Improving Convergence

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outline

Introductio

Surve

ASF

Hybrid algorithr

Results

Conclusion

Improving Convergence of Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

Karthik Sindhya

Department of Mathematical Information Technology, Industrial Optimization Group, P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland

March 26, 2009

Outline

1 Myself

2 Introduction

3 Survey

4 ASF

5 Hybrid algorithm

6 Results

7 Conclusion and Future Research Directions

Improving Convergence of

of
Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

Myself

Introductio

Survey

ASF

Hybrid algorithm

Result

Conclusion

Born: Bangalore, India.

Improving Convergence of

Evolutionary Multi-Objective

Optimization with Local search - A Concurrent-Hybrid Algorithm.

Myself

Born: Bangalore, India.

On map

Improving Convergence

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

Myself

Introductio

Surve

ASF

Hybrid algorithr

Resuit

■ Born: Bangalore, India.

On map

- Education: Bachelor and Master's in Engineering (Chemical Engineering).
- Doctoral Student in Mechanical Engineering at Kanpur Genetic Algorithms Laboratory, IIT Kanpur.

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A

Hybrid Algorithm.

Concurrent-

Sindhy

Outlin

Myself

Introduction

Surve

ASF

Hybrid algorithm

Result

Conclusion

- Visiting Research Student at Helsinki School of Economics.
- Doctoral student at University of Jyväskylä.

Improving Convergence

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

Myself

Introduction

Surve

ASF

Hybrid algorithm

Result

Conclusion

- Visiting Research Student at Helsinki School of Economics.
- Doctoral student at University of Jyväskylä.
- Research Interests: Evolutionary Algorithms, Evolutionary Multi-objective Optimization, Artificial Neural Networks and Multiple Criteria Decision Making.

Improving Convergence of

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

Myself

Introduction

Surve

ASF

Hybrid algorithn

Result

Conclusion

- Visiting Research Student at Helsinki School of Economics.
- Doctoral student at University of Jyväskylä.
- Research Interests: Evolutionary Algorithms, Evolutionary Multi-objective Optimization, Artificial Neural Networks and Multiple Criteria Decision Making.
- Thesis Advisors:
 - Prof. Kaisa Miettinen, Department of Mathematical Information Technology, University of Jyväskylä, Finland.
 - Prof. Kalyanmoy Deb, Department of Business Technology, Helsinki School of Economics, Finland.
 - Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India.

Improving Convergence of

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

> Karthil Sindhy

Outlin

iviyacii

Introduction

Survey

ASF

Hybrid algorithr

Result

onclusion

 Evolutionary algorithm have been a widely used approach to solve multi-objective optimization problems for a decade.

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hvbrid Algorithm.

Introduction

Evolutionary algorithm have been a widely used approach to solve multi-objective optimization problems for a decade.

Evolutionary multi-objective optimization (EMO) deals with a population of points and yields a set of solutions which are non-dominated and near Pareto-optimal.

■ Idea is to generate an approximate non-dominated set which represents the Pareto-optimal front.

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hvbrid Algorithm.

Introduction

Evolutionary algorithm have been a widely used approach to solve multi-objective optimization problems for a decade.

- Evolutionary multi-objective optimization (EMO) deals with a population of points and yields a set of solutions which are non-dominated and near Pareto-optimal.
 - Idea is to generate an approximate non-dominated set which represents the Pareto-optimal front.
- In EMO, there are clearly two important goals:
 - Convergence to the Pareto-optimal front.
 - Diverse set of solutions in the non-dominated front.

Improving Convergence Evolutionary

Multi-Objective Optimization with Local search - A Concurrent-Hvbrid Algorithm.

Introduction

Evolutionary algorithm have been a widely used approach to solve multi-objective optimization problems for a decade.

- Evolutionary multi-objective optimization (EMO) deals with a population of points and yields a set of solutions which are non-dominated and near Pareto-optimal.
 - Idea is to generate an approximate non-dominated set which represents the Pareto-optimal front.
- In EMO, there are clearly two important goals:
 - Convergence to the Pareto-optimal front.
 - Diverse set of solutions in the non-dominated front.
- Main advantages of EMO algorithms:-
 - Obtaining a set of non-dominated solutions in a single run.
 - Ease in handling multiple local Pareto-optimal fronts.
 - Flexibilities in handling of discrete, nonlinear, multi-modal and large-scale problems.

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik

O.......

Myself

Introduction

Surve

ASF

Hybrid algorithm

Result

onclusion

■ EMO approaches are often criticized for their lack of theoretical convergence proof to the Pareto-optimal front.

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

- T

Introduction

Surve

ASI

Hybrid algorithr

Result

■ EMO approaches are often criticized for their lack of theoretical convergence proof to the Pareto-optimal front.

- Multiple criteria decision-making (MCDM) techniques are also commonly used to deal with multi-objective optimization problems.
 - Have theoretical convergence proofs.
 - Multi-objective problem → Single-objective problem and solved by any mathematical programming technique.
 - Typically a single Pareto-optimal solution.

Improving Convergence Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hvbrid Algorithm.

Introduction

■ EMO approaches are often criticized for their lack of theoretical convergence proof to the Pareto-optimal front.

> Multiple criteria decision-making (MCDM) techniques are also commonly used to deal with multi-objective optimization problems.

Have theoretical convergence proofs.

- Multi-objective problem → Single-objective problem and solved by any mathematical programming technique.
- Typically a single Pareto-optimal solution.
- EMO criticism can be bridged by incorporating MCDM approaches into EMO.

Improving Convergence Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hvbrid Algorithm.

Introduction

■ EMO approaches are often criticized for their lack of theoretical convergence proof to the Pareto-optimal front.

- Multiple criteria decision-making (MCDM) techniques are also commonly used to deal with multi-objective optimization problems.
 - Have theoretical convergence proofs.
 - Multi-objective problem → Single-objective problem and solved by any mathematical programming technique.
 - Typically a single Pareto-optimal solution.
- EMO criticism can be bridged by incorporating MCDM approaches into EMO.
- Integration of MCDM in EMO is not straightforward.

Improving Convergence Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hvbrid Algorithm.

Introduction

- EMO approaches are often criticized for their lack of theoretical convergence proof to the Pareto-optimal front.
- Multiple criteria decision-making (MCDM) techniques are also commonly used to deal with multi-objective optimization problems.
 - Have theoretical convergence proofs.
 - Multi-objective problem → Single-objective problem and solved by any mathematical programming technique.
 - Typically a single Pareto-optimal solution.
- EMO criticism can be bridged by incorporating MCDM approaches into EMO.
- Integration of MCDM in EMO is not straightforward.
- One way: EMO as a global optimizer and MCDM approach as a local optimizer.

Serial Approach

Improving Convergence of

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

...,55...

Introductio

Survey

ASF

Hybrid algorithm

Result

Conclusion

 Hybrid Algorithms have been broadly classified into serial and concurrent approaches.

Figure: Serial approach.

■ E.g. MSGA-(LS1, LS2, LS3), Goel and Deb etc.,

Serial Approach

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local

search - A

Hybrid Algorithm. Karthik

Sindh

Outlin

Introduction

Survey

Hybrid

Results

Results

Hybrid Algorithms have been broadly classified into serial and concurrent approaches.

Figure: Serial approach.

- E.g. MSGA-(LS1, LS2, LS3), Goel and Deb etc.,
- Adv: Convergence to Pareto-optimal front.

Serial Approach

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
Concurrent-

Algorithm.

Karthik

Hvbrid

Outlin

Introductio

Survey

Hybrid

algorithm

Results

■ Hybrid Algorithms have been broadly classified into **serial** and **concurrent** approaches.

Figure: Serial approach.

- E.g. MSGA-(LS1, LS2, LS3), Goel and Deb etc.,
- Adv: Convergence to Pareto-optimal front.
- Shortcoming: Switchover from global to local search.

Concurrent Approach

Improving Convergence Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

Survey

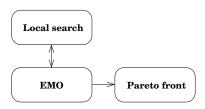


Figure: Concurrent approach.

■ E.g. MOGA by Ishibuchi, MOGLS by Jaszkiewicz etc.,

Concurrent Approach

Improving Convergence Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hvbrid Algorithm.

Survey

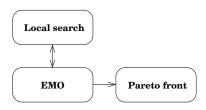


Figure: Concurrent approach.

- E.g. MOGA by Ishibuchi, MOGLS by Jaszkiewicz etc.,
- Advantages:
 - Convergence to Pareto-optimal front.
 - Faster convergence.
 - No switchover problem.

Concurrent Approach

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

Introduction

Survey

Hybrid

Results

resuits

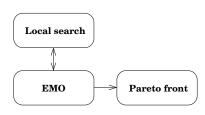


Figure: Concurrent approach.

- E.g. MOGA by Ishibuchi, MOGLS by Jaszkiewicz etc.,
- Advantages:
 - Convergence to Pareto-optimal front.
 - Faster convergence.
 - No switchover problem.
- Shortcoming: Which and frequency of the EMO individuals to be local searched?

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-

Hybrid Algorithm. Karthik

Sindhy

Outlin

iviyseir

Introduction

Survey

ΛSE

Hybrid algorithm

Result

Conclusion

Weighted sum of objectives is the most common scalarizing procedure.

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

> Karthik Sindhya

. ...

Myself

Introduction

Survey

ASF

Hybrid algorithm

Results

algorithn

Weighted sum of objectives is the most common scalarizing procedure.

All points on the Pareto-optimal front is impossible unless the Pareto-optimal front is convex.

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

> Karthik Sindhya

Outlin

...,55...

introductio

Survey

ASF

Hybrid algorithr

Result

Weighted sum of objectives is the most common scalarizing procedure.

- All points on the Pareto-optimal front is impossible unless the Pareto-optimal front is convex.
- No clear winner.
 - Every algorithm is applied on a different set of test functions and performance criteria.

Improving Convergence

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

Introductio

Survey

Hybrid

algorithn

Result

Weighted sum of objectives is the most common scalarizing procedure.

- All points on the Pareto-optimal front is impossible unless the Pareto-optimal front is convex.
- No clear winner.
 - Every algorithm is applied on a different set of test functions and performance criteria.
- We chose Concurrent approach and better scalarizing function called achievement scalarizing function (ASF).

Improving Convergence of Evolutionary

Multi-Objective Optimization with Local search - A Concurrent-

Hybrid Algorithm. Karthik

0.41:

Mycol

Introduction

S.IV.

ASF

Hybrid algorithm

Result

onclusion

We consider a multi-objective optimization problem of the form:

minimize
$$\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_k(\mathbf{x})\}\$$
 subject to $\mathbf{x} \in \mathcal{S}$, (1)

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hvbrid

Algorithm.

ASF

form:

minimize
$$\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_k(\mathbf{x})\}$$

subject to $\mathbf{x} \in \mathcal{S}$, (1)

 An example of an augmented achievement scalarizing function is given by:

minimize
$$\max_{i=1}^{k} \frac{f_i(\mathbf{x}) - \bar{\mathbf{z}}_i}{\mathbf{z}_i^{\max} - \mathbf{z}_i^{\min}} + \rho \sum_{i=1}^{k} \frac{f_i(\mathbf{x}) - \bar{\mathbf{z}}_i}{\mathbf{z}_i^{\max} - \mathbf{z}_i^{\min}},$$
 subject to $\mathbf{x} \in \mathcal{S}$. (2)

Improving Convergence of

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

iviyacii

Introductio

Survey

Hybrid algorithr

Results

Conclusion

We consider a multi-objective optimization problem of the form:

minimize
$$\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_k(\mathbf{x})\}$$

subject to $\mathbf{x} \in \mathcal{S}$, (1)

An example of an augmented achievement scalarizing function is given by:

minimize
$$\max_{i=1}^{k} \frac{f_i(\mathbf{x}) - \bar{\mathbf{z}_i}}{\mathbf{z}_i^{\max} - \mathbf{z}_i^{\min}} + \rho \sum_{i=1}^{k} \frac{f_i(\mathbf{x}) - \bar{\mathbf{z}_i}}{\mathbf{z}_i^{\max} - \mathbf{z}_i^{\min}},$$
 subject to
$$\mathbf{x} \in \mathcal{S},$$
 (2)

- $\frac{1}{z_i^{max}-z_i^{min}}$ is a weight factor assigned to each objective function f_i .
- The weighing factors are used to normalize the values of each objective function f_i .
- $\bar{\mathbf{z}} \in R^k$ is a reference point.
- $\rho > 0$, binds the trade-offs called an augmentation coefficient.

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A

Concurrent-

Hybrid Algorithm. Karthik

Outlin

..., 50...

Introductio

Surv

ASF

Hybrid algorithr

Results

. . .

Advantages:

- The optimal solution of an ASF is always Pareto-optimal.
- Any Pareto-optimal solution can be obtained by changing the reference point.
- The optimal value of an ASF is zero, when the reference point is Pareto-optimal.

A concurrent-Hybrid Algorithm

Improving Convergence of Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid

Algorithm.

Hybrid algorithm

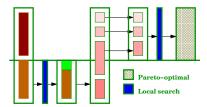


Figure: Concurrent-hybrid algorithm.

Probability of Local Search-Probability

Improving Convergence Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid

Algorithm.

Hybrid algorithm

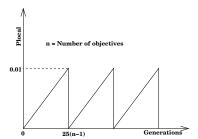


Figure: Probability of local search.

■ To maintain exploration-exploitation balance.

Termination criteria

Improving Convergence Evolutionary

Multi-Objective Optimization with Local search - A Concurrent-Hvbrid

Algorithm.

Hybrid

algorithm

■ Till date EMO algorithms are usually terminated in any of the following ways:

- A pre-specified number of generations.
- No new solutions have entered the non-dominated set after a prefixed number of generations.

Termination criteria

Improving Convergence of

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outlin

Myself

Introduction

Surve

ASI

Hybrid algorithm

Results

Till date EMO algorithms are usually terminated in any of the following ways:

- A pre-specified number of generations.
- No new solutions have entered the non-dominated set after a prefixed number of generations.
- We utilize the slack variable α for a new convergence criterion.

Termination criteria

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hvbrid Algorithm.

Hybrid algorithm

Till date EMO algorithms are usually terminated in any of the following ways:

- A pre-specified number of generations.
- No new solutions have entered the non-dominated set after. a prefixed number of generations.
- We utilize the slack variable α for a new convergence criterion.
 - \blacksquare α indicates closeness of reference point from the Pareto-optimal front.
 - The value of running average of α over a prefixed number of generations to be close to zero.
 - Automatic and ensures an adequate convergence property.

Test Setting

Improving Convergence

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid

Algorithm.

Karthik

. ...

Introduction

_

Hybrid algorithm

Results

Results

We compare our concurrent-hybrid NSGA-II with serial-hybrid NSGA-II.

Test Setting

Improving Convergence

Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outli

iviyseir

Introduction

Surve

ASF

Hybrid algorithr

Results

We compare our concurrent-hybrid NSGA-II with serial-hybrid NSGA-II.

Test problems ranging from ZDT and DTLZ test suites and two practical problems: the welded beam design and the water resources planning problems.

Test Setting

Improving Convergence Evolutionary Multi-Objective Optimization

with Local

search - A Concurrent-

Hvbrid Algorithm.

Results

- We compare our concurrent-hybrid NSGA-II with serial-hybrid NSGA-II.
- Test problems ranging from ZDT and DTLZ test suites and two practical problems: the welded beam design and the water resources planning problems.
- Executed ten times with different seeds and best, median and worst values of performance metrics (function evaluations and hypervolume) noted.
- Termination criteria based on max function evaluations and error metric used.
- Diversity checked using hypervolume measure.

Function Evaluation comparison

Improving Convergence of

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

Results

Test	Serial approach			Concurrent approach		
Problem	Best	Median	Worst	Best	Median	Worst
ZDT1	30,083	31,043	33,468	13,328	14,518	16,991
	(0.9289)	(0.9283)	(0.9285)	(0.9214)	(0.9285)	(0.9286)
ZDT2	29,384	31,760	32,344	1,861	13,748	15,716
	(0.6526)	(0.6530)	(0.6532)	(0.2100)	(0.6513)	(0.6510)
ZDT3	33,691	37,325	38,545	16,595	20,866	29,628
	(0.7738)	(0.7742)	(0.7742)	(0.7155)	(0.7744)	(0.7744)
ZDT4	35,006	54,214	63,584	34,459	37,724	43,142
	(0.9274)	(0.9284)	(0.9286)	(0.9286)	(0.8982)	(0.9286)
3-DTLZ1	201,957	252,952	351,954	66,369	146,506	290,792
	(1.664)	(1.1965)	(1.1964)	(1.1995)	(1.1931)	(1.2002)
3-DTLZ2	35,757	43,722	70,606	26,665	31,604	36,006
	(0.8694)	(0.8813)	(0.8687)	(0.8705)	(0.8765)	(0.8803)
4-DTLZ2	69,449	93,835	128,794	61,028	74,187	194,581
	(1.0861)	(1.0701)	(1.0750)	(1.0960)	(1.0834)	(1.0782)

Function Evaluation Comparison- Exact Vs Approximate gradients

Improving Convergence Evolutionary Multi-Objective Optimization with Local

search - A Concurrent-Hvbrid

Algorithm.

Results

Not obvious that in some real world engineering problems even such a high number is allowed.

Test	Exact gradient			Approximate gradient			
Problem	Best	Median	Worst	Best	Median	Worst	
ZDT1	3,751	4,354	5,189	13,328	14,518	16,991	
ZDT2	1,706	4,510	5,721	1,861	13,748	15,716	
ZDT3	14,879	17,340	23,687	16,595	20,886	29,628	
ZDT4	18,763	21,975	26,148	34,459	37,724	43,142	
3-DTLZ1	40,031	85,763	120,964	66,369	146,506	290,792	
3-DTLZ2	15,017	19,230	24,380	26,665	31,604	36,006	
4-DTLZ2	26,672	48,330	56,887	61,128	74,187	194,581	

Function Evaluation Comparison- Exact Vs Approximate gradients

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Karthik Sindhya

Outli

Myself

Introduction

Surve

ASF

Hybrid algorithn

Results

 Not obvious that in some real world engineering problems even such a high number is allowed.

Test	Exact gradient			Approximate gradient			
Problem	Best	Median	Worst	Best	Median	Worst	
ZDT1	3,751	4,354	5,189	13,328	14,518	16,991	
ZDT2	1,706	4,510	5,721	1,861	13,748	15,716	
ZDT3	14,879	17,340	23,687	16,595	20,886	29,628	
ZDT4	18,763	21,975	26,148	34,459	37,724	43,142	
3-DTLZ1	40,031	85,763	120,964	66,369	146,506	290,792	
3-DTLZ2	15,017	19,230	24,380	26,665	31,604	36,006	
4-DTLZ2	26,672	48,330	56,887	61,128	74,187	194,581	

Drastic reduction in function evaluations.

Diversity Comparison with Hypervolume

Serial approach

Deat Median Manat

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid
Algorithm.

Test

Karthik Sindhya

Outli

Introduct

Survey

ACE.

Hybrid algorith

Results

Problem	Best	Median	VVorst	Best	Median	VVorst
ZDT1	0.9291	0.9287	0.9283	0.9289	0.9276	0.9214
ZDT2	0.6534	0.6530	0.6526	0.6531	0.6518	0.2100
ZDT3	0.7743	0.7742	0.7738	0.7744	0.7737	0.7155
ZDT4	0.9287	0.9286	0.9274	0.9287	0.9280	0.7758
3-DTLZ1	1.1981	1.1947	1.1664	1.2040	1.1994	1.1931
3-DTLZ2	0.8813	0.8694	0.8615	0.8850	0.8765	0.8645
4-DTLZ2	1.0983	1.0765	1.0602	1.0993	1.0857	1.0691
WRP	0.5703	0.5647	0.5635	0.5706	0.5660	0.5644
WELD	1.4196	1.4193	1.4082	1.4198	1.4188	1.4143

Concurrent approach

■ HV values reached in 25,000 function evaluations for all test and practical problems.

Slack variable (α) as a Measure of Convergence

Improving Convergence of

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

> Karthik Sindhya

Outlin

Myself

Introduction

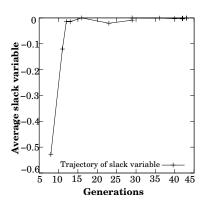
Surve

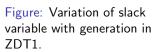
ASF

Hybrid algorithr

Results

. . .





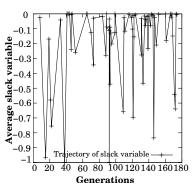


Figure: Variation of slack variable with generation in ZDT4.

Effect of the Local Search on Convergence

Improving Convergence of Evolutionary

Evolutionary Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

> Karthik Sindhya

Outlin

iviyseii

IIILIOGUCLIC

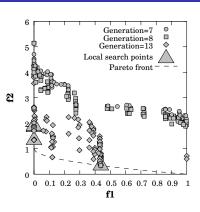
Surve

ASF

algorith

Results

- . .



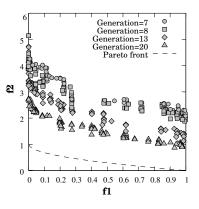


Figure: Populations approach the Pareto-optimal front faster in the concurrent-hybrid NSGA-II - 7DT1

Figure: Populations approach the Pareto-optimal front slowly in the serial hybrid NSGA-II - ZDT1.

Conclusion

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid

Algorithm.

Karthik

Outlin

Introductio

Surve

ASF

Hybrid algorithm

Result

Conclusion

A concurrent-hybrid algorithm is proposed.

Conclusion

Improving Convergence of Evolutionary Multi-

Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

> Karthik Sindhya

Outlin

Myself

Introduction

Surve

ASF

Hybrid algorithm

Result

Conclusion

- A concurrent-hybrid algorithm is proposed.
- Convergence objective achieved using ASF.

Conclusion

Convergence Evolutionary Multi-Objective Optimization

Improving

with Local search - A Concurrent-Hvbrid

Algorithm.

A concurrent-hybrid algorithm is proposed.

Convergence objective achieved using ASF.

Enhanced diversity preservation to be incorporated.

Future Research Directions

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
ConcurrentHybrid

Algorithm.

Karthik

Sindh

Outlin

Introductio

Surve

ΛSE

Hybrid

Resul

Conclusion

Steady state hybrid EMO.

Future Research Directions

Convergence of Evolutionary Multi-Objective Optimization with Local

Improving

search - A Concurrent-Hybrid Algorithm.

- Steady state hybrid EMO.
- Self adaptive P_t^{local} .

Future Research Directions

Improving Convergence of Evolutionary Multi-

Multi-Objective Optimization with Local search - A Concurrent-Hybrid Algorithm.

> Karthik Sindhva

Outlin

. . .

Introduction

Surve

. . . .

Hybrid

Result

Conclusion

- Steady state hybrid EMO.
- Self adaptive P_t^{local} .
- Clustering concurrent-hybrid NSGA-II.

Thank You

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A
Concurrent-

Hybrid Algorithm. Karthik

Silidi

Outlir

IIItioductio

Surve

ΛCΕ

Hybrid

Danul

Conclusion

Next!!

Thank You

Improving
Convergence
of
Evolutionary
MultiObjective
Optimization
with Local
search - A

Concurrent-

Hybrid Algorithm. Karthik

Karthik Sindhya

Outlin

...,--..

Introduction

Surve

ASF

Hybrid algorithr

Result

Conclusion

- Next!!
- Tomi would provide you with ideas in generating an approximation of the points, which we have now generated.

Thank You

Improving Convergence Evolutionary Multi-Objective

Optimization with Local search - A Concurrent-Hvbrid

Algorithm.

Next!!

- Tomi would provide you with ideas in generating an approximation of the points, which we have now generated.
- Questions ?