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Abstract—Cooperative positioning (CP) can potentially im-
prove the accuracy of vehicle location information, which is vital
for several road safety applications. Although concepts of CP have
been introduced, the efficiency of CP under real-world vehicular
communication constraints is largely unknown. Our simulations
reveal that the frequent exchange of large amounts of range
information required by existing CP schemes not only increases
the packet collision rate of the vehicular network but reduces
the effectiveness of the CP as well. To address this issue, we
propose simple easily deployable protocol improvements in terms
of utilizing as much range information as possible, reducing range
broadcasts by piggybacking, compressing the range information,
tuning the broadcast frequency, and combining multiple packets
using network coding. Our results demonstrate that, even under
dense traffic conditions, these protocol improvements achieve a
twofold reduction in packet loss rates and increase the positioning
accuracy of CP by 40%.

Index Terms—Cooperative positioning (CP), positioning ac-
curacy improvement, range information exchange, vehicular
networks.

I. INTRODUCTION

THE AUTOMOTIVE industry has been working on an
advanced crash warning system for drivers, which will use

direct wireless communication between vehicles to periodically
exchange the location, speed, and other kinematic information
for predicting potential crashes. Accurate positioning infor-
mation is the key to the success of such warning systems,
because inaccuracy will cause either false alarms or failure to
warn a driver during an emergency. The initial plan to obtain
positioning information in each vehicle was to use commercial-
grade Global Positioning System (GPS) receivers. However, it
was later established that the 5–10-m accuracy of commercial
GPS will not be very effective for crash warning or other safety
applications [1]. On the other hand, the centimeter-level accu-
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racy of professional-grade receivers, e.g., real-time kinematic
(RTK), cannot readily be delivered in an urban environment
[2]. This case has sparked research in developing solutions that
can improve commercial GPS positioning accuracy in vehicular
networks.

Radio-ranging-based cooperative positioning (CP) has been
considered one of the promising approaches for improving GPS
positioning accuracy [3]. Such CP is attractive for vehicular
networks, because the required ranging (or the intervehicle
distance) information can readily be measured from the pe-
riodic exchange of location information that is used for the
crash warning system. If a group (cluster) of vehicles can
share with each other their intervehicle distance measurements
through the Dedicated Short-Range Communications (DSRC)
[4] links, they can then use existing CP algorithms based on
multilateration or trilateration principles [5] to further improve
their current position estimates.

One issue with CP in vehicular networks is that the fre-
quent exchange of large amounts of range information over
a shared DSRC control channel can cause significant packet
collisions, hence reducing the probability of a packet, which
also shares the same channel that is successfully received.
This condition will not only affect the performance of safety
applications but also reduce the effectiveness of CP algorithms.
The communication overhead of CP may not be an issue in
light-traffic scenarios, but it cannot be ignored for dense traffic
conditions, where a large number of vehicles are within their
communication ranges and can potentially interfere with each
other’s transmissions.

Some researchers acknowledge the problem of communica-
tion overhead for CP in vehicular networks [3], but a detailed
investigation of this issue seems not to exist in the literature.
The objective of this paper is to examine the impact of range
information exchange overhead and identify mechanisms for
optimizing CP in dense vehicular networks in terms of improv-
ing the positioning accuracy and reducing the packet collision
rates. This paper makes the following two key contributions.

• It is demonstrated that the framework that is used by ex-
isting distributed CP algorithms are limited, because they
cannot make use of all range information that is received
by a vehicle due to the strict clustering rule. An extension
to the existing CP framework is proposed to make more
efficient use of all exchanged range information, therefore
improving the performance of CP.

• It is demonstrated that exchanging range information us-
ing simple protocols that basically collect range mea-
surements within a safety interval and transmitting these
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measurements in the next interval achieves small accuracy
gains but results in high packet collision rates. Protocol
improvements are proposed, which are shown not only
to reduce the packet collision rate but to improve the
positioning accuracy at the same time as well.

The rest of this paper is organized as follows. We discuss
the related work in Section II. In Section III, we briefly present
an overview of CP for vehicular networks. In Section IV, we
conduct simulations to investigate the effectiveness and identify
the potential issues of CP in realistic communication channels.
Sections V and VI present a series of techniques for improving
the performance of CP. This paper concludes in Section VII.

II. RELATED WORK

Several range-independent CP techniques have been pro-
posed for vehicular localization, e.g., differential Global Po-
sitioning System (DGPS) [6], RTK positioning [2], Assisted
Global Positioning System (A-GPS) [7], a satellite-based aug-
mentation system (SBAS), and a ground-based augmentation
system (GBAS) [6]. These techniques commonly involve com-
munications between vehicles and fixed or mobile reference
nodes with known positions. These reference nodes provide
augmentation information such as the measured common po-
sitioning error at or near a location. Through communications
with the reference nodes, a vehicle uses the augmentation in-
formation to improve its own position estimate. However, these
range-independent CP approaches heavily rely on the support
from infrastructure. In addition, these techniques commonly
have stringent requirements on the received GPS signal quality,
e.g., low multipath errors and the visibility of multiple (at least
four or five) GPS satellites, which are not viable in dense
urban areas. Other possible ways of mitigating the GPS error
include using a Kalman filter that fuses the GPS and the vehi-
cle’s kinematics information and the inertial navigation system
(INS)/GPS integration [8]. However, the accuracy improvement
that is provided by these techniques is still not sufficient for
robust crash warning or other vehicular safety applications [1].

In a mobile ad hoc network (MANET) and a wireless sensor
network, the localization problem with range measurements is
often tackled by trilateration and multilateration to some fixed
or mobile beacons (nodes with known location such as GPS
satellites) [5]. The internode distance are commonly measured
using radio-ranging or range-rating techniques such as the time
of arrival (TOA), time difference of arrival (TDOA), received
signal strength (RSS), Doppler shift, carrier-frequency offset
(CFO), and round-trip time (RTT) [9]. Because a vehicular
ad hoc network (VANET) is a special form of MANET, prior
works have proposed to adopt the range-based CP techniques
into VANETs. In this paper, we focus on the range-based CP
schemes and simply refer to these schemes as CP.

To reduce the multipath effects to the GPS positioning ac-
curacy, Drawil and Basir [10]–[12] propose a distributed CP
method that relies on the ranging information between a target
vehicle and its neighbors. In their scheme, a vehicle requiring
a more accurate position estimate sends request messages to
its neighbors. Each neighbor responds with its GPS position
reading and the associated uncertainty of the estimate. The tar-

get vehicle measures the distance to all the neighbors (ranging
information) upon receiving the response messages. Finally,
the target vehicle’s position is trilaterated using the neighbor
vehicles’ GPS estimates and range information in an algorithm
that considers the associated GPS error uncertainties. A similar
work is proposed in [13] to locate the vehicles without GPS or
that experience outage of GPS signals. However, the focus of
these approaches is to allow each individual vehicle to achieve
more accurate positioning for itself. These approaches were not
designed to improve the position estimations of the neighbor
vehicles at the same time.

In a fast-moving VANET environment, the instant acquisi-
tion of positions of neighbor vehicles is particularly impor-
tant for safety applications, e.g., cooperative collision warning
(CCW) [1]. For example, when an impending hazard ahead
is reported, CCW needs the surrounding vehicles’ positions
and kinematics information to make the decision to warn the
driver to change lane or apply brakes [3]. In wireless sensor
and ad hoc networks, there are several works [5], [14]–[16]
that address the problem of simultaneously localizing a group
of nodes that form a cluster. The cluster-based CP methodol-
ogy has been extended to VANET localization [3], [17]–[21].
The cluster-based CP approach is also based on intervehicle
distance measurements. Each vehicle constantly measures the
distances to their neighbors using radio-ranging techniques.
Then, vehicles exchange their own states, i.e., vehicle kinemat-
ics, GPS measurements, and intervehicle range estimates, in the
neighborhood. Based on this information, each vehicle executes
CP algorithms to estimate the positions for the entire cluster
of vehicles using popular data fusion techniques such as least
mean square error (LMSE), Kalman filter, extended Kalman
filter, and particle filter [22]. Although the aforementioned
works propose various potential CP algorithms in VANETs,
the communication effects of exchanging the range information
that is required by CP are often neglected. In a preliminary
work [23], we highlighted the effect of packet loss on CP
performance. In this paper, our focus is to comprehensively
evaluate the CP efficacy with respect to realistic communication
constraints and propose protocol improvements to improve the
practical performance of CP.

III. COOPERATIVE POSITIONING IN

VEHICULAR AD HOC NETWORKS

CP was originally proposed as an approach for location
determination within wireless ad hoc and sensor networks.
Contrary to non-CP approaches, where each node individually
estimates its own location, the goal of CP is to allow neighbor
nodes to work together to collectively improve the accuracy of
their positions. The ad hoc nature of vehicular communications
makes it natural to extend existing CP techniques into VANETs.
The popular CP framework [3] in vehicular networks is shown
in Fig. 1. The CP process relies on the following two pieces
of information: 1) the unknown or rough estimated positions
(e.g., from the GPS) and 2) the kinematics information of
the neighbor vehicles and intervehicle distance measurements
among these vehicles. In general, applying CP in VANETs is a
three-step distributed process, including range and kinematics
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Fig. 1. CP framework.

Fig. 2. Measurement and exchange of range information. (a) Maintaining the
range vector. (b) Creating the range matrix after the RV exchange.

information measurements, information exchange, and the final
localization. In the following sections, we briefly discuss the
fundamentals of using CP in vehicular communications. Next,
we derive the positioning accuracy bound of VANET CP using
the Cramer–Rao lower bound (CRLB) [24].

A. Measurement Phase

The primary task in the measurement phase is for each
vehicle to collect the following data: 1) its kinematics infor-
mation and 2) distance measurements to its one-hop neighbors.
A vehicle can readily measure its kinematics information,
such as position estimates, heading, velocity, and acceleration,
from the GPS or onboard kinematics sensors. For the distance
measurements, the radio-ranging and range-rating techniques,
e.g., TOA, TDOA, RSS, Doppler shift, CFO, and RTT, can be
exploited. The feasibility and applicability of these techniques
are investigated in [5] and [9] and are not the focus of this
paper. In this paper, we assume that the range measurements
can be made available with a suitable method. Upon receiving
a packet from a neighbor, vehicles can estimate the distance
to the neighbor using these ranging techniques. For example,
vehicle x in Fig. 2(a) estimates the distances between itself and
neighbors b, c, d, and e after receiving the packets from them.
The outcome of the measurement phase is the range vector
(RV), which consists of the collection of the range information
to all neighbors.

B. Exchange Phase

In this phase, each vehicle broadcasts its own RV and kine-
matics information to its one-hop neighbors through DSRC
links. The local kinematics information is natively embedded in
the periodic safety message broadcast. To share range informa-
tion in the neighborhood, each vehicle periodically broadcasts
its RV. The received RVs and kinematics information form the
inputs to the localization process.

C. Localization Phase

In the localization phase, a distributed CP algorithm [25]
is employed to generate more accurate position estimates of
neighbor vehicles within a cluster. A cluster is a set of vehicles
in which all intervehicle distance measurements are known.
Each vehicle learns its own cluster from the received RVs.
Fig. 2(b) shows a typical example of the clustering. Assume
that vehicles b, c, d, and x are within each other’s transmission
range. During the measurement phase, each vehicle learns the
distance between itself and other vehicles. Thus, after the ex-
change phase is done, x receives all RVs from each of the neigh-
bors. Because all range measurements between b, c, d, and x are
known to x, it identifies the cluster of four vehicles. Similarly, b,
c, and d can identify the same four-vehicle cluster. Note that, in
this example, although x can receive the RV from the extra vehi-
cle e, e is not in x’s cluster, because e is outside the transmission
ranges of vehicles b and c. For e, the cluster that is detected
only consists of the following three vehicles: 1) e; 2) d; and x.
After the cluster has been determined, the range measurements
within the cluster form the range matrix D. The range matrix
and the reported vehicles’ kinematics are then fed as inputs into
the CP algorithm. The idea is to improve the position estimates
of each vehicle using these inputs based on multilateration or
trilateration principles [26]. Various such CP algorithms have
been proposed in the literature [3], [13], [17]–[21].

D. Discussions

The idea of CP is particularly attractive in vehicular net-
works, because the accuracy of positioning is expected to
increase when the vehicle density increases [3]. Nevertheless,
the high-speed movements of vehicles create a challenging
environment for employing CP. The highly dynamic environ-
ment leads to frequent network fragmentation, rapid topology
evolution, and short wireless link life [25]. Hence, to allow
the CP algorithms to track the updated network topology in
real time, range information needs to frequently be exchanged
among the vehicles. However, the intensive range information
exchange over the shared DSRC control channel naturally in-
troduces significant communication overhead into the VANET.
This case inevitably deteriorates the congestion conditions and
impacts the reliability of the exchange of safety packets that
are transmitted over the shared control channel. This condition
can ultimately adversely affect the reliability and performance
of safety vehicular applications [1]. Furthermore, when the
wireless channel is congested, the RV packets are also prone
to loss. This case potentially reduces the cluster size and leads
to degraded CP accuracy. In the next section, our simulation
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study will show that frequent range information exchange has a
significant impact on not only the reliability of safety commu-
nications but on the CP performance as well.

In addition, the strict cluster-based CP algorithms rely on the
full range matrix, where all pairwise range information between
vehicles within a cluster is recorded. The range information
from vehicles that do not belong to the cluster is simply
discarded from the calculations [21]. For example, in Fig. 2(b),
the RV from e is discarded by x, because e is not considered
in the cluster. In this case, x misses the potential opportunity
to further improve the positioning accuracy by leveraging the
extra range information that is available from e. In Section V,
we will investigate how using the extra range information can
effectively improve the CP performance in VANETs.

E. Positioning Accuracy Bounds for CP in VANETs

The accuracy of the CP is primarily dictated by the errors
from GPS position and intervehicle ranging estimates. The
technique for estimating the position in CP can also affect
the CP accuracy. However, the evaluations and discussions
on the applicability, advantage, and disadvantage on specific
estimation techniques are beyond the scope of this paper. To
evaluate the accuracy of CP in general, the standard approach
in ad hoc networks is to calculate the CRLB [24]. The CRLB
is the inverse of the Fisher information matrix (FIM) [27] and
represents the lower bound for the variance of any unbiased
estimations. Thus, the CRLB can be used as the benchmark
for evaluating the CP performance, regardless of the position
estimation technique that is used. This metric is used in this
paper. In the following discussion, we derive a CRLB model
that can be used to evaluate the CP performance in VANETs.

In the following discussion, we assume a simple zero-
mean normal distribution for GPS-based positioning and radio-
ranging errors [3]. The normality assumption on GPS error is
practical in the cases of highway and open-space scenarios. We
acknowledge that this assumption may not be always applicable
in urban areas due to the time- and location-varying multipath,
interference, and dilution-of-precision (DOP) effects on the
GPS signal [12], [28]. For example, the real-world distribution
of position error in urban scenarios may be better modeled as
a Gaussian mixture model (GMM) [29]. However, the precise
modeling and analyzing of the effect of GPS measurement error
is beyond the scope of this paper. Recall that the primary goal
of this paper is to investigate the CP performance under the
effects of DSRC channels. Hence, assuming a simple normal
GPS error model allows us to simplify the analysis without
being affected by the adverse effects of the GPS receiver
vulnerabilities. In our future work, we plan to extend the CRLB
model using more advanced realistic GPS error models that are
more appropriate for urban scenarios.

We denote σP as the standard deviation of GPS-based posi-
tioning error along the x- and y-axes and σR as the standard
deviation of ranging measurements error between two vehi-
cles. Consider a scenario with a total of n vehicles in a
cluster. We define W = {x1, y1, . . . , xn, yn} as the vector of
true 2-D positions of vehicles and Z = {x̆1, y̆1, . . . , x̆n, y̆n,
D̆1,1, . . . , D̆1,n, . . . , D̆n,n} as the vector that consists of the

measured GPS positions and range information. Furthermore,
we define η = {x1, y1, . . . , xn, yn,D1,1, . . . , D1,n, . . . , Dn,n}
as the combined vector of true positions and ranges, and

∑
is the diagonal covariance matrix of the position and range
measurements,1 i.e.,

∑
= diag(σPx1 , σPy1 , . . . , σPxn, σPyn

,
σR1,1 , . . . , σR1,n

, . . . , σRn,n
). Thus, the conditional joint prob-

ability density function (pdf) of the measurements Z, given the
true states W of vehicles, is

f(Z|W ) =
(2π)−NZ/2√

det(
∑

)
· exp

{
−1

2
(Z − η)T

−1∑
(Z − η)

}
(1)

where NZ is the size of vector Z. Note that there are 2n position
entries (in 2-D) in Z. In addition, the number of entries for
ranging information in Z is

(
n
2

)
. Hence, NZ = 2n +

(
n
2

)
=

n(n + 3)/2. The corresponding FIM F of the measurements
is listed in2

F = −E

[
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∂W 2

]
. (2)

Let us denote i, j = {1, . . . , n}, xi, and yi as the coordinates
of vehicle i and rij as the real distance between vehicles i and
j. Assuming that i �= j, then the entries of FIM are

Fkk =
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(3)
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σ2
R

r2
ij
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(4)

Fkl = Flk. (5)

Note that F is a 2n × 2n matrix. The CRLB C is simply
the inverse of the FIM, i.e., C = F−1. The variance of the CP
localization error for each vehicle in the cluster resides on the
diagonal of C. Hence, the positioning errors Err of the entire
cluster is defined as the square root of the mean of the diagonal
elements of C, i.e.,

Err =
√

1/(2n) × trace(C). (6)

To evaluate the efficacy of CP, we further define a metric
called positioning accuracy gain (PAG) as

PAG =
σP − Err

σP
× 100. (7)

PAG shows the accuracy gain (as a percentage) of CP compared
to unassisted GPS positioning.

1Recall that we assume that σPxi
= σPyj

= σP and σRi,j
= σR for i,

j = 1, . . . , n.
2E in (2) represents the expectation operator.
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TABLE I
DSRC RADIO PARAMETERS

Fig. 3. Map of the loop road used in the simulation.

IV. CHARACTERIZATION OF COOPERATIVE POSITIONING

IN VEHICULAR AD HOC NETWORKS

In this section, we characterize the performance of CP
through simulation experiments. We first present the simulation
setup in Section IV-A. Next, we evaluate the efficacy of CP un-
der ideal and realistic communication channels in Section IV-B
and C, respectively. Performance issues that are related to CP
are identified and discussed in Section IV-D.

A. Simulation Setup

Our simulations are run using the ns-2 simulator. To sim-
ulate realistic wireless communications, we have used the
latest version (v2.34) of ns-2 with the recent overhaul on the
IEEE 802.11 physical- and medium access control (MAC)-
layer implementations [30]. To simulate the use of DSRC radio,
we used the parameter settings recommended in [31]. The
primary parameters are listed in Table I. To simulate a realistic
urban radio propagation environment, we used the Nakagami
propagation model with the configurations suggested in [31].
The DSRC transmission range is set to 240 m.

The simulated road topology is shown in Fig. 3. We sim-
ulated a triangular-shaped loop road with three lanes on both
clockwise and counterclockwise directions. The lane width is
set to 3.5 m. The loop road allows the number of vehicles in
the network to be consistent during each simulation run. In
addition, the particular triangular shape of the road enables us
to observe the aggregate CP performance under various road
conditions. For example, we can collect results not only on
straight roads (highway linear topology), e.g., during the middle
section of Grand River Ave., but at intersections and corners of
the roads as well. At the beginning of each simulation, vehicles
are randomly placed onto the road. We assume that vehicles will
not change their lanes and directions during the simulations.
The average vehicle speed is 60 km/h. In the simulations, we

Fig. 4. Details of a RV packet.

Fig. 5. Vehicle can belong to multiple clusters at the same time.

varied the number of vehicles that circulate the road from 30
to 210. This approach corresponds to different traffic densities,
where 12.5–87.5 veh/km represent light- to heavy-traffic condi-
tions. The simulation time for each run is 100 s.

We assume that the clocks on all vehicles are synchronized
(e.g., through a GPS clock [6]). Each 1-s interval is partitioned
into ten synchronized intervals (SIs) of 100 ms. Within each
SI, each vehicle randomly selects a time to broadcast its safety
messages to its neighbors, resulting in a broadcast rate of
10 Hz [32]. Note that each broadcast packet consists of the
kinematics and control information of a vehicle, including the
instantaneous GPS location measured [33]. The size of safety
broadcast packets is assumed to be 200 B [34].

During each SI, we assume that a vehicle “detects” a neigh-
bor if the vehicle receives a packet from that neighbor. We
assume that the distance between the vehicle and the neighbor
can be estimated using the ranging techniques discussed in
Section III-A. Thus, each vehicle updates its RV at the end
of each SI. To share the RV with other neighbors, we have
implemented a baseline broadcast protocol, where each vehicle
periodically broadcasts its current RV (collected in the last SI)
within each SI. The details of a RV packet are shown in Fig. 4.
The RV packets consist of necessary header information and
a set of ranging records (RRs) of all detected neighbors. The
information that is contained in the RV packet header is similar
to a safety packet; hence, we assume that the header size of a
RV packet is 50 B [33]. Considering the content, the size of
each RR is assumed to be 20 B [33]. Note that the size of an RV
packet proportionally increases when the number of detected
neighbors increases. An RV can be fragmented into multiple
MAC frames when the number of RRs that are carried is large
(i.e., greater than 72) due to the 1500-B maximum transmission
unit (MTU) constraint of the IEEE 802.11 MAC.

After receiving the RV packets from other neighbor vehicles,
each vehicle constructs its range matrix to run the CP algorithm.
For this approach, a vehicle first needs to identify to which
cluster it belongs. Recall that a cluster is a group of vehicles
in which all pairwise intervehicle distance measurements are
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known. Note that a vehicle may simultaneously belong to
multiple clusters, as shown in Fig. 5. Depending on the number
of vehicles and the relative positions of the vehicles within a
cluster, the positioning accuracies provided by different clus-
ters are different. Hence, to select the cluster that achieves
the best positioning performance, all candidate clusters need
to be identified and compared. The pseudocode of a simple
algorithm to identify the clusters used in our simulations is
listed in Algorithm 1. After identifying all available clusters,
the positioning accuracy that is achieved by each cluster is
evaluated (as discussed in Section III-E) and compared. The
best positioning accuracy is recorded for the vehicle.

Algorithm 1: Pseudocode for identifying clusters of vehicle x.

1: Input: The neighbor set NSx and the set of received ranging
vectors RVi, i ∈ NSx.

2: Output: The set of identified clusters C.
3:
4: Initialization:
5: C = NULL;
6: n = # of neighbor vehicles detected by x;
7: The index n + 1 is used to represent x itself;
8:
9: /*Finding the neighbor vector for each vehicle.*/

10: for i ∈ {1, 2, . . . , n + 1} do
11: Vi = NULL;
12: for j ∈ {i + 1, . . . , n + 1} do
13: if Di,j ∈ RVj or Dj,i ∈ RVi then
14: Add j to Vi;
15: Add i to Vj ;
16: end if
17: end for
18: end for
19:
20: /*For each neighbors, find the largest cluster to which it

belongs.*/
21: for i ∈ {1, 2, . . . , n} do
22: initSet = Vi ∩ Vn+1;
23: Clustertemp = initSet;
24: for Each vehicle k in initSet do
25: if k ∈ Clustertemp then
26: Clustertemp = Vk ∩ Clustertemp;
27: end if
28: end for
29: if Clustertemp �∈ C then
30: Add Clustertemp to C;
31: end if
32: end for

We report the packet delivery ratio (PDR) of broadcast
transmissions to evaluate the impact of RV exchange on safety
communication reliability. The PDR of each broadcast packet is
calculated as the ratio between the number of neighbor vehicles
that receive the packet and the total number of neighbors
that exist in a vehicle’s transmission range. To evaluate the

Fig. 6. Effect of range information exchange under ideal communication
channels. (a) Number of nodes. (b) Number of available links. (c) Accuracy
improvement.

positioning performance, we calculate the PAG (as discussed
in Section III-E) for each vehicle for each SI. The PAG is
calculated using MATLAB after each simulation run has been
finished. To calculate the PAG, based on (3)–(5), we feed
the ground-truth positions W of vehicles in the cluster, the
ranging error standard deviation σR, and the GPS positioning
error standard deviation σP into the CRLB model. In our
simulations, we assume that σR = 5m and σP = 7m, which is
consistent with state-of-the-art ranging and GPS performance
[3]. All our results reported are averaged over all vehicles and
over the entire simulation duration. The standard error achieved
is less than 5% of the mean value reported.

B. CP Under Ideal Communication Channels

As a benchmark, we first study how using CP can effectively
improve the positioning accuracy in a vehicular network under
an ideal communication channel, i.e., without packet collisions
and loss. In this case, a vehicle can always successfully detect
all neighbors and receive their RVs. For this approach, we only
simulated the vehicle mobility and disabled the communica-
tions between the vehicles in ns-2. Thus, we process the neigh-
bors and clusters and calculate PAG results based on only the
positions of the vehicles and the transmission range assumed.

Fig. 6(a) plots the number of neighbors and the number of
vehicles that form the cluster as a function of the traffic density.
Although the number of vehicles in a cluster linearly increases
when the traffic density increases, a cluster only consists of
around 50%–60% of the neighbors. This case is because not
all the neighbors of a vehicle can overhear each other due to
the limited transmission range. For example, b and e are both
x’s neighbor, but they cannot overhear each other, as shown
in Fig. 2. Next, we show the number of available links with
range estimates that can be used in CP in Fig. 6(b). As evident,
with RV exchange, the number of available links with range
information rapidly grows with the increase in traffic density.
This case is due to the increasing number of vehicles in the
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Fig. 7. Effect of range information exchange on the PDR under realistic
communication channels.

Fig. 8. CP performance under realistic communication channels. (a) Number
of available links. (b) Accuracy improvement.

cluster, as observed in Fig. 6(a). As a result, Fig. 6(c) shows
that, through RV sharing, the positioning accuracy of the whole
cluster can readily be improved by more than 40%, even under
low traffic density. The accuracy gain of CP becomes more
pronounced when the traffic density increases, exceeding 70%
under the heavy traffic density. On the contrary, without RV
sharing, each vehicle can only access its own RV and improve
the estimate accuracy of its position. In this case, improving
position estimates on neighboring vehicles is not possible.
Hence, the PAG over the entire neighborhood is marginal, as
shown in Fig. 6(c). Furthermore, the PAG decreases with the
increase in the traffic density, because more neighbors (without
improved position estimates) are involved in the calculations
under heavier traffic densities.

C. CP Under Realistic Communication Channels

In the previous section, we have shown the usefulness of
CP under ideal communication channels without considering
any packet loss. In this section, we investigate the actual
CP performance under realistic vehicular communications. For
this case, we have enabled the IEEE 802.11 MAC, the radio
propagation model, the safety message broadcasts, and the RV
broadcasts. Hence, packet loss and collisions happen in this
set of simulations. The corresponding results are presented and
discussed as follows.

Fig. 7 shows the PDR results of CP (with RV exchange)
under various traffic density scenarios. For comparison, we
also plot the results when only safety information is exchanged
in the network (without RV exchange). As observed, the ex-
tra RV exchange overhead results in significant reduction in
the PDR by up to 50% under heavy-traffic conditions. The
impairment to the PDR can seriously affect the reliability of
the safety applications. Furthermore, as evident in Fig. 8(a),

the real-world communication constraints significantly reduce
the number of available links with the range information used
in CP compared with ideal conditions. This difference under
heavy-traffic-density conditions is nearly eightfold. The limited
range information seriously affects the positioning accuracy,
as shown in Fig. 8(b). We see that, unlike the ideal case, the
improvement in PAG from realistic communication quickly
tapers off when the traffic density increases. Under heavy traffic
density, the PAG drops by about 30% from the ideal case due to
the excessive packet loss.

D. Summary

In the aforementioned analysis, we have investigated the per-
formance of CP under both ideal and realistic communication
channels. Under ideal conditions, we have shown that CP can
achieve significant improvements in positioning accuracy, even
under light-traffic conditions. In addition, we have shown that
the efficacy of CP rapidly increases when the vehicle density
increases. However, we found that the packet collisions under
real-world communication constraints significantly affect the
achievable performance of CP. In summary, we identify two
major issues of applying CP in vehicular networks. First, the
strict clustering constraint of the existing CP algorithms is not
efficient in lossy wireless communication environments. Recall
that the range information that is received from the nodes that
do not belong to the cluster is excluded from the CP process
and is discarded. Our results show that this inefficient use of
range information makes it impossible to achieve a large cluster
and further improve positioning accuracy, even with a large
number of neighbors available. Second, the communication
overhead that is generated by the range information exchange
significantly aggravates the network congestion conditions.
This case inevitably affects the reliability of safety applications,
which contradicts the incentive of employing CP in vehicular
communications.

Our observations suggest that, to make CP a viable technique
for vehicular networks, improvements on the various aspects
of CP need to be investigated. In the following sections, we
address this issue in two distinct ways. First, in Section V, we
investigate an enhanced CP data fusion approach to improve
the efficiency of the cluster-based approach in utilizing the
available range information. Furthermore, in Section VI-A, we
propose a series of protocol improvement techniques to reduce
the impact of communication overhead that is introduced by
range information exchange in CP.

V. EFFICIENT DATA FUSION IN

COOPERATIVE POSITIONING

In the previous section, we have shown that the strict cluster
approach does not achieve significant PAG under real-world
communication constraints. One reason is attributed to the lim-
ited size of the cluster that is found by a vehicle. The amount of
range information that is received by a vehicle can significantly
be larger than the range information that is used in the cluster-
based CP process. For example, recall that, in Fig. 2(b), the
extra range information Dx,e and De,d that is available to x
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Fig. 9. Extended range matrix.

is discarded from the cluster-based CP algorithm. However,
it may be possible to achieve better CP positioning accuracy
by exploiting the extended range matrix, which includes the
range estimates Dx,e and De,d, as shown in Fig. 9. Compared
with the range matrix of the strict cluster in Fig. 2(b), the
extended matrix contains several n/a entries, because some of
the link distance measurements are not available. To incorporate
all available range information in the extended matrix, a CP
algorithm can use the existing data fusion techniques, such as
the Kalman filter [3], particle filter [21], [22], and least mean
square error (LMSE) [35]. Although exact implementation de-
tails of such CP algorithms are beyond the scope of this paper,
in this section, we derive the potential gain of such algorithms
through CRLB analysis. In the following discussion, we refer
to the proposed CP algorithm using the extended range matrix
as extended cluster.

The CRLB calculation over the extended-cluster scheme
only requires minimal modifications to the models discussed
in Section III-E. Aside from the vector of true vehicle locations
W , σP , and σR, the modified model takes an additional input
auxiliary matrix I , i.e.,

Ii,j =
{

1, Di,j exists
0, Di,j = n/a (8)

where i and jj are two vehicle indices in the matrix. Then, the
covariance of range measurements between any pair of vehicles
is defined as

σ2
Ri,j

=
{

σ2
R, Ii,j = 1

inf, Ii,j = 0.
(9)

Then, the CRLB and the corresponding PAG results can accord-
ingly be calculated following (3)–(7).

To understand the potential PAG due to the extended-cluster
scheme, we first conduct studies, assuming ideal communi-
cation conditions. The performance of the extended-cluster
scheme and the strict cluster are plotted against traffic den-
sity in Fig. 10. Observe that, for both schemes, the number
of available links with range information that is used in CP
rapidly grows with the increase in traffic density. However,
the extended cluster constantly leads to more available links
than the cluster, because it exploits the extra link information
that is discarded by the cluster. As a result, Fig. 10(b) shows
that the extended cluster constantly outperforms the cluster in
positioning accuracy by roughly 10%.

Next, we study the actual performance of the extended-
cluster scheme under realistic communication constraints in
Fig. 11. We also plot the results from the cluster scheme for
comparison. Furthermore, the performance of the extended

Fig. 10. Performance of the extended-cluster CP scheme under ideal condi-
tions (lossless communications). (a) Number of available links. (b) Accuracy
improvement.

Fig. 11. Performance of the extended-cluster CP scheme under realistic
communication conditions. (a) Number of available links. (b) Accuracy
improvement.

cluster for the ideal channel is shown as the benchmark. In
Fig. 11(a), we can see that the number of available links used by
the extended cluster is clearly larger than the number of avail-
able links used by the cluster. Fig. 11(b) shows that, because
of the efficient utilization of all received range information, the
extended cluster constantly achieves a 10%–15% improvement
in positioning accuracy compared with the cluster.

Nonetheless, we observe that, even with the extended-cluster
scheme, the number of available links that are usable by the CP
process is only a small portion of the ideal. Accordingly, the
positioning accuracy is noticeably lower than the ideal case.
This condition is clearly the effect of excessive packet loss
that is caused by RV exchanges. Moreover, as discussed in
Section IV-C, excessive packet loss also significantly affects the
reliability of safety communications. This case highlights the
need to improve the RV broadcast protocol to both reduce
the communication overhead and enhance the RV exchange
reliability. Therefore, we further discuss possible improvements
on RV exchanges in the next section.

VI. EFFICIENT RANGE INFORMATION EXCHANGE

In the previous section, we proposed an extension of the
existing CP algorithm to improve the efficiency of range infor-
mation utilization. In this section, we seek to further improve
the performance of CP by improving the baseline communica-
tion protocol used in the previous sections. Our enhancements
are twofold. In Section VI-A, we first propose to incorporate
a series of schemes to reduce the overhead that is caused by
the RV exchange. Next, we further improve the reliability of
the range information exchange by employing network coding
techniques in Section VI-B.
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Fig. 12. Using the safety packet to piggyback the RV.

Fig. 13. Effect of incorporating piggyback into the RV exchange on the CP
performance. (a) PDR. (b) Accuracy improvement.

A. Reducing the Communication Overhead

In this section, we present various schemes to reduce the
communication overhead in RV exchanges. In the following
discussion, we present each of these schemes and individually
evaluate their performance against the baseline communication
scheme discussed in Section IV-A.

1) Piggyback: The piggyback scheme is shown in Fig. 12.
Instead of individually sending each RV packets (see Fig. 4),
an RV is directly appended to the end of a safety packet. The
simple piggybacking can reduce the amount of information
that is transmitted in the network, because it reuses the header
information in the safety packet and eliminates the need for
the extra header that is required when an RV is transmitted
separately. In addition, it reduces the number of packets that
are exchanged in the network, hence alleviating the channel
contention conditions. We have implemented the piggyback
scheme and evaluated its performance in our simulations.
Fig. 13 plots the PDR and PAG results as a function of traffic
density. We observe that, in Fig. 13(a), due to the alleviated
congestion conditions, piggyback constantly improves the PDR
compared with the baseline scheme. The improved PDR clearly
has a positive effect on positioning accuracy, as shown in
Fig. 13(b). This case is because the higher the PDR, the more
the information that is available in the CP process. For heavy
traffic density, we observe that the simple piggyback scheme
can readily result in about 8% improvement in PAG compared
with the baseline scheme.

2) Compression: Another possible way of reducing the
communication overhead in CP is to minimize the size of
the RVs that are exchanged. Intuitively, it may be possible
to reduce the size of an RV by compressing its content. In
data communication, compression has been a viable technique
for improving the transmission efficiency, e.g., Transmission
Control Protocol/Internet Protocol (TCP/IP) header compres-
sion [36] and Hypertext Transfer Protocol (HTTP) content
compression [37]. In the following discussion, we investigate
the possibility of incorporating a compression technique to
improve the communication in CP.

To preserve all information in the RV, lossless compression
techniques [38], e.g., Lempel–Ziv (LZ) [39] and GNU zip

Fig. 14. Effect of incorporating compression into the RV exchange on the CP
performance. (a) PDR. (b) Accuracy improvement.

(gzip) [40], can be used. The efficiency of a compression tech-
nique is generally defined by the compression ratio (CR), i.e.,
the ratio between the size of the compressed and the uncom-
pressed data. Depending on the type of information that is
compressed, some schemes can result in up to 0.25 in the CR.
Note that compression also introduces delays due to the compu-
tation overhead. Because the size of each RV is not significant,
the compression delays can be considered negligible compared
with an SI. In the following discussion, we evaluate the effect
of compression on the performance of CP through simulations,
assuming different CRs. To emulate the effect of applying
compressions on RVs, for a given RV of size So, the number of
bytes that are transmitted Sa is calculated as Sa = So × CR in
our simulations.

In Fig. 14, we plot the results under both light and high traffic
densities as a function of CR. Note that a CR of 1 represents
the baseline scheme without applying compression. Fig. 14(a)
shows the PDR results. We observe that compression is partic-
ularly helpful under dense traffic scenarios. For example, under
high traffic density, compression (with 0.25 CR) can improve
the PDR by nearly 50% compared to the baseline scheme.
Furthermore, the reduced packet loss increases the amount of
information available to the CP process, hence improving the
PAG by 10% under heavy traffic density. Nevertheless, the com-
pression technique shows no significant effect under the
light-traffic-density scenario. This case is expected, because
the packet loss is not significant when the vehicle density
is low.

3) RVBI: Recall that, in the baseline scheme, the ranging
vector broadcast interval (RVBI) is set to be the same as the
safety message interval SI. This frequent broadcast is nec-
essary, because each vehicle requires constant updates on its
neighbors’ positions. However, our results have shown that
this intense range information exchange conversely deterio-
rates the network congestion conditions. One possible solu-
tion for this issue is to reduce the rate of RV broadcast.
However, this approach means increasing the delay between
subsequent CP updates. This delay may have reverse effects
on the positioning accuracy. Hence, there may exist an opti-
mal RVBI setting that can maximize the positioning accuracy
while achieving reasonable PDR. In this section, we explore
this issue under different traffic scenarios through simulation
studies.

We assume that the RVBI is always a multiple of the SI.
At the start of an RVBI, each vehicle updates its own RV
for sharing, as discussed in Section III-A. Within each RVBI,
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Fig. 15. Effect of varying RVBIs on the CP performance. (a) PDR.
(b) Accuracy improvement.

each vehicle randomly selects the time to broadcast its own
RV. At the end of each RVBI, each vehicle processes its
collection of RVs and invokes the CP process (the extended-
cluster CP scheme discussed in Section V) to improve the
estimates on the positions of neighbor vehicles. Note that,
due to the transmission delay of the RVs, the outputs of the
CP process are the improved vehicle position estimates at the
previous RVBI. To infer the current vehicle positions, we can
use the dead reckoning [22] techniques, which have widely
been used in addressing the vehicle localization problem during
intermittent GPS outages. The idea is to estimate a vehicle’s
current position based on the last known vehicle location and
kinematics information. For example, assume that the initial
vehicle position estimate pi and the speed measurement v are
known. Then, the vehicle position after time t can roughly
be estimated as p(t) = pi + t × v. Assuming that the initial
estimation errors of vehicle positions and the vehicle’s speed
are normally distributed with the standard deviation of σpi

and σv, the standard deviation of the error of the positioning
estimates that are inferred from the initial estimates after t is

σp(t) =
√

σ2
pi

+ t2 × σ2
v . (10)

Clearly, σp(t) is a monotonic increasing function of t with given
σpi

and σv . To evaluate the impact of RVBI in our simulations,
we compute the initial positioning error Erri at the end of
each RVBI as in (6). Hence, for the kth (k = {0, . . . , RV BI/
SI − 1}) SI before the end of the next RVBI, Err is calculated
as in (10), where t = RV BI + k × SI . The σv is assumed to
be 10 km/h.

Fig. 15 plots the CP performance for light and heavy traffic
densities against different RVBI values. We first focus on the re-
sults for heavy traffic density. Fig. 15(a) shows the pronounced
improvement on PDR by increasing the RVBI for heavy traffic
density. This case shows that a reduction in the RV exchange
rate effectively relieves the congested wireless channel. Re-
call that, in the previous piggyback (see Section VI-A1) and
compression (see Section VI-A2) analysis, we observed that
the increase in PDR generally has a positive effect on the
PAG. However, in Fig. 15(b), we only observe this trend for
the heavy-traffic-density scenario when the RVBI is moderate,
i.e., smaller than 500 ms. The PAG noticeably decreases when
a 1-s RVBI of is used. This observation suggests a tradeoff
when selecting the RVBI under dense traffic conditions. For
better understanding, we consider the correlation between the
PAG and the PDR for the heavy traffic density plotted in
Fig. 16(a). Note that, when increasing the RVBI, the improved

Fig. 16. Correlation between the PAG and the PDR under different RVBI
settings. (a) Heavy traffic density. (b) Light traffic density.

PDR warrants extra range information available in the CP
process, which helps improve the positioning accuracy. On the
other hand, the delay in RV exchange impairs the accuracy of
the positioning at the same time. Fig. 16(a) shows that, when the
RVBI is small, the PAG from the improved PDR overpowers
the loss that is caused by the RV exchange delays, hence
resulting in the increase in the PAG. However, when the RVBI
increases beyond 500 ms, the effect of the delay in RV exchange
becomes dominant, which leads to the sharp drop in the PAG.
We found that a 500-ms RVBI appears to be a balanced choice,
which achieves both good PAG and PDR for heavy-traffic
conditions.

On the other hand, for light-traffic conditions, the increase in
the PDR is marginal by tuning the RVBI, as shown in Fig. 15(a).
Hence, the positioning accuracy is mainly affected by the delay
in RV exchange. This case is evident in Fig. 16(b), where
we can observe that the increasing RVBI does not result in a
positive effect on the PAG. Hence, in the light-traffic scenario,
where the network is not congested, using a smaller RVBI is
preferable to avoid the positioning delay.

4) Combined Improvement: In this section, we cross com-
pare the aforementioned improvement techniques and inves-
tigate the performance of combining them together. Fig. 17
shows the performance of different schemes as a function of
the traffic density. The PDR results are shown in Fig. 17(a).
We compare various communication schemes, i.e., baseline,
piggyback, compression (assuming 0.25 CR), RVBI (assum-
ing RV BI = 500 ms), and the combined approach, which
combines all three (piggyback, compression, and RVBI) tech-
niques. Last, the communication scheme without RV exchange
is shown as the PDR upper bound. Comparing the three stand-
alone improvement techniques, we can see that compression
and RVBI significantly improve the PDR performance com-
pared to the baseline, whereas the improvement from piggy-
back is relatively smaller. Furthermore, by combining the three
techniques together, we observe that the PDR increases to fairly
close to the upper bound, i.e., without RV exchange. This case
shows that the series of improvements effectively reduce the
communication overhead that is caused by CP.

Fig. 17(b) compares the PAG results of the different schemes.
For comparison, we also show the ideal scheme (with the
extended-cluster CP data fusion scheme as shown in Section V),
which corresponds to the upper bound of the PAG under certain
traffic densities. We observe that the ranking of the schemes
is the same as in Fig. 17(a). Recall that, in Fig. 17(a), we
observe similar PDR results between compression and RVBI.
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Fig. 17. Combined effect of using piggyback, compression, and RVBI on the
CP performance. (a) PDR. (b) Accuracy improvement.

However, the PAG difference between the two approaches is
more pronounced in Fig. 17(b). This case is because, under
similar PDR conditions, the positioning accuracy of the RVBI
scheme is also affected by the delay in RV exchange, as
highlighted in Section VI-A3. Combining all three techniques
clearly achieves further improvements.

B. Coding Improvement

In the previous section, we showed the efficacy of several
techniques in reducing the communication overhead that is
introduced by RV exchanges. Although these techniques ef-
fectively improve the PDR, the PAG that is achieved is still
noticeably lower compared to the ideal scheme, as shown in
Fig. 17(b). Note that, in the lossy DSRC channel, the CP
performance is significantly affected by the loss of range in-
formation. In this section, we propose to incorporate a simple
network coding scheme into the previously proposed schemes
to improve the reliability of range information exchange and the
positioning accuracy of CP.

Our idea is summarized in Fig. 18. At the start of each
RVBI, an original RV is partitioned into N equal-size data
segments. Next, an extra coding segment is generated through
exclusive OR (XOR) operations over the all N data segments.
Consequently, an RV results in a total of N + 1 data and coding
segments. Each of the N + 1 segments is piggybacked by the
safety packets that are sent in a different SI during the same
RVBI. Hence, the duration of an RVBI needs to accordingly
be a minimum of (N + 1) × SI . During an RVBI, the receiver
keeps collecting the segments that are sent by the sender. At the
end of an RVBI, the receiver tries to recover any lost segments
of an RV by implementing an XOR operation on the segments
received.

The usefulness of coding lies in its ability to recover lost
segments. For example, whenever a receiver receives any N
segments out of the N + 1 segments, it can readily reconstruct
the missing segment from the N segments received. Hence, the
entire RV can be reconstructed. If the number of successfully
received segments is less than N , the missing segments cannot
be recovered. In this case, the receiver can only record the range
information that is available from the received segments. Recall
that the CP accuracy is closely related to the amount of range
information available and the more reliable RV exchange can
potentially boost the performance of CP. To better understand
the efficacy of the coding process, we first analyze the coding
gain as follows.

Fig. 18. Using coding in the RV exchange.

Let us denote Pr as the expected packet loss probability
(assuming independent packet loss) in the network and Ls as
the average number of RRs in an RV. We assume that the size of
a RVBI is (N + 1) × SI . Then, the probability that n packets
are lost within a RVBI Pn can be defined as

Pn =
(

N + 1
n

)
× Prn × (1 − Pr)N+1−n. (11)

Without any coding enhancement, each RV is piggybacked
on one of the safety packets that are sent within a RVBI. Thus,
the RV is lost only when the reception of the corresponding
safety packet fails. Assume that Ln is the number of RRs
that can be received when n safety packets are lost within
an RVBI. When n = 0, no safety packet is lost; thus, the RV
must successfully be received, and Ln is equal to Ls. In case
that all safety packets are lost, Ln is 0. When 1 ≤ n ≤ N ,
the RV is received when the corresponding safety packet that
carries it is received. The associated probability for this case is(
N
n

)
/
(
N+1

n

)
. Hence, Ln is equal to Ls ×

(
N
n

)
/
(
N+1

n

)
. Equation

(12) summarizes the calculations of the aforementioned Ln

Ln =

⎧⎪⎨
⎪⎩

Ls, n = 0

Ls × (N
n)

(N+1
n ) , 1 ≤ n ≤ N

0, n = N + 1.

(12)

As a result, the expected total number of received RRs without
coding enhancement Lr is

Lr =
N+1∑
n=0

Pn · Ln. (13)

When coding is in use, an RV is partitioned into N segments;
thus, the number of RRs contained in each data segment is
Lseg = Ls/N . Note that the size of the coding segment is the
same as Lseg . In case that all safety packets are lost (n = N +
1) within an RVBI, the number of RRs that can be recovered Lc

n

is 0. When one or less safety packet is lost, the entire RV can
be recovered; thus, Lc

n is N × Lseg . In case that 2 ≤ n ≤ N ,
the size of Lc

n depends on whether the coding packet is lost.
If the coding packet is not lost, the number of RRs that can be
recovered is (N + 1 − n) × Lseg . The associated probability
of this case is

(
N

n−1

)
/
(
N+1

n

)
. When the coding packet is lost, the
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Fig. 19. Coding gain as a function of the PDR.

number of recoverable RRs is (N − n) × Lseg . The probability
of this case is

(
N
n

)
/
(
N+1

n

)
. The aforementioned calculations are

summarized as follows:

Lc
n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N × Lseg, n = {0, 1}
(N − n + 1) × Lseg × ( N

n−1)
(N+1

n )

+(N − n) × Lseg × (N
n)

(N+1
n ) , 2 ≤ n ≤ N

0, n = N + 1.

(14)

Accordingly, (15) lists the expected number of RRs that can be
achieved using coding

Lc
r =

N+1∑
n=0

Pn · Lc
n. (15)

To compare the theoretical range information gain from
coding, we define the coding gain (G) by normalizing the Lc

r

with respect to Lr, i.e.,

G = (Lc
r − Lr) /Lr. (16)

We use N = 4, because we have observed that a RVBI of
500 ms (five SIs) yields the reasonable performance in
Section VI-A3. Fig. 19 plots the coding gain results calculated
using (16) as a function of the PDR, i.e., 1 − Pr. We observe
that, when the PDR is around 70–80%, the coding gain is
the most pronounced. Recall that our simulation results in
Section IV-C show that, under heavy traffic density, the cor-
responding PDR falls within this range. This case shows that,
by using coding, it is possible to effectively increase the amount
of range information that is successfully exchanged. Note that,
as shown in Fig. 19, the coding gain diminishes when the PDR
approaches 0% or 100%. This case is expected, because it is not
possible to reconstruct any information when all segments are
lost, whereas it is impossible to further improve through coding
when there is no packet loss.

Note that the aforementioned analysis assumes the same
Pr between the coding and noncoding schemes. However, in
reality, the coding is expected to cause a higher Pr compared
with a noncoding approach due to the additional coding seg-
ment transmitted. To investigate the actual effect of coding, we
implement the proposed idea in ns-2 for evaluation. The PDR
results of coding are plotted as a function of traffic density
in Fig. 20(a). For comparison, we also show the combined
approach (the combination of piggyback, compression, and
RVBI, as discussed in Section VI-A4), the baseline cluster

Fig. 20. Effect of using coding in improving the RV exchange reliability.
(a) PDR. (b) Number of links. (c) Accuracy improvement.

(i.e., the cluster-based CP algorithm with the baseline range
information exchange scheme), and the scheme without any RV
exchange. Fig. 20(a) shows that the PDR of the coding scheme
is slightly lower than the combined approach. However, the
margin is clearly small, which means that the coding overhead
causes minimal effect on the PDR. Fig. 20(b) shows the number
of available links with range estimates of various schemes and
the scheme with an ideal channel. We observe that coding
effectively increases the number of available links compared
with the combined for all traffic densities. The improvement is
up to about 20% improvement under high traffic density. Due to
the increased distance information available in the CP process,
the coding scheme further improves the positioning accuracy
[as shown in Fig. 20(c)] compared with the combined. Note
that the achieved PAG of coding is only slightly lower than
the optimal ideal scheme. Furthermore, as evident in Fig. 20, a
series of improvements (i.e., incorporating the extended-cluster
CP algorithm, reducing the communication overhead, and using
coding) effectively lead to a more than twofold improvement in
PDR and more than 40% improvement in positioning accuracy
compared to the baseline-cluster scheme.

In summary, the aforementioned results clearly demonstrate
the practicability for CP to achieve a near-optimal positioning
accuracy, which can be experienced under ideal communication
channels, with minimal overhead by exploiting proper improve-
ment techniques.

VII. CONCLUSION

We have examined the issue of communication overhead
for CP in vehicular wireless networks. We have found that,
unless we find efficient ways of exchanging large amounts of
range information over the congested vehicular communica-
tion channel, CP may not provide a viable option to increase
positioning accuracy. We have demonstrated that simple well-
known protocol improvements, e.g., information piggybacking,
data compression, and network coding, can help address the
range information exchange overhead issue for CP in vehicular
networks.
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In this paper, we have assumed a simple normal GPS error
distribution with a constant standard deviation in our CRLB
model. This approach allows the analysis to focus on the effect
of DSRC channels on CP performance without being affected
by the GPS receiver vulnerabilities in urban environments. In
our future work, we plan to extend the current CRLB model
using more advanced realistic GPS error models that are more
appropriate for urban scenarios.
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