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Abstract. We consider the problem of data association in a multi-
person tracking context. In semi-crowded environments, people are still
discernible as individually moving entities, that undergo many interac-
tions with other people in their direct surrounding. Finding the correct
association is therefore difficult, but higher-order social factors, such as
group membership, are expected to ease the problem. However, estimat-
ing group membership is a chicken-and-egg problem: knowing pedestrian
trajectories, it is rather easy to find out possible groupings in the data,
but in crowded scenes, it is often difficult to estimate closely interacting
trajectories without further knowledge about groups. To this end, we
propose a third-order graphical model that is able to jointly estimate
correct trajectories and group memberships over a short time window. A
set of experiments on challenging data underline the importance of joint
reasoning for data association in crowded scenarios.

Keywords: Grouping, Tracking, Data Association, Social Interaction.

1 Introduction

Tracking algorithms are an indispensable prerequisite for many higher-level
computer vision tasks, ranging from surveillance to animation to automo-
tive applications. Advances in observation models, such as object detectors or
classification-based appearance models, have enabled tracking in previously in-
feasible scenarios. Still, tracking remains a challenging problem, especially in
crowded environments. Tracking high numbers of pedestrians in such cases is
even hard for humans. Usually, a manual annotator has to rely on higher-level
reasoning, such as temporal information (that can go into the future) or so-
cial factors. Recent advances in the literature suggest that especially the latter
can improve tracking performance. Typically employed social factors include a
pedestrian’s destination, desired speed, and repulsion from other individuals. An-
other factor is grouping behavior, which so far however has been largely ignored.
For one, this is due to the fact that the grouping information (do two persons
belong to the same group?) is not easily available. Still, groups constitute an
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important part of a pedestrian’s motion. As we will show in this paper, people
behave differently when walking in groups as opposed to alone: when alone, they
tend to keep a certain distance from others, passing by closely only if necessary,
but mostly at different speeds. When in groups, they try to stay close enough
with other members, walking at the same speed.

In this paper, we therefore aim at exploiting the interaction between different
people for data association in a principled way. In particular, we model group
relations and study their effect on trajectory prediction. The grouping between
pedestrians is treated as a latent variable, which is estimated jointly together
with the trajectory information. Our model of choice is a third-order CRF, with
nodes in the lower level corresponding to pedestrians, connected by third-order
links that represent possible groupings. Recent advances in discrete optimization
provide powerful tools for carrying out (approximate) inference in such models.

In order to take advantage of as much information as possible, we adopt a
hypothesize-and-verify strategy over a frame-based tracking approach. By op-
erating on short time windows (typically, in the order of a few seconds), useful
statistics over pedestrians and group participation can be obtained, while only
introducing a small lag as opposed to global trackers. The proposed framework
operates in two steps: first, it generates possible trajectory hypotheses for each
person within the given time window, then it selects the best hypothesis, taking
into account social factors, while at the same time estimating group membership.

The paper is organized as follows: Related work is explored in Section 2. In
Section 3, our model for the joint estimation of trajectories and groupings using
social factors is introduced. The training of the model by natural statistics of
interaction is discussed in Section 4. The inference method is then presented in
Section 5. Finally, we show experimental results in Section 6, before concluding
the paper in Section 7.

2 Related Work

Social behavior modeling. Based on a variety of psychological, physical, and
social factors, people tend to keep certain distances from each other when inter-
acting. Already investigated in the 1960ies by Hall [1] as proxemics, these factors
are meanwhile also used for the modeling of pedestrian motion. Applications in-
clude simulation [2–4], computer graphics [5, 6], and, in the last few years, also
Computer Vision [7–14]. While all of these works include various social factors,
grouping information was mostly ignored. Helbing et al, in their seminal pa-
per on the Social Force Model [2], include an attraction potential to model the
group interaction. However, even in simulation applications, the notion of groups
is rarely employed. In this paper, we will focus on group relations between sub-
jects in a tracking setting, showing how to jointly estimate a person’s correct
trajectory and his group membership status. To the best of our knowledge, this
paper is the first to explore the joint estimation of pedestrian trajectories and
the grouping relations.
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Fig. 1. Assumed higher-order model for joint trajectory and group finding (see text)

Tracking. Fostered by recent progress in object detection, there is an impressive
body of work in single-person tracking-by-detection [15–20]. All propose different
ways of handling the data association problem, but do not take advantage of
any social factors beyond spatial exclusion principles. Only some researchers use
social structures to improve tracking, most notably in crowded scenarios [7], or
by modeling of collision avoidance-behavior [8, 11].

In this work, we focus on improving one building block of tracking—the data
association—by taking advantage of social factors in a principled fashion. The
proposed algorithm infers the best trajectory choice for each tracked object in
a short time window. This thus means some latency as opposed to typical on-
line trackers [15, 18, 19]. The method however does not need the entire time
window either, as global approaches [17, 20]. [21] model simple interactions of
targets in an MCMC framework, but not accounting for groups. [16] also use a
hypothesize-and-verify strategy, however, they do not model any social factors,
and a hypothesis contains an entire person’s past, as opposed to a small window
only. By operating in a shorter temporal window, our algorithm can take into ac-
count many more hypotheses, which is a requirement for tracking in challenging
scenarios.

3 Group CRF

To improve data association in crowded scenarios, we want to jointly estimate
pedestrian trajectories and their group relations. Fig. 1 shows the factor graph
for the third-order CRF model we assume for this problem.

Given a starting frame, each tracking target i (i = 1 . . .N) is modeled as a
variable node (red empty circle, Fig. 1), where each possible state corresponds to
the choice of one local trajectory hypothesis hmi ∈ Hi = {hmi }m=1...Mi , with Hi

the set of hypotheses for one person. As a trajectory hypothesis hmi , we consider
a single subject’s possible future within a short time window. A joint assignment
of hypotheses to all the subjects is defined as Hq = [hq(1)1 . . .hq(N)

N ], where q is
an assignment function that assigns each target i one hypothesis in Hi

1.
1 To reduce notational clutter, we drop the superscripts for h and for H in the

following.
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The group variable lc(ij) (green filled circle, Fig. 1) indicates the group relation
among the subjects i and j,

lc(ij) =
{

1 if subject i and j belong to the same group
0 otherwise , (1)

with c(ij) an index function.
Two subjects i and j and the group variable lc(ij) are linked by a factor of

order three (blue factor in Fig. 1). This link variable is essential to take advantage
of grouping relations in our model. Grouping is an equivalence relation, i.e. it
fulfills reflexivity, symmetry, and transitivity. While reflexivity and symmetry
are enforced by the graph construction, the transitivity constraint is encoded in
a third-order factor (black factor in Fig. 1): given three subjects i,j, and k for
which there exist the link variables lc(ij), lc(ik), and lc(kj):

(lc(ij) ∧ lc(ik)) → lc(kj) . (2)

The log-probability of a set of trajectories H and a set of grouping relations L,
given an image I and parameters Θ, is given by

logP (H,L|I, Θ) =
∑
i

φmotioni (hi|Θφmotion ) +
∑
i

φappi (hi|I, Θφapp) + (3)

∑
c(ij)

γc(ij)(lc(ij)|Θγ) +
∑
ijc(ij)

ψposijlc(ij)
(hi,hj , lc(ij)|Θψpos) +

∑
ijc(ij)

ψangijlc(ij)
(hi,hj , lc(ij)|Θψang ) +

∑
c(ij)c(ik)c(kj)

χc(ij)c(ik)c(kj)(lc(ij), lc(ik), lc(kj)|Θχ) − logZ(I,Θ),

where φapp and φmotion model, respectively, the appearance and motion of a
trajectory, γc(ij) models the prior over a relation being of type group or not,
ψposijlc(ij)

, ψangijlc(ij)
model the grouping relation and Z(I,Θ) is the usual partition

function making sure that the probability density function sums to one.

4 Learning the Parameters

Learning the parameters of the model in Eq. 3 could be done by maximizing the
conditional likelihood of the parameters given the data. However, this is hard
because of the partition function Z. Instead, inspired by piecewise training [22],
we learn simple statistics from the data and define the terms in the Eq. 3 as a
combination of these statistics. In particular we overparametrize the trajectory
hi as a sequence [p0

i , s
0
i , α

0
i . . .p

T−1
i , sT−1

i , αT−1
i ] of , respectively, position, speed

and orientation and extract simple statistics over these terms, rather than over
the whole trajectory. In doing so, we use a non-parametric approach, by building
histograms to estimate densities. The parameters Θ can be interpreted as the
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Fig. 2. A snapshot from the sequence used in this paper. We only use data inside the
red bounding box, to avoid stairs on the left and too heavy shadows in the upper part.

entries of these histograms. To reduce the notational clutter we will drop in the
following the dependence on Θ.

In the analysis of the data, we make, when appropriate, a distinction between
people walking and people standing. Besides believing that these two classes can
have different statistics indeed, we are motivated for making this distinction by a
technical limitation: the orientation estimate is hard and unreliable for standing
people, while it can be approximated by the direction of motion for moving
people. We therefore choose an empirical threshold of 0.15m/s 2 to distinguish
between the two modes.

In the following, we will show the relevant statistics that we used in our model.

4.1 Dataset

The data used to extract the statistics has been kindly provided by Lerner et
al [5]. The employed sequence shows a busy square from a stationary camera,
oblique view, with a total of 450 subjects in 5400 frames. Most of the subjects
walk from one of the borders of the scene to another and stay within the scene for
about 15 seconds, while some stand longer in the scene talking to other subjects
or waiting. An example frame is shown in Fig. 2. The sequence is particularly
challenging due to low image resolution, interlacing and compression artifacts,
cast shadows, as well as the large number of people. We manually annotated the
head position of each subject and estimated a homography matrix to retrieve
metric properties. In a second step, we annotated groups in the sequence, by
relying on several cues, such as people talking to each other or holding hands,
for example. For our purposes, we split the sequence in a training (3400 frames)
and testing section (2000 frames).

4.2 Independent Motion and Appearance

Pedestrians change the walking direction smoothly. Furthermore, the walking
speed is not arbitrary. This information is commonly exploited in motion prior
2 Note that the estimation of the homography matrix introduces a small scalar factor

compared to the real walking speed.
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Fig. 3. Statistics over a person’s movement: Left: the distribution P (st
i) over

speeds shows two peaks for people standing and walking. Right: the figure shows
Pst

i
≥0.15(α

t
i|αt−1

i ). For walking people, there is a preference to keep the current head-
ing. Red indicates the original data points, blue the histogram estimate.

for pedestrians in a constant velocity model. To model these factors we define
the motion term of Eq. 3 as

φmotioni (hi) =
T−1∑
t=0

log[Pst
i<0.15(α

t
i|αt−1

i ) + Pst
i≥0.15(α

t
i|αt−1

i )] +
T−1∑
t=0

logP (sti) .

(4)
Pst

i<0.15(αti|αt−1
i ) is assumed uniform while P (sti) and Pst

i≥0.15(αti|αt−1
i ) are esti-

mated by building a normalized histogram (smoothed with a Gaussian kernel) of
the angles and speeds extracted from the training set and are shown in Fig. 3. As
one can expect, from the speed statistics it is easy to distinguish two modes, cor-
responding to standing and walking people. Fig. 3 shows also that the the choice
of 0.15m/s for telling apart walking and standing pedestrian is a reasonable one.

For the appearance term, we directly use the output of the tracker (see Sec 6).

φappi (hi|I) = log fapp(hi|I) . (5)

4.3 Grouping Relations

Given two pedestrians, one of the obvious features that makes it possible to
guess whether they belong to the same group or not, is proximity. So, when
two pedestrians belong to the same group, their distance is kept to a certain
value. If they are walking, the estimate of the orientation can give us further
information on how they are positioned with respect to each other. For two
pedestrians belonging to the same group, we therefore define

ψposijlc(ij)
(hi,hj , lc(ij) = 1) =

T−1∑
t=0

log[Pst
i≥0.15∧st

j≥0.15(p
t
i|ptjαtj , lc(ij) = 1, ) +

Pst
i<0.15∨st

j<0.15(d(p
t
i,p

t
j)|lc(ij) = 1)] , (6)
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where d(pti,p
t
j) is the Euclidean distance between the positions pti and ptj .

Pst
i≥0.15∧st

j≥0.15(pti|ptjαtj , lc(ij) = 1) and Pst
i<0.15∨st

j<0.15(d(pti,p
t
j)|lc(ij) = 1) are

estimated using histograms as before and are shown in Fig. 4. For pedestrians do
not belong to the same group,we found it unnecessary to distinguish between walk-
ing or standing. The main feature, when dealing with the position of two individual
pedestrians, seems to be the repulsion effect: individuals try not to come close to
each other unless necessary. In this case, we define the motion term as

ψposijlc(ij)
(hi,hj , lc(ij) = 0) =

T−1∑
t=0

logP (d(pti,p
t
j)|lc(ij) = 0) , (7)

where P (d(pti,p
t
j)|lc(ij) = 0) is again estimated using histograms and shown in

Fig. 4.
Another important feature of people when walking in the same group, is that

they have the same orientation. We therefore define

ψangijlc(ij)
(hi,hj |lc(ij) = 1) =

T−1∑
t=0

logP(st
i≥0.15∧st

j≥0.15)(α
t
i, α

t
j |lc(ij) = 1) . (8)

As before, this term is estimated with a smoothed histogram approach. The den-
sity is shown in Fig. 4 and, as expected, shows that subjects that walk together
keep the same orientation. We did not observe an interesting orientation pattern
among pedestrians that are not in the same group, therefore we assume uniform
P(st

i≥0.15∧st
j≥0.15)(αti, α

t
j |lc(ij) = 0) .

Finally, γc(ij)(lc(ij)) could be set by looking at the fraction of grouping re-
lations over the total number of relations. Although the correct value for the
fraction would be ∼ 23% for our dataset, we will vary this value to measure the
robustness of our model (see Sec. 6).

4.4 Transitivity Constraints

The hard constraint in Eq. 2 is modeled by penalizing impossible configurations
with an opportunely large constant cost.

5 Inference

We are looking for the most probable joint assignment of the trajectories H
together with the grouping relations L in Eq. 3. Exact inference is intractable,
as the graph contains cycles and the potentials are not restricted to a particular
kind (e.g., submodular). For the inference, we use Dual Decomposition (DD) [23],
building on the code made available by [24]. DD optimizes the Lagrangian dual
of the LP-relaxation of the original problem, by decomposing the problem into
a set of subproblems, each of which can be solved efficiently. By optimizing the
dual, it gives a lower bound that can be used to check whether the method
converged to a global optimum (i.e. when the solution given by the primal has
the same energy as the solution of the dual problem).



Improving Data Association by Modeling of Trajectories and Groupings 459

Fig. 4. Statistics over interacting people. Top-left: Pst
i≥0.15∧st

j≥0.15(p
t
i|pt

jα
t
j , lc(ij) =

1) in polar coordinates, such that radius is the distance d(pt
i,p

t
j) and the angle is

the angle under which j, with absolute orientation αt
j sees i. When moving in groups,

people keep a low distance from each other, trying to walk side by side. Top-right
shows P(st

i≥0.15∧st
j≥0.15)(α

t
i, α

t
j |lc(ij) = 1). As expected, people that walk together are

headed in the same direction. Bottom-Left shows Pst
i<0.15∨st

j<0.15(d(pt
i, p

t
j)|lc(ij) =

1). The distribution is less peaked than the distribution shown in the top-left figure,
probably reflecting the fact that when people are standing in groups, they allow for
more flexible configurations. Bottom-Right: the figure shows P (d(pt

i,p
t
j)|lc(ij) = 0).

Like for groups, the repulsion effect between individuals, used in many pedestrian
motion models [2, 11], is evident from the low value around 0.

In our case, we decompose the original graph first into a constraint layer
containing only transitivity constraints factors and a data layer containing all
the other factors. Then these sub-graphs are further decomposed into spanning
trees. We optimize each tree separately using standard Belief Propagation [25].
The primal solution, and therefore the upper bound to the optimal solution, is
found by using a heuristic similar to that described in [23].

6 Experiments

The proposed model requires a set of hypotheses to choose from. In this section,
we therefore first describe how to build up the model given an input frame,
before presenting experiments on real-world data.
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6.1 Model Construction

Hypothesis Generation. Given a starting frame t0, a separate set of hypotheses
Hi is generated for each currently tracked person i. Each hypothesis hi describes
a possible motion of the subject between t = t0 . . . tT−1. To this end, we start a
single-person tracker for each person i at t0, at each time step following the cost
function recursively according to a best-first paradigm. Following at each time
step t the M best options therefore yield a maximum of MT hypotheses per
person. As a cost function, we employ several cues: as a motion and appearance
model, we use a constant velocity assumption, respectively an HSV-color his-
togram ati on the subject’s head. The product of the Bhattacharrya coefficients
d(·, ·) along the trajectory is then used to define fapp(hi|I) =

∏T−1
t=1 d(ati|at−1

i ).
As a third cue, we consider a discrete set of detections in the current hy-

pothesis’ vicinity. The detections are obtained from a voting-based detector [26],
trained on both head and upper bodies from a total of 1145 positive and 1208
negative examples. Even though specifically trained on the same setup’s data,
the detector only reaches an equal error rate of 0.65 (head) respectively 0.76
(torso) (see Fig. 5). The reason for this low performance is a higher number of
false positives on strong cast shadows, as well as some false negatives when peo-
ple are standing very closely together. To account for frequent false negatives, up
to 50% of missing detections are allowed inside a trajectory, where the missing
parts are interpolated using the constant velocity model.

To handle the case of persons leaving the scene, we introduce a set of virtual
detections at the border of the image. Once a tracker selects such a detection, it
is terminated, and the corresponding trajectory corresponds to a linear extrap-
olation starting from that time step.

For computational reasons, in the presented experiments, we use a time step
of 0.2 seconds, and set T = 10 (thus always considering time windows of 2
seconds) and M = 4, yielding an average of 147 hypotheses per subject. We run

Fig. 5. Left: RPC curves for head detector (red) and torso detector (blue). Right:
Sample hypotheses for one frame, with blue corresponding to low confidence and red
to high. Especially in crowded areas, many possible hypotheses can be generated.
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Fig. 6. Left: Estimate of groups relations while varying the grouping prior γ. Right:
precision and recall curves for group relations for different γ values.

the experiment each 2 s for all pedestrians, starting from 40 different frames.
This results in 1236 subjects being tracked.

Link Modeling. To set up the links between individuals, Delaunay triangulation
is performed on the subjects positions in the input frame. Links longer than 3
meters are cancelled.

6.2 Groundtruth

Before using an actual detector to drive hypothesis generation, we perform a
baseline experiment, where we use the ground-truth annotations as detections
(note that we are operating on the test sequence, i.e., the training of the model
did not use this data at all). To measure the effect of the proposed model,
we compare the output of the inference stage with locally selecting the best
trajectories (i.e., the hypothesis with the maximum unary term). We report
the number of correctly selected trajectories as the ones that coincide with the
ground-truth completely. In Fig. 6 (left), we run this experiment for different
values of the grouping prior γ. As can be seen, the model does not blindly trust
the prior (unless set to the extreme positions), but moves towards the true frac-
tion of groupings (0.23) disregarding the starting position. The performance of
the model with respect to trajectory selection is hardly affected by the group-
ing: the unary makes 34 mistakes, whereas the full model, depending on the
chosen grouping prior, performs considerably better with 12± 2 mistakes. Only
when γ = 0, our model makes 22 mistakes. In Fig. 6 (right), we furthermore
plot recall and precision of finding groups, again varying over the prior γ. The
numbers stay quite constant for a large range of γ, underlining the stability of
the model. Choosing extreme values will naturally also lead to inferior results,
either in favor of groups or not. In the upcoming experiments, we will use an
uninformed prior, γ = 0.5.
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Table 1. Performance of model when using raw detections as input. The proposed
model not only improves the correctly chosen trajectories, but also recovers groups
with high recall and good precision.

Wrong Trajectories Groups
TP TN FP FN

Local 401 - - - -
Group CRF 363 389 1526 449 84

Fig. 7. Example situations (close-ups). Left: trajectories, with ground truth (red) and
solutions found by the unary term alone (green) and the group CRF (blue). Right:
grouping, with ground truth (white), true/false positives (green/red) (see text).
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6.3 Detector

When starting from a ground-truth point and generating hypotheses using de-
tections, the generation step has to deal with a considerable number of false
positives (generating excess wrong trajectories) and false negatives (in the worst
case, missing an entire trajectory). Due to these inaccuracies, we change the
notion of correct trajectory to an error < 0.5 m from the ground-truth at the
last trajectory position. The subject errors and the group statistics are reported
in Table 1. Note that this experiment is considerably harder, so the number
of errors in absolute terms increases. Still, our method improves ≈ 10% w.r.t.
using only the unary terms, i.e. without grouping. The group statistics show a
precision of 46% (about twice above the chance level of 23%) and 82% recall.

Some example images, comparing the two methods, are shown in Fig. 7. For
each sample, we report both the trajectories found by either choosing the local
optimum or the group CRF, as well as the recovered grouping by our model. In
the top row, the grouping information gives a twofold improvement, encourag-
ing the two persons to move together to the left side, as opposed to choosing
intersecting trajectories (yellow arrows). One single wrong link between the two
correctly inferred groups spurs the creation of additional wrong links through
transitivity. In the second row, grouping correctly enforces the two people in
the middle to walk together to the left as opposed to the local solution, which
erroneously goes to the right (yellow arrows). In the third row, the joint reason-
ing keeps the group CRF from choosing the wrong path leading through all the
pedestrians (yellow arrows), thus highlighting the spatial exclusion constraint.
Finally, in the last row, grouping encourages smoother trajectories that stay well
separated, with the group on the left correctly estimated.

7 Conclusions

In this paper we investigated the influence of pedestrian interactions on data
association in crowded scenes, having in mind a tracking application. Statis-
tics learned on natural video data show that people walking in groups behave
differently from people walking alone. Commonly hard-coded effects such as re-
pulsion/avoidance were also clearly visible in the data. These statistics were used
to train a graphical model encoding the interactions between pedestrians in a
principled manner. The model was optimized for the MAP estimate with a state
of the art approximate inference engine, giving a joint estimate about correct
trajectories and group memberships in the data.

The results show that interactions should be taken into account when rea-
soning about people trajectories. We not only showed that joint optimization is
beneficial in terms of tracking error, but we were able to recover, with a good
recall and a sufficient precision, group statistics.

The running time depends on the number of people in the scene. Our cur-
rent implementation of the system, far from being optimized, takes few minutes
( ≈ 10 ) to output trajectories of length 2 seconds and grouping relations.
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The focus of this paper was rather the effect of interactions as opposed to a
complete tracking application. We therefore only showed results on short time
windows initialized from ground-truth locations, not forming entire trajectories
automatically. Extending the model in this direction will be part of future work.
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