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Abstract

Protection from hardware attacks such as snoopers
and mod chips has been receiving increasing attention in
computer architecture. This paper presents a new com-
bined memory encryption/authentication scheme. Our new
split counters for counter-mode encryption simultaneously
eliminate counter overflow problems and reduce per-block
counter size, and we also dramatically improve authentica-
tion performance and security by using the Galois/Counter
Mode of operation (GCM), which leverages counter-mode
encryption to reduce authentication latency and overlap it
with memory accesses.

Our results indicate that the split-counter scheme has
a negligible overhead even with a small (32KB) counter
cache and using only eight counter bits per data block. The
combined encryption/authentication scheme has an IPC
overhead of 5% on average across SPEC CPU 2000 bench-
marks, which is a significant improvement over the 20%
overhead of existing encryption/authentication schemes.

1. Introduction

Data security concerns have recently become very im-
portant, and it can be expected that security will join perfor-
mance and power as a key distinguishing factor in computer
systems. This expectation has prompted several major in-
dustrial efforts to provide trusted computer platforms which
would prevent unauthorized access and modification of sen-
sitive or copyrighted information stored in the system. Un-
fortunately, such initiatives only provide a level of security
against software-based attacks and leave the system wide
open to hardware attacks [6, 7], which rely on physically ob-
serving or interfering with the operation of the system, for
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example by inserting a device on the communication path
between the microprocessor and the main memory. Some
of this communication path (e.g. the memory bus) is ex-
posed outside the processor or main memory chips and can
be tampered with easily [6, 7].

Clearly, software protection cannot adequately protect
against hardware attacks, because program variables of
the protection software itself can be stored in main mem-
ory and be subjected to hardware attacks. Instead, hard-
ware memory encryption and authentication has been pro-
posed [4, 5, 10, 11, 15, 16, 17, 19, 20, 21]. Memory en-
cryption seeks to protect against passive (snooping) attacks
on the secrecy/privacy of data and/or code. Memory au-
thentication seeks to protect against active attacks on data
integrity, which can modify existing signals and create new
ones to cause programs to produce wrong results or behav-
ior. Memory authentication is also needed to keep data
and/or code secret because active attacks can tamper with
memory contents to produce program behavior that dis-
closes secret data or code [17].

1.1. Background: Memory Encryption

Two main approaches have been proposed for memory
encryption: direct encryption and counter mode encryp-
tion. In direct encryption, an encryption algorithm such
as triple DES or AES [3] is used to encrypt each cache
block as it is written back to memory and decrypt the block
when it enters the processor chip again [5, 10, 11]. Al-
though reasonably secure, direct encryption reduces sys-
tem performance by adding decryption latency of a cryp-
tographic algorithm (such as AES) to the already problem-
atic L2 cache miss latency (Figure 1(a)). Counter mode en-
cryption [2, 12] can be used to hide this additional AES
latency [15, 16, 17, 19, 20, 21]. Instead of applying AES
directly to data, counter mode encryption applies AES to
a seed to generate a pad. Data is then encrypted and de-
crypted via a simple bitwise XOR with the pad. Although
work on message encryption proves that the seed need not
be secret to maintain secrecy of data encrypted in counter
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mode [1], it relies on a fundamental assumption that the
same seed will never be used more than once with a given
AES key [1, 12]. This is because the same seed and AES
key would produce the same pad, in which case the attacker
can easily recover the plaintext of a memory block if the
plaintext of another block (or a previous value of the same
block) is known or can be guessed.

To ensure unique seeds for memory encryption, we can
keep a single global counter for all memory blocks which
is incremented on any memory block write-back. Alterna-
tively, per-block local counters can be used and the unique
seed can be formed as a concatenation of data block’s ad-
dress and its local counter. The address part of the seed
ensures that different locations are not encrypted with the
same seed. The counter for a memory block is incremented
on each write-back to that block to ensure that the seed
is unique for each write-back to the same address. The
counter value used to encrypt a block is also needed to de-
crypt it, so a counter value must be kept for each memory
block. However, write-backs of a block could be frequent
and counters can quickly become large. Thus, per-block
counter storage must either be relatively large or a mecha-
nism must be provided to handle counter overflow. In prior
work [4, 15, 19, 20, 21], when a counter wraps around,
the AES encryption key is changed to prevent re-use of the
same pad. Unfortunately, the same encryption key is used
to encrypt the entire memory, so a key change requires re-
encryption of the entire memory. With a large memory, such
re-encryption “freezes” the system for a noticeable time.
For example, re-encryption of 4 GB of memory at a rate
of 6.4 GB/second freezes the system for nearly one sec-
ond. This is inconvenient for interactive applications and
may be catastrophic in real-time systems. If small coun-
ters are used, such re-encryptions will occur frequently and
become a significant performance overhead.

(a) Direct encryption. (b) Counter cache hit in counter mode.

(c) Counter cache miss in counter mode.

Figure 1. Timeline of a L2 cache miss.

Using a larger counter field can reduce the frequency of
these “freezes”, but they degrade memory encryption per-
formance. Counters are too numerous to keep them all on-
chip, so they are kept in memory and cached on-chip in the
counter cache, also called sequence number cache (SNC) in
other studies. Counter mode hides the latency of pad gener-
ation by finding the block’s counter in the counter cache and
beginning pad generation while the block is fetched from
memory, as in Figure 1(b). However, a counter cache miss

results in another memory request to fetch the counter and
delays pad generation as in Figure 1(c). A counter cache
of a given size can keep more counters if each counter is
small. As a result, a compromise solution is typically used
where the counters are small enough to allow reasonably
good counter cache hit rates, yet large enough to avoid very
frequent re-encryptions. However, this compromise still re-
sults in using larger counter caches and still suffers from
occasional re-encryption freezes.

1.2. Background: Memory Authentication

Current memory authentication schemes either have in-
adequate security protection or have high performance over-
heads. For example, authentication in XOM [5] cannot de-
tect replay attacks. The log hash scheme in Suh et al. [19]
employs lazy authentication in which a program is authen-
ticated only a few times during its execution [19]. The
Merkle tree scheme used in Gassend et al. [4] employs
authentication in which instructions are allowed to com-
mit even before their data is completely authenticated [4].
The Authenticated Speculative Execution proposed by Shi
et al. [15] employs timely (i.e. non-lazy) authentication, but
requires extensive modifications to the memory controller
and on-chip caches. As pointed out by Shi et al. [17], lazy
memory authentication sacrifices security because attacks
can be carried out successfully before they are detected. Un-
fortunately, timely authentication delays some memory op-
erations until authentication is complete. Furthermore, prior
memory authentication schemes rely on MD-5 or SHA-1
to generate authentication codes but under-estimate their
latency. Recent hardware implementations of MD-5 and
SHA-1 show the latencies of more than 300ns [9], which
is prohibitively expensive to use in timely authentication.

Unlike counter secrecy, which is unnecessary [1], unde-
tected malicious modifications of counters in memory are
a critical concern in counter mode memory encryption be-
cause they can be used to induce pad reuse and break the
security of memory encryption. Although prior work ad-
dresses this concern to some extent through memory au-
thentication, we find a flaw that has previously been ignored
or unnoticed. We also find that this flaw can be avoided
by authenticating the counters involved in data encryption,
without a significant impact on performance.

1.3. Summary of Contributions

In this paper we present a new low-cost, low-overhead,
and secure scheme for memory encryption and authentica-
tion. We introduce split counter mode memory encryption,
in contrast with prior schemes which we refer to as mono-
lithic counters. The counter in this new scheme consists
of a very small per-block minor counter and a large ma-
jor counter that is shared by a number of blocks which
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together form an encryption page1. Overflow of a minor
counter causes only an increment of a major counter and
re-encryption of the affected encryption page. Such re-
encryptions are fast enough to not be a problem for real-
time systems. They also result in much lower overall perfor-
mance overheads and can be overlapped with normal pro-
cessor execution using a simple additional hardware mech-
anism. Our major counters are sized to completely avoid
overflows during the expected lifetime of the machine, but
they still represent a negligible space and counter caching
overhead because one such counter is used for an entire en-
cryption page.

The second contribution of this paper is a significant re-
duction of memory authentication overheads, due to several
architectural optimizations and our use of the combined Ga-
lois Counter Mode (GCM) authentication and encryption
scheme [13]. GCM offers many unique benefits. First,
it has been proven to be as secure as the underlying AES
encryption algorithm [13]. Second, unlike authentication
mechanisms used in prior work, GCM authentication can be
largely overlapped with memory latency. Third, GCM uses
the same AES hardware for encryption and authentication
and GCM authentication only adds a few cycles of latency
on top of AES encryption. In a recent hardware implemen-
tation [9], AES latencies of 36.48ns have been reported.
This is a significant advantage compared to 300ns or more
needed for MD5 or SHA-1 authentication hardware used in
prior work on memory authentication. This low authentica-
tion latency, most of which can be overlapped with memory
access latency, allows GCM to authenticate most data soon
after it is decrypted, so program performance is not severely
affected by delaying instruction commit (or even data use)
until authentication is complete.

Finally, in this paper we identify and eliminate a pitfall of
counter mode memory encryption schemes with local coun-
ters. This pitfall makes the system vulnerable to counter
replay attacks in which an attacker forces a block to be en-
crypted with the same pad by rolling back the counter of the
block. The attacker can perform this when a counter is re-
placed from the counter cache while its corresponding data
block remains cached on-chip. To avoid such attacks, in ad-
dition to authenticating data, counters themselves need to
be authenticated every time they are brought on-chip. We
show that counter authentication can be achieved without
significantly affecting performance.

The rest of this paper is organized as follows: Section 2
presents our split counter scheme and Section 3 presents
our GCM authentication scheme, while Section 4 provides
implementation details, Section 5 presents our evaluation

1Our encryption page is similar in size to a typical system page (e.g.
4KB), but there is no other relationship between them. In particular, large
system pages can be used to improve TLB hit rates without affecting the
size of our encryption pages.

setup, Section 6 discusses our evaluation results, and Sec-
tion 7 presents our conclusions.

2. Split Counter Mode Encryption

The choice of a counter size is a major tradeoff in counter
mode memory encryption. Small and medium-size counters
can overflow and cause an entire-memory key change. This
key changes results in a system “freeze” which, for small
counters, can be frequent and cause significant performance
overheads. Large counters do not overflow during the ex-
pected lifetime of the machine, but they incur larger storage
overheads in main memory while performance suffers be-
cause fewer counters fit in the on-chip counter cache.

To keep overall counter sizes low and prevent costly key
changes, we use a split counter, with a small (eight bits or
less) per-block minor counter to reduce storage overheads
and improve counter cache hit rates. We also use a large
(64 bits) major counter that does not overflow for millen-
nia and is shared by consecutive blocks that together form
an encryption page which is a few kilobytes in size. The
upper portion of Figure 2 illustrates the encryption process.
When a block needs to be written back to memory, its ma-
jor counter is concatenated with its minor counter to ob-
tain its overall counter. For each encryption chunk (typi-
cally 16 bytes for AES encryption), a seed is obtained by
concatenating the chunk’s address, the block’s counter, and
a constant encryption initialization vector (EIV) 2. For a
64-byte cache block size and 128-bit AES, there are four
encryption chunks in a block. The encrypted chunks are
then XORed with chunks of plaintext data. The figure
shows that each 64-byte counter cache block stores a ma-
jor counter (M ) for a 4KB page and 64 7-bit minor coun-
ters (m1,m2, . . . ,m64) for data blocks on that page. More
detail on how to choose major and minor counter sizes is
provided in Section 4.2.

+

++ + +

Figure 2. Split Counter Mode Memory En-
cryption and GCM Authentication Scheme.

2The EIV can be unique per process, per group of processes that share
data, unique per system, etc., depending on the needs for protection and
sharing, and whether virtual or physical addresses are used.
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When a minor counter overflows, we re-encrypt only
its encryption page using the next major counter. Re-
encryption of a relatively small encryption page is quick
enough to avoid problems with real-time and interactive ap-
plications. As a result, split counter mode memory encryp-
tion eliminates problematic and costly entire-memory re-
encryptions, while keeping the overall counter size small.

In addition to this main advantage, split counter mode
memory encryption allows additional architectural opti-
mizations, one that dramatically reduces the overall re-
encryption activity and the other to overlap normal proces-
sor and cache activity with re-encryption. Details of these
optimizations are described in Section 4.2.

3. Memory Authentication with GCM

Memory authentication is needed to prevent hardware at-
tacks that may compromise data integrity, such as attacks
that modify data to change the application’s behavior or
produce erroneous results. Authentication is also needed
to keep counter-mode memory encryption secure, because
counters are stored in memory where an active attack can
modify them (e.g. roll them back) and cause pad reuse.
However, efficient, secure, and cost-effective memory au-
thentication is difficult for several reasons.

The first reason for high overheads of memory authen-
tication is that well-known authentication algorithms such
as MD-5, SHA-1, or CBC-MAC have long authentication
latencies, and this long-latency authentication begins when
data arrives on-chip. As a result, the effective memory ac-
cess latency is significantly increased if data brought into
the processor chip can not be used before it is authenticated.
On the other hand, use of data before it is authenticated
presents a security risk [17]. Some use of data can safely
be allowed before its authentication is complete, but only
with relatively complex hardware mechanisms [15].

A second cause for the high overheads of memory au-
thentication is a result of using of a Merkle tree [14]. A
Merkle tree is needed in memory authentication to prevent
replay attacks in which a data block and its authentication
code in memory are replayed (rolled back to their previ-
ously observed values) together. Because the authentication
code for the old data value matches the old value of the au-
thentication code, the attack can remain undetected. In a
Merkle tree, a leaf-level data block is authenticated by an
authentication code. This code resides in a memory block
which is itself authenticated by another code. If K codes
fit in a block, the resulting K-ary tree eventually has a root
authentication code, which can be kept in a special on-chip
register where it is safe from tampering. This root code, in
effect, prevents undetected tampering with any part of the
tree. Codes at different levels of the tree can be cached to
increase authentication efficiency. If each block (of data or
authentication codes) is authenticated when it is brought on-
chip, its authentication must proceed up the tree only until

a tree node is found on-chip. Also, a change to a cached
data or authentication code block does not need to immedi-
ately update the parent authentication node in the tree. The
update can be performed when the block is written back to
memory, at which time the update is propagated up the tree
only to the first tree node which is still on-chip. Still, a
data cache miss can result in misses at all levels of the au-
thentication tree, in which case one block from each level
must be brought from memory sequentially and authenti-
cated in order to complete authentication of the data block.
The resulting bus occupancy and authentication latency can
be large, while effective caching of the multiple tree levels
on-chip can be difficult. Also, if data and authentication
codes are cached together this can result in significantly in-
creased cache miss rates for data accesses.

The final cause of overheads is the size of authentica-
tion codes. The probability of an undetected data modifica-
tion decreases in exponential proportion to the authentica-
tion code’s size, but large authentication codes reduce the
arity of the Merkle tree and increase both storage and per-
formance overheads. For example, only four 128-bit AES-
based authentication codes can fit in a 64-byte block, which
for a 1GB memory results in a 12-level Merkle tree that rep-
resents a 33% memory space overhead.

We address the authentication latency problem by using
Galois Counter Mode (GCM) [13] for memory authenti-
cation. This paper is, to our knowledge, the first to apply
GCM in this setting. As illustrated in Figure 2, GCM is a
counter-based encryption scheme which also provides data
authentication. The encryption portion operates as a stan-
dard counter mode, by generating a sequence of pads from a
seed and XORing them with the plaintext to generate the ci-
phertext. In our case, the plaintext is the data block and the
seed is the concatenation of the block address, the counter
value, and an initialization vector. Decryption is the same,
except that plaintext and ciphertext are swapped. The au-
thentication portion of GCM is based on the GHASH func-
tion [13], which computes a hash of a message ciphertext
and additional authentication data based on a secret key. As
shown in the lower half of Figure 2, the additional authen-
tication data input is unused in memory authentication, and
the GHASH function consists of the chain of Galois Field
Multiplications and XOR operations on the chunks of the
ciphertext. The final GHASH output is XORed with the au-
thentication pad, which is generated by encrypting the con-
catenation of the block address, the counter, and another
initialization vector. The resulting hash can be clipped to
fewer than 128 bits [13], depending on the desired level of
protection.

We choose to use GCM because it has been studied ex-
tensively and shown to be secure [13], and because the la-
tency to compute hash codes can be much less than using
SHA-1 or MD5. As discussed in [13], the hashed data is
sufficiently obscured as to be provably secure, assuming
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that the underlying block cipher is secure, and that no pad is
ever repeated under the same key. We meet both conditions
by using the AES block cipher and by ensuring that seeds
are non-repeating since they are composed of an increment-
ing counter and the block address. The GHASH operation
in GCM can be very fast, so the latency of GCM authentica-
tion can be much less than functions such as SHA-1 or MD5
because the heavy computation (generating the authentica-
tion pad using AES) can be overlapped with loading the
data from memory. Once the ciphertext has been fetched,
the GHASH function can be computed quickly on the ci-
phertext chunks because the field multiplication and XOR
operations can each be performed in one cycle [13], and
the final XOR with the authentication pad can be performed
immediately afterwards because this pad has already been
computed. Lastly, unlike SHA-1 or MD5 which require a
separate authentication engine, GCM uses the same AES
engine used for encryption.

To reduce the impact of the Merkle tree on authentication
latency, we compute authentication codes of all needed lev-
els of the authentication tree in parallel. Upon a data cache
miss, we attempt to locate its authentication code on-chip.
If the code is missing, we request its fetch from memory, be-
gin generating its authentication pad, and attempt to locate
the next-level code on-chip. This is repeated until an on-
chip code is found. When the requested codes begin arriv-
ing from memory, they can be quickly authenticated as they
arrive. Once the authentication chain from the data block to
the original on-chip authentication code is completed, the
data block can be used safely.

Finally, we consider increasing the arity of the Merkle
tree by using smaller authentication codes. Smaller authen-
tication codes reduce the memory space, bandwidth, and
on-chip storage overheads of authentication, but degrade se-
curity in proportion to the reduction in code size. However,
we note that the need for large authentication codes was es-
tablished mostly to reliably resist even a long sequence of
forgery attempts, e.g. in a network environment where each
forged message must be rejected, but little can be done to
prevent attacks. In contrast, a few failed memory authenti-
cations tell the processor that the system is under a hardware
attack. Depending on the deployment environment, correc-
tive action can be taken to prevent the attack from eventu-
ally succeeding. In a corporate environment, a technician
might be called to remove the snooper from the machine
and prevent it from eventually succeeding. In a game con-
sole, the processor may produce exponentially increasing
stall cycles after each authentication failure, to make ex-
traction of copyrighted data a very lengthy process. In both
cases, it is assumed that the user or the software vendor is
willing to tolerate a small but non-negligible risk of a small
amount of data being stolen by a lucky guess. In many en-
vironments such a risk would be tolerable in exchange for
significant reduction in performance overhead and cost.

4. Implementation

4.1. Caching of Split Counters

Our minor counters can be kept in a counter cache, sim-
ilarly to how monolithic counters are cached in prior work.
For major counters, a seemingly obvious choice is to keep
them in page tables and on-chip TLBs. We note, how-
ever, that counters are needed only to service L2 cache
misses and write-backs, and that large major counters may
increase TLB size and slow down performance-critical TLB
lookups. Another obvious choice is to keep major counters
by themselves in a separate region of memory, and cache
them on-chip either in a separate cache or in separate blocks
of the counter cache. However, this complicates cache miss
handling, because a single L2 cache miss can result in both
a major and a minor counter cache miss.

As a result of these considerations, we keep major and
minor counters together in memory and in the counter
cache. A single counter cache block corresponds to an en-
cryption page and contains the major counter and all minor
counters for that page. With this scheme, a single counter
cache lookup finds both the major and the minor counter. If
the lookup is a miss, only one block transfer from memory
is needed to bring both counters on-chip. Furthermore, we
find that the ratio of counter-to-data storage can be easily
kept at one byte of counters per block of data. An example
for a 64-byte block size is shown in Figure 2, where a cache
block stores one 64-bit major counter (M ) and 64 seven-bit
minor counters (m1,m2, . . . ,m64). If the L2 cache block
size is also 64 bytes, a counter cache block corresponds to
an encryption page of 4KB (64 blocks, 64 bytes each). As
another example, a 32-byte block size in both the L2 and
counter caches results in a counter cache block that stores
one 64-bit major counter and 32 six-bit minor counters, with
an encryption page size of 1KB. Our experiments indicate
little performance variation across different block sizes, be-
cause reduced per-page re-encryption work with smaller en-
cryption pages compensates for the increased number of re-
encryptions caused by smaller minor counter size.

4.2. Optimizing Page Re-Encryption

With monolithic counters and with our new split coun-
ters, pad reuse on counter overflow must be prevented by
changing another parameter used in pad generation. With
monolithic counters, the only parameter that can be changed
is the key, which is the same for an entire application and
its change results in entire-memory re-encryption. In our
split counter approach, the major counter can be changed
on minor counter overflow, and this change only requires
re-encryption of one encryption page.

Memory access locality of most applications is such that
some blocks are written back much more often than others.
As a result, some counters advance at a much higher rate
than others and overflow more frequently. Consequently,
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some pages are re-encrypted often, some rarely, and some
never (read-only pages). With monolithic counters, the first
counter that overflows causes re-encryption of the entire
memory, so the rate of advance of the fastest-advancing
counter controls the re-encryption rate for all blocks in the
main memory. In contrast, with our split counters, the re-
encryption rate of a block is determined by the rate of ad-
vance of the fastest-advancing counter on that page. Most
pages are re-encrypted much less often than those that con-
tain the fastest-advancing minor counters. This better-than-
worst-case behavior of split counters results in significantly
less re-encryption work than with monolithic counters. Our
experimental results indicate that our split counter scheme
with a total of eight counter bits per block (7-bit minor
counters and 64-bit major counter shared by 64 blocks)
on average results in only 0.3% of the re-encryption work
needed when eight-bit monolithic counters are used.

In addition to performing less re-encryption work and
splitting this work into smaller pieces to avoid lengthy re-
encryption freezes, page re-encryption has an advantage
over entire-memory re-encryption in that the re-encryption
can be nearly completely eliminated from the processor’s
critical path. Conceptually, re-encrypting a block is a two-
step process where the block is first decrypted by fetching
it on-chip, and is encrypted again with a new major counter
by writing it back to memory. In our page re-encryption,
the first step (fetching blocks on-chip) only needs to be per-
formed for those blocks that are not already on-chip. Our
experimental results indicate that, on average, about half
(48%) of the page’s blocks are present on-chip when the
page re-encryption is needed, which nearly halves the re-
encryption latency and its use of memory, bus, and AES
bandwidth. In contrast, in entire-memory re-encryption the
blocks that are cached on-chip constitute only a small frac-
tion of the main memory, and therefore do not noticeably
reduce the re-encryption work.

Additionally, the second step (writing blocks back) does
not require replacing already-cached blocks immediately.
Since such blocks are likely still needed, we simply set such
blocks to a dirty state, and let them be written back when
they are naturally replaced from the cache. After the major
counter for the page is changed and the minor counters are
zeroed out, write-backs of such blocks will encrypt them
with the new major counter. As a result of this “lazy” ap-
proach, re-encryption of on-chip blocks requires no extra
memory reads or writes.

Finally, our encryption pages are small enough to per-
mit tracking of the re-encryption status of each block within
a page. Such tracking allows normal cache operation to
proceed during page re-encryptions and nearly completely
hides re-encryption latency. To accomplish this, our proces-
sor maintains a small number (e.g. eight) of re-encryption
status registers (RSRs). Each RSR has a valid bit that
indicates whether it is in-use or free. An RSR is tagged

with an encryption page number, and it stores the old ma-
jor counter for the page. An RSR corresponding to a page
also maintains a done bit for each block on that page, to
indicate whether the block has already been re-encrypted.
Re-encryption of a page begins by finding a free RSR (with
a zero valid bit), setting its valid bit to one, tagging the RSR
with the page’s number, copying the old major counter into
the RSR, clearing all the done bits in the RSR, and incre-
menting the major counter in the counter cache. The RSR
then issues requests to fetch the blocks of the page that are
not already cached. As each block arrives from memory, the
RSRs are checked. If the block’s page matches an RSR and
the block’s done bit is not set, the block is decrypted using
the old major counter from the RSR. Then the block’s minor
counter is reset, the done bit in the RSR is set, and the block
is supplied to the cache and its cache state is set to dirty. To
avoid cache pollution from blocks that are fetched by the
RSR from memory, they are not cached and are immedi-
ately written back. Any write-back, regardless of whether it
is cache-initiated or RSR-initiated, is performed normally,
using the block’s minor counter and its page’s major counter
from the counter cache. This completes re-encryption of a
block if its page is being re-encrypted.

When the last done bit is set in the RSR, re-encryption
of the page is complete and the RSR is freed by setting its
valid bit to zero. To avoid re-encryption fetches of blocks
that are already in-cache, the RSR looks up each block in
the L2 cache before requesting that block from memory. For
an already-cached block, the block’s dirty bit is set and its
done bit in the RSR is set immediately without re-fetching
the block from memory.

With this support, the cache continues to service reg-
ular cache requests even for blocks in pages that are still
being re-encrypted, and the processor is not stalled due to
re-encryptions. An access to a block in a page that is be-
ing re-encrypted can either 1) find the block is already re-
encrypted (done bit is one), in which case the access pro-
ceeds normally, or 2) find the block is being fetched by the
RSR (done bit is zero), in which case the request simply
waits for the block to arrive. Similarly, regular cache write-
back of a block in a page that is being re-encrypted can
proceed normally using the new major counter for the page.

We note that these optimizations would be difficult to
achieve for entire-memory re-encryption, because it would
be very costly to track the individual re-encryption status of
the very large number of blocks involved in entire-memory
re-encryption. In our split counter approach, however, the
optimizations can be applied relatively easily to completely
avoid system freezes on re-encryptions and eliminate nearly
all of re-encryptions’ performance overhead.

In our scheme, cache operations can stall only when a
write-back of a block causes another minor counter over-
flow while the block’s page is still being re-encrypted, or
when an RSR cannot be allocated because all RSRs are in
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use. The former situation is easily detected when a page’s
RSR allocation request finds a matching valid RSR, which
can be handled by stalling the write-back until the RSR is
freed. With a sufficiently large minor counters (larger than
4 bits), we find that the situation does not occur because a
page re-encryption can be completed long before a new mi-
nor counter overflow triggers another re-encryption. The
latter situation is also handled by stalling the write-back
until an RSR becomes available. With a sufficient num-
ber of RSRs (e.g. 8), we find that the situation does not
occur because there are typically very few pages that are
being re-encrypted at the same time. Consequently, RSRs
only introduce very small storage overheads of less than 150
bytes. Finally, RSR lookups do not introduce much over-
head because in most cases it can be performed in parallel
with cache misses.

4.3. Data and Counter Integrity Issues

As proven by [1], data secrecy can be maintained even
if the counters in counter-mode encryption are themselves
stored unencrypted. However, counter integrity must be
protected because undetected counter tampering, such as
rolling back the counter to its old value, may lead to pad
reuse. We call such attacks counter replay attacks.

Protection of data integrity can help maintain counter in-
tegrity indirectly. The block’s counter is used to decrypt the
block which is then authenticated, and in GCM the counter
is directly used in authentication of its data block. Because
authentication would fail for a data block whose counter has
been modified, we say that the counter is indirectly authen-
ticated when the corresponding data block is authenticated.

In prior schemes, a data block is authenticated only when
it is brought on chip. However, we observe that a data block
may still reside on-chip while its counter is displaced from
the counter cache to memory. When the data block is writ-
ten back, the counter is re-fetched from memory to encrypt
the block. However, the counter value from memory may
have been changed to its older value to force pad reuse by an
attacker. Therefore, a counter needs to be re-authenticated
when it is brought on chip, before it is incremented and used
for encrypting the block.

Figure 3. Data and counter Merkle Tree.

To ensure secrecy and integrity of the data, we build a
Merkle tree whose leaf-level contains both the data and its
direct counters. These are the counters directly involved in
encryption and authentication of data blocks. Since the split
counters in our scheme are small, the overhead for incor-
porating direct counters into the Merkle tree is also small.
With GCM, in addition to direct counters, we need deriva-
tive counters which are used in authentication of non-leaf
blocks in the tree. Since derivative counters are only used
for authentication, data secrecy cannot be compromised by
compromising the integrity of these counters.

Figure 3 shows the resulting Merkle tree. The on-chip
hash root guarantees the integrity of the data, the direct
counters, and the other hash codes in the tree.

4.4. Other Implementation Issues

Dealing with Shared Data. In a multi-processor envi-
ronment or for memory-mapped pages shared between the
processor and I/O devices, data may be shared by more
than one entity. Although dealing with such data is be-
yond the scope of this paper, we point out that recently pro-
posed schemes for multiprocessor environments are based
on counter-mode encryption [15, 21] and can easily be inte-
grated with our split counters and GCM scheme.

Virtual vs. Physical Address. The block address that
is used as a component of the block’s encryption seed can
be a virtual or physical address. Virtual addresses are more
difficult to support because they are not directly available in
the lowest level on-chip cache, and different processes may
map the same location at different virtual addresses. Phys-
ical addresses are easier to use but require re-encryption
when memory is paged from or to the disk. Our split
counters and GCM mechanisms are orthogonal to these is-
sues, and are equally applicable when virtual or physical
addresses are used.

Key Management and Security. We assume a trusted
operating system and a scheme that can securely manage
keys and ensure they are not compromised. Our contri-
butions are orthogonal to the choice of a key management
scheme and a trusted platform, and can be used to comple-
ment the platform’s protection against software attacks with
low-cost, high-performance protection against hardware at-
tacks and combined hardware-software attacks.

5. Experimental Setup

We use SESC [8], an execution-driven cycle-accurate
simulator, to model a three-issue out-of-order processor
running at 5GHz, with 2-cycle 4-way set-associative L1 in-
struction and data caches of 16KB each, and with a uni-
fied 10-cycle 8-way set-associative L2 cache of 1MB. For
counter-mode encryption and GCM, the processor also con-
tains a 32KB, 8-way set-associative counter cache. All
caches have 64-byte blocks. A block of our split counters
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Figure 4. Normalized IPC with different memory encryption schemes.

consists of 64 7-bit minor counters and one 64-bit major
counter, for a total block size of 64 bytes and an encryption
page size of 4KB. The simulated processor-memory data
bus is 128bits wide and runs at 600MHz, and below the bus
the uncontended round-trip memory latency is 200 proces-
sor cycles. The 128-bit AES encryption engine we simulate
has a 16-stage pipeline and a total latency of 80 processor
cycles. This is approximately twice as fast as the AES en-
gine reported in [9], to account for future technological im-
provements. The SHA-1 authentication engine is pipelined
into 32 stages and has a latency of 320 processor cycles.
This is more than 4 times as fast as reported in [9], to ac-
count for future technological improvements and possible
developments that might give it an advantage over the AES
engine used for GCM authentication. The default authenti-
cation code size is 64 bits, and we assume a 512MB main
memory when determining the number of levels in Merkle
trees. In addition to authenticating program data, we also
authenticate counters used for encryption to prevent counter
replay attacks described in Section 4.3. To handle page re-
encryptions in our new split-counter mode, the processor is
equipped with 8 re-encryption status registers (RSRs). Nu-
merous other parameters (branch predictor, functional units,
etc.) are set to reflect an aggressive near-future desktop ma-
chine, and all occupancies and latencies are simulated in
detail.

Performance results in our evaluation are shown as nor-
malized instructions-per-cycle (IPC), where the normaliza-
tion baseline is a system without any memory encryption
and authentication.

SPECint 2000 SPECfp 2000

bzip2 gap mcf twolf ammp applu mgrid

crafty gcc parser vortex apsi equake swim

eon gzip perlbmk vpr art mesa wupwise

Table 1. Benchmarks used in our evaluation.

We use 21 of the SPEC CPU 2000 benchmarks [18],
listed in Table 1. Only Fortran 90 benchmarks are omit-
ted because we lack a Fortran 90 compiler for our simulator
infrastructure. For each benchmark, we use its reference in-
put set, in which we fast-forward 5 billion instructions and
then simulate 1 billion instructions in detail.

6. Evaluation

6.1. Split Counter Mode

Figure 4 compares the IPC of our split counter mode
memory encryption (Split) with direct AES encryption (Di-
rect) and with regular counter mode that uses 8-, 16-, 32-
, and 64-bit counters (Mono8b, Mono16b, Mono32b, and
Mono64b, respectively). No memory authentication is used,
to isolate the effects of different encryption schemes. We
only show individual applications that suffer at least a 5%
performance penalty on direct AES encryption, but the av-
erage is calculated across all 21 benchmarks we use.

In our 1-billion-instruction simulations (less than one
second on the simulated machine), we observe overflows of
monolithic counters only in the Mono8b configuration and
overflow of only minor counters in the Split configuration.
Page re-encryptions in the Split configuration are fully sim-
ulated and their impact is included in the overhead shown in
Figure 4. For Mono8b, we do not actually simulate entire-
memory re-encryption, but rather assume it happens instan-
taneously and generates no memory traffic. However, we
count how many times entire-memory re-encryption occurs
and show the number above each bar. Note that our Split
configuration with 7-bit minor counters and fully simulated
page re-encryption has similar performance to the Mono8b
configuration with zero-cost entire-memory re-encryption.
From this we conclude that our hardware support for page
re-encryption succeeds in removing the re-encryption la-
tency from the processor’s critical path.

To estimate the actual impact of entire-memory re-
encryptions in long-running applications, we track the
growth rate of the fastest-growing counter in each appli-
cation. We use these growth rates to estimate the inter-
val between consecutive entire-memory re-encryptions with
monolithic counters. The first four schemes in the tables use
locally incremented counters, which are incremented when
the corresponding data block is written back. It is also pos-
sible to use a globally incremented counter for encryption,
where a single global counter is stored on-chip, incremented
for every write-back, and used to encrypt the block. We note
that the counter value used to encrypt the block must still be
stored separately for each block so that the block can be de-
crypted. However, use of a global counter would eliminate
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Apps Counter Growth Rate (per second) Estimated Time to Counter Overflow

Mono8b Mono16b Mono32b Mono64b Global32b Mono8b Mono16b Mono32b Mono64b Global32b
(million) (seconds) (minutes) (days) (millennia) (minutes)

applu 2090 2075 2035 1961 17.2 0.1 < 1 24 298,259 4

art 2039 2010 1943 1866 17.8 0.1 < 1 26 313,395 4

equake 1323 1314 1307 1272 3.2 0.2 < 1 38 459,914 22

mcf 1211 1101 1031 987 20.3 0.2 1 48 592,417 4

twolf 1079 1059 1026 1005 4.5 0.2 1 48 581,975 16

avg 633 626 577 596 5.9 0.4 2 86 981,417 12

Table 2. Counter growth rate and estimated time to overflow for different encryption schemes.

the vulnerability we discuss in Section 4.3 without the need
to authenticate direct counters.

Table 2 shows the counter growth rate and estimated time
to counter overflow for the five applications with fastest-
growing counters (applu, art, equake, mcf, and twolf). Aver-
ages across all benchmarks are also shown. We note that the
growth rate decreases as counters become larger. This is the
effect of lowered IPC with larger counters: the number of
counter increments is nearly identical for all counter sizes,
but with larger counter sizes the execution time is longer
and the resulting counter increase rate is lower.

The global counter grows at the rate of write-backs in
each application. With the 32-bit counter size, the global
counter overflows in 12 minutes on average, much more fre-
quently than in the 32-bit private counter scheme. We also
noticed that although equake and twolf are among the top
5 for locally incremented counter growth rate, their num-
bers of write-backs per second are below the average. This
is because these two applications have relatively small sets
of blocks that are frequently written back, but the overall
write-back rate is not very high.

Although few entire-memory re-encryptions were ob-
served during the simulated one billion instructions in each
application, we see that the counter overflow problem is far
from negligible. Small 8-bit counters overflow up to ten
times per second in some applications and every 0.4 sec-
onds on average. Larger 16-bit counters overflow at least
once per minute in some applications and every two minutes
on average. Even 32-bit counters overflow more than once
per month in some applications (applu and art in our exper-
iments), which can still be a problem for real-time systems
that cannot tolerate the freeze caused by an entire-memory
re-encryption. We note, however, that 64-bit counters are
free of entire-memory re-encryptions for many millennia.

With our split counters, we achieve the best of both
worlds in terms of performance and counter overflow: small
per-block minor counters allow small storage overhead in
the main memory, good counter cache hit rates and good
performance (Figure 4), while large per-page major coun-
ters prevent entire-memory re-encryptions for millennia
(Table 2).

To help explain the performance of our split counters,
we track the number of data cache blocks that are already
resident on-chip when a page re-encryption is triggered. On

average, we find that 48% of the blocks are already on-chip,
which proportionally reduces the re-encryption work and
overheads. The average time used for a page re-encryption
is 5717 cycles. Note that normal processor execution con-
tinues during this time, although multiple (up to three) page
re-encryptions can be in progress.
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Figure 5. Sensitivity to counter cache size.

To determine how counter cache size affects the perfor-
mance of our split counter mode memory encryption, we
repeat the experiments from Figure 4 for different counter
cache sizes from 16KB to 128KB. For the regular counter
mode, we use 64-bit counters which do not cause entire-
memory re-encryptions and system freezes. Figure 5 shows
the average (across all 21 benchmarks) for each scheme.
We see that, even with a 16KB counter cache, our split
counter encryption (split 16KB) outperforms monolithic
counters with 128KB counter caches (mono 128KB). The
two schemes can keep the same number of per-block coun-
ters on-chip and have similar counter cache hit rates, but
the split 16KB scheme consumes less bandwidth to fetch
and write back its smaller counters.

Figure 6 compares our new split counter mode with
counter prediction and pad precomputation scheme pro-
posed in [16]. The counter prediction scheme associates a
base counter with each page, and the counter for a block in
that page is predicted as the base counter plus several small
increments. We note that the counter prediction scheme
eliminates on-chip caching of its large 64-bit per-block
counters, but they are still stored in memory and represent
a significant overhead (e.g. with 64 bits per 64-byte block,
the overhead is 1/8 of the main memory), while requiring
modifications to the TLB and page tables. Moreover, this
prediction involves pre-computing N pads with predicted
counter values. This improves the prediction success rate,
but increases AES engine utilization N-fold. We use N=5 in
our experiments, as recommended in [16].
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Figure 6. Comparison of split counters with counter prediction.
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Figure 7. IPC with different memory authentication schemes.

In Figure 6(a), the first group of results shows the hit
and half-miss rate for the counter cache and the prediction
rate for the counter prediction scheme. We observe that the
counter prediction rate in the prediction scheme is slightly
better than the counter cache hit rate in our scheme. The
second group of results shows the percentage of timely pad
pre-computations for memory read requests. In addition to
results with one AES engine for our split counter scheme
(Split) and counter prediction (Pred), we also show results
for counter prediction with two AES engines (Pred 2Eng).
Because it pre-computes five different pads for each block
decryption, counter prediction requires significantly more
AES bandwidth and, with only one AES engine, generates
pads on time for only 61% of block decryptions. With two
AES engines, counter prediction generates timely pads for
96% of block decryptions which is slightly better than the
timely-pad rate of our scheme. We note that the area over-
head for a deeply-pipelined AES engine could be quite sig-
nificant [9]. The third group of results in Figure 6(a) shows
the average normalized IPC. The Pred 2Eng scheme keeps
large 64-bit counters in memory and fetches them with each
data block to verify its predictions. The additional memory
traffic offsets the advantage it has in terms of timely pad
generation, and results in nearly the same performance as
our split-counter scheme.

Figure 6(b) shows the trend of counter prediction rates in
the counter prediction scheme and counter cache hit rates in
our split counter scheme. As the application executes, our
counter cache hit rate remains largely unchanged. In con-
trast, the counter prediction rate starts off with a high pre-
diction rate, because all counters have the same initial value
and are easily predicted. However, as counters change in
value at different rates, their values become less predictable.

Note that our simulation results do not conflict with re-
sults reported in [16], where an extremely deeply pipelined
AES engine is used to achieve very high AES bandwidth.
Our additional experiments also confirm that the counter
prediction scheme with two AES engines outperforms the
Monolithic counter scheme with 64-bit counters. How-
ever, our split counter scheme with a 32kByte counter cache
holds the same number of counters as a 256kByte cache
with large monolithic counters, and needs far less band-
width to fetch and write back its small counters.

6.2. GCM Authentication

Figure 7 compares our GCM memory authentication
with SHA-1 memory authentication whose latency we vary
from 80 to 640 cycles. No memory encryption is used,
to isolate the effects of authentication, and the results are
normalized to the IPC of a processor without any support
for memory authentication. Note that no counter-mode en-
cryption is used, so only GCM maintains per-block counters
needed for its authentication. As before, the average is for
all 21 benchmarks, but we show individually only bench-
marks with significant IPC degradation.
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Figure 8. IPC with GCM and SHA-1 under dif-
ferent authentication requirements.
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Figure 9. IPC with different memory encryption-authentication combinations.

We observe that, in almost all cases, our GCM authen-
tication scheme performs as well or slightly better than 80-
cycle SHA-1, and it should be noted that 80 cycles is an
unrealistically low latency for SHA-1. As the latency of
SHA-1 is increased to more realistic values, the benefit of
GCM authentication becomes significant, especially in ap-
plu, art, equake, mgrid, swim, and wupwise. On average,
GCM authentication results in only a 4% IPC degradation,
while SHA-1 with latencies of 80, 160, 320, and 640 cycles
reduces IPC by 6%, 10%, 17%, and 26% respectively. The
only case where GCM authentication performs relatively
poorly is in mcf, due to additional bus contention caused
by misses in the counter cache.

To determine how security requirements affect authenti-
cation performance, Figure 8 shows the IPC for our GCM
scheme and for SHA-1 (with the default 320-cycle latency)
with Lazy authentication in which an application continues
without waiting for authentication to complete, Commit au-
thentication in which a load that misses in the data cache
cannot retire until its data has been authenticated, and Safe
authentication in which a load stalls on a cache miss until
authentication of the data fetched from memory is complete.

With Lazy authentication, the latency of authentication is
largely irrelevant, and therefore bus contention for counter
fetches and write-backs causes a slight degradation in GCM
performance compared to SHA-1. However, as discussed
in Section 3, this Lazy authentication presents a security
risk, so a more strict form of authentication is desired. With
Commit or Safe authentication, the latency of authentica-
tion becomes important and GCM has a considerable per-
formance advantage. Even the strictest Safe authentication,
which with SHA-1 results in a 24% IPC reduction, results
in a tolerable 6% IPC reduction with GCM.

The second group of results in Figure 8 compares par-
allel authentication of all off-chip Merkle tree levels on a
cache miss against sequential authentication of tree levels
where the authentication of a level begins only when the
previous level has been authenticated. Parallel authentica-
tion provides an average IPC increase of 3% for GCM and
2% for SHA-1. Although the IPC benefit seems modest,
in terms of overhead reduction it is significant – with GCM,
the IPC overhead of memory authentication is nearly halved
with parallel tree-level authentication.

6.3. GCM and Split Counter Mode

Figure 9 shows our results when we use both memory en-
cryption and memory authentication. Our combined GCM
encryption and authentication scheme with split counters is
shown as Split+GCM. We compare this scheme to a scheme
that uses GCM with monolithic counters (Mono+GCM), a
scheme that uses split-counter mode encryption with SHA-
1 authentication (Split+SHA), a scheme that uses mono-
lithic counters and SHA-1 authentication (Mono+SHA),
and a scheme that uses direct AES encryption and SHA-1
authentication (XOM+SHA). As before, all IPCs are nor-
malized to a system without any memory encryption or au-
thentication. Only the benchmarks with significant differ-
ences among the schemes are shown individually, but again
the average is for all 21 benchmarks. Our combined GCM
mechanism with split counters results in an average IPC
overhead of only 5%, compared to the 20% overhead with
existing monolithic counters and SHA-1 authentication. As
before, we note that split counters by themselves may seem
a marginal improvement and that most of the benefit is due
to the GCM authentication. However, we note that our
split counters nearly halve the IPC overhead, from 8% in
Mono+GCM to only 5% in Split+GCM.
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Figure 10. IPC with different authentication
requirements.

We repeat the experiments from Figure 9 with different
authentication requirements, with and without parallel au-
thentication of Merkle tree levels, and using different au-
thentication code sizes. These results are shown in Fig-
ure 10. The arrow in each set of experiments indicates our
default configuration, and only one parameter is varied in
each set of experiments. These results confirm our previous
separate findings for GCM and split-counter mode, and in-
dicate that our new combined scheme consistently outper-
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forms previous schemes over a wide range of parameters,
and that each of the two components of the new scheme
(split-counter mode and GCM) also consistently provides
performance benefits.

7. Conclusions

Protection from hardware attacks such as snoopers and
mod chips has been receiving increasing attention in com-
puter architecture. In this paper we present a new com-
bined memory encryption/authentication scheme. Our new
split counters for counter-mode encryption simultaneously
eliminate counter overflow problems and reduce per-block
counter size to improve their on-chip caching. We also
dramatically improve authentication performance and secu-
rity by using GCM authentication, which leverages counter-
mode encryption to reduce authentication latency and over-
lap it with memory accesses. Finally, we point out that
counter integrity should be protected to ensure data secrecy.

Our results indicate that our encryption scheme has a
negligible overhead even with a small (32KB) counter cache
and using only eight counter bits per data block. The com-
bined encryption/authentication scheme has an IPC over-
head of 5% on average across SPEC CPU 2000 bench-
marks, which is a significant improvement over the 20%
overhead of existing encryption/authentication schemes.
Our sensitivity analysis confirms that our scheme maintains
a considerable advantage over prior schemes under a wide
range of system parameters and security requirements.
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