
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 1041–1050

June 6–11, 2021. ©2021 Association for Computational Linguistics

1041

Improving Cross-Modal Alignment in Vision Language Navigation via
Syntactic Information

Jialu Li Hao Tan Mohit Bansal

UNC Chapel Hill

{jialuli, airsplay, mbansal}@cs.unc.edu

Abstract

Vision language navigation is the task that re-

quires an agent to navigate through a 3D en-

vironment based on natural language instruc-

tions. One key challenge in this task is to

ground instructions with the current visual in-

formation that the agent perceives. Most of

the existing work employs soft attention over

individual words to locate the instruction re-

quired for the next action. However, differ-

ent words have different functions in a sen-

tence (e.g., modifiers convey attributes, verbs

convey actions). Syntax information like de-

pendencies and phrase structures can aid the

agent to locate important parts of the instruc-

tion. Hence, in this paper, we propose a naviga-

tion agent that utilizes syntax information de-

rived from a dependency tree to enhance align-

ment between the instruction and the current

visual scenes. Empirically, our agent outper-

forms the baseline model that does not use syn-

tax information on the Room-to-Room dataset,

especially in the unseen environment. Besides,

our agent achieves the new state-of-the-art on

Room-Across-Room dataset, which contains

instructions in 3 languages (English, Hindi,

and Telugu). We also show that our agent

is better at aligning instructions with the cur-

rent visual information via qualitative visual-

izations.1

1 Introduction

Vision-Language Navigation defines the task of

requiring an agent to navigate through a visual

environment based on natural language instruc-

tions (Anderson et al., 2018b; Misra et al., 2018;

Chen et al., 2019; Jain et al., 2019; Nguyen and

Daumé III, 2019; Thomason et al., 2020). This task

poses several challenges. To complete this task,

an embodied agent needs to perceive the surround-

ing environment, understand the given natural lan-

guage instructions, and most importantly, ground

1Code and models: https://github.com/

jialuli-luka/SyntaxVLN

Navigation Steps:

Parse Tree:

Instruction:
Walk forward then turn right at the 
stairs then go down the stairs.

walk

forward then

turnat

stairs go

stairs

then

right

the down .

the

Figure 1: An example in the Room-to-Room task. We

generate the dependency parse tree for the instruction.

The words are grouped by the head node (highlighted

in the tree). Each sub-instruction (i.e., grouped words)

corresponds to one step in the navigation with the same

color. Modifiers in red boxes can be easily identified

from the tree structure.

(or align) the instruction in the visual scenes. In this

paper, we aim to make one step towards grounding

natural language instructions with visual environ-

ment via syntax-enriched alignment.

Recently, several approaches were proposed to

solve the Vision-Language Navigation task with

better interactions between natural language in-

structions and visual scenes (Fried et al., 2018;

Wang et al., 2019; Landi et al., 2019; Wang et al.,

2020a; Huang et al., 2019a; Hu et al., 2019; Ma-

jumdar et al., 2020; Ma et al., 2019a; Qi et al.,

2020b; Zhu et al., 2020a,c). Some approaches uti-

lize soft attention over individual words for better

cross-modal grounding, while others improve co-

grounding with better language and vision repre-

sentation and additional alignment module.

Although these models achieve significant im-

provement in performance, they do not explicitly

consider syntactic linguistic information in their

alignment and decision-making. We argue that

https://github.com/jialuli-luka/SyntaxVLN
https://github.com/jialuli-luka/SyntaxVLN


1042

the syntactic information (e.g., phrases, word func-

tions, modifiers) captured by dependency parse

trees is crucial for accurate alignment between the

instructions and the environment. As shown in

Figure 1, for the instruction “Walk forward then

turn right at the stairs then go down the stairs.",

the dependency parse tree effectively aggregates

syntactically-close words together for the agent

(e.g., groups phrase information “Walk forward" at

node “Walk”), and each phrase here corresponds

to one navigation action. Besides, the dependency

tree structure also helps identify modifiers like “for-

ward” and “right”. This syntactic information

helps the agent identify important words, locate

phrases (e.g., sub-instructions), and learn a better

alignment between the instruction and the visual

environment.

Therefore, in this paper, we propose an encoder

module that can incorporate simple but impor-

tant syntactic information from parse trees for the

vision-language-navigation task. Our proposed en-

coder utilizes the ChildSum Tree-LSTM (Tai et al.,

2015) over a dependency tree to achieve a syntax-

aware representation of the instruction, enabling

the agent to focus on more syntactically important

words and align not only words but also phrases

with the visual scenes.

We conduct experiments on both the Room-to-

Room (R2R) dataset (Anderson et al., 2018b) and

the Room-across-Room (RxR) dataset (Ku et al.,

2020). Empirical results show that our proposed ap-

proach significantly improves the performance over

the baseline model on success rate and achieves the

new state-of-the-art (at the time of submission) on

the RxR dataset, which contains instruction in three

languages (English, Hindi, and Telugu). Moreover,

by using structured information from syntax, we

are also able to avoid word-level shallow overfit-

ting of the model and hence achieve better gener-

alization in the unseen environment. Our analysis

further shows that our syntax-aware agent has bet-

ter interpretability and learns better cross-modality

matching.

2 Related Work

Visual and Textual Grounding in VLN. In

vision-language navigation tasks, visual and tex-

tual co-grounding aims to learn the relationship be-

tween natural language instructions and the visual

environments. A main line of research in VLN uti-

lizes soft attention over individual words for cross-

modal grounding in both the natural language in-

struction and the visual scene (Wang et al., 2018,

2019; Tan et al., 2019; Landi et al., 2019; Xia et al.,

2020; Wang et al., 2020b,a; Xiang et al., 2020;

Zhu et al., 2020b). Other works improve vision

and language representations (Hu et al., 2019; Li

et al., 2019; Huang et al., 2019b,a; Hao et al., 2020;

Majumdar et al., 2020) and propose an additional

progress monitor module (Ma et al., 2019b,a; Ke

et al., 2019) and object and action aware modules

(Qi et al., 2020b) that aid co-grounding.

The closest work to ours is from Hong et al.

(2020), where they use the dependency tree to gen-

erate pre-divided sub-instructions, and then pro-

pose a shifting module to select and attend to a

single sub-instruction at each time-step, which im-

plicitly captures some syntax information. Com-

pared with them, we directly use the dependency

tree to explicitly incorporate syntactic information

and get syntax-aware instruction representations,

hence achieving substantial improvement in gener-

alizing to the unseen environment.

Tree-based Language Representations. De-

pendency tree provides essential syntactic informa-

tion for understanding a sentence. Tree-LSTM (Tai

et al., 2015) has been widely used to encode parsed

tree information and shown improvement over mul-

tiple tasks, such as relation extraction (Miwa and

Bansal, 2016; Geng et al., 2020), machine trans-

lation (Su et al., 2020; Choi et al., 2017; Eriguchi

et al., 2016), dialogue (Rao et al., 2019), and lan-

guage inference (Chen et al., 2017). We are novel

in incorporating a dependency tree into the vision-

language navigation task via a Tree-LSTM for bet-

ter phrase-level alignment between the visual envi-

ronment and language instructions.

3 Method

As illustrated in Figure 2, our base model follows

the sequence-to-sequence architecture of previous

VLN agents. Our tree-based encoder module is

built on top of the strong Environment Drop Agent

(Tan et al., 2019). The main difference is that we

employ a tree-based language encoder to encode de-

pendency tree information to allow better language

grounding. At each time step, we ground all the

encoded nodes (i.e., syntax-aware representations)

in the dependency tree with the visual information

to get the attended textual representation.



1043

Figure 2: Architecture for our syntax-aware agent.

Generating Dependency Tree Representation

with Tree-LSTM. We first generate the depen-

dency parse tree with Stanford CoreNLP (Manning

et al., 2014) for English instructions and Stanza

Toolkit (Qi et al., 2020a) for Hindi and Telugu

instructions. Since the tree-structure is invariant

to the children’s order (i.e., switching the order

of the children of a node doesn’t change the tree

structure), directly using a Tree-LSTM over an

embedding layer may lose important word order

information in the instruction. Thus, here we use

a bidirectional LSTM with an embedding layer

to generate word representations that preserve se-

quential information of the instruction. Specifically,

given an instruction {wi}
l
i=1, we generate syntax-

aware representation {ûdepi}
l
i=1 as:

ŵi = Embedding(wi) (1)

u1, u2, ..., ul = Bi-LSTM(ŵ1, ŵ2, ..., ŵl) (2)

{ûdepi}
l
i=1 = Tree-LSTM({ui}

l
i=1) (3)

Visual Encoder and Navigation Decoder.

Given panoramic features {ft,p}
36
p=1 and visual

representation {gt,k}
K
k=1

for K navigable locations

at time step t 2, we picks the next viewpoint from

K navigable locations as:

pt(at = k) = Softmaxk(g
T
t,kWGh̃t) (4)

where h̃t is the context aware hidden states, and

WG is learned weight parameter. Specifically, we

2Details for generating these features are in Appendix.

compute the h̃t as:

βt,p = softmaxp(f
T
t,pWF h̃t−1) (5)

f̃t =
∑

p

βt,pft,p (6)

ht = LSTM([f̃t; ãt−1], h̃t−1) (7)

γt,i = softmaxi(û
T
depi

WUht) (8)

ũt =
∑

i

γt,iûdepi (9)

h̃t = tanh(WM [ũt;ht]) (10)

where ãt−1 is the previous action embedding, f̃t
is the attended panoramic representation, and ht
is the decoder hidden state. WF , WU , WM are

learned weight parameters. We compute the at-

tended language representation over all dependency

node representations which are aware of syntax in-

formation.

We use a mixture of imitation learning and rein-

forcement learning to train the agent. Details can

be found in Appendix.

4 Experimental Setup

4.1 Datasets

We evaluate our agent on Room-to-Room (R2R)

dataset (Anderson et al., 2018b) and Room-Across-

Room (RxR) dataset (Ku et al., 2020). Both

datasets are built on Matterport3D simulator (An-

derson et al., 2018b). The R2R dataset contains

21567 human-annotated instructions with an aver-

age instruction length of 29. The dataset is divided

into training set, seen validation set, unseen val-

idation set, and test set. The RxR dataset is an

extension of the R2R dataset. The instructions are

longer (with an average instruction length of 78),

and the instructions are in three languages (i.e., En-

glish, Hindi, and Telugu). The RxR dataset follows

the same division as the R2R dataset. Details can

be found in the Appendix.

4.2 Evaluation Metrics

To evaluate the performance of our model, we use

the following evaluation metrics: Success Rate

(SR), Success Rate Weighted by Path Length (SPL)

(Anderson et al., 2018a), normalized Dynamic

Time Warping (nDTW) (Magalhaes et al., 2019),

success rate weighted by Dynamic Time Warping

(Magalhaes et al., 2019) and Coverage weighted by

Length Score (CLS). Detailed description for each

metric can be found in Appendix.



1044

Models Val Seen Val Unseen

SR(%) SPL nDTW sDTW CLS SR(%) SPL nDTW sDTW CLS

EnvDrop 58.3 0.55 0.67 0.52 0.67 45.3 0.42 0.58 0.39 0.58
+LSTM 60.3 0.57 0.69 0.55 0.69 46.4 0.43 0.58 0.40 0.58
+syntax 62.6 0.60 0.70 0.56 0.70 49.0 0.45 0.59 0.42 0.59

Table 1: Comparison of the model with and without our tree-based encoder on the seen validation set and unseen

validation set of R2R dataset.

Models Val Seen Val Unseen

SR(%) SPL nDTW sDTW CLS SR(%) SPL nDTW sDTW CLS

EnvDrop (en) 48.1 0.44 0.57 0.40 0.61 38.5 0.34 0.51 0.32 0.54
+syntax (en) 48.1 0.44 0.58 0.40 0.61 39.2 0.35 0.52 0.32 0.56
EnvDrop (hi) 49.6 0.45 0.57 0.41 0.61 39.9 0.35 0.49 0.32 0.53
+syntax (hi) 55.2 0.52 0.61 0.46 0.64 42.5 0.38 0.54 0.35 0.58
EnvDrop (te) 45.8 0.42 0.56 0.38 0.60 38.3 0.34 0.50 0.31 0.54
+syntax (te) 49.1 0.46 0.59 0.41 0.63 38.4 0.35 0.52 0.32 0.56

Table 2: Comparison of the model with the tree-based encoder and without the tree-based encoder on the seen

validation set and unseen validation set of RxR dataset.

5 Results and Analysis

5.1 Room-to-Room Dataset

We compare our agent with the baseline agent (Tan

et al., 2019)3 on the R2R test leaderboard. Our

syntax-aware agent achieves 47.8% in success rate

and 0.45 in SPL, improving the baseline model by

2.1% in success rate and 2% in SPL.

Besides, as shown in Table 1, our syntax-aware

agent achieves 3.7% improvement in success rate

over the baseline model in validation unseen en-

vironment, indicating that explicitly incorporating

syntax information can better guide the agent to

ground to visual scenes.

We further experiment on R2R dataset to see

whether the increase in performance comes from

more model parameters. Compared with the model

that uses a 2-layer LSTM (+LSTM), we can see

that our syntax-aware model still achieves 2.6%

increase in success rate in validation unseen envi-

ronment. This result validates the effectiveness of

incorporating syntax information.

5.2 Room-Across-Room Dataset

We first compare our agent with the baseline

agent in RxR paper (Ku et al., 2020) on the RxR

test leaderboard. Our syntax-aware agent (“SAA

(mono)” on the leaderboard) outperforms the base-

line in all metrics, improving the nDTW score by

5.73% and success rate by 9.98%. Moreover, We

compare our agent with the baseline on RxR valida-

tion set. As shown in Table 2, in all three languages,

3The baseline is the re-implementation of their
model without back translation based on code:
https://github.com/airsplay/R2R-EnvDrop

our syntax-aware agent achieves higher success

rate than the baseline agent in all metrics on valida-

tion unseen set. Specifically, our model gets 2.6%

improvement in Hindi instructions in terms of suc-

cess rate. For English and Telugu instructions, our

model gets smaller improvement – 0.7% and 0.1%

respectively. One reason for these results could be

the correlation with the quality of the dependency

parser in that language. Besides, compared with

the baseline in Ku et al. (2020), our agent achieves

the new state-of-the-art on RxR dataset (at the time

of submission).

5.3 Qualitative Analysis

As shown in Fig 3 and Fig 4, we illustrate a quali-

tative example to show that our agent learns better

alignment between instruction and visual scenes.

As shown in Fig 4, given instruction “Walk past

the shelves and out of the garage. Stop in front of

the opening to the wine cellar.", the baseline agent

tends to focus on the same phrases (e.g., “past the

shelves”, “wine cellar”) during navigation. This

suggests that the baseline agent is not able to learn

a good alignment between the instruction and the

current visual scene. However, as shown in Figure

3, our dependency-based agent can successfully

identify the correct parts of the instruction that

are correlated with the current visual scenes, and

picks the next action with fidelity. At the begin-

ning of navigation, our agent focuses on the first

sub-instruction “walk past the shelves”. Then “out

of the garage" gradually becomes the most impor-

tant phrase, indicating that the agent should go

out of the garage after passing the shelves. When



1045

walk

past

the shelves

and out of the

garage

stop

infront

ofthe

opening

to the wine

cellar

. .
walk

past

the shelves

and out of the

garage

stop

infront

ofthe

opening

to the wine

cellar

. .

walk

past

the shelves

and out of the

garage

stop

infront

ofthe

opening

to the wine

cellar

. .

STOP

walk

past

the shelves

and out of the

garage

stop

infront

ofthe

opening

to the wine

cellar

. .

Figure 3: The weights for the grounded instructions for our syntax-aware model.

Figure 4: The weights for the grounded instructions for

baseline model.

the agent sees the wine sculpture, it infers that the

opening is for wine cellar and stops in front of the

opening near the wine sculpture.

5.4 Implementation Variants

Since the goal of our paper is to explore the role

of syntax information in vision-language naviga-

tion, we try several implementation variants to in-

clude syntax information. First, we try to use mean-

pooling instead of Tree-LSTM to encode the depen-

dency tree structure. This implementation variant

decreases the performance by around 3% in terms

of success rate on validation unseen environments.

Besides, we explore whether syntax information

from a constituency tree can also help with the in-

struction following and navigation. Similar to how

we incorporate dependency tree information, we

use a Tree-LSTM to encode the constituency tree

information. However, the performance decreases

around 2% in terms of success rate in validation

unseen environments, indicating that syntax infor-

mation extracted from dependency tree is more

beneficial for the vision-and-language navigation

task.

6 Conclusion

In this paper, we presented a tree-based encoder

module that incorporates phrase-level information

from parse trees. We demonstrated that syntax

information can help the agent learn a better align-

ment between instruction and visual scenes, and

generalize better to unseen environments. Our ex-

periments on Room-to-Room dataset and Room-

Across-Room dataset both suggest that incorporat-

ing syntax information encoded by our tree-based

encoder module can significantly improve the per-

formance over baseline VLN models.

7 Ethical Considerations

Vision-Language Navigation is the task that re-

quires an agent to navigate through a 3D environ-

ment based on given natural language instructions.

An agent that can interact with the environment

based on instructions can be used in many real-

world applications, for example, a home service

robot can bring things to the owner based on in-

struction, making people’s life easier. However,



1046

when deployed in the real world, even if the agent

can navigate successfully based on the instruction,

it might still need further human assistance to keep

working successfully (e.g., a home-cleaning robot

might be stuck in the corner of the room and cannot

get out by itself).

The performance on the validation set with the

unseen environment is much lower than the seen

environment. Change in environment will sig-

nificantly influence the performance of the agent.

When the agent is deployed in an unseen environ-

ment, it will have a higher probability of failure,

wasting energy and time. A further pre-exploration

of the environment will be needed for better perfor-

mance of the agent when deployed to real-world

applications. Moreover, our agent relies on the

quality of the dependency parser to some extent.

Though we achieve improvement in all three lan-

guages when using the dependency tree informa-

tion, the agent in Hindi and English benefit most

from the syntax information because of the best

available parser for these languages.

8 Acknowledgement

We thank the reviewers for their helpful discus-

sions. This work was supported by ARO-YIP

Award W911NF-18-1-0336, DARPA MCS Grant

N66001-19-2-4031, a Google Focused Research

Award, and a Bloomberg Data Science Ph.D. Fel-

lowship. The views, opinions, and/or findings con-

tained in this article are those of the authors and

not of the funding agency.

References

Peter Anderson, Angel Chang, Devendra Singh Chap-
lot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mot-
taghi, Manolis Savva, et al. 2018a. On evalua-
tion of embodied navigation agents. arXiv preprint
arXiv:1807.06757.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018b. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
3674–3683.

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Natural
language navigation and spatial reasoning in visual
street environments. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recog-
nition, pages 12538–12547.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1657–1668.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2017.
Learning to compose task-specific tree structures.
arXiv preprint arXiv:1707.02786.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 823–
833.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower mod-
els for vision-and-language navigation. In Advances
in Neural Information Processing Systems, pages
3314–3325.

ZhiQiang Geng, GuoFei Chen, YongMing Han, Gang
Lu, and Fang Li. 2020. Semantic relation extraction
using sequential and tree-structured lstm with atten-
tion. Information Sciences, 509:183–192.

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin,
and Jianfeng Gao. 2020. Towards learning a generic
agent for vision-and-language navigation via pre-
training. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 13137–13146.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky.
2012. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent. Cited
on, 14(8).

Yicong Hong, Cristian Rodriguez, Qi Wu, and Stephen
Gould. 2020. Sub-instruction aware vision-and-
language navigation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3360–3376.

Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan
Klein, Trevor Darrell, and Kate Saenko. 2019. Are
you looking? grounding to multiple modalities in
vision-and-language navigation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6551–6557.



1047

Haoshuo Huang, Vihan Jain, Harsh Mehta, Jason
Baldridge, and E. Ie. 2019a. Multi-modal discrim-
inative model for vision-and-language navigation.
ArXiv, abs/1905.13358.

Haoshuo Huang, Vihan Jain, Harsh Mehta, Alexander
Ku, Gabriel Magalhaes, Jason Baldridge, and Eu-
gene Ie. 2019b. Transferable representation learning
in vision-and-language navigation. In Proceedings
of the IEEE International Conference on Computer
Vision, pages 7404–7413.

Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. 2019.
Stay on the path: Instruction fidelity in vision-and-
language navigation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 1862–1872.

Liyiming Ke, Xiujun Li, Yonatan Bisk, Ari Holtz-
man, Zhe Gan, Jingjing Liu, Jianfeng Gao, Yejin
Choi, and Siddhartha Srinivasa. 2019. Tactical
rewind: Self-correction via backtracking in vision-
and-language navigation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 6741–6749.

Alexander Ku, Peter Anderson, Roma Patel, Eugene
Ie, and Jason Baldridge. 2020. Room-across-room:
Multilingual vision-and-language navigation with
dense spatiotemporal grounding. arXiv preprint
arXiv:2010.07954.

Federico Landi, Lorenzo Baraldi, Marcella Cornia,
Massimiliano Corsini, and Rita Cucchiara. 2019.
Perceive, transform, and act: Multi-modal attention
networks for vision-and-language navigation. arXiv
preprint arXiv:1911.12377.

Xiujun Li, C. Li, Qiaolin Xia, Yonatan Bisk, A. Çeliky-
ilmaz, Jianfeng Gao, Noah A. Smith, and Yejin Choi.
2019. Robust navigation with language pretraining
and stochastic sampling. In EMNLP/IJCNLP.

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan Al-
Regib, Zsolt Kira, Richard Socher, and Caiming
Xiong. 2019a. Self-monitoring navigation agent via
auxiliary progress estimation. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caim-
ing Xiong, and Zsolt Kira. 2019b. The regretful
agent: Heuristic-aided navigation through progress
estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
6732–6740.

Gabriel Magalhaes, Vihan Jain, Alexander Ku, Eugene
Ie, and Jason Baldridge. 2019. Effective and gen-
eral evaluation for instruction conditioned naviga-
tion using dynamic time warping. arXiv preprint
arXiv:1907.05446.

Arjun Majumdar, Ayush Shrivastava, Stefan Lee,
Peter Anderson, Devi Parikh, and Dhruv Batra.
2020. Improving vision-and-language navigation
with image-text pairs from the web. arXiv preprint
arXiv:2004.14973.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Dipendra Kumar Misra, Andrew Bennett, Valts Blukis,
Eyvind Niklasson, Max Shatkhin, and Yoav Artzi.
2018. Mapping instructions to actions in 3d environ-
ments with visual goal prediction. In EMNLP.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using LSTMs on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1105–1116.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In International conference on machine learning,
pages 1928–1937.

Khanh Nguyen and Hal Daumé III. 2019. Help,
anna! visual navigation with natural multimodal as-
sistance via retrospective curiosity-encouraging im-
itation learning. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 684–695.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020a. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–
108, Online. Association for Computational Linguis-
tics.

Yuankai Qi, Zizheng Pan, Shengping Zhang, Anton
van den Hengel, and Qi Wu. 2020b. Object-and-
action aware model for visual language navigation.
arXiv preprint arXiv:2007.14626.

Jinfeng Rao, Kartikeya Upasani, Anusha Balakrish-
nan, Michael White, Anuj Kumar, and Rajen Subba.
2019. A tree-to-sequence model for neural nlg in
task-oriented dialog. In Proceedings of the 12th In-
ternational Conference on Natural Language Gener-
ation, pages 95–100.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2015. Ima-
geNet Large Scale Visual Recognition Challenge.

https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y


1048

International Journal of Computer Vision (IJCV),
115(3):211–252.

Chao Su, Heyan Huang, Shumin Shi, Ping Jian, and
Xuewen Shi. 2020. Neural machine translation
with gumbel tree-lstm based encoder. Journal of
Visual Communication and Image Representation,
page 102811.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing, pages 1556–1566.

Hao Tan, Licheng Yu, and Mohit Bansal. 2019. Learn-
ing to navigate unseen environments: Back transla-
tion with environmental dropout. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2610–2621.

Jesse Thomason, Michael Murray, Maya Cakmak, and
Luke Zettlemoyer. 2020. Vision-and-dialog naviga-
tion. In Conference on Robot Learning, pages 394–
406.

Hanqing Wang, Wenguan Wang, Tianmin Shu, Wei
Liang, and Jianbing Shen. 2020a. Active visual in-
formation gathering for vision-language navigation.
arXiv preprint arXiv:2007.08037.

Hu Wang, Qi Wu, and Chunhua Shen. 2020b. Soft ex-
pert reward learning for vision-and-language naviga-
tion. arXiv preprint arXiv:2007.10835.

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jian-
feng Gao, Dinghan Shen, Yuan-Fang Wang,
William Yang Wang, and Lei Zhang. 2019. Re-
inforced cross-modal matching and self-supervised
imitation learning for vision-language navigation.
In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6629–
6638.

Xin Wang, Wenhan Xiong, Hongmin Wang, and
William Yang Wang. 2018. Look before you
leap: Bridging model-free and model-based rein-
forcement learning for planned-ahead vision-and-
language navigation. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV),
pages 37–53.

Qiaolin Xia, Xiujun Li, Chunyuan Li, Yonatan
Bisk, Zhifang Sui, Jianfeng Gao, Yejin Choi, and
Noah A Smith. 2020. Multi-view learning for
vision-and-language navigation. arXiv preprint
arXiv:2003.00857.

Jiannan Xiang, Xin Eric Wang, and William Yang
Wang. 2020. Learning to stop: A simple yet effec-
tive approach to urban vision-language navigation.
arXiv preprint arXiv:2009.13112.

Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan
Liang. 2020a. Vision-language navigation with self-
supervised auxiliary reasoning tasks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10012–10022.

Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng,
Vihan Jain, Eugene Ie, and Fei Sha. 2020b. Baby-
walk: Going farther in vision-and-language naviga-
tion by taking baby steps. In ACL, pages 2539–
2556.

Yi Zhu, Fengda Zhu, Zhaohuan Zhan, Bingqian Lin,
Jianbin Jiao, Xiaojun Chang, and Xiaodan Liang.
2020c. Vision-dialog navigation by exploring cross-
modal memory. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

A Appendix

A.1 Problem Setup

Vision-Language navigation requires an agent to

navigate through a 3D environment to a target lo-

cation based on a given natural language instruc-

tion. Formally, the natural language instruction

is a sequence of words {wi}
l
i=1, where l is the

length of the instruction and wi is ith word in the

sequence. At each time step, the agent perceives

a panoramic view of the current viewpoint. Be-

sides, the agent has access to a set of navigable

locations {lt,k}
K
k=1

, where K is the total number

of reachable locations from the current viewpoint.

The agent needs to select an action at from the

list of navigable viewpoints {lt,k}
K
k=1

based on the

given instruction, navigation history and current

panoramic views. If the viewpoint selected from

the list is the same as the current viewpoint, the

agent predicts a “STOP” action.

A.2 Model Details

Visual Encoder. Same as previous work in VLN,

at time step t, we discretize the panoramic view

into 36 single views {ot,p}
36
p=1. Each single view

is a RGB image, annotated with its angles of head-

ing and elevation (θt,p, φt,p). Each RGB image

is encoded with a pre-trained ResNet-152 (He

et al., 2016) on ImageNet (Russakovsky et al.,

2015). A four dimension orientation feature

(cosθt,p, sinθt,p, cosφt,p, sinφt,p) is concatenated

with the ResNet feature to form the final representa-

tion for the view p of a panoramic {ft,p}
36
p=1. Sim-

ilarly, we get the visual representation {gt,k}
K
k=1

for K navigable locations {lt,k}
K
k=1

at time step t.



1049

A.3 Training

We use a mixture of imitation learning and rein-

forcement learning to train the agent.

Imitation Learning. During training, instead of

navigating to the predicted action at each time step,

teacher-forcing is used to determine which navi-

gable viewpoint to pick. Given the shortest path

between the start point and target point, at each

time step t, the agent tries to imitate the teacher ac-

tion a⋆t by minimizing the negative log probability:

LIL =
∑

t

−a⋆t logpt (11)

Reinforcement Learning. We combine imitation

learning with reinforcement learning to learn a

more generalizable agent. Since the teacher path

is the shortest path between the start point and the

target point, there is no guarantee that the teacher

path is the same as indicated by the given instruc-

tion. Thus, reinforcement learning is applied for

better instruction following and state exploration.

At each time step t, the agent samples an action

at from the predicted distribution pt(at). At each

time step, if the agent moves closer to the target

viewpoint, a positive reward +1 is given, otherwise

the agent receives a negative reward -1. When the

agent predicts the “STOP" action, the agent will

receive a +3/-3 reward based on whether the agent

is within 3m from the target viewpoint. We use

Actor-Critic (Mnih et al., 2016) to train the agent.

The loss of reinforcement learning is:

LRL =
∑

t

(Rt −Rbt)logpt(at) + ηH(pt(at))

(12)

where Rt is the discounted future cumulative re-

wards at time step t, Rbt is the expected cumula-

tive rewards (baseline) approximated by the value

function V , H(pt(at)) is the entropy term for reg-

ularization. Specifically,

Rt = rt +
T−t∑

i=1

γirt+i (13)

Rbt = V (ht) = Wv2σ(Wv1ht) (14)

where σ is the ReLU activation function, and rt is

the immediate reward we defined earlier. The value

function is trained with L2 loss:

LV =
1

2
(Rt −Rbt)

2 (15)

We optimize a mixture loss of imitation learning

and reinforcement learning:

LMIX = (LRL + LV ) + λLIL (16)

A.4 Dataset

R2R Dataset. The R2R dataset contains 21567 hu-

man annotated instructions with an average instruc-

tion lengths of 29. The training set contains 14025

instructions in 61 environments. The seen vali-

dation set contains 1020 instructions in the same

61 environments as the training set. The unseen

validation set contains 2349 instructions in 11 en-

vironment which is not included in the training

set. The test set contains 4173 instructions in 18

environments.

RxR Dataset. The RxR dataset is an exten-

sion to the R2R dataset, where the instructions are

longer and in languages other than English (Hindi

and Telugu). It contains 126069 instructions with

an average instruction length of 78. Besides, differ-

ent from R2R that only contains guide path (i.e., the

shortest path between the start point and the target

point), RxR pairs each guide path with a human-

annotated follower path (i.e., the path that human

generates following the instruction). We only use

the guide path to train the agent in this paper. The

seen and unseen environment split is the same as

in the R2R dataset. There are 16522 paths in total,

and each path is annotated in 3 languages. The

training set contains 11089 paths, the seen valida-

tion set contains 1232 paths, the unseen validation

contains 1517 paths, and the test set contains 2684

paths.

A.5 Evaluation Metrics

To evaluate the performance of our model, we use

the following evaluation metrics: (1) Success Rate

(SR): If the agent stops less than 3m from the target

location, we consider the navigation as a success.

(2) Success Rate Weighted by Path Length (SPL)

(Anderson et al., 2018a): This metric penalizes

long trajectories (e.g., find the target using beam

search over the environment graph). (3) normal-

ized Dynamic Time Warping (nDTW) (Magalhaes

et al., 2019): This metric penalizes deviations from

the reference path. (4) success rate weighted by

Dynamic Time Warping (sDTW) (Magalhaes et al.,

2019): This metric constraints nDTW only to suc-

cessful navigation and considers path fidelity and

agent success. (5) Coverage weighted by Length



1050

Score (CLS) (Jain et al., 2019): Similar to nDTW,

this metric also encourages path fidelity.

A.6 Implementation Details

We generate the dependency parse tree for English

using Stanford CoreNLP (Manning et al., 2014).

We use Stanza Toolkit (Qi et al., 2020a) to gener-

ate the dependency parse tree for Hindi and Tel-

ugu. For both baseline model and our syntax-aware

model, the learned word embedding size is 256 and

the dimension of the action embedding is 128. We

set the hidden size for the bi-directional LSTM to

be 256. For syntax-aware model, the hidden size

for the bi-LSTM and Tree-LSTM in the language

encoder is 512. We use ResNet-152 (He et al.,

2016) to extract the 2048 dimensional image fea-

ture. We use RMSProp (Hinton et al., 2012) as the

optimizer with learning rate 1e-4 and batch size 64.

The weight λ we use to combine imitation learning

loss and reinforcement learning loss is set to be

0.2. In reinforcement learning, the discount factor

γ is 0.9 and the entropy weight η is 0.01. During

training, we set the max action length to be 35 for

R2R dataset and 70 for RxR dataset. We train both

agents on R2R for 80,000 iterations. We train both

agents on RxR for 200,000 iterations. The baseline

model contains approximate 6 million parameters.

Our syntax-aware model contain approximate 8

million parameters.


