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IMPROVING COVARIATE BALANCE IN 2K FACTORIAL DESIGNS
VIA RERANDOMIZATION WITH AN APPLICATION
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A few years ago, the New York Department of Education (NYDE) was
planning to conduct an experiment involving five new intervention programs
for a selected set of New York City high schools. The goal was to estimate
the causal effects of these programs and their interactions on the schools’
performance. For each of the schools, about 50 premeasured covariates were
available. The schools could be randomly assigned to the 32 treatment com-
binations of this 25 factorial experiment, but such an allocation could have re-
sulted in a huge covariate imbalance across treatment groups. Standard meth-
ods used to prevent confounding of treatment effects with covariate effects
(e.g., blocking) were not intuitive due to the large number of covariates. In
this paper, we explore how the recently proposed and studied method of reran-
domization can be applied to this problem and other factorial experiments.
We propose how to implement rerandomization in factorial experiments, ex-
tend the theoretical properties of rerandomization from single-factor experi-
ments to 2K factorial designs, and demonstrate, using the NYDE data, how
such a designed experiment can improve precision of estimated factorial ef-
fects.

1. Introduction. 2K factorial designs involve K factors each with two lev-
els, often denoted as the “high level” and “low level” of the factor [Yates (1937),
Fisher (1942)]. With K factors, there are 2K unique treatment combinations to
which units can be assigned, and often the same number of units are assigned to
each combination. Factorial designs are often discussed in an industrial setting,
where units are essentially identical and the assignment of units to treatments is
arbitrary. However, in recent years factorial designs have become more prevelant
in fields where pretreatment covariates are available and units typically differ, in-
cluding clinical trials [Apfel et al. (2002), Bays et al. (2004)], education [Kollar,
Fischer and Slotta (2005)], health sciences [Ravaud et al. (2004)] and psychol-
ogy [Ahluwalia et al. (2006), Kasari et al. (2012)]. Here, we focus on an exper-
iment that was considered by the New York Department of Education (NYDE).
The NYDE considered a 25 factorial experiment, where combinations of five “in-
centive programs” would be introduced to New York City high schools. The goal
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of the experiment was to estimate the effect of these programs and their combina-
tions on schools’ performance. Dasgupta, Pillai and Rubin (2015) discuss how to
analyze such an experiment, but here we focus on the design of the experiment.
The NYDE provided a dataset that includes 50 pretreatment covariates for 1376
schools. How should the department allocate the schools to the 32 treatment com-
binations such that the effects of the incentive programs and their combinations
are well estimated?

An initial idea is to randomize the schools to the 32 treatment combinations.
Randomized experiments are considered the “gold standard” because randomiza-
tion balances all potential confounders on average [Krause and Howard (2003),
Morgan and Rubin (2012)]. However, many have noted that randomized experi-
ments can yield “bad allocations,” where some covariates are not well balanced
across treatment groups [Seidenfeld (1982), Lindley (1982), Papineau (1994) and
Rosenberger and Sverdlov (2008)]. Bad allocations are a concern because covari-
ate imbalance among different treatment groups complicates the interpretation of
estimated treatment effects.

Bad allocations are particularly concerning for the NYDE experiment because
any randomization may create covariate imbalance across some of the 32 treat-
ment combinations. While covariate imbalance in randomized clinical trials has
been addressed, often only treatment-versus-control experiments with categori-
cal covariates are considered [e.g., the covariate-adaptive design of Hu and Hu
(2012)]. Likewise, the factorial design literature has focused on categorical covari-
ates. Classic experimental design textbooks like Box, Hunter and Hunter (2005)
and Wu and Hamada (2009) suggest using blocking to balance important covari-
ates in factorial designs, which is appropriate when there are few covariates to con-
sider or when covariates are categorical. In contrast, the NYDE dataset includes 50
covariates, most of which are not categorical, and thus how to implement blocking
is not obvious.

Instead, we propose a rerandomization algorithm for balanced 2K factorial de-
signs based on Morgan and Rubin (2012), which developed a framework for reran-
domization in the treatment-versus-control case. The motivation behind rerandom-
ization is that “bad allocations” where covariate imbalance is a concern should be
avoided, and thus one should keep randomizing—that is, rerandomize—until an
acceptable allocation is found. Here we establish several theoretical properties of
rerandomization in balanced 2K factorial designs that increase the precision of
factorial effect estimators, which makes rerandomization particularly appealing
for designing the NYDE experiment.

Both rerandomization and factorial designs have been explored since Fisher
in the 1920s; however, to our knowledge, no one has laid out the framework
for implementing rerandomization for factorial designs. Rubin (2008) noted that
many did not implement rerandomization because it was computationally inten-
sive; however, with recent improvements in computational power, some have re-
visited rerandomization. For example, Cox (2009), Bruhn and McKenzie (2009)
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and Worrall (2010) all recommend rerandomization, and Morgan and Rubin (2012)
formalized these recommendations in treatment-versus-control settings.

Our proposed rerandomization algorithm is not the first procedure that attempts
to balance noncategorical covariates for experiments with multiple treatments. The
Finite Selection Model (FSM) developed by Morris (1979) assigns units to multi-
ple treatment groups such that covariates are relatively balanced among the groups.
Morgan and Rubin (2012) noted that rerandomization and the FSM both attempt to
ensure covariate balance, but the FSM does not maintain the correlation structure
among covariates, whereas rerandomization can. Xu and Kalbfleisch (2013) pro-
posed the “balance match weighted design” for multiple treatment groups, which
performs many randomizations and then selects the randomization that yields the
best covariate balance. This is similar to rerandomization, but rerandomization’s
theoretical guarantees, such as balancing on unobserved covariates on average in
addition to improving balance for observed covariates, is appealing. Our rerandom-
ization algorithm can also incorporate various desiderata, such as factorial effects
and covariates that vary in importance, which makes the procedure particularly
flexible.

In Section 2 we review rerandomization for the treatment-versus-control case,
and in Section 3 we establish notation for 2K factorial designs using the potential
outcomes framework. In Section 4 we outline the proposed rerandomization pro-
cedure, and in Section 5 we establish theoretical properties that formalize the ways
rerandomization is preferable to standard randomization. In Section 6 we use our
rerandomization procedure on data from the NYDE.

2. Review of rerandomization. Rubin (2008) recalled a conversation with
Bill Cochran, who in turn recalled a conversation with R. A. Fisher, who asserted
that a way to protect ourselves against particularly bad randomizations is to reran-
domize until a randomization is “acceptable.” Morgan and Rubin (2012) suggested
implementing rerandomization for a treatment-versus-control experiment as fol-
lows:

1. Collect covariate data.
2. Specify a balance criterion determining when a randomization is acceptable.
3. Randomize units to treatment and control groups.
4. Check the balance criterion. If the criterion is met, go to Step 5. Otherwise,

return to Step 3.
5. Conduct the experiment using the final randomization obtained in Step 4.
6. Analyze the results using a randomization test, keeping only simulated random-

izations that satisfy the balance criteria specified in Step 2.

Morgan and Rubin (2012) used the squared Mahalanobis distance [Mahalanobis
(1936)] as a measure for covariate balance. With n units, half assigned to treatment
and half assigned to control, and p observed covariates for each unit, the squared
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Mahalanobis distance for the treatment-versus-control situation is defined as

M ≡ (x̄T − x̄C)T cov
[
(x̄T − x̄C)

]−1
(x̄T − x̄C)

= n

4
(x̄T − x̄C)T cov[x]−1(x̄T − x̄C),

where cov[x] is the sample covariance of the n × p covariate matrix x, x̄T is the
p-component column vector of covariate means for units assigned to treatment,
and x̄C is analogously defined for the control. Here, x is fixed across randomiza-
tions, and thus the only stochastic component of M is the mechanism that assigns
treatment and control.

A randomization is declared acceptable if M ≤ a for some threshold a. The Ma-
halanobis distance is well known within the matching and observational study lit-
erature where it is used to find subsets of the treatment and control that are similar
[Rubin (1976), Rosenbaum and Rubin (1985), Gu and Rosenbaum (1993), Rubin
and Thomas (2000)]. Constraining M ≤ a can be viewed as finding allocations
where the treatment and control covariate means are “similar enough,” where the
“enough” is determined by the threshold a. Morgan and Rubin (2012) note that,
similar to Rosenbaum and Rubin’s (1985) argument that matching using the Ma-
halanobis distance reduces bias due to imbalances in covariates from observational
studies, rerandomization using M reduces the sampling variance of the standard
treatment effect estimator when outcome variables are correlated with covariates.

When (x̄T − x̄C) is multivariate normal, M ∼ χ2
p [Mardia, Kent and Bibby

(1979)]. In this case, a can be selected by first deciding the percentage, pa , of
randomizations that will be “acceptably well balanced,” and then setting a to the
pa th percentile of the χ2

p distribution. If the multivariate normal assumption is
suspect, the empirical distribution of M can be constructed by simulating many
randomizations; then the quantile of this empirical distribution can be used instead
of the quantile of the chi-squared distribution.

However, we would like to ensure covariate balance across the 2K treatment
combinations of a factorial design, not just between a treatment and control.
Morgan and Rubin (2012) mention two options for balancing covariates among
multiple treatment groups:

1. Create a criterion for each pairwise comparison among the treatment groups,
and then rerandomize if any comparison does not satisfy the criterion.

2. Use a statistic that measures multivariate balance, such as those used in standard
MANOVA analyses.

To implement Option 1, a criterion for each
(2K

2

) = 2K−1(2K −1) pairwise compar-
ison must be chosen, which may be computationally burdensome. To implement
Option 2, there must be a notion of “within-group” variance, which is not imme-
diate for unreplicated 2K factorial designs where only one unit is assigned to each
treatment combination. Furthermore, we may not want to estimate all factorial ef-
fects with the same level of precision; for instance, typically we want to estimate
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main effects more precisely than high-order interactions, and it is not clear how
to incorporate this desideratum into Options 1 or 2. We propose an intuitive ad-
justment to Option 1 for balanced 2K factorial designs because Option 1 is more
amenable to adjustment than Option 2 and also easier to interpret physically. The
proposed adjustment also allows for different levels of precision for estimation of
different factorial effects.

3. Notation for 2K designs under the potential outcomes framework.
Consider a balanced 2K factorial design with n = r2K units and r replicates as-
signed to each of the 2K treatment combinations. In a 2K factorial design there are
2K − 1 factorial effects: K main effects,

(K
2

)
two-way interactions,

(K
3

)
three-way

interactions and so on. In the NYDE experiment, r = 43 and K = 5.
The 2K treatment combinations of a 2K factorial design are often arranged in a

specific order and represented as a 2K ×K design matrix whose elements are either
−1 (representing the “low level” of a factor) or +1 (representing the “high level” of
a factor), and thus each row indicates a unique combination of factor assignments
[Wu and Hamada (2009)]. We denote the design matrix by G and write it in the
lexicographic order [Espinosa, Dasgupta and Rubin (2016)]. The columns labeled
“main effect columns” in Table 1 show G for a 23 factorial design.

To define the interaction effects, we expand G by augmenting its columns. The
column for a specific interaction is created using component-wise multiplication of
the corresponding main-effects columns. For example, the last column in Table 1
represents the three-way interaction among factors A, B and C, and is obtained by
multiplying the components in the three columns of G. Having appended the inter-
action columns to the right of G (columns 5–8 of Table 1) to define the interaction
effects, a column of +1’s is appended to the left of G (first column of Table 1)
which defines the mean effect. The result is a 2K × 2K matrix, denoted by G̃. The
rows of G̃ are indexed by j = 1, . . . ,2K , one row for each treatment combination,

TABLE 1
G̃ for a 23 design (columns 2–4 represent the design matrix G)

Main effect columns Interaction columnsMean
column A B C AB AC BC ABC

+1 −1 −1 −1 +1 +1 +1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 +1 +1 −1 −1 +1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 +1 −1 +1 −1 +1 −1 −1
+1 +1 +1 −1 +1 −1 −1 −1
+1 +1 +1 +1 +1 +1 +1 +1
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TABLE 2
Unit-level and population-level factorial effects for a 2K design

Unit (i) Potential outcomes (Yi) Mean of unit i (θi0) Factorial effect θif

1 Y1 = (Y1(1), . . . , Y1(2K)) 1
2K Y1G̃·0 1

2K−1 Y1G̃·f
2 Y2 = (Y2(1), . . . , Y2(2K)) 1

2K Y2G̃·0 1
2K−1 Y2G̃·f

...
...

...
...

n Yn = (Yn(1), . . . , Yn(2K)) 1
2K YnG̃·0 1

2K−1 YnG̃·f
Average Ȳ = 1

n (
∑

i Yi (1), . . . ,
∑

i Yi (2
K)) θ̄0 = 1

2K ȲG̃·0 θ̄f = 1
2K−1 ȲG̃·f

as indicated by G, and the columns are indexed by f = 0,1, . . . ,2K − 1; “f ” is
for factorial effects. Let G̃j · and G̃·f denote the j th row and f th column of G̃,
respectively.

Let Yi(j), i = 1, . . . , n, j = 1, . . . ,2K denote the potential outcome for
the ith unit when exposed to the j th treatment combination, and let Yi =
(Yi(1), . . . , Yi(2K)) denote the row vector of the 2K potential outcomes for unit i.
The ith row of the left part of Table 2 shows Yi for a 2K design.

Following Dasgupta, Pillai and Rubin (2015) and the standard definition of fac-
torial effects in the experimental design literature [e.g., Wu and Hamada (2009)],
the f th linear factorial effect for unit i is the difference of averages of potential
outcomes that correspond to levels +1 and −1 in the f th column of G̃, and is
given by

θif = 1

2K−1 YiG̃·f , i = 1, . . . , n, f ∈ F,

where F ≡ {1, . . . ,2K − 1} indexes all factorial effects. The f th factorial effect
for the finite population of n units is defined as

(3.1) θ̄f = 1

n

n∑
i=1

θif = 1

2K−1 ȲG̃·f ,

where Ȳ = 1
n
(
∑

i Yi(1), . . . ,
∑

i Yi(2K)). The f th factorial effect at the unit level
and the population level, represented as functions of the potential outcomes, are
shown in the last column of Table 2. The second-to-last column of Table 2 shows
the unit-level mean of the potential outcomes

θi0 = 1

2K
YiG̃·0

and their grand mean θ̄0. The population-level grand mean θ̄0 and the linear fac-
torial effects θ̄1, . . . , θ̄2K−1 are the estimands (objects of interest) in the standard
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linear finite-population framework described here. They need to be estimated be-
cause only one element of Yi can be observed for each i. We discuss unbiased
estimators of these estimands in Section 4.

The vector (θi0, . . . , θi(2K−1)) of estimands for unit i is a linear transformation
of the vector Yi of potential outcomes. Letting the factorial effects vector for unit
i be

(3.2) θ i =
(
θi0,

θi1

2
, . . . ,

θi(2K−1)

2

)
, i = 1, . . . , n,

straightforward algebra shows that the potential outcomes for unit i can be written
as

Yi = θ i·G̃T

so that the j th component of Yi is

(3.3) Yi(j) = θ iG̃T
j ·.

Having defined the factorial effects as estimands, we now introduce notation for
the assignment mechanism of factorial designs and estimators of factorial effects.

Let W be a n × K random matrix where the ith row of W, Wi·, indicates the
treatment assignment for unit i. In randomized balanced factorial designs, a ran-
dom r rows of W are equal to a particular row of G, and thus the probability of a
unit receiving a particular treatment combination is 1

2K , that is, P(Wi· = Gj ·) =
1

2K for i = 1, . . . , n, j = 1, . . . ,2K . In the spirit of expanding G to G̃, we expand

the n × K matrix W to the n × 2K matrix W̃ such that P(W̃i· = G̃j ·) = 1
2K . The

first column of W̃, W̃·0, is +1’s, as in G̃; every other element of W̃ for i = 1, . . . , n

and f ∈ F ≡ {1, . . . ,2K − 1} is defined as

W̃if =
{+1, if the ith unit is assigned to f +,

−1, if the ith unit is assigned to f −.
(3.4)

Because the notion of “high” and “low” levels is not necessarily sensible for inter-
actions among factorial effects, for ease of discussion we denote f + as the “treat-
ment” for the f th factorial effect and f − as the “control.” For example, a unit is
said to be assigned to f + (f −) if that unit is assigned to a treatment combination
with +1 (−1) in the f th column of G̃.

Let W̃·f be the n × 1 column vector denoting the assigned level of some f ∈ F

for all units. A particular random allocation of units in a 2K design corresponds
to one realization of W̃, the observed one, W̃obs. The observed outcome for the
ith unit will be the potential outcome Yi(j) when W̃obs

i· = G̃j ·. Let yobs be the
n-component column vector of observed outcomes for the n units. The standard
estimator of the factorial effect θ̄f defined in (3.1) can be written in terms of the
observed outcomes and W̃:

θ̂f = ȳf + − ȳf − = yT
obsW̃·f
n/2

,(3.5)
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where ȳf + is the mean outcome for units assigned to f + (the “treatment” for f ),
and ȳf − is analogously defined for f − (the “control” for f ).

4. The rerandomization algorithm. Rerandomization involves randomizing
until an allocation is declared “acceptable,” using an acceptance criterion φ(x,W̃),
where φ equals one if an allocation is “acceptable” and zero otherwise. Thus,
randomization draws from {W̃}, the set of all allocations in a balanced factorial
design, and rerandomization draws from {W̃|φ(x,W̃) = 1}, the set of all “accept-
able” allocations. Consider an acceptance criterion that is symmetric in W̃, that is,
a φ such that φ(x,W̃) = φ(x,−W̃). We have the following theorem.

THEOREM 1. Suppose a completely randomized balanced 2K factorial design
is rerandomized when φ(x,W̃) = 0 for some acceptance criterion symmetric in W̃.
Then, for all f ∈ F ,

E
[
θ̂f |φ(x,W̃) = 1

] = θ̄f ,

where θ̂f is the estimator defined in (3.5) and θ̄f is the population-level estimand
defined in (3.1).

Because φ is symmetric in W̃, the proof of the unbiasedness of θ̂f under reran-
domization is analogous to that in Morgan and Rubin (2012) for the treatment-
versus-control situation.

If the potential outcomes are correlated with pre-experiment covariates, then so
will be the observed outcomes and the estimator θ̂f for any f ∈ F . Intuitively, we
can increase the precision of θ̂f by ensuring covariates are “well balanced” over
the two groups used to calculate θ̂f : units assigned to f + and units assigned to
f −, which suggests a balance function that measures the covariate balance among
all pairs of these groups.

One such balance function is the squared Mahalanobis distance. To measure the
covariate balance between the “treatment” and “control” for a particular f ∈ F ,
define

Mf ≡ n

4
(x̄f + − x̄f −)T cov[x]−1(x̄f + − x̄f −),(4.1)

where cov[x] is the sample covariance of the n × p covariate matrix x, x̄f + is
the p-component vector of covariate means for units assigned to f + and x̄f − is

analogously defined. Note that, analogous to (3.5), x̄f + − x̄f − = xT W̃·f
n/2 .

The covariate balance between the “treatment” and the “control” for a particular
f is declared “acceptable” by the acceptance criterion

φf (x,W̃) =
{

1, if Mf ≤ af ,

0, if Mf > af

(4.2)
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for a predetermined threshold af . An intuitive procedure that parallels Morgan and
Rubin (2012) is to randomize until φf (x,W̃) = 1 in order to increase the covariate
balance between the “treatment” and “control” for a particular f . We can do this
for every f ∈ F , and thereby define the overall acceptance criterion as

φ(x,W̃) = ∏
f ∈F

φf (x,W̃) =
{

1, if Mf ≤ af ∀f ∈ F,

0, if Mf > af for any f ∈ F.
(4.3)

We thus propose the following rerandomization procedure for balanced 2K facto-
rial designs:

1. For each f ∈ F , create a squared Mahalanobis distance Mf and choose a
threshold criterion af .

2. Randomize until φ(x,W̃) = 1, where φ is defined as in (4.3).

Each threshold criterion af can be the same for all f ∈ F or they can be different.
For example, to place more importance on main effects than interactions, thresh-
olds corresponding to main effects should be smaller than those corresponding to
interactions. Furthermore, some factorial effects f ∈ F could be considered unim-
portant, which corresponds to af = ∞. Thus, the algorithm can incorporate “tiers
of importance” for factorial effects, which we discuss further in Section 5.

We have the following corollary.

COROLLARY 1. Theorem 1 holds if φ(x,W̃) is defined as in (4.3); that is, the
estimator (3.5) is unbiased under the above rerandomization algorithm.

Section 5 establishes that the above rerandomization algorithm increases the
precision of all factorial effect estimators compared to pure randomization, as long
as the covariates x are correlated with the outcome.

5. Precision properties of rerandomization. The proposed rerandomization
algorithm checks Mf for all f ∈ F , that is, φ(x,W̃) = 1 iff φf (x,W̃) = 1 for all
f ∈ F . Thus, both the marginal and joint distributions of {x̄f + − x̄f − : f ∈ F } and
{θ̂f : f ∈ F } need to be examined.

THEOREM 2. Assume a completely randomized balanced 2K factorial design
is rerandomized using the algorithm proposed at the end of Section 4. Then

E
[
xf + − xf −|φ(x,W̃) = 1

] = 0.

The proof of Theorem 2 follows immediately by symmetry of the acceptance
criterion.
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LEMMA 1. Assume a completely randomized balanced 2K factorial design
is rerandomized using the algorithm proposed at the end of Section 4, and the
covariate means are multivariate normal. Then the elements of {φf (x,W̃) : f ∈ F }
defined in (4.2) are mutually independent.

The proof of Lemma 1 is in the Appendix.

THEOREM 3. Assume a completely randomized balanced 2K factorial design
is rerandomized using the algorithm proposed at the end of Section 4, and the
covariate means are multivariate normal. Then:

first, for all f ∈ F ,

cov
[
xf + − xf −|φ(x,W̃) = 1

] = vaf
cov[xf + − xf −],

where

vaf
= 2

p

γ (
p
2 + 1,

af

2 )

γ (
p
2 ,

af

2 )
,(5.1)

and γ is the incomplete gamma function γ (b, c) ≡ ∫ c
0 yb−1e−y dy.

And, second, for f1, f2 ∈ F,f1 �= f2,

cov
[
xf +

1
− xf −

1
,xf +

2
− xf −

2
|φ(x,W̃) = 1

] = 0.

The proof of Theorem 3 is in the Appendix.
Theorems 2 and 3 establish that rerandomization leads to unbiased estimators

and reduces the variance of (x̄f + − x̄f −). We define the percent reduction in vari-
ance for the j th covariate and f th factorial effect as

100
(var[x̄j,f + − x̄j,f −] − var[xj,f + − x̄j,f −|φ(x,W̃) = 1]

var[x̄j,f + − x̄j,f −]
)

(5.2)
= 100(1 − vaf

).

Therefore, the rerandomization algorithm will reduce the variance of (x̄j,f + −
x̄j,f −) in expectation by 100(1 − vaf

)% compared to pure randomization.
To state properties of the marginal and joint distributions of the factorial effect

estimators {θ̂f : f ∈ F }, assumptions must be made about the relationship between
the potential outcomes and the factorial effects and covariates. Suppose the facto-
rial effects θ i defined in (3.2) are constant across units and there is no interaction
between factorial effects and covariate effects. Then the potential outcomes can be
written using the following linear model:

(5.3) Yi(j) = θ iG̃T
j · + xiβ + εi, i = 1, . . . , n, j = 1, . . . ,2K,
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where G̃j · is the j th row of G̃ defined in Section 3, β is the p-component col-
umn vector of fixed covariate coefficients, and εi indicates any deviations from the
linear model. Then the standard unbiased estimator (3.5) can be written as

θ̂f = θ̄f + βT (x̄f + − x̄f −) + (ε̄f + − ε̄f −),(5.4)

and the theorem below follows.

THEOREM 4. Assume (a) a completely randomized balanced 2K factorial de-
sign is rerandomized using the algorithm proposed at the end of Section 4, (b) the
covariate means are multivariate normal, (c) factorial effects are constant across
units, and (d) there is no interaction between factorial effects and covariate effects.
Then, for all f ∈ F ,

var
(
θ̂f |φ(x,W̃) = 1

) = (
1 − (1 − vaf

)R2
f

)
var(θ̂f ),(5.5)

and for f1, f2 ∈ F , such that f1 �= f2,

cov
(
θ̂f1, θ̂f2 |φ(x,W̃) = 1

) = 0,

where R2
f is the squared multiple correlation coefficient between x and the group

of potential outcomes that correspond to f +, and vaf
is defined in (5.1).

Note that, by the additivity assumption in Theorem 4, the squared multiple cor-
relation coefficient between x and the group of potential outcomes that correspond
to f + is equivalent to that between x and the group of potential outcomes that
correspond to f −. The proof of Theorem 4 is in the Appendix.

Theorem 4 has several implications. First, precision gains for θ̂f are calibrated
by the threshold af . Second, by Lemma 1 and the uncorrelated result of Theo-
rem 4, constraining Mf ≤ af for some f ∈ F does not affect another Mf ′ or the
precision of θ̂f ′ . Thus, the algorithm incorporates tiers of importance for factorial
effects, where more stringent thresholds lead to greater precision gains. The same
can be done for covariates, analogous to Morgan and Rubin (2015), which shows
how to adapt rerandomization according to tiers of importance for covariates in the
treatment-versus-control case.

To conduct inference using rerandomization, the significance levels of hypothe-
ses should be calculated using a permutation test [Fisher (1942)]. During the per-
mutation test, the distribution of the test statistic under Fisher’s sharp null must be
created using only randomizations that would be accepted under rerandomization.
Thus, thresholds af cannot be arbitrarily stringent because there must be enough
“acceptable randomizations” such that a proper permutation test can be performed.
For additive factorial effects, confidence intervals can be obtained by inverting
these permutation tests; that is, a confidence interval can be constructed as the
set of values for which the observed data would fail to reject Fisher’s sharp null
[Dasgupta, Pillai and Rubin (2015)]. Corrections for multiple testing and selection
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of active versus inactive effects [as in Espinosa, Dasgupta and Rubin (2016)] are
topics for future work.

Other constraints, such as cost or other practical constraints, can also be consid-
ered in rerandomization, as we will discuss for the NYDE experiment. For exam-
ple, if it is unrealistic to fully randomize particular factors, it may be more practical
to implement a split-plot design, where one or more factors are first randomized to
“whole plots” and then other factors are randomized within plots [Fisher (1925)].
These designs induce a restricted randomization distribution which can be incor-
porated in the design and analysis stages of rerandomization.

The only computational concern for rerandomization is how long it takes to
find acceptable randomizations—one to run the experiment, and many to perform
a permutation test. By the independence of Lemma 1, the probability of a ran-
domization being acceptable is

∏
f ∈F P (χ2

p ≤ af ). This was not a concern for the
NYDE experiment, but could be if the number of stringent thresholds is large.

Theorems 3 and 4 require n to be sufficiently large such that the covariate means
are multivariate normal. If n is not large enough for the normality assumption to
hold via the Central Limit Theorem, then (a) the Mahalanobis distance will not be
χ2

p , and (b) the independence in Lemma 1 will not hold. To address (a), the em-
pirical distribution of each Mf can be used to select each corresponding threshold
af . As for (b), the elements of {x̄f + − x̄f − : f ∈ F } (and, as a consequence, the
elements of {Mf : f ∈ F }) are always uncorrelated under our proposed reran-
domization algorithm. This implies that, under mild regularity conditions, reran-
domization will still increase the precision of factorial effect estimators; however,
theoretical results found in Theorems 3 and 4 will not hold exactly.

6. Implementing rerandomization for the NYDE experiment. Dasgupta,
Pillai and Rubin (2015) discuss how to analyze an educational experiment consid-
ered by the New York Department of Education (NYDE) with five “incentive pro-
grams” to be introduced to high schools “which desperately need performance im-
provement.” The programs include a quality review, a periodic assessment, inquiry
teams, a school-wide performance bonus program and an online resource program;
details about these programs are found in Dasgupta, Pillai and Rubin (2015). The
dataset includes 2008 information about 50 covariates on 1376 schools. While the
NYDE has not yet run such an experiment, here we utilize rerandomization to
hypothetically design the NYDE experiment. The NYDE dataset and the R code
used to implement our rerandomization algorithm on this dataset are provided in
our Supplementary Materials [Branson, Dasgupta and Rubin (2016)].

The NYDE measures schools’ performance with a score in each school’s
Progress Report, and we consider nine covariates that will likely be correlated
with this score: Total number of students, five different race variables (proportion
of white, black, Asian, Native American and Latino students), proportion of fe-
male students, enrollment rate and poverty rate. This situation can be considered
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an extreme case of a “tiers of covariates” framework, where a subset of nine co-
variates are considered “important” and the rest are considered “not important.”
The goal is to assign 43 schools to each of the 32 different treatment combinations
such that the factorial effects of the experiment will be well estimated.

Interest usually focuses on main effects and possibly two-way interactions,
and higher-order interactions are often considered negligible [Wu and Hamada
(2009)]. Thus, we implement a rerandomization algorithm that considers main ef-
fects “most important,” two-way interactions “less important” and higher-order
interactions “not important.” We created fifteen squared Mahalanobis distances:
one for each of the five main effects and ten two-way interactions. The reran-
domization algorithm involves randomizing until max(M1, . . . ,M5) ≤ amain and
max(M6, . . . ,M15) ≤ ainteraction, where amain is the 100(0.011/5) percentile of the
χ2

9 distribution and ainteraction is the 100(0.11/10)% percentile, so P(M1, . . . ,M5 ≤
amain) = 1% and P(M6, . . . ,M15 ≤ ainteraction) = 10%, making the criterion cor-
responding to the interaction effects less stringent than that of the main effects.

We performed pure randomization and rerandomization 10,000 times. Each
rerandomization took about five seconds on a 2.5 GHz Intel Core i7 computer.
For each (re)randomization, the covariate mean difference (x̄j,f + − x̄j,f −) was
calculated for each covariate j and factor/interaction f . Figure 1 displays the em-
pirical percent reduction in variance, which shows how much rerandomization re-
duced the variance of the covariate mean difference for various covariates and fac-
tors/interactions compared to pure randomization. Main effects are marked with
circles, two-way interaction effects with squares, and three-way interaction effects
with triangles. The percent reduction in variance expected given Theorem 3 is
marked by a vertical line for each type of factorial effect.

The nine covariates we considered during rerandomization are displayed at the
top of the vertical axis of Figure 1. Rerandomization reduced the variance of the
covariate mean difference across factors and two-way interactions compared to
pure randomization for these covariates, and the reduction varies around what we
would expect given Theorem 3. There is more reduction for individual factors than
for interactions, as is expected, because the threshold amain was more stringent
than ainteraction. The percent reduction in variance across three-way interactions is
occasionally negative—implying randomization yielded better covariate balance
in this case—but this reduction averages close to zero, as expected, because three-
way interactions were not considered during rerandomization. Therefore, reran-
domization on average increased the covariate balance across main effects and
two-way interactions without sacrificing the covariate balance across higher-order
interactions.

Figure 1 also displays the percent reduction in variance for two covariates not
considered during rerandomization: “number of teachers” and “number of students
in temporary housing.” Rerandomization yielded more balance for “number of
teachers” compared to pure randomization because “number of teachers” is highly
correlated (R2 = 0.95) with “number of students,” which was considered during
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FIG. 1. Percent reduction in variance in the covariate mean difference after rerandomization for
various covariates and factorial effects. The expected percent reduction in variance given Theorem 3
for each type of factorial effect is marked by a vertical line. Displayed are the nine covariates consid-
ered during rerandomization as well as “number of teachers” and “number of students in temporary
housing,” which were not considered. Random vertical jitter is added to see the percent reduction
corresponding to all factorial effects.

rerandomization. Likewise, “number of students in temporary housing” was only
mildly correlated with the covariates considered during rerandomization, and thus
it did not benefit greatly from rerandomization. If the NYDE decided that these
two covariates were important to balance, but less so than the nine covariates al-
ready considered, we could rerandomize efficiently by balancing only the func-
tions of “number of teachers” and “number of students in temporary housing” that
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are orthogonal to the nine “most important” covariates because the parts that are
correlated will already be balanced [Morgan and Rubin (2015)].

If outcome variables of the NYDE experiment are correlated with these covari-
ates, then a hypothetically designed experiment using rerandomization will yield
more precise estimates of the main factorial effects and two-way interactions. Fur-
thermore, the precision of higher-order factorial effects will not be worse compared
to pure randomization.

7. Conclusion. The NYDE experiment is one example of a factorial design
that incorporates pretreatment covariates, where randomization may have yielded
unnecessary imbalance across some covariates and/or factorial effects. Here, we
proposed a rerandomization methodology for the NYDE experiment and balanced
2K factorial designs in general. Theoretical results under common assumptions
show that rerandomization yields unbiased estimators and increases the precision
of factorial effect estimators of interest without sacrificing the precision of other
estimators. We demonstrated how rerandomization would be used to design the
NYDE experiment and confirmed that our theoretical results held in practice. The
rerandomization algorithm also incorporates tiers of importance for covariates and
factorial effects.

Here we assumed that the NYDE can randomize any program combination to
any school. However, the NYDE may not be able to fully randomize some pro-
grams, such as the school-wide bonus program, due to schools’ strong opinions
about the intervention and other practical constraints. For example, Dasgupta, Pil-
lai and Rubin (2015) discuss how to analyze a “semi-observational study,” where
some programs are randomly assigned and other programs are assigned accord-
ing to schools’ preferences. Such constraints could have been incorporated dur-
ing rerandomization, and the corresponding restricted randomization distribution
would be used during analysis. However, further work needs to be done to de-
termine the precision gains of such a rerandomized experiment. Extensions for
more complex designs, such as unbalanced designs, fractional factorial designs
and split-plot designs, will be future work.

APPENDIX

PROOF OF LEMMA 1. Assume a completely randomized balanced 2K facto-
rial design is rerandomized using the algorithm proposed at the end of Section 4,
and the covariate means are multivariate normal. Under both randomization and
rerandomization, the columns of W̃ defined in (3.4) are orthogonal. Because the
factorial design is balanced and the criterion function φ defined in (4.3) is symmet-
ric in W̃, E[W̃·f |φ(x,W̃) = 1] = 0 for all f ∈ F . Therefore, for any f1, f2 ∈ F ,
cov(W̃f1,W̃f2 |φ(x,W̃) = 1) = 0.

Therefore, Cov(W̃|φ(x,W̃) = 1) is a block-diagonal matrix. Because x̄f + −
x̄f − = xT W̃·f

n/2 , the covariance matrix of the elements of {x̄f + − x̄f − : f ∈ F } is
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block-diagonal under rerandomization. By assumption, the covariate means are
multivariate normal, and thus this block-diagonal covariance matrix implies the el-
ements of {x̄f + − x̄f − : f ∈ F } are mutually independent under rerandomization.
Additionally, the elements of {Mf : f ∈ F } are mutually independent because ev-
ery Mf is a function of x̄f + − x̄f − . Similarly, the elements of {φf (x,W̃) : f ∈ F }
are mutually independent, where φf (x,W̃) is defined in (4.2). �

PROOF OF THEOREM 3. Assume a completely randomized balanced 2K fac-
torial design is rerandomized using the algorithm proposed at the end of Section 4,
and the covariate means are multivariate normal. The elements of {φf (x,W̃) : f ∈
F } are mutually independent given Lemma 1. Therefore,

E
[
xf + − xf −|φ(x,W̃) = 1

] = E
[
xf + − xf −|φf (x,W̃) = 1

]
= E[xf + − xf −|Mf ≤ a],

where φ(x,W̃) is defined in (4.3). Similarly, for f1 = f2,

cov
[
xf +

1
− xf −

1
,xf +

2
− xf −

2
|φ(x,W̃) = 1

]
= cov

[
xf +

1
− xf −

1
,xf +

2
− xf −

2
|φf (x,W̃) = 1

]
= cov[xf +

1
− xf −

1
,xf +

2
− xf −

2
|Mf ≤ a],

while, for f1 �= f2,

cov
[
xf +

1
− xf −

1
,xf +

2
− xf −

2
|φ(x,W̃) = 1

] = 0

because the elements of {x̄f + − x̄f − : f ∈ F } are mutually independent. The re-
mainder of the proof is identical to the treatment-versus-control case, where the
units assigned to f + are the “treatment” and the units assigned to f − are the
“control.” Thus, analogous to Morgan and Rubin (2012), for f1 = f2,

cov[xf +
1

− xf −
1

,xf +
2

− xf −
2

|Mf ≤ a] = vaf
cov[xf +

1
− xf −

1
,xf +

2
− xf −

2
],

where vaf
is defined as in (5.2). �

PROOF OF THEOREM 4. Assume (a) a completely randomized balanced 2K

factorial design is rerandomized using the algorithm proposed at the end of Sec-
tion 4, (b) the covariate means are multivariate normal, (c) factorial effects are
constant across units, and (d) there is no interaction between factorial effects
and covariate effects. Because the factorial effects are constant across units, each
factorial effect estimator θ̂f can be written as (5.4). By Lemma 1, for f1 �= f2,
cov(xf +

1
− xf −

1
,xf +

2
− xf −

2
|φ(x,W̃) = 1) = 0. Furthermore, the difference of the

covariate means is orthogonal to the difference of the residual means, and therefore
the covariance between them is zero. Therefore,

cov
(
θ̂f1, θ̂f2 |φ(x,W̃) = 1

) = cov
[
(ε̄f +

1
− ε̄f −

1
), (ε̄f +

2
− ε̄f −

2
)|φ(x,W̃) = 1

] = 0.
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The final equality holds because, by the balance of the design, under both random-
ization and rerandomization,

cov(ε̄f +
1

, ε̄f +
2

) = cov(ε̄f +
1

, ε̄f −
2

) = cov(ε̄f −
1

, ε̄f +
2

) = cov(ε̄f −
1

, ε̄f −
2

),

and thus the covariance between any two factorial effect estimators under reran-
domization is zero. Furthermore, for all f ∈ F ,

var
(
θ̂f |φ(x,W̃) = 1

)
= βT cov

(
x̄f + − x̄f −|φ(x,W̃) = 1

)
β + var

(
ε̄f + − ε̄f −|φ(x,W̃) = 1

)
= vaf

βT cov(x̄f + − x̄f −)β + var
(
ε̄f + − ε̄f −|φ(x,W̃) = 1

)
= vaf

βT cov(x̄f + − x̄f −)β + var(ε̄f + − ε̄f −).

The second equality is a result of Theorem 3. By assumption, n is large enough that
x̄f + − x̄f − and ε̄f + − ε̄f − are normally distributed, and thus orthogonality implies
independence. Thus, rerandomization does not affect the variance of ε̄f + − ε̄f − ,
and the final equality holds. The remainder of the proof is analogous to Morgan
and Rubin (2012) because it is identical to the treatment-versus-control case, as in
the proof of Theorem 3. �
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SUPPLEMENTARY MATERIAL

Dataset and R Code for “Improving covariate balance in 2K factorial de-
signs via rerandomization with an application to a New York City Department
of Education High School Study.” (DOI: 10.1214/16-AOAS959SUPP; .zip). We
provide the NYDE dataset discussed in the paper, as well as the R code used to
implement the rerandomization algorithm for this dataset.
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