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ABSTRACT

The numerical convergence of smoothed particle hydrodynamics (SPH) can be severely re-

stricted by random force errors induced by particle disorder, especially in shear flows, which

are ubiquitous in astrophysics. The increase in the number NH of neighbours when switching

to more extended smoothing kernels at fixed resolution (using an appropriate definition for

the SPH resolution scale) is insufficient to combat these errors. Consequently, trading resolu-

tion for better convergence is necessary, but for traditional smoothing kernels this option is

limited by the pairing (or clumping) instability. Therefore, we investigate the suitability of the

Wendland functions as smoothing kernels and compare them with the traditional B-splines.

Linear stability analysis in three dimensions and test simulations demonstrate that the Wend-

land kernels avoid the pairing instability for all NH, despite having vanishing derivative at the

origin (disproving traditional ideas about the origin of this instability; instead, we uncover a

relation with the kernel Fourier transform and give an explanation in terms of the SPH density

estimator). The Wendland kernels are computationally more convenient than the higher order

B-splines, allowing large NH and hence better numerical convergence (note that computational

costs rise sublinear with NH). Our analysis also shows that at low NH the quartic spline kernel

with NH ≈ 60 obtains much better convergence than the standard cubic spline.

Key words: hydrodynamics – methods: numerical.

1 I N T RO D U C T I O N

Smoothed particle hydrodynamics (SPH) is a particle-based nu-

merical method, pioneered by Gingold & Monaghan (1977) and

Lucy (1977), for solving the equations of hydrodynamics (recent

reviews include Monaghan 2005, 2012; Rosswog 2009; Springel

2010; Price 2012). In SPH, the particles trace the flow and serve as

interpolation points for their neighbours. This Lagrangian nature of

SPH makes the method particularly useful for astrophysics, where

typically open boundaries apply, though it becomes increasingly

popular also in engineering (e.g. Monaghan 2012).

The core of SPH is the density estimator: the fluid density is

estimated from the masses mi and positions xi of the particles via

(the symbol ·̂ denotes an SPH estimate)

ρ(xi) ≈ ρ̂i ≡
∑

j mj W (xi − xj , hi), (1)

where W (x, h) is the smoothing kernel and hi the smoothing scale,

which is adapted for each particle such that hν
i ρ̂i =constant (with ν

the number of spatial dimensions). Similar estimates for the value

of any field can be obtained, enabling discretization of the fluid

equations. Instead, in conservative SPH, the equations of motion

⋆E-mail: walter.dehnen@le.ac.uk (WD); ha183@le.ac.uk (HA)

for the particles are derived, following Nelson & Papaloizou (1994),

via a variational principle from the discretized Lagrangian:

L =
∑

i mi

[
1

2
ẋ

2
i − u(ρ̂i, si)

]
(2)

(Monaghan & Price 2001). Here, u(ρ, s) is the internal energy as

function of density and entropy s (and possibly other gas proper-

ties), the precise functional form of which depends on the assumed

equation of state. The Euler–Lagrange equations then yield

ẍi =
1

mi

∂L

∂xi

=
∑

j

mj

[
P̂i

�i ρ̂
2
i

∇iW (xij , hi)+
P̂j

�j ρ̂
2
j

∇iW (xij , hj )

]
,

(3)

where xij = xi − xj and P̂i = ρ̂2
i ∂u/∂ρ̂i , while the factors

�i =
1

νhν
i ρ̂i

∂(hν
i ρ̂i)

∂ ln hi

≃ 1 (4)

(Monaghan 2002; Springel & Hernquist 2002) arise from the adap-

tion of hi (Nelson & Papaloizou) such that hν
i ρ̂i = constant.

Equation (3) is a discretization of ρ ẍ = −∇P , and, because of

its derivation from a variational principle, conserves mass, linear

and angular momentum, energy, entropy and (approximately) cir-

culation. However, its derivation from the Lagrangian is only valid

if all fluid variables are smoothly variable. To ensure this, in partic-

ular for velocity and entropy, artificial dissipation terms have to be
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SPH without pairing instability 1069

added to ẍi and u̇i . Recent progress in restricting such dissipation

to regions of compressive flow (Cullen & Dehnen 2010; Read &

Hayfield 2012) has greatly improved the ability to model contact

discontinuities and their instabilities as well as near-inviscid flows.

SPH is not a Monte Carlo method, since the particles are not

randomly distributed, but typically follow a semiregular glass-like

distribution. Therefore, the density (and pressure) error is much

smaller than the �15 per cent expected from Poisson noise for ∼ 40

neighbours and SPH obtains O(h2) convergence. However, some

level of particle disorder cannot be prevented, in particular in shear-

ing flows (as in turbulence), where the particles are constantly re-

arranged (even in the absence of any forces), but also after a shock,

where an initially isotropic particle distribution is squashed along

one direction to become anisotropic. In such situations, the SPH

force (3) in addition to the pressure gradient contains a random ‘E0

error’ (Read, Hayfield & Agertz 2010),1 and SPH converges more

slowly than O(h2). Since shocks and shear flows are common in

star- and galaxy formation, the ‘E0 errors’ may easily dominate the

overall performance of astrophysical simulations.

One can dodge the ‘E0 error’ by using other discretizations of

ρ ẍ = −∇P (Morris 1996; Abel 2011). However, such approaches

unavoidably abandon momentum conservation and hence fail in

practice, in particular, for strong shocks (Morris 1996). Further-

more, with such modifications SPH no longer maintains particle

order, which it otherwise automatically achieves. Thus, the ‘E0 er-

ror’ is SPH’s attempt to resurrect particle order (Price 2012) and

prevent shot noise from affecting the density and pressure estimates.

Another possibility to reduce the ‘E0 error’ is to subtract an

average pressure from each particle’s P̂i in equation (3). Effectively,

this amounts to adding a negative pressure term, which can cause

the tensile instability (see Section 3.1.2). Moreover, this trick is

only useful in situations with little pressure variations, perhaps in

simulations of near-incompressible flows (e.g. Monaghan 2011).

The only remaining option for reducing the ‘E0 error’ appears an

increase of the number NH of particles contributing to the density

and force estimates (contrary to naive expectation, the computa-

tional costs grow sublinear with NH). The traditional way to try

to do this is by switching to a smoother and more extended ker-

nel, enabling larger NH at the same smoothing scale h (e.g. Price

2012). However, the degree to which this approach can reduce the

‘E0 errors’ is limited and often insufficient, even with an infinitely

extended kernel, such as the Gaussian. Therefore, one must also

consider ‘stretching’ the smoothing kernel by increasing h. This

inevitably reduces the resolution, but that is still much better than

obtaining erroneous results. Of course, the best balance between

reducing the ‘E0 error’ and resolution should be guided by results

for relevant test problems and by convergence studies.

Unfortunately, at large NH the standard SPH smoothing kernels

become unstable to the pairing (or clumping) instability (a cousin of

the tensile instability), when particles form close pairs reducing the

effective neighbour number. The pairing instability (first mentioned

by Schüßler & Schmitt 1981) has traditionally been attributed to

the diminution of the repulsive force between close neighbours

approaching each other (Schüßler & Schmitt 1981; Thomas &

Couchman 1992; Herant 1994; Swegle, Hicks & Attaway 1995;

Springel 2010; Price 2012). Such a diminishing near-neighbour

force occurs for all kernels with an inflection point, a necessary

property of continuously differentiable kernels. Kernels without

1 Strictly speaking, the ‘E0 error’ term of Read et al. is only the dominant

contribution to the force errors induced by particle discreteness.

that property have been proposed and shown to be more stable (e.g.

Read et al.). However, we provide demonstrably stable kernels with

inflection point, disproving these ideas.

Instead, our linear stability analysis in Section 3 shows that non-

negativity of the kernel Fourier transform is a necessary condition

for stability against pairing. Based on this insight we propose in

Section 2 kernel functions, which we demonstrate in Section 4 to

be indeed stable against pairing for all neighbour numbers NH,

and which possess all other desirable properties. We also present

some further test simulations in Section 4, before we discuss and

summarize our findings in Sections 5 and 6, respectively.

2 SM O OT H I N G M AT T E R S

2.1 Smoothing scale

SPH smoothing kernels are usually isotropic and can be written as

W (x, h) = h−ν w̃(|x|/h) (5)

with a dimensionless function w̃(r), which specifies the functional

form and satisfies the normalization 1 =
∫

dν
x w̃(|x|). The re-

scaling h → αh and w̃(r) → ανw̃(αr) with α > 0 leaves the

functional form of W (x) unchanged but alters the meaning of h. In

order to avoid this ambiguity, a definition of the smoothing scale

in terms of the kernel, i.e. via a functional h = h[W (x)], must be

specified.

In this study we use two scales, the smoothing scale h, defined

below, and the kernel-support radius H, the largest |x| for which

W (x) > 0. For computational efficiency, smoothing kernels used in

practice have compact support and hence finite H. For such kernels

W (x, h) = H−ν w(|x|/H ), (6)

where w(r) = 0 for r ≥ 1 and w(r) > 0 for r < 1. H is related to the

average number NH of neighbours within the smoothing sphere by

NH = Vν H ν
i (ρ̂i/mi), (7)

with Vν the volume of the unit sphere. H and NH are useful quantities

in terms of kernel computation and neighbour search, but not good

measures for the smoothing scale h. Unfortunately, there is some

confusion in the SPH literature between H and h, either being

denoted by ‘h’ and referred to as ‘smoothing length’. Moreover,

an appropriate definition of h in terms of the smoothing kernel is

lacking. Possible definitions include the kernel standard deviation

σ 2 = ν−1

∫
dν

x x
2 W (x, h), (8)

the radius of the inflection point (maximum of |∇W|), or the ratio

W/|∇W| at the inflection point. For the Gaussian kernel

W (x) = N (0, σ 2) ≡
1

(2πσ 2)ν/2
exp

(
−

x
2

2σ 2

)
(9)

all these give the same result independent of dimensionality, but not

for other kernels (‘triangular’ kernels have no inflection point). Be-

cause the standard deviation (8) is directly related to the numerical

resolution of sound waves (Section 3.1.3), we set

h = 2σ. (10)

In practice (and in the remainder of our paper), the neighbour

number NH is often used as a convenient parameter, even though it

holds little meaning by itself. A more meaningful quantity in terms

of resolution is the average number Nh of particles within distance

h, given by Nh ≡ (h/H)νNH for kernels with compact support, or

the ratio h(ρ̂/m)1/ν between h and the average particle separation.

C© 2012 The Authors, MNRAS 425, 1068–1082
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1070 W. Dehnen and H. Aly

Table 1. Functional forms and various quantities for the B-splines (equation 11) and Wendland functions (equation 12) in ν = 1–3 spatial dimensions. ( · )+ ≡
max {0, ·}. C is the normalization constant, σ the standard deviation (equation 8) and h = 2σ the smoothing scale. Note that the Wendland functions of given

differentiability are identical for ν = 2 and 3 but differ from those for ν = 1. ψ2,1 (the C2 Wendland function in 1D) has already been used in the second SPH

paper ever (Lucy 1977), but for 3D simulations, when it is not a Wendland function.

Kernel name Kernel function C σ 2/H2 H/h

ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3 ν = 1 ν = 2 ν = 3

Cubic spline b4 = (1 − r)3
+ − 4( 1

2
− r)3

+
8
3

80
7π

16
π

1
12

31
392

3
40

1.732051 1.778002 1.825742

Quartic spline b5 = (1 − r)4
+ − 5( 3

5
− r)4

+ + 10( 1
5

− r)4
+

55

768
563

2398π

56

512π

1
15

9759
152 600

23
375

1.936492 1.977173 2.018932

Quintic spline b6 = (1 − r)5
+ − 6( 2

3
− r)5

+ + 15( 1
3

− r)5
+

35

40
377

478π

37

40π

1
18

2771
51 624

7
135

2.121321 2.158131 2.195775

Wendland C2, ν = 1 ψ2,1 = (1 − r)3
+(1 + 3r) 5

4
– – 2

21
– – 1.620185 – –

Wendland C4, ν = 1 ψ3,2 = (1 − r)5
+(1 + 5r + 8r2) 3

2
– – 1

15
– – 1.936492 – –

Wendland C6, ν = 1 ψ4,3 = (1 − r)7
+(1 + 7r + 19r2 + 21r3) 55

32
– – 2

39
– – 2.207940 – –

Wendland C2, ν = 2, 3 ψ3,1 = (1 − r)4
+(1 + 4r) – 7

π

21
2π

– 5
72

1
15

– 1.897367 1.936492

Wendland C4, ν = 2, 3 ψ4,2 = (1 − r)6
+(1 + 6r + 35

3
r2) – 9

π

495
32π

– 7
132

2
39

– 2.171239 2.207940

Wendland C6, ν = 2, 3 ψ5,3 = (1 − r)8
+(1 + 8r + 25r2 + 32r3) – 78

7π

1365
64π

– 3
70

1
24

– 2.415230 2.449490

2.2 Smoothing kernels

After these definitions, let us list the desirable properties of the

smoothing kernel (cf. Fulk & Quinn 1996; Price 2012):

(i) equation (1) obtains an accurate density estimate;

(ii) W (x, h) is twice continuously differentiable;

(iii) SPH is stable against pairing at the desired NH;

(iv) W (x, h) and ∇W (x, h) are computationally inexpensive.

Here, condition (i) implies that W (x, h) → δ(x) as h → 0 but also

that W (x, h) ≥ 0 is monotonically declining with |x|; condition (ii)

guarantees smooth forces, but also implies ∇W(0) = 0.

2.2.1 B-splines

The most used SPH kernel functions are the Schoenberg (1946)

B-spline functions, generated as 1D Fourier transforms2 (Monaghan

& Lattanzio 1985):

w(r) = C bn(r), bn(r) ≡
1

2π

∫ ∞

−∞

(
sin k/n

k/n

)n

cos kr dk, (11)

with normalization constant C. These kernels consist of ⌈n/2⌉ piece-

wise polynomials of degree n − 1 (see Table 1) and are n − 2 times

continuously differentiable. Thus, the cubic spline (n = 4) is the

first useful, but the quartic and quintic have also been used. For

large n, the B-splines approach the Gaussian: bn → N (0,H 2/3n)

(this follows from footnote 2 and the central limit theorem).

Following Monaghan & Lattanzio, h̃ ≡ 2H/n is conventionally

used as smoothing scale for the B-splines independent of ν. This is

motivated by their original purpose to interpolate equidistant one-

dimensional data with spacing h̃, but cannot be expressed via a

functional h̃ = h̃[W (x)]. Moreover, the resulting ratios between h̃

for the bn do not match any of the definitions discussed above.3

2 By this definition they are the n-fold convolution (in one dimension) of

b1(r) with itself (modulo a scaling), and hence are identical to the Irwin

(1927)–Hall (1927) probability density for the sum r of n independent

random variables, each uniformly distributed between −1/n and 1/n.
3 Fig. 2 of Price (2012) seems to suggest that with this scaling the B-splines

approach the Gaussian with σ = h̃/
√

2. However, this is just a coincidence

for n = 6 (quintic spline) since σ =
√

n/12 h̃ for the B-splines in 1D.

Instead, we use the more appropriate h = 2σ also for the B-spline

kernels, giving H ≈ 1.826 h for the cubic spline in 3D, close to the

conventional H = 2h̃ (see Table 1).

2.2.2 ‘Triangular’ kernels

At low-order n the B-splines are only stable against pairing for

modest values of NH (we will be more precise in Section 3), while

at higher n they are computationally increasingly complex.

Therefore, alternative kernel functions which are stable for large

NH are desirable. As the pairing instability has traditionally been

associated with the presence of an inflection point (minimum of

w′), functions w(r) without inflection point have been proposed.

These have a triangular shape at r ∼ 0 and necessarily violate point

(ii) of our list, but avoid the pairing instability.4 For comparison we

consider one of them, the ‘HOCT4’ kernel of Read et al. (2010).

2.2.3 Wendland functions

The linear stability analysis of the SPH algorithm, presented in the

next section, shows that a necessary condition for stability against

pairing is the non-negativity of the multidimensional Fourier trans-

form of the kernel. The Gaussian has non-negative Fourier transform

for any dimensionality and hence would give an ideal kernel were

it not for its infinite support and computational costs.

Therefore, we look for kernel functions of compact support which

have non-negative Fourier transform in ν dimensions and are low-

order polynomials5 in r. This is precisely the defining property of

the Wendland (1995) functions, which are given by

w(r) = C ψℓk(r), ψℓk(r) ≡ Ik (1 − r)ℓ+, (12)

4 Thomas & Couchman (1992) proposed such kernels only for the force

equation (3), but to keep a smooth kernel for the density estimate. However,

such an approach cannot be derived from a Lagrangian and hence necessarily

violates energy and/or entropy conservation (Price 2012).
5 Polynomials in r2 would avoid the computation of a square root. However,

it appears that such functions cannot possibly have non-negative Fourier

transform (Wendland, private communication).

C© 2012 The Authors, MNRAS 425, 1068–1082
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SPH without pairing instability 1071

Figure 1. Kernels of Table 1, the Gaussian and the HOCT4 kernel of Read

et al. (2010) scaled to a common resolution scale of h = 2σ for 3D (top:

linear plot, arrows indicating |x| = H ; bottom: logarithmic plot).

with (·)+ ≡ max{0, ·} and the linear operator

I[f ](r) ≡
∫ ∞

r

sf (s) ds. (13)

In ν spatial dimensions, the functions ψℓk(|x|) with ℓ = k + 1 +
⌊ν/2⌋ have positive Fourier transform and are 2k times continuously

differentiable. In fact, they are the unique polynomials in |x| of

minimal degree with these properties (Wendland 1995, 2005). For

large k, they approach the Gaussian, which is the only non-trivial

eigenfunction of the operator I. We list the first few Wendland

functions for one, two and three dimensions in Table 1, and plot

them for ν = 3 in Fig. 1.

2.3 Kernel comparison

Fig. 1 plots the kernel functions w(r) of Table 1, the Gaussian and

the HOCT4 kernel, all scaled to the same h = 2σ for ν = 3. Amongst

the various scalings (ratios for h/H) discussed in Section 2.1 above,

this gives by far the best match between the kernels. The B-splines

and Wendland functions approach the Gaussian with increasing

order. The most obvious difference between them in this scaling

is their central value. The B-splines, in particular of lower order,

put less emphasis on small r than the Wendland functions or the

Gaussian.

Obviously, the HOCT4 kernel, which has no inflection point,

differs significantly from all the others and puts even more emphasis

on the centre than the Gaussian (for this kernel σ ≈ 0.228343H).

2.4 Kernel Fourier transforms

For spherical kernels of the form (6), their Fourier transform only

depends on the product H |k|, i.e. Ŵ (k) = ŵ(H |k|). In 3D (Fν

denotes the Fourier transform in ν dimensions)

ŵ(κ) = F3 [w(r)] (κ) = 4πκ−1

∫ ∞

0

sin(κr) w(r) r dr (14)

which is an even function and (up to a normalization constant)

equals −κ−1dF1[w]/dκ . For the B-splines, which are defined via

their 1D Fourier transform in equation (11), this gives immediately

F3 [bn(r)] (κ) = 3
( n

κ

)n+2

sinn κ

n

(
1 −

κ

n
cot

κ

n

)
(15)

Figure 2. Fourier transforms Ŵ (k) for the Gaussian, the HOCT4 and the

kernels of Table 1 scaled to the same common scale h = 2σ . Negative values

are plotted with broken curves.

(which includes the normalization constant), while for the 3D Wend-

land kernels

F3 [ψℓk(r)] (κ) =
(

−
1

κ

d

dκ

)k+1

F1

[
(1 − r)ℓ+

]
(κ) (16)

(we abstain from giving individual functional forms).

All these are plotted in Fig. 2 after scaling them to a common h =
2σ . Notably, all the B-spline kernels obtain Ŵ < 0 and oscillate

about zero for large |k| (which can also be verified directly from

equation 15), whereas the Wendland kernels have Ŵ (k) > 0 at all k,

as does the HOCT4 kernel. As non-negativity of the Fourier trans-

form is necessary (but not sufficient) for stability against pairing at

large NH (see Section 3.1.2), in 3D the B-splines (of any order) fall

prey to this instability for sufficiently large NH, while, based solely

on their Fourier transforms, the Wendland and HOCT4 kernels may

well be stable for all neighbour numbers.

At large |k| (small scales), the HOCT kernel has most power,

caused by its central spike, while the other kernels have ever less

small-scale power with increasing order, becoming ever smoother

and approaching the Gaussian, which has least small-scale power.

The scaling to a common h = 2σ in Fig. 2 has the effect that the

Ŵ (k) all overlap at small wave numbers, since their Taylor series

Ŵ (k) = 1 −
1

2
σ 2

k
2 + O(|k|4). (17)

2.5 Density estimation and correction

The SPH force (3) is inseparably related, owing to its derivation

via a variational principle, to the derivative of the density estimate.

Another important role of the SPH density estimator is to obtain

accurate values for P̂i in equation (3), and we will now assess the

performance of the various kernels in this latter respect.

In Fig. 3, we plot the estimated density (1) versus neighbour

number NH for the kernels of Table 1 and particles distributed in

three-dimensional densest sphere packing (solid curves) or a glass

(squares). While the standard cubic spline kernel underestimates the

density (only values NH � 55 are accessible for this kernel owing

to the pairing instability), the Wendland kernels (and Gaussian, not

shown) tend to overestimate it.

It is worthwhile to ponder about the origin of this density overes-

timation. If the particles were randomly rather than semiregularly

C© 2012 The Authors, MNRAS 425, 1068–1082
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1072 W. Dehnen and H. Aly

Figure 3. SPH density estimate (1) obtained from particles in three-

dimensional densest sphere packing (solid), glass (squares) or pairing

(crosses), plotted against neighbour number NH for the kernels of Table 1

and the HOCT4 kernel (colour coding as in Figs 1 and 2). For the Wendland

kernels, the corrected density estimate (18) is shown with dashed curves and

triangles for densest sphere packing, and a glass, respectively.

distributed, ρ̂ obtained for an unoccupied position would be un-

biased (e.g. Silverman 1986), while at a particle position the self-

contribution miW(0, hi) to ρ̂i results in an overestimate. Of course,

in SPH and in Fig. 3 particles are not randomly distributed, but at

small NH the self-contribution still induces some bias, as evident

from the overestimation for all kernels at very small NH.

The HOCT4 kernel of Read et al. (2010, orange) with its central

spike (cf. Fig. 1) shows by far the worst performance. However, this

is not a peculiarity of the HOCT4 kernel, but a generic property of

all kernels without inflection point.

These considerations suggest the corrected density estimate

ρ̂i,corr = ρ̂i − ǫ mi W (0, hi), (18)

which is simply the original estimate (1) with a fraction ǫ of

the self-contribution subtracted. The equations of motion obtained

by replacing ρ̂i in the Lagrangian (2) with ρ̂i,corr are otherwise

identical to equations (3) and (4) (note that ∂(hν
i ρ̂i,corr)/∂ ln hi =

∂(hν
i ρ̂i)/∂ ln hi , since hν

i ρ̂i and hν
i ρ̂i,corr differ only by a constant),

in particular the conservation properties are unaffected. From the

data of Fig. 3, we find that good results are obtained by a simple

power law

ǫ = ǫ100 (NH/100)−α, (19)

with constants ǫ100 and α depending on the kernel. We use (ǫ100,

α) = (0.0294, 0.977), (0.01342, 1.579) and (0.0116, 2.236), respec-

tively, for the Wendland C2, C4 and C6 kernels in ν = 3 dimensions.

The dashed curves and triangles in Fig. 3 demonstrate that this

approach obtains accurate density and hence pressure estimates.

3 L I N E A R STA B I L I T Y A N D S O U N D WAV E S

The SPH linear stability analysis considers a plane-wave perturba-

tion to an equilibrium configuration, i.e. the positions are perturbed

according to

xi → xi + a exp(i[k·xi − ωt]), (20)

with displacement amplitude a, wave vector k and angular fre-

quency ω. Equating the forces generated by the perturbation to

linear order in a to the acceleration of the perturbation yields a

dispersion relation of the form

a · P(k) = ω2
a. (21)

This is an eigenvalue problem for the matrix P with eigenvector a

and eigenvalue ω2. The exact (non-SPH) dispersion relation (with

c2 = ∂P/∂ρ, P = ρ2
∂u/∂ρ at constant entropy)

c2
a·k k = ω2

a (22)

has only one non-zero eigenvalue ω2 = c2
k

2 with eigenvector a ‖ k,

corresponding to longitudinal sound waves propagating at speed c.

The actual matrix P in equation (21) depends on the details of

the SPH algorithm. For conservative SPH with equation of motion

(3), Monaghan (2005) gives it for P ∝ ργ in one spatial dimension.

We derive it in Appendix A for a general equation of state and any

number ν of spatial dimensions:

P = c̄2
u

(2) +
2P̄

ρ̄

(
U − u

(2) +
{

�̄

2
u

(2) −
1

2νρ̄2�̄2

∂t
(2)

∂ lnh̄

})
,

(23)

where x
(2) is the outer product of a vector with itself, bars denote

SPH estimates for the unperturbed equilibrium, t = ρ̄�̄u, and

u(k) =
1

ρ̄{�̄}
∑

j

m sin k·x̄j ∇W (x̄j , h̄), (24a)

U(k) =
1

ρ̄{�̄}
∑

j

m (1 − cos k·x̄j ) ∇ (2)W (x̄j , h̄), (24b)

�̄ =
1

ν

∂ ln(ρ̄�̄)

∂ ln h̄
≃ 0. (24c)

Here and in the remainder of this section, curly brackets indicate

terms not present in the case of a constant h = h̄, when our results

reduce to relations given by Morris (1996) and Read et al. (2010).

Since P is real and symmetric, its eigenvalues are real and its

eigenvectors mutually orthogonal.6 The SPH dispersion relation

(21) can deviate from the true relation (22) in mainly two ways.

First, the longitudinal eigenvalue ω2
‖ (with eigenvector a‖ ‖ k) may

deviate from c2
k

2 (wrong sound speed) or even be negative (pair-

ing instability; Morris 1996; Monaghan 2000). Secondly, the other

two eigenvalues ω2
⊥1,2 may be significantly non-zero (transverse

instability for ω2
⊥1,2 < 0 or transverse sound waves for ω2

⊥1,2 > 0).

The matrix P in equation (23) is not accessible to simple interpre-

tation. We will compute its eigenvalues for the various SPH kernels

in Sections 3.2 and 3.3 and Figs 4–6, but first consider the limiting

cases of the dispersion relation, allowing some analytic insight.

3.1 Limiting cases

There are three spatial scales: the wavelength λ = 2π/|k|, the

smoothing scale h and the nearest neighbour distance dnn. We will

separately consider the limit λ ≫ h of well-resolved waves, the

continuum limit h ≫ dnn of large neighbour numbers and finally

the combined limit λ ≫ h ≫ dnn.

6 If in equation (3) one omits the factors �i but still adapts hi to obtain

hν
i ρ̂i = constant, as some practitioners do, then the resulting dispersion

relation has an asymmetric matrix P with potentially complex eigenvalues.
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SPH without pairing instability 1073

Figure 4. Stability of conservative SPH with the Gaussian (truncated at 16σ ) and cubic spline kernel for densest sphere packing and P ∝ ρ5/3: contours

of ω2
‖/c

2
k

2 (top) and ω2
⊥2/c

2
k

2 (bottom), the longitudinal and smallest transverse eigenvalues of P/c2
k

2, respectively, over wavenumber |k| and smoothing

scale h = 2σ (and NH or Nh) both scaled to the nearest-neighbour distance dnn. The left and right subpanels are for k ∝ (1, 1, 1) (perpendicular to hexagonal

planes), and k ∝ (1, 1, 0) (nearest-neighbour direction), respectively (other wave vectors give similar results). Red contours are for ω2 ≤ 0 (implying the

pairing instability in the top panels) and are logarithmically spaced by 0.25 dex. Blue contours are also logarithmically spaced between 10−6 and 0.1, black

contours are linearly spaced by 0.1, while good values for ω2
‖ are ω2

‖/c
2
k

2 = 0.95, 0.99, 0.995, 0.999, 1.001 1.005, 1.01, 1.05 (green) and 1 (cyan). The dashed

line indicates a sound wave with wavelength λ = 8h = 16σ . For the Gaussian kernel |ω2
⊥2| in the bottom panels is often smaller than our numerical precision.

3.1.1 Resolved waves

If |k|h ≪ 1, the argument of the trigonometric functions in equa-

tions (24a,b) is always small and we can Taylor expand them.7 If

we also assume a locally isotropic particle distribution, this gives to

lowest order in |k| (I is the unit matrix; see also Section A3):

P → c̄2
k

(2) + �̄
P̄

ρ̄

[(
2ν

ν + 2
− {1}

)
k

(2) +
νk

2

ν + 2
I

]
(25)

with the eigenvalues

ω2
‖

k
2

= c̄2 + �̄
P̄

ρ̄

(
3ν

ν + 2
− {1}

)
, (26a)

ω2
⊥1,2

k
2

= �̄
P̄

ρ̄

ν

ν + 2
. (26b)

The error of these relations is mostly dictated by the quality of the

density estimate, either directly via ρ̄, c̄ and P̄ , or indirectly via �̄.

The density correction method of equation (18) can only help with

the former, but not the latter. The difference between constant and

adapted h is a factor 4/9 (for 3D) in favour of the latter.

3.1.2 Continuum limit

For large neighbour numbers NH, H ≫ dnn, �̄&�̄ → 1, ρ̄ → ρ and

the sums in equations (24a,b) can be approximated by integrals8

u → −k Ŵ (k) and U → k
(2) Ŵ (k), (27)

7 In his analysis of 1D SPH, Rasio (2000) also considers this simplification,

but interprets it incorrectly as the limit |k|dnn ≪ 1 regardless of h.
8 Assuming a uniform particle distribution. A better approximation, which

does not require dnn ≪ H, is to assume some radial distribution function

g(r) (as in statistical mechanics of glasses) for the probability of any two

particles having distance r. Such a treatment may well be useful in the

context of SPH, but it is beyond the scope of our study.

with Ŵ (k) the Fourier transform of W (x, h). Since Ŵ (k) =
ŵ(H |k|), we have ∂Ŵ/∂ ln h = k·∇kŴ and thus from equation (23)

P → c2
k

(2) Ŵ

[
Ŵ +

2P

ρc2
(1 − Ŵ − {ν−1

k·∇kŴ })
]

. (28)

Ŵ (0) = 1, but towards larger |k| the Fourier transform decays,

Ŵ (k) < 1, and in the limit h|k| ≫ 1 or λ ≪ h, Ŵ → 0: short

sound waves are not resolved.

Negative eigenvalues of P in equation (28), and hence linear

instability, occur only if Ŵ itself or the expression within square

brackets are negative. Since Ŵ ≤ 1, the latter can only happen if P <

0, which does usually not arise in fluid simulations (unless, possibly,

one subtracts an average pressure), but possibly in elasticity simula-

tions of solids (Gray, Monaghan & Swift 2001), when it causes the

tensile instability (an equivalent effect is present in smoothed parti-

cle MHD; see Phillips & Monaghan 1985; Price 2012). Monaghan

(2000) proposed an artificial repulsive short-range force, effectuat-

ing an additional pressure, to suppress the tensile instability.

The pairing instability, on the other hand, is caused by Ŵ < 0 for

some H |k| > κ0. This instability can be avoided by choosing the

neighbour number NH small enough for the critical wavenumber κ0

to remain unsampled, i.e. κ0 > κNyquist or H � dnnκ0/π (though

such small H is no longer consistent with the continuum limit).

However, if the Fourier transform of the kernel is non-negative

everywhere, the pairing instability cannot occur for large NH. As

pairing is typically a problem for large NH, this suggests that kernels

with Ŵ (k) > 0 for every k are stable against pairing for all values

of NH, which is indeed supported by our results in Section 4.1.

3.1.3 Resolved waves in the continuum limit

The combined limit of λ ≫ h ≫ dnn is obtained by inserting the

Taylor expansion (17) of Ŵ into equation (28), giving

ω2
‖ = c2

k
2(1 + σ 2

k
2γ −1[{2/ν} + 1 − γ ] + O(h4|k|4)). (29)
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1074 W. Dehnen and H. Aly

Figure 5. As Fig. 4, but for the quartic and quintic spline and the HOCT4 kernel (left) and the Wendland C2 to C6 kernels (right). The fine details of these

contours are specific to the densest sphere packing and will be different for more realistic glass-like particle distributions.
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SPH without pairing instability 1075

Figure 6. Ratio of SPH sound speed cSPH = ω‖/|k| for the equation of state

P ∝ ρ5/3 to the correct c for the kernel–NH combinations of Table 2 and

three different wave directions (as indicated) for particles in densest sphere

packing with nearest-neighbour separation dnn. These curves are horizontal

cuts through the top panels of Figs 4 and 5. The thin vertical lines indicate

sound with wavelength λ = 8h, corresponding to the dashed lines in Figs 4

and 5.

Monaghan (2005) gave an equivalent relation for ν = 1 when the

expression in square brackets becomes 3 − γ or 1 − γ (for adapted

or constant h, respectively), which, he argues, bracket all physically

reasonable values. However, in 3D the value for adaptive SPH be-

comes 5/3 − γ , i.e. vanishes for the most commonly used adiabatic

index.

In general, however, the relative error in the frequency is

∝σ 2
k

2 ∝ (σ/λ)2. This shows that h = 2σ is indeed directly pro-

portional to the resolution scale, at least concerning sound waves.

3.2 Linear stability of SPH kernels

We have evaluated the eigenvalues ω2
‖ and ω2

⊥1,2 of the matrix P in

equation (23) for all kernels of Table 1, as well as the HOCT4 and

Gaussian kernels, for unperturbed positions from densest sphere

packing (face-centred cubic grid).9 In Figs 4 and 5, we plot the

resulting contours of ω2/c2
k

2 over wavenumber |k| and smoothing

scale h (both normalized by the nearest-neighbour distance dnn) or

NH on the right axes (except for the Gaussian kernel when NH is

ill-defined and we give Nh instead) for two wave directions, one

being a nearest-neighbour direction.

9 Avoiding an obviously unstable configuration, such as a cubic lattice,

which may result in ω2 < 0 simply because the configuration itself was

unstable, not the numerical scheme.

3.2.1 Linear stability against pairing

The top subpanels of Figs 4 and 5 refer to the longitudinal eigenvalue

ω2
‖ , when green and red contours are for, respectively, ω2

‖ ≈ c2
k

2

and ω2
‖ < 0, the latter indicative of the pairing instability. For the

Gaussian kernel (truncated at 16σ ; Fig. 4) ω2
‖ > 0 everywhere,

proving its stability,10 similar to the HOCT4 and, in particular the

higher degree, Wendland kernels. In contrast, all the B-spline ker-

nels obtain ω2
‖ < 0 at sufficiently large NH.

The quintic spline, Wendland C2, and HOCT4 kernel each have

a region of ω2
‖ < 0 for |k| close to the Nyquist frequency and NH ≈

100, ≈40 and ∼150, respectively. In numerical experiments similar

to those described in Section 4.1, the corresponding instability for

the quintic spline and Wendland C2 kernels can be triggered by

very small random perturbations to the grid equilibrium. However,

such modes are absent in glass-like configurations, which naturally

emerge by ‘cooling’ initially random distributions. This strongly

suggests that these kernel–NH combinations can be safely be used

in practice. Whether this also applies to the HOCT4 kernel at NH ∼
150 we cannot say, as we have not run test simulations for this kernel.

Note that these islands of linear instability at small NH are not in

contradiction to the relation between kernel Fourier transform and

stability and are quite different from the situation for the B-splines,

which are only stable for sufficiently small NH.

3.2.2 Linear transverse instability?

The bottom subpanels of Figs 4 and 5 show ω2
⊥2/c

2
k

2, when both

families of kernels have 0 ≈ |ω2
⊥1,2| ≪ c2

k
2 with either sign

occurring. ω2
⊥1,2 < 0 implies growing transverse modes,11 which

we indeed found in simulations starting from a slightly perturbed

densest sphere packing. However, such modes are not present in

glass-like configurations, which strongly suggests that transverse

modes are not a problem in practice.

3.3 Numerical resolution of sound waves

The dashed lines in Figs 4 and 5 indicate sound with wavelength

λ = 8 h. For h � dnn, such sound waves are well resolved in the

sense that the sound speed is accurate to �1 per cent. This is similar

to grid methods, which typically require about eight cells to resolve

a wavelength.

The effective SPH sound speed can be defined as cSPH = ω‖/|k|.
In Fig. 6 we plot the ratio between cSPH and the correct sound speed

as function of wavenumber for three different wave directions and

the 10 kernel–NH combinations of Table 2 (which also gives their

formal resolutions). The transition from cSPH ≈ c for long waves to

cSPH ≪ c for short waves occurs at |k|dnn � 1, but towards longer

waves for larger h/dnn, as expected.

10 There is in fact ω2
‖ < 0 at values for h larger than plotted. In agreement

with our analysis in Section 3.1.2, this is caused by truncating the Gaussian,

which (like any other modification to avoid infinite neighbour numbers)

invalidates the non-negativity of its Fourier transform. These theoretical

results are confirmed by numerical findings of D. Price (referee report), who

reports pairing at large h/dnn for the truncated Gaussian.
11 Read et al. (2010) associate ω2

⊥1,2 < 0 with a ‘banding instability’ which

appeared near a contact discontinuity in some of their simulations. How-

ever, they fail to provide convincing arguments for this connection, as their

stability analysis is compromised by the use of the unstable cubic lattice.
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1076 W. Dehnen and H. Aly

Table 2. Some quantities (defined in Section 2.1) for

kernel–NH combinations used in Fig. 6 and the test

simulations of Section 4. dnn is the nearest-neighbour

distance for densest sphere packing, which has number

density n =
√

2 d−3
nn . The cubic spline with NH ≈ 42 is

the most common choice in astrophysical simulations,

the other NH values for the B-spline are near the pairing-

stability boundary, hence obtaining close to the greatest

possible reduction of the ‘E0 errors’. For NH = 100,

200, 400, we picked the Wendland kernel which gave

best results for the vortex test of Section 4.2.

Kernel NH Nh h/dnn h(ρ̂/m)1/3

Cubic spline 42 6.90 1.052 1.181

Cubic spline 55 9.04 1.151 1.292

Quartic spline 60 7.29 1.072 1.203

Quintic spline 180 17.00 1.421 1.595

Wendland C2 100 13.77 1.325 1.487

Wendland C4 200 18.58 1.464 1.643

Wendland C6 400 27.22 1.662 1.866

HOCT4 442 42.10 1.923 2.158

Gaussian ∞ 10.00 1.191 1.337

Gaussian ∞ 20.00 1.500 1.684

For resolved waves (λ � 8 h: left of the thin vertical lines

in Fig. 6), cSPH obtains a value close to c, but with clear differ-

ences between the various kernel–NH combinations. Surprisingly,

the standard cubic spline kernel, which is used almost exclusively in

astrophysics, performs very poorly with errors of few per cent, for

both NH = 42 and 55. This is in stark contrast to the quartic spline

with similar NH = 60 but cSPH accurate to <1 per cent. Moreover,

the quartic spline with NH = 60 resolves shorter waves better than

the cubic spline with a smaller NH = 55, in agreement with Table 2.

We should note that these results for the numerical sound speed

assume a perfectly smooth simulated flow. In practice, particle dis-

order degrades the performance, in particular for smaller NH, and

the resolution of SPH is limited by the need to suppress this degra-

dation via increasing h (and NH).

4 T EST SIMULATIONS

In order to assess the Wendland kernels and compare them to the

standard B-spline kernels in practice, we present some test simu-

lations which emphasize the pairing, strong shear, and shocks. All

these simulations are done in 3D using periodic boundary condi-

tions, P = Kρ5/3, conservative SPH (equation 3) and the Cullen

& Dehnen (2010) artificial viscosity treatment, which invokes dis-

sipation only for compressive flows, and an artificial conductivity

similar to that of Read & Hayfield (2012). For some tests we used

various values of NH per kernel, but mostly those listed in Table 2.

4.1 Pairing in practice

In order to test our theoretical predictions regarding the pairing in-

stability, we evolve noisy initial conditions with 32 000 particles

until equilibrium is reached. Initially, ẋi = 0, while the initial xi

are generated from densest sphere packing by adding normally dis-

tributed offsets with (1D) standard deviation of one unperturbed

nearest-neighbour distance dnn. To enable a uniform-density equi-

librium (a glass), we suppress viscous heating.

The typical outcome of these simulations is either a glass-like

configuration (right-hand panel of Fig. 7) or a distribution with

Figure 7. Final x and y positions for particles at |z| < dnn/2 for the tests of

Section 4.1. Symbol size is linear in z: two overlapping symbols of the same

size indicate particle pairing.

Figure 8. Final value of the overall minimum of qmin ,i (equation 32) for

simulations starting from noisy initial conditions for all kernels of Table 1

(same colour coding as in Fig. 3; using the density correction of Section 2.5

for the Wendland kernels) as function of NH. For densest sphere packing

qmin ,i ≈ 1, for a glass 0 ≪ qmin ,i < 1, while qmin ,i ∼ 0 indicates particle

pairing.

particle pairs (left-hand panel of Fig. 7). In order to quantify these

outcomes, we compute for each particle the ratio

rmin,i = min
j �=i

{|xi − xj |}/Hi (30)

between its actual nearest-neighbour distance and kernel-support

radius. The maximum possible value for rmin occurs for densest

sphere packing, when |xi − xj | ≥ dnn = (n/
√

2)1/3 with n the

number density. Replacing ρ̂i in equation (7) with min, we obtain

rmin � (3NH/25/2
π)1/3. (31)

Thus, the ratio

qmin,i =
rmin,i

(3NH/25/2π)1/3
≈ min

j �=i

{
|xi − xj |
dnn,grid

}
(32)

is an indicator for the regularity of the particle distribution around

particle i. It obtains a value very close to one for perfect densest

sphere packing and near zero for pairing, while a glass typically

gives qmin ,i ∼ 0.7.

Fig. 8 plots the final value for the overall minimum of qmin ,i for

each of a set of simulations. For all values tested for NH (up to 700),

the Wendland kernels show no indication of a single particle pair.

This is in stark contrast to the B-spline kernels, all of which suffer

from particle pairing. The pairing occurs at NH > 67 and 190 for the

quartic and quintic spline, respectively, whereas for the cubic spline

min i{qmin ,i} approaches zero more gradually, with min i{qmin ,i} ≤
0.16 at NH > 55. These thresholds match quite well the suggestions

of the linear stability analysis in Figs 4 and 5 (except that the
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SPH without pairing instability 1077

indications of instability of the quintic spline at NH ≈ 100 and the

Wendland C2 kernel at NH ≈ 40 are not reflected in our tests here).

The quintic (and higher order) splines are the only option amongst

the B-spline kernels for NH appreciably larger than ∼50.

We also note that min i{qmin ,i} grows substantially faster, in par-

ticularly early on, for the Wendland kernels than for the B-splines,

especially when operating close to the stability boundary.

4.2 The Gresho–Chan vortex test

As discussed in the Introduction, particle disorder is unavoidably

generated in shearing flows, inducing ‘E0 errors’ in the forces and

causing modelling errors. A critical test of this situation consists

of a differentially rotating fluid of uniform density in centrifugal

balance (Gresho & Chan 1990, see also Liska & Wendroff 2003;

Springel 2010; Read & Hayfield 2012). The pressure and azimuthal

velocity are

P =

⎧
⎪⎪⎨

⎪⎪⎩

P0+12.5R2 for 0 ≤ R < 0.2,

P0+12.5R2 + 4−20R+4 ln(5R) for 0.2 ≤ R < 0.4,

P0+2(2 ln 2−1) for 0.4 ≤ R;
(33a)

vφ =

⎧
⎪⎪⎨

⎪⎪⎩

5R for 0 ≤ R < 0.2,

2 − 5R for 0.2 ≤ R < 0.4,

0 for 0.4 ≤ R,

(33b)

with P0 = 5 and R the cylindrical radius. We start our simulations

from densest sphere packing with effective one-dimensional particle

numbers N1D = 51, 102, 203 or 406. The initial velocities and

pressure are set as in equations (33).

There are three different causes for errors in this test. First, an

overly viscous method reduces the differential rotation, as shown

by Springel (2010); this effect is absent from our simulations owing

to the usage of the Cullen & Dehnen (2010) dissipation switch.

Secondly, the ‘E0 error’ generates noise in the velocities which in

turn triggers some viscosity. Finally, finite resolution implies that

the sharp velocity kinks at R = 0.2 and 0.4 cannot be fully resolved

(in fact, the initial conditions are not in SPH equilibrium because

the pressure gradient at these points is smoothed such that the SPH

acceleration is not exactly balanced with the centrifugal force).

In Fig. 9 we plot the azimuthal velocity at time t = 1 for a subset

of all particles at our lowest resolution of N1D = 51 for four different

kernel–NH combinations. The leftmost is the standard cubic spline

Figure 10. Convergence of the L1 velocity error for the Gresho–Chan test

with increasing number of particles (for a cubic lattice N1D equals the

number of cells along one side of the computational domain) for various

kernel–NH combinations (those with filled squares are shown in Fig. 9). A

comparison with fig. 6 of Read & Hayfield (2012) shows that the Wendland

C6 kernel with NH = 400 performs better than the HOCT4 kernel with

NH = 442.

with NH = 55, which considerably suffers from particle disorder

and hence ‘E0 errors (but also obtains too low vφ at R < 0.2).

The second is the Wendland C2 kernel with NH = 100, which

still suffers from the ‘E0 error’. The last two are for the Wendland

C6 kernel with NH = 400 and the Wendland C2 kernel with NH =
100 but with P0 = 0 in equation (33a). In both cases, the ‘E0

error’ is much reduced (and the accuracy limited by resolution)

either because of large neighbour number or because of a reduced

pressure.

In Fig. 10, we plot the convergence of the L1 velocity error with

increasing numerical resolution for all the kernels of Table 1, but

with another NH for each, see also Table 2. For the B-splines, we

pick a large NH which still gives sufficient stability against pairing,

while for NH = 100, 200 and 400 we show the Wendland kernel

that gave best results. For the cubic spline, the results agree with

the no-viscosity case in fig. 6 of Springel (2010), demonstrating

that our dissipation switch effectively yields inviscid SPH. We also

see that the rate of convergence (the slope of the various curves) is

Figure 9. Velocity profiles the Gresho–Chan vortex test at time t = 1 with the lowest resolution of N1D = 50.8 for three different kernel–NH pairs (as indicated)

and one simulation (right-hand panel) with P0 = 0 in equation (33a), when the ‘E0 error’ is naturally much weaker. Only particles at |z| < 0.05 are plotted.
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1078 W. Dehnen and H. Aly

Figure 11. Velocity, density and thermal energy profiles for the shock tube test at t = 0.2 for the same kernel–NH combinations as in Fig. 10 in order of

increasing NH (points: particles at |y|, |z| < 0.005) and the exact solutions (solid). The L1 velocity errors reported are computed for the range −0.4 < x < 0.5.

lower for the cubic spline than any other kernel. This is caused by

systematically too low vφ in the rigidly rotating part at R < 0.2 (see

leftmost panel in Fig. 9) at all resolutions. The good performance of

the quartic spline is quite surprising, in particular given the rather

low NH. The quintic spline at NH = 180 and the Wendland C4 kernel

at NH = 200 obtain very similar convergence, but are clearly topped

by the Wendland C6 kernel at NH = 400, demonstrating that high

neighbour number is really helpful in strong shear flows.

4.3 Shocks

Our final test is the classical Sod (1978) shock tube, a 1D Riemann

problem, corresponding to an initial discontinuity in density and

pressure. Unlike most published applications of this test, we perform

3D simulations with glass-like initial conditions. Our objective here

is (1) to verify the ‘E0 error’ reductions at larger NH and (2) the

resulting trade-off with the resolution across the shock and contact

discontinuities. Other than for the vortex tests of Section 4.2, we

only consider one value for the number N of particles but the same

six kernel–NH combinations as in Fig. 10. The resulting profiles of

velocity, density and thermal energy are plotted in Fig. 11 together

with the exact solutions.

Note that the usual overshooting of the thermal energy near the

contact discontinuity (at x = 0.17) is prevented by our artificial con-

ductivity treatment. This is not optimized and likely oversmoothes

the thermal energy (and with it the density). However, here we

concentrate on the velocity.

For the cubic spline with NH = 55, there is significant velocity

noise in the post-shock region. This is caused by the re-ordering

of the particle positions after the particle distribution becomes

anisotropically compressed in the shock. This type of noise is a

well-known issue with multidimensional SPH simulations of shocks

(e.g. Springel 2010; Price 2012). With increasing NH the velocity

noise is reduced, but because of the smoothing of the velocity jump

at the shock (at x = 0.378) the L1 velocity error does not approach

zero for large NH.

Instead, for sufficiently large NH (�200 in this test), the L1 veloc-

ity error saturates: any ‘E0 error’ reduction for larger NH is balanced

by a loss of resolution. The only disadvantage of larger NH is an

increased computational cost (by a factor ∼1.5 when moving from

the quintic spline with NH = 180 to the Wendland kernel C6 with

NH = 400, see Fig. 12).

5 DI SCUSSI ON

5.1 What causes the pairing instability?

The Wendland kernels have an inflection point and yet show no

signs of the pairing instability. This clearly demonstrates that the

traditional ideas for the origin of this instability (à la Swegle et al.

1995, see the Introduction) were incorrect. Instead, our linear sta-

bility analysis shows that in the limit of large NH pairing is caused

by a negative kernel Fourier transform Ŵ , whereas the related ten-

sile instability with the same symptoms is caused by an (effective)

negative pressure. While it is intuitively clear that negative pressure

causes pairing, the effect of Ŵ < 0 is less obvious. Therefore, we

now provide another explanation, not restricted to large NH.

5.1.1 The pairing instability as artefact of the density estimator

By their derivation from the Lagrangian (2), the SPH forces

mi ẍi = ∂L/∂xi = −∂Û/∂xi tend to reduce the estimated to-

tal thermal energy Û =
∑

i mi u(ρ̂i, si) at fixed entropy.12 Thus,

hydrostatic equilibrium corresponds to an extremum of Û , and

stable equilibrium to a minimum when small positional changes

meet opposing forces. Minimal Û is obtained for uniform ρ̂i , since

a re-distribution of the particles in the same volume but with a

spread of ρ̂i gives larger Û (assuming uniform si). An equilibrium

is metastable, if Û is only a local (but not the global) minimum.

Several extrema can occur if different particle distributions, each

obtaining (near-)uniform ρ̂i , have different average ρ̂. Consider,

for example, particles in densest sphere packing, replace each by

a pair and increase the spacing by 21/3, so that the average density

ρ (but not ρ̂) remains unchanged. This fully paired distribution is

in equilibrium with uniform ρ̂i , but the effective neighbour number

is reduced by a factor of 2 (for the same smoothing scale). Now

12 This holds, of course, also for an isothermal gas, when u is constant, but

not the entropy s, so that (∂u/∂ρ)s �= 0.
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SPH without pairing instability 1079

Figure 12. Wall-clock timings for an (average) single SPH time-step (using

four processors) for N = 220 particles as function of neighbour number NH

for the kernels of Table 1.

if ρ̂(NH/2) < ρ̂(NH), the paired distribution has lower Û than the

original and is favoured.

In practice (and in our simulations in Section 4.1), the pairing

instability appears gradually: for NH just beyond the stability bound-

ary, only few particle pairs form and the effective reduction of NH

is by a factor f ≤ 2. We conclude, therefore, that

pairing occurs if ρ̂(NH/f ) < ρ̂(NH) for some 1 < f ≤ 2.

From Fig. 3 we see that for the B-spline kernels ρ̂(NH) always has

a minimum and hence satisfies this instability condition, while this

never occurs for the Wendland or HOCT4 kernels.13 The stability

boundary (between squares and crosses in Fig. 3) is towards slightly

larger NH than the minimum of ρ̂(NH), indicating f > 1 (but also

note that the curves are based on a regular grid instead of a glass as

the squares).

5.1.2 The relation to ‘E0 errors’ and particle re-ordering

A disordered particle distribution is typically not in equilibrium, but

has non-uniform ρ̂i and hence non-minimal Û . The SPH forces, in

particular their ‘E0 errors’ (which occur even for constant pressure),

then drive the evolution towards smaller Û and hence equilibrium

with either a glass-like order or pairing (see also Price 2012, section

5). Thus, the minimization of Û is the underlying driver for both the

particle re-ordering capability of SPH and the pairing instability.

This also means that when operating near the stability boundary,

for example using NH = 55 for the cubic spline, this re-ordering is

much reduced. This is why in Fig. 8 the transition between glass

and pairing is not abrupt: for NH just below the stability boundary

the glass formation, which relies on the re-ordering mechanism, is

very slow and not finished by the end of our test simulations.

An immediate corollary of these considerations is that any SPH-

like method without ‘E0 errors’ does not have an automatic re-

ordering mechanism. This applies to modifications of the force

equation that avoid the ‘E0 error’, but also to the method of Heß &

Springel (2010), which employs a Voronoi tessellation to obtain the

density estimates ρ̂i used in the particle Lagrangian (2). The tes-

sellation constructs a partition of unity, such that different particle

distributions with uniform ρ̂i have exactly the same average ρ̂, i.e.

13 The density correction of Section 2.5 does not affect these arguments,

because during a simulation ǫ in equation (18) is fixed and in terms of

our considerations here the solid curves in Fig. 3 are simply lowered by a

constant.

the global minimum of Û is highly degenerate. This method has nei-

ther a pairing instability, nor ‘E0 errors’, nor the re-ordering capacity

of SPH, but requires additional terms for that latter purpose.

5.2 Are there more useful kernel functions?

Neither the B-splines nor the Wendland functions have been de-

signed with SPH or the task of density estimation in mind, but

derive from interpolation of function values yi for given points xi .

The B-splines were constructed to exactly interpolate polynomi-

als on a regular 1D grid. However, this for itself is not a desirable

property in the context of SPH, in particular for 2D and 3D.

The Wendland functions were designed for interpolation of scat-

tered multidimensional data, viz

s(x) =
∑

j αj w(|x − xj |).

The coefficients αj are determined by matching the interpolant s(x)

to the function values, resulting in the linear equations

yi =
∑

j αj w(|xi − xj |), i = 1, . . . , n.

If the matrix Wij = w(|xi −xj |) is positive definite for any choice of

n points xi , then this equation can always be solved. Moreover, if the

function w(r) has compact support, then W is sparse, which greatly

reduces the complexity of the problem. The Wendland functions

were designed to fit this bill. As a side effect they have non-negative

Fourier transform (according to Bochner 1933), which together with

their compact support, smoothness and computational simplicity

makes them ideal for SPH with large NH.

So far, the Wendland functions are the only kernels which are

stable against pairing for all NH and satisfy all other desirable prop-

erties from the list in Section 2.2.

5.3 What is the SPH resolution scale?

In smooth flows, i.e. in the absence of particle disorder, the only

error of the SPH estimates is the bias induced by the smoothing

operation. For example, assuming a smooth density field

ρ̂i ≈ ρ(xi) +
1

2
σ 2 ∇2ρ(xi) + O(h4) (34)

(e.g. Monaghan 1985; Silverman 1986) with σ defined in equa-

tion (8). Since σ also sets the resolution of sound waves (Sec-

tion 3.1.3), our definition (10), h = 2σ , of the SPH resolution scale

is appropriate for smooth flows. The result (34) is the basis for the

traditional claim of O(h2) convergence for smooth flows. True flow

discontinuities are smeared out over a length scale comparable to h

(though we have not made a detailed investigation of this).

In practice, however, particle disorder affects the performance

and, as our test simulations demonstrated, the actual resolution of

SPH can be much worse than the smooth-flow limit suggests.

5.4 Are large neighbour numbers sensible?

There is no consensus about the best neighbour number in SPH: tra-

ditionally the cubic spline kernel is used with NH ≈ 42, while Price

(2012) favours NH = 57 (at or even beyond the pairing-instability

limit) and Read et al. (2010) use their HOCT4 kernel with even

NH = 442 (corresponding to a 1.7 times larger h). From a pragmatic

point of view, the number N of particles, the neighbour number

NH, and the smoothing kernel (and between them the numerical

C© 2012 The Authors, MNRAS 425, 1068–1082
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1080 W. Dehnen and H. Aly

Figure 13. As Fig. 10, except that the x-axis shows the computational costs.

resolution) are numerical parameters which can be chosen to opti-

mize the efficiency of the simulation. The critical question therefore

is

Which combination of N and NH (and kernel) most efficiently

models a given problem at a desired fidelity?

Clearly, this will depend on the problem at hand as well as the

desired fidelity. However, if the problem contains any chaotic or

turbulent flows, as is common in star- and galaxy formation, then the

situation exemplified in the Gresho–Chan vortex test of Section 4.2

is not atypical and large NH may be required for sufficient accuracy.

But are high neighbour numbers affordable? In Fig. 12, we

plot the computational cost versus NH for different kernels. At

NH � 400 the costs rise sublinearly with NH (because at low NH

SPH is data- rather than computation dominated) and high NH are

well affordable. In the case of the vortex test, they are absolutely

necessary as Fig. 13 demonstrates: for a given numerical accuracy,

our highest NH makes optimal use of the computational resources

(in our code memory usage does not significantly depend on NH, so

CPU time is the only relevant resource).

6 SU M M A RY

Particle disorder is unavoidable in strong shear (ubiquitous in astro-

physical flows) and causes random errors of the SPH force estimator.

The good news is that particle disorder is less severe than Poisso-

nian shot noise and the resulting force errors (which are dominated

by the ‘E0’ term of Read et al. 2010) are not catastrophic. The bad

news, however, is that these errors are still significant enough to

spoil the convergence of SPH.

In this study we investigated the option to reduce the ‘E0 errors’

by increasing the neighbour number in conjunction with a change

of the smoothing kernel. Switching from the cubic to the quintic

spline at fixed resolution h increases the neighbour number NH only

by a factor14 of 1.74, hardly enough to combat ‘E0 errors’. For a

significant reduction of these errors one has to trade resolution and

significantly increase NH beyond conventional values.

14 Using our definition (10) for the smoothing scale h. The conventional

factor is 3.375, almost twice 1.74, but formally effects to a loss of resolution,

since the conventional value for h of the B-spline kernels is inappropriate.

The main obstacle with this approach is the pairing instability,

which occurs for large NH with the traditional SPH smoothing

kernels. In Section 3 and appendix A, we have performed (it appears

for the first time) a complete linear stability analysis for conservative

SPH in any number of spatial dimensions. This analysis shows

that SPH smoothing kernels whose Fourier transform is negative

for some wave vector k will inevitably trigger the SPH pairing

instability at sufficiently large neighbour number NH. Such kernels

therefore require NH to not exceed a certain threshold in order

to avoid the pairing instability (not to be confused with the tensile

instability, which has the same symptoms but is caused by a negative

effective pressure independent of the kernel properties).

Intuitively, the pairing instability can be understood in terms of

the SPH density estimator: if a paired particle distribution obtains a

lower average estimated density, its estimated total thermal energy

Û is smaller and hence favourable. Otherwise, the smallest Û occurs

for a regular distribution, driving the automatic maintenance of

particle order, a fundamental ingredient of SPH.

The Wendland (1995) functions, presented in Section 2.2.3, have

been constructed, albeit for different reasons, to possess a non-

negative Fourier transform, and be of compact support with simple

functional form. The first property and the findings from our tests

in Section 4.1 demonstrate the remarkable fact that these kernels

are stable against pairing for all neighbour numbers (this disproves

the long-cultivated myth that the pairing instability was caused by

a maximum in the magnitude of the kernel gradient). Our 3D test

simulations show that the cubic, quartic and quintic spline kernels

become unstable to pairing for NH > 55, 67 and 190, respectively

(see Fig. 8), but operating close to these thresholds cannot be rec-

ommended.

A drawback of the Wendland kernels is a comparably large den-

sity error at low NH. As we argue in Section 5.1.1, this error is

directly related to the stability against pairing. However, in Sec-

tion 2.5 we present a simple method to correct for this error without

affecting the stability properties and without any other adverse ef-

fects.

We conclude, therefore, that the Wendland functions are ideal

candidates for SPH smoothing kernels, in particular when large NH

are desired, since they are computationally superior to the high-

order B-splines. All other alternative kernels proposed in the liter-

ature are computationally more demanding and are either centrally

spiked, like the HOCT4 kernel of Read et al. (2010), or susceptible

to pairing like the B-splines (e.g. Cabezón, Garcı́a-Senz & Relaño

2008).

Our tests of Section 4 show that simulations of both strong shear

flows and shocks benefit from large NH. These tests suggest that for

NH ∼ 200 and 400, respectively, the Wendland C4 and C6 kernels

are most suitable. Compared to NH = 55 with the standard cubic

spline kernel, these kernel–NH combinations have lower resolution

(h increased by factors of 1.27 and 1.44, respectively), but obtain

much better convergence in our tests.

For small neighbour numbers, however, these tests and our linear

stability analysis unexpectedly show that the quartic B-spline kernel

with NH = 60 is clearly superior to the traditional cubic spline and

can compete with the Wendland C2 kernel with NH = 100. The

reason for this astonishing performance of the quartic spline is

unclear, perhaps the fact that near x = 0 this spline is more than

three times continuously differentiable plays a role.

We note that, while the higher degree Wendland functions are new

to SPH, the Wendland C2 kernel has already been used (Monaghan

2011, for example, employs it for 2D simulations). However, while

its immunity to the pairing instability has been noted (e.g. Robinson
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SPH without pairing instability 1081

2009),15 we are not aware of any explanation (previous to ours)

nor of any other systematic investigation of the suitability of the

Wendland functions for SPH.
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APPENDI X A: LI NEAR STABI LI TY ANALYS IS

We start from an equilibrium with particles of equal mass m on a reg-

ular grid and impose a plane-wave perturbation to the unperturbed

positions x̄i (a bar denotes a quantity obtained for the unperturbed

equilibrium):

xi = x̄i + ξ i, ξ i = a �i(x, t), �i(x, t) = ei(k·x̄i−ωt),
(A1)

as in equation (20). We derive the dispersion relation ω(k, a) by

equating the SPH force imposed by the perturbation (to linear order)

to its acceleration

ξ̈ i = −a ω2 �i(x, t). (A2)

To obtain the perturbed SPH forces to linear order, we develop the

internal energy of the system, and hence the SPH density estimate,

to second order in ξ i . If ρ̂i = ρ̄ + ρi1 + ρi2 with ρ i1 and ρ i2 the

first- and second-order density corrections, respectively, then

ξ̈ i = −
1

m

∂L

∂ξ i

= −
P̄

ρ̄

∑

k

1

ρ̄

∂ρk2

∂ξ i

−
(

c̄2 −
2P̄

ρ̄

)
1

2ρ̄2

∑

k

∂ρ2
k1

∂ξ i

.

(A3)

A1 Fixed h

Let us first consider the simple case of constant h = h̄ which

remains unchanged during the perturbation. Then,

ρin = ̺in/n! with ̺in =
∑

j m (ξ ij ·∇)nW (x̄ij , h̄). (A4)

Inserting

ξ ij = ξ i − ξj = a(1 − e−ik·x̄ij ) �i (A5)

into (A4) gives

̺i1 = �i

∑
j m (1 − e−ik·x̄ij ) a·∇W (x̄ij , h̄) = i �i a·t, (A6)

where (assuming a symmetric particle distribution)

t(k) =
∑

j m sin k·x̄j ∇W (x̄j , h̄). (A7)

We can then derive
∑

k ̺k1 ∂̺k1/∂ξ i =
∑

k ̺k1

∑
j m ∇W (x̄kj , h̄)(δik − δij )

=
∑

j m (̺i1 + ̺j1)∇W (x̄ij , h̄)

= i �i a·t
∑

j m (1 + e−ik·x̄ij ) ∇W (x̄ij , h̄)

= �i a·t t,
(A8)

1
2

∑
k ∂̺k2/∂ξ i =

∑
kj m (ξ kj ·∇)∇W (x̄kj , h̄)(δik − δij )

= 2
∑

j m (ξ ij ·∇)∇W (x̄ij , h̄)

= 2�i

∑
j m (1 − e−ik·x̄ij ) a·∇∇W (x̄kj , h̄)

= 2�i a·T,
(A9)

with

T(k) =
∑

j m (1 − cos k·x̄j ) ∇ (2)W (x̄j , h̄). (A10)
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1082 W. Dehnen and H. Aly

Inserting these results into (A3), we get

ξ̈ i = −
2P̄

ρ̄

a·T
ρ̄

�i −
(

c̄2 −
2P̄

ρ̄

)
a·t t

ρ̄2
�i . (A11)

A2 Adaptive smoothing

If the hi are adapted such that Mi ≡ hν
i ρ̂i remains a global con-

stant M̄ , the estimated density is simply ρ̂i = M̄h−ν
i . We start by

expanding Mi to second order in both a and ηi ≡ ln(hi/h̄). Using a

prime to denote differentiation with respect to ln h̄, we have

Mi = M̄+h̄ν̺i1+η(h̄ν ρ̄)′+ 1
2
h̄ν̺i2+η(h̄ν̺i1)′+ 1

2
η2(h̄ν ρ̄)′′

(A12a)

= M̄ + h̄ν
[
̺i1 + ηνρ̄�̄ + 1

2
̺i2 + η̺′

i1 + ην̺i1 + 1
2
η2ν2ρ̄�̄

]
,

(A12b)

with �̄ ≃ 1 as defined in equation (4) and

�̄ =
1

ν2h̄ν ρ̄

∂
2(h̄ν ρ̄)

∂(ln h̄)2
=

1

νh̄ν ρ̄

∂(h̄ν ρ̄�̄)

∂ ln h̄
≃ 1. (A13)

By demanding Mi = M̄ , we obtain for the first- and second-order

contributions to ηi :

−νρ̄ηi1 =
̺i1

�̄
, (A14a)

−νρ̄ηi2 =
̺i2

2�̄
+

ηi1̺
′
i1

�̄
+

νηi1̺i1

�̄
+

ν2η2
i1ρ̄�̄

2�̄
(A14b)

=
̺i2

2�̄
−

(̺2
i1)′

2νρ̄�̄2
−

̺2
i1

ρ̄�̄2
+

̺2
i1�̄

2ρ̄�̄3
. (A14c)

From these expressions and ρ̂i = ρ̄e−νηi we obtain the first- and

second-order density corrections:

ρi1 = −νρ̄ηi1 =
̺i1

�̄
, (A15a)

ρi2 = −νρ̄ηi2 +
1

2
ν2ρ̄η2

i1 =
̺i2

2�̄
−

(̺2
i1)′

2νρ̄�̄2
+

̺2
i1(�̄ − �̄)

2ρ̄�̄3
.

(A15b)

Inserting these expressions into equation (A3) we find with rela-

tions (A8) and (A9):

ξ̈ i = −
P̄

ρ̄

(
2

a·T
ρ̄�̄

+ �̄
a·t t

ρ̄2�̄2
−

1

νρ̄2�̄2

∂(a·t t)

∂ ln h̄

)
�i

−
(

c̄2 −
2P̄

ρ̄

)
a·t t

ρ̄2�̄2
�i,

(A16)

where

�̄ ≡
�̄

�̄
− 1 =

1

ν

∂ ln(ρ̄�̄)

∂ ln h̄
≃ 0. (A17)

A3 The limit k → 0

From equation (5) hν
x·∇W (x, h) = −∂(hνW )/∂ ln h, such that

−ν ρ̂i�i =
∑

j mj xij ·∇W (xij , hi), (A18a)

ν2ρ̂i�i =
∑

j mj (xij ·∇)2W (xij , hi). (A18b)

Assuming local spatial isotropy we then get in the limit k → 0:

t → −�̄ρ̄ k, (A19a)

t
′ → −ν(�̄ − �̄)ρ̄ k, (A19b)

T →
(2�̄ + ν�̄)ρ̄

2 + ν
k

(2) +
ν(�̄ − �̄)ρ̄

2(ν + 2)
|k|2 I. (A19c)

Inserting these into (A16) gives

ξ̈ = −c̄2
a·k k �i −

P̄

ρ̄
�̄

[(
2ν

2 + ν
− 1

)
a·k k +

νk
2
a

ν + 2

]
�i .

(A20)
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