 1.98 and 

1.12, respectively (Table-2). On the other hand, for the 

BMMR method (Fig.-6d), the CNR of the reconstructed 

image is 2.67 (Table-2). Results show that, for the same 

c d 

a b 

a 

b 
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phantom, the PCRs of the reconstructed images with the 

STR and LMR methods are 46.30 % and 28.25 % 

respectively whereas it is 68.76 % for BMMR method 

(Table-2).  

For the same reconstruction, it is also observed that the 
COCs of the reconstructed images with the STR and LMR 

methods are 2.05 and 1.46, respectively, whereas it is 4.60 

in BMMR technique (Table-2). It is observed that ICMean of 

the reconstructed images in the STR and LMR methods are 

0.25 S/m and 0.34 S/m, respectively, whereas in the 

BMMR method it is 0.11 S/m (Table-2). 

 

 

 

 

 

Fig.6: Conductivity reconstruction of the phantom with 

inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode No.-3 

(λ = 0.0001): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 

Table-2: CNR, PCR and COC of the conductivity images of Fig.-6 

 

λ = 0.0001 CNR PCR COC ICMean 

STR 1.98 46.30 2.05 0.25 

LMR 1.12 28.25 1.46 0.34 

BMMR 2.67 68.76 4.60 0.11 

 

Conductivity imaging with λ = 0.00011 shows that, for the 

phantom with a circular inhomogeneity (D = 30 mm, L = 

37.5 mm) near electrode No.-3 (Fig.-7a), the CNRs of the 

reconstructed images with the STR (Fig.-7b) and LMR 

(Fig.-7c) methods are 1.94 and 1.30, respectively, (Table-3) 

whereas in the BMMR method (Fig.-7d), it is 2.80 

(Table-3).  

 

Results show that, for the same phantom, the PCRs of the 

reconstructed images with the STR and LMR methods are 

45.94 % and 38.46 %, respectively, whereas it is 68.02 for 

the BMMR method (Table-3).  

 

It is also observed that the COCs of the reconstructed 

images with the STR and LMR methods are 2.04 and 1.81, 

respectively, whereas it is 4.20 in BMMR technique (Table-

3). Results show that ICMean of the reconstructed images in 

the STR and LMR methods are 0.25 S/m and 0.27 S/m, 

respectively, whereas in the BMMR method it is 0.12 S/m 

(Table-3). Hence, the conductivity reconstruction with 

different values of λ shows that the BMMR method 
improves the image quality compared to STR and LMR. 

Reconstruction with λ = 0.0001 gives a more clear aspects 
of the proposed method (BMMR) as the STR and LMR 

methods show the best result at λ = 0.0001. 
 

  
 

  
 
Fig.7: Conductivity reconstruction of the phantom with 
inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode No.-3 

(λ = 0.00011): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 

Table-3: CNR, PCR and COC of the conductivity images of Fig.-7 

 

λ = 0.00011 CNR PCR COC ICMean 

STR 1.94 45.94 2.04 0.25 

LMR 1.30 38.46 1.81 0.27 

BMMR 2.80 68.02 4.20 0.12 

 

The conductivity imaging (with λ = 0.0001) of the 

phantoms with circular inhomogeneity of different 

diameters shows that the BMMR technique gives better 

image reconstruction with less background noise. Imaging 

(with λ = 0.0001) of the phantom with a circular 

inhomogeneity (D = 20 mm, L = 37.5 mm) near electrode. 

No.-3 (Fig.-8a) shows that the CNRs of the reconstructed 

images with the STR (Fig.-8b) and LMR (Fig.-8c) methods 

are 0.56 and 1.17, respectively (Table-4).  

 

On the other hand, for the BMMR method (Fig.-8d), the 

CNR of the reconstructed image is 2.51 (Table-4). Results 

show that, for the same phantom, the PCRs of the 

reconstructed images with the STR and LMR methods are 

12.73 % and 20.93 %, respectively, whereas it is 50.53 for 

the BMMR method (Table-4). In the same reconstruction, it 

is also observed that the COCs of the reconstructed images 

with the STR and LMR methods are 1.18 and 1.32, respec-

tively, whereas it is 2.46 in BMMR technique (Table-4).  
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Imaging (with λ = 0.0001) of the phantom with a circular 

inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode 

No.-3 (Fig.-9a) shows that the CNRs of the reconstructed 

images with the STR (Fig.-9b) and LMR (Fig.-9c) methods 

are 1.94 and 1.30, respectively, (Table-5) whereas in the 

BMMR method (Fig.-9d), it is 2.80 (Table-5). 

 

 
 

 
 

Fig.8: Conductivity reconstruction of the phantom with 

inhomogeneity (D = 20 mm, L = 37.5 mm) near electrode No.-3 

(λ = 0.0001): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 

Table-4: CNR, PCR and COC of the conductivity images of Fig.-8 

 

20 mm Dia. CNR PCR COC ICMean 

STR 0.56 12.73 1.18 0.40 

LMR 1.17 20.93 1.32 0.37 

BMMR 2.51 50.53 2.46 0.19 

 

  
 

   
 

Fig.9: Conductivity reconstruction of the phantom with 

inhomogeneity (D = 30 mm, L = 37.5 mm) near electrode No.-3 

(λ = 0.0001): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 

Results show that, for the same phantom, the PCRs of 

the reconstructed images with the STR and LMR 

methods are 45.94 % and 38.46 %, respectively, 

whereas it is 68.02 % for the BMMR method (Table-5). 

It is also observed that the COCs of the reconstructed 

images with the STR and LMR methods are 2.04 and 

1.81, respectively, whereas it is 4.20 in BMMR 

technique (Table-5). 
 

Table-5: CNR, PCR and COC of the conductivity images of Fig.-9 

 

30 mm Dia. CNR PCR COC ICMean 

STR 1.94 45.94 2.04 0.25 

LMR 1.30 38.46 1.81 0.27 

BMMR 2.80 68.02 4.20 0.12 
 

Conductivity reconstruction (with λ = 0.0001) shows that, 

for the phantom with a circular inhomogeneity (D = 40 mm, 

L = 37.5 mm) near electrode No.-3 (Fig.-10a), the CNRs of 

the reconstructed images with the STR (Fig.-10b) and LMR 

(Fig.-10c) methods are 1.91 and 2.14, respectively 

(Table-6). On the other hand, for the BMMR method 

(Fig.-10d), the CNR of the reconstructed image is 2.98 

(Table-6). Results show that, for the same phantom, the 

PCRs of the reconstructed images with the STR and LMR 

methods are 53.07 % and 65.05 %, respectively, whereas it 

is 74.58 % for the BMMR method (Table-6). For the same 
reconstruction, it is also observed that the COCs of the 

reconstructed images with the STR and LMR methods are 

2.29 and 3.33, respectively, whereas it is 5.06 in BMMR 

technique (Table-6). 
 

 
 

 
 

Fig.10: Conductivity reconstruction of the phantom with 

inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-3 

(λ = 0.0001): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 

Table-6: CNR, PCR and COC of the conductivity images of Fig.-10 
 

40 mm Dia. CNR PCR COC ICMean 

STR 1.91 53.07 2.29 0.23 

LMR 2.14 65.05 3.33 0.16 

BMMR 2.98 74.58 5.06 0.10 
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Conductivity imaging (with λ = 0.0001) of the phantoms 

with circular inhomogeneity at different positions also 

shows that the BMMR technique gives better image 

reconstruction with less background noise. Results show 

that, for the phantom with a circular inhomogeneity (D = 35 

mm, L = 22.5 mm) near electrode. No.-3 (Fig.-11a), the 

CNRs of the reconstructed images with the STR (Fig.-11b) 

and LMR (Fig.-11c) methods are 2.22 and 1.86, 

respectively (Table-7). On the other hand, for the BMMR 

method (Fig.-11d), the CNR of the reconstructed image is 

2.61 (Table-7). It is observed that, for the same phantom, 

the PCRs of the reconstructed images with the STR and 

LMR methods are 48.25 % and 44.09 %, respectively, 

whereas it is 55.67 for the BMMR method (Table-7). In the 

same reconstruction, it is also observed that the COCs of 

the reconstructed images with the STR and LMR methods 

are 1.72 and 1.60, respectively, whereas it is 2.04 in 

BMMR technique (Table-7). 
 

 
 

 
 

Fig.11: Conductivity reconstruction of the phantom with 

inhomogeneity (D = 35 mm, L = 22.5 mm) near electrode No.-3 

(λ = 0.0001): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 

Table-7: CNR, PCR and COC of the conductivity images of Fig.-11 
 

22.5 mm Dist. CNR PCR COC ICMean 

STR 2.22 48.25 1.72 0.38 

LMR 1.86 44.09 1.60 0.41 

BMMR 2.61 55.67 2.04 0.30 
 

Imaging (with λ = 0.0001) of the phantom with a circular 

inhomogeneity (D = 35 mm, L = 37.5 mm) near electrode 

No.-3 (Fig.-12a) shows that the CNRs of the reconstructed 

images with the STR (Fig.- 12b) and LMR (Fig.- 12c) 

methods are 1.79 and 1.54, respectively, (Table-8) whereas 

in the BMMR method (Fig.- 12d), it is 2.75 (Table-8). 

Results show that, for the same phantom, the PCRs of the 

reconstructed images with the STR and LMR methods are 

48.72 % and 45.90 %, respectively, whereas it is 75.33 for 

the BMMR method (Table-8). It is also observed that the 

COCs of the reconstructed images with the STR and LMR 

methods are 2.15 and 2.06, respectively, whereas it is 6.01 

in BMMR technique (Table-8). 

Reconstruction study (with λ = 0.0001) show that, for 

the phantom with a circular inhomogeneity (D = 35 mm, L 

= 52.5 mm) near electrode No.-3 (Fig.-13a), the CNRs of 

the reconstructed images with the STR (Fig.-13b) and LMR 

(Fig.-13c) methods are 3.44 and 3.57, respectively (Table-

9). On the other hand, for the BMMR method (Fig.-13d), 

the CNR of the reconstructed image is 3.59 (Table-9). 
 

 
 

 
 

Fig.12: Conductivity reconstruction of the phantom with 

inhomogeneity (D = 35 mm, L = 37.5 mm) near electrode No.-3 

(λ = 0.0001): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 

Table-8: CNR, PCR and COC of the conductivity images of Fig.-12 
 

37.5 mm Dist. CNR PCR COC ICMean 

STR 1.79 48.72 2.15 0.24 

LMR 1.54 45.90 2.06 0.24 

BMMR 2.75 75.33 6.01 0.08 

 

 
 

 
 

Fig.13: Conductivity reconstruction of the phantom with 

inhomogeneity (D = 35 mm, L = 52.5 mm) near electrode No.-3 

(λ = 0.0001): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 
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Results show that, for the same phantom, the PCRs of the 

reconstructed images with the STR and LMR methods are 

63.75 % and 62.77 %, respectively, whereas it is 63.77 % 

for the BMMR method (Table-9). For the same 
reconstruction, it is also observed that the COCs of the 

reconstructed images with the STR and LMR methods are 

3.70 and 3.54, respectively, whereas it is 3.50 in BMMR 

technique (Table-9). 
 

Table-9: CNR, PCR and COC of the conductivity images of Fig.-13 
 

52.5 mm Dist. CNR PCR COC ICMean 

STR 3.44 63.75 3.70 0.13 

LMR 3.57 62.77 3.54 0.14 

BMMR 3.59 63.77 3.50 0.14 

 

Multiple Inhomogeneity Imaging 
 

Conductivity reconstruction studies show that, for multiple 

inhomogeneity phantoms, the MoBIIR algorithm re-

constructs better conductivity images with BMMR 

technique. As it is observed that, for the STR and LMR 

methods, EV is minimum at λ = 0.0001 and for the BMMR 

method EV becomes minimum at λ = 0.01, the multiple 

object imaging is also conducted for these two values of λ. 

For further study, the conductivity reconstruction is also 

conducted with a intermediate value of λ (with λ = 0.00011 

and λ = 0.0011). 

Conductivity imaging (with λ = 0.0001) of the 

phantoms with double inhomogeneity shows that the 

BMMR technique gives better image reconstruction with 

less background noise.  

Result shows that, for the phantom with a double 

inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode 

No.-3 and 15 (Fig.-14a), the quality of the reconstructed 

images with the STR (Fig.-14b) and LMR (Fig.-14c) 

methods are poor compared to the BMMR method (Fig.-
14d).  
 

 

 

 
 

Fig.14: Conductivity reconstruction of the phantom with double 
inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-3 

and 15 (λ = 0.0001): (a) original object, (b) image with STR, (c) 

image with LMR, (d) image with BMMR. 

It is observed that there is more background noise in STR 

and LMR. On the other hand the background noise is 

reduced in conductivity images obtained in BMMR 

technique. Results also show that the inhomogeneities are 

not separately reconstructed with their own shape in the 

STR and LMR method whereas in BMMR technique both 

the inhomogeneities are reconstructed with better 

resolution. 

Conductivity imaging (with λ = 0.01) of the phantoms 

with a double inhomogeneity (D = 40 mm, L = 52.5 mm) 

near electrode No.-3 and 15 (Fig.-15a) shows that the 

quality of the reconstructed images with the STR (Fig.-15b) 

and LMR (Fig.-15c) methods are poor compared to the 

image obtained with the BMMR method (Fig.-15d).  

It is also observed that the background noise is reduced 

in conductivity images in BMMR technique. On the other 

hand there is more background noise in STR and LMR. 

Results also show that the inhomogeneities are not 

separately reconstructed with their proper shape in the STR 

and LMR methods whereas in BMMR technique both the 

inhomogeneities are reconstructed with better resolution. 

 

 

 
 

Fig.15: Conductivity reconstruction of the phantom with double 

inhomogeneity (D = 40 mm, L = 52.5 mm) near electrode No.-3 and 15 

(λ = 0.01): (a) original object, (b) image with STR, (c) image with LMR, 

(d) image with BMMR. 

 

Conductivity imaging with λ = 0.0011 shows that, for the 

phantom with two inhomogeneities (D = 40 mm, L = 50.0 

mm) near electrode No.-3 and 7 (Fig.-16a), conductivity 

images are not clear in the STR (Fig.-16b) and LMR (Fig.-
16c) method whereas the images are very clear in the 

BMMR method (Fig.-16d).  

It is observed that there is more background noise in 

STR and LMR. On the other hand the background noise is 

reduced in conductivity images in BMMR technique. 

Results also show that the inhomogeneities are not 

separately reconstructed with their own shape in the STR 

and LMR method whereas in BMMR technique both the 

inhomogeneities are reconstructed with better resolution. 
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Fig.16: Conductivity reconstruction of the phantom with double 

inhomogeneity (D = 40 mm, L = 50.0 mm) near electrode No.-3 

and 7 (λ = 0.0011): (a) original object, (b) image with STR, (c) 

image with LMR, (d) image with BMMR. 

 

On the other hand, in conductivity imaging (with λ = 

0.0011) of the phantom with two inhomogeneities (D = 40 

mm, L = 37.5 mm) near the phantom center (Fig.-17a), the 

STR and LMR method fail to reconstruct the images of two 

separate objects (Fig.-17b-17c) whereas the reconstructed 

images are very clear in the BMMR method (Fig.-17d). 

Results also show that the inhomogeneities are not 

separately reconstructed with their own shape in the STR 

and LMR methods whereas in BMMR technique both the 

inhomogeneities are reconstructed with better resolution.  

 

   

 

  
 

Fig.17: Conductivity reconstruction of the phantom with double 

inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-3 

and 7 (λ = 0.0011): (a) original object, (b) image with STR, (c) 

image with LMR, (d) image with BMMR. 

 

Conductivity imaging of the phantoms with three 

inhomogeneities also shows that the BMMR technique 

gives better image reconstruction with less background 

noise compared to the STR and LMR methods. 

Conductivity imaging (with λ = 0.0001) of a phantom 

(Fig.-18a) with triple inhomogeneity (D = 40 mm, L = 37.5 

mm) shows that the STR and LMR methods reconstruct the 

images of all the three objects with a lot of image blurring 

and unwanted noise (Fig.-18b and 18c) whereas all the 

three objects are reconstructed with less image blurring in 

the BMMR method (Fig.-18d). It is also observed that there 

is more background noise in STR and LMR. On the other 

hand the background noise is reduced in BMMR technique. 

Results also show that the inhomogeneities are not 

separately reconstructed with their own shape in the STR 

and LMR method whereas in BMMR technique both the 

objects are reconstructed with better resolution. 

 

  
 

  
 

Fig.18: Conductivity reconstruction of the phantom with tripple 

inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-1, between 

electrode No.-6-7 and  between electrode No.-11-12 (λ = 0.0001): (a) 

original object, (b) image with STR, (c) image with LMR, (d) image with 

BMMR 

 

It is also observed that, for the image reconstruction (with λ 

= 0.0011) of the phantom with three objects (D = 40 mm, L 

= 50 mm) near the phantom boundary (Fig.-19a), 

conductivity images are not properly reconstructed in the 

STR (Fig.-19b) and LMR (Fig.-19c) method whereas the 

images are very clear in the BMMR method (Fig.-19d). It is 

observed that there is more background noise in STR and 

LMR. On the other hand the background noise is reduced in 

conductivity images in BMMR technique. Results also 

show that the inhomogeneities are not separately 

reconstructed with their own shape in the STR and LMR 

method whereas in BMMR technique both the 

inhomogeneities are reconstructed with better resolution. 

 

On the other hand, for a triple inhomogeneity (D = 40 mm, 

L = 37.5 mm) phantom with objects near the phantom 

center (Fig.-20a), conductivity imaging (with λ = 0.0011) 

shows that the STR and LMR methods reconstruct very 

poor quality images of all the three separate objects (Fig.-
20b and 20c ) whereas the three objects are successfully 

reconstructed in the BMMR method (Fig.-20d). It is also 
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observed that the background noise is reduced in 

conductivity images in BMMR technique. On the other 

hand, there is more background noise in STR and LMR. 

Results also show that the inhomogeneities are not 

separately reconstructed with their own shape in the STR 

and LMR method whereas in BMMR technique both the 

objects are reconstructed with better resolution. 
 

 

 

 
 

Fig.19: Conductivity reconstruction of the phantom with tripple 

inhomogeneity (D = 40 mm, L = 50.0 mm) near electrode No.-1, 

between electrode No.-6-7 and  between electrode No.-11-12 

(λ = 0.0011): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR. 

 

  

 

  
 

Fig.20: Conductivity reconstruction of the phantom with tripple 

inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-1, 

between electrode No.-6-7 and  between electrode No.-11-12 

(λ = 0.0011): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR 
 

A reconstruction study (with λ = 0.00011) shows that, for 

the phantom with three objects (D = 40 mm, L = 37.5 mm) 

near the center (Fig.-21a) which is identical to the phantom 

of the previous study (Fig.-20a), conductivity images are 

improved when the regularization parameter λ is reduced to 

0.00011 in the STR (Fig.-21b) and LMR (Fig.-21c) 

methods. But the image obtained in BMMR technique 

(Fig.-21d) is still found better compared to the STR and 

LMR methods. Results also show that the inhomogeneities 

are not separately reconstructed with their proper shape in 

the STR and LMR methods whereas in BMMR technique 

both the inhomogeneities are reconstructed with better 

resolution. 
 

  

 

  
 

Fig.21: Conductivity reconstruction of the phantom with tripple 

inhomogeneity (D = 40 mm, L = 37.5 mm) near electrode No.-1, 

between electrode No.-6-7 and  between electrode No.-11-12 

(λ = 0.00011): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR 

 

Image reconstruction (with λ = 0.00011) shows that for the 

phantom with three objects near the phantom center (D = 

40 mm, L = 30 mm) (Fig.-22a), conductivity images are 

very poor in the STR (Fig.- 22b) and LMR (Fig.- 22c) 

methods. But the reconstructed image is remarkably 

improved in BMMR technique (Fig.- 22d) with the same λ. 

 

 

 

 
 

Fig.22: Conductivity reconstruction of the phantom with tripple 

inhomogeneity (D = 40 mm, L = 30.0 mm) near electrode No.-1, 

between electrode No.-6-7 and  between electrode No.-11-12 

(λ = 0.00011): (a) original object, (b) image with STR, (c) image 

with LMR, (d) image with BMMR 
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Discussion 

 

Reconstructed image quality greatly depends on the 

Jacobian matrix (J), response matrix (J
T
J) and 

regularization parameter (λ) of reconstruction algorithm in 
Electrical Impedance Tomography. In the MoBIIR 

algorithm with STR regularization, the highest value of J
T
J 

is chosen as η to calculate λ (λr= λ*η). On the other hand, in 
the LMR method, λr is calculated as λr= λ*η (where η is the 

highest value of the response matrix J
T
J) in the first 

iteration and then it is reduced by a factor of 10  as 

iteration continues. Hence, in both the STR and LMR 

methods, a constant regularization parameter is obtained at 

each iteration and as a result the local or regional 

physiological attributes are not taken into account in them. 

Furthermore, due to the addition of a constant 

regularization parameter to the matrix J
T
J, it perturbs the 

original system of equations and these perturbations are not 

based on the spectral information. Hence this perturbation 

may introduce a significant error in the solution as well as 

some unwanted solution could be obtained. In this paper a 

Block Matrix based Multiple Regularization (BMMR) 

technique is proposed in which the response matrix (J
T
J) 

has been partitioned into several sub-block matrices and the 

largest element of each sub-block matrix has been chosen 

as a regularization parameter for the nodes contained by 

that sub-block. A symmetric finite element mesh containing 

512 triangular elements and 289 nodes is used in the 

MoBIIR algorithm both for the forward and inverse 

solution of the image reconstruction process. Conductivity 

images of different phantom geometries are reconstructed 

in MoBIIR with STR, LMR and BMMR techniques using 

different regularization parameters. Simulated boundary 

data are generated for single and multiple inhomogeneity 

phantoms and the conductivity images reconstructed with 

BMMR technique. Reconstruction results obtained in the 

BMMR method for different regularization parameters are 

compared with the STR and LMR methods. All the images 

are analyzed with their normalized error terms and image 

contrast parameters defined by their elemental conductivity 

profiles. It is observed that the normalized projection errors 

in STR and LMR becomes minimum at λ = 0.0001 and λ = 
0.0001, respectively. On the other hand, in the BMMR 

method the EV becomes minimum at λ = 0.01. Conductivity 

reconstructions also show that the EV and the Eσ in STR and 

LMR are larger than in the BMMR technique. Imaging with 

λ = 0.0001 in all the methods (STR, LMR and BMMR) 
gives a more clear aspects of the proposed method 

(BMMR) as the STR and LMR methods show the best 

results at λ = 0.0001. Conductivity reconstruction is studied 

in detail with the simulated boundary data obtained from 

the phantoms with single and multiple inhomogeneity of 

different diameters and different geometric positions. To 

compare the image reconstruction and image quality in the 

STR, LMR and BMMR methods, the conductivity 

reconstruction is conducted first with λ = 0.01 and then 
with λ = 0.0001. For further studies, the conductivity 

imaging is also studied using the STR, LMR and BMMR 

method with some intermediate values of λ (with λ = 
0.0011 and λ = 0.00011). It is observed that the impedance 

images are improved in BMMR, not only with all the 

phantom configurations, but also for all the values of λ used 

in the present study. Results also show that the CNR, PCR 

and COC are found high in BMMR technique. It is 

observed that the ICMean of all the conductivity images are 

improved with the BMMR method. Hence, it is concluded 

that the proposed BMMR technique reduces the projection 

errors and solution error and provides improved image 

reconstruction in EIT with better image quality and 

improved image resolution. 

 

Conclusions 

 

A Block Matrix based Multiple Regularization (BMMR) 

technique is proposed for improving image reconstruction 

in Electrical Impedance Tomography (EIT). Conductivity 

images are reconstructed from the simulated boundary data 

in MoBIIR algorithm with BMMR method and results are 

compared with the STR and LMR methods. Conductivity 

imaging studies show that the BMMR technique improves 

the impedance image quality and its spatial resolution for 

single and multiple inhomogeneity phantoms of different 

geometries. It is also observed that the BMMR technique 

reduces the projection error as well as the solution error and 

improves the conductivity reconstruction in EIT. Results 

show that the BMMR method improves the reconstructed 

image quality and increases the inhomogeneity conductivity 

profile by reducing background noise for all the phantom 

configurations. CNR, PCR, COC and ICMean are improved 

in BMMR technique compared to the STR and LMR 

methods. Hence it is concluded that the reconstructed image 

quality and image resolution can be enhanced with BMMR 

technique for conductivity imaging in EIT. 
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