
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

1996

Improving Data Locality with Loop
Transformations
Kathryn S. McKinley
University of Massachusetts - Amherst

Steve Carr
Michigan Technological University

Chau-Wen Tseng
University of Maryland - College Park

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
McKinley, Kathryn S.; Carr, Steve; and Tseng, Chau-Wen, "Improving Data Locality with Loop Transformations" (1996). Computer
Science Department Faculty Publication Series. 141.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/141

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/141?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Improving Data Locality with Loop Transformations

KATHRYN S. McKINLEY

University of Massachusetts at Amherst

and

STEVE CARR

Michigan Technological University

and

CHAU-WEN TSENG

University of Maryland at College Park

In the past decade, processor speed has become significantly faster than memory speed. Small,
fast cache memories are designed to overcome this discrepancy, but they are only effective when
programs exhibit data locality. In this article, we present compiler optimizations to improve data
locality based on a simple yet accurate cost model. The model computes both temporal and spatial
reuse of cache lines to find desirable loop organizations. The cost model drives the application
of compound transformations consisting of loop permutation, loop fusion, loop distribution, and
loop reversal. We demonstrate that these program transformations are useful for optimizing
many programs. To validate our optimization strategy, we implemented our algorithms and ran
experiments on a large collection of scientific programs and kernels. Experiments illustrate that for
kernels our model and algorithm can select and achieve the best loop structure for a nest. For over
30 complete applications, we executed the original and transformed versions and simulated cache
hit rates. We collected statistics about the inherent characteristics of these programs and our
ability to improve their data locality. To our knowledge, these studies are the first of such breadth
and depth. We found performance improvements were difficult to achieve because benchmark
programs typically have high hit rates even for small data caches; however, our optimizations
significantly improved several programs.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization

General Terms: Languages, Performance

Additional Key Words and Phrases: Cache, compiler optimization, data locality, loop distribution,
loop fusion, loop permutation, loop reversal, loop transformations, microprocessors, simulation

Steve Carr was supported by NSF grant CCR-9409341 and Hewlett-Packard Company. Chau-Wen
Tseng was supported in part by an NSF CISE Postdoctoral Fellowship in Experimental Science.
The authors initiated this research at Rice University.
Authors’ addresses: K. S. McKinley, Computer Science Department, LGRC, University of Mas-
sachusetts, Amherst, MA 01003-4610; email: mckinley@cs.umass.edu; S. Carr, Department
of Computer Science, Michigan Technological University, Houghton, MI 49931-1295; email:
carr@cs.mtu.edu; C.-W. Tseng, Department of Computer Science, University of Maryland, College
Park, MD 20742; email: tseng@cs.umd.edu.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1996 ACM 0164-0925/96/0700-0424 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996, Pages 424–453.

Improving Data Locality · 425

1. INTRODUCTION

Because processor speed is increasing at a much faster rate than memory speed,
computer architects have turned increasingly to the use of memory hierarchies with
one or more levels of cache memory. Caches take advantage of data locality in
programs. Data locality is the property that references to the same memory location
or adjacent locations are reused within a short period of time.

Caches also have an impact on programming; programmers substantially enhance
performance by using a style that ensures more memory references are handled by
the cache. Scientific programmers expend considerable effort at improving local-
ity by structuring loops so that the innermost loop iterates over the elements of a
column, which are stored consecutively in Fortran. This task is time consuming,
tedious, and error prone. Instead, achieving good data locality should be the re-
sponsibility of the compiler. By placing the burden on the compiler, programmers
can get good uniprocessor performance even if they originally wrote their program
for a vector or parallel machine. In addition, programs will be more portable
because programmers will be able to achieve good performance without making
machine-dependent source-level transformations.

1.1 Optimization Framework

Based on our experiments and experiences, we believe that compiler optimizations
to improve data locality should proceed in the following order:

(1) Improve order of memory accesses to exploit all levels of the memory hierarchy
through loop permutation, fusion, distribution, skewing, and reversal. This
process is mostly machine independent and requires knowledge only of the
cache line size.

(2) Fully utilize the cache through tiling, a combination of strip-mining and loop
permutation [Irigoin and Triolet 1988]. Knowledge of the data size, cache size,
and cache line size is essential [Coleman and McKinley 1995; Lam et al. 1991].
Higher degrees of tiling can be applied to exploit multilevel caches, the TLB,
etc.

(3) Promote register reuse through unroll-and-jam (also known as register tiling)
and scalar replacement [Callahan et al. 1990; Carr and Kennedy 1994a]. The
number and type of registers available are required to determine the degree of
unroll-and-jam and the number of array references to replace with scalars.

In this article, we concentrate on the first step. Our algorithms are complementary
to and in fact improve the effectiveness of optimizations performed in the latter
two steps [Carr 1992]. However, the other steps and interactions between steps are
beyond the scope of this article.

1.2 Overview

We present a compiler strategy based on an effective, yet simple, model for esti-
mating the cost of executing a given loop nest in terms of the number of cache
line references. This article extends previous work [Kennedy and McKinley 1992]
with a slightly more accurate memory model. We use the model to derive a loop
structure which results in the fewest accesses to main memory. To achieve this loop

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

426 · Kathryn S. McKinley et al.

structure, we use a compound loop transformation algorithm that consists of loop
permutation, fusion, distribution, and reversal. The algorithm is implemented in a
source-to-source Fortran 77 translator.

We present extensive empirical results for kernels and benchmark programs that
validate the effectiveness of our optimization strategy. They reveal programmers
often use programming styles with good locality. We measure both inherent data lo-
cality characteristics of scientific programs and our ability to improve data locality.
When the cache miss rate for a program is nonnegligible, we show there are usually
opportunities to improve data locality. Our optimization algorithm takes advantage
of these opportunities and consequently improves performance. As expected, loop
permutation plays the key role. In addition, loop fusion and distribution can pro-
duce significant improvements. Our algorithms never found an opportunity where
loop reversal could improve locality.

2. BACKGROUND

In this section, we characterize data reuse and present our data locality cost model.

2.1 Data Dependence

We assume the reader is familiar with concept of data dependence [Kuck et al. 1981;
Goff et al. 1991]. ~δ = {δ1 . . . δk} is a hybrid distance/direction vector with the most
precise information derivable. It represents a data dependence between two array
references, corresponding left to right from the outermost loop to innermost loop
enclosing the references. Data dependences are loop-independent if the accesses to
the same memory location occur in the same loop iteration; they are loop-carried
if the accesses occur on different loop iterations.

2.2 Sources of Data Reuse

The two sources of data reuse are temporal reuse, multiple accesses to the same
memory location, and spatial reuse, accesses to nearby memory locations that share
a cache line or a block of memory at some level of the memory hierarchy. (Unit-
stride access is the most common type of spatial locality.) Temporal and spatial
reuse may result from self-reuse from a single array reference or group-reuse from
multiple references [Wolf and Lam 1991]. Without loss of generality, we assume
Fortran’s column-major storage.

Since processor speeds outpace memory by factors ranging from 10 to 100 in
current uniprocessors, even a single miss in the cache on an inner loop iteration
can degrade performance. Our measure of locality is the number of cache lines a
loop nest accesses. We minimize accesses to memory by minimizing the number of
times a cache line must be fetched from memory.

To simplify analysis, we concentrate on reuse that occurs between small numbers
of inner loop iterations. Our memory model assumes there will be no conflict or
capacity cache misses in one iteration of the innermost loop.1 We use the algorithms
RefGroup, RefCost, and LoopCost to determine the total number of cache lines
accessed when a candidate loop l is placed in the innermost loop position. The
result reveals the relative amounts of reuse between loops in the same nest and

1Lam et al. [1991] support this assumption.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 427

DO K = 2,N–1
DO J = 2,N–1

DO I = 2,N–1
A(I,J,K) = A(I+1,J+1,K) + B(I,J,K) + B(I,J+1,K) + B(I+1,J,K)

Reference Groups

for loop J: for loop I & K:

{A(I,J,K)} {A(I,J,K)}
{A(I+1,J+1,K)} {A(I+1,J+1,K)}
{B(I,J,K), B(I,J+1,K), B(I+1,J,K)} {B(I,J,K), B(I+1,J,K)}

{B(I,J+1,K)}

Fig. 1. RefGroup example.

across disjoint nests; it also drives permutation, fusion, distribution, and reversal
to improve data locality, thus minimizing the number of cache lines accessed.

2.3 Reference Groups

Our cost model first applies algorithm RefGroup to calculate group-reuse. Two
references are in the same reference group if they exhibit group-temporal or group-
spatial reuse, i.e., they access the same cache line on the same or different iterations
of an inner loop. This formulation is more general than previous work [Kennedy
and McKinley 1992], but slightly more restrictive than uniformly generated refer-
ences [Gannon et al. 1988]. The goal of the RefGroup algorithm is to avoid over-
counting cache lines accessed by multiple references that generally access the same
set of cache lines.

RefGroup. Two references Ref1 and Ref2 belong to the same reference group with
respect to loop l if:

(1) ∃ Ref1 ~δ Ref2 and
(a) ~δ is a loop-independent dependence or
(b) δl is a small constant d (|d| ≤ 2) and all other entries are zero,

(2) or, Ref1 and Ref2 refer to the same array and differ by at most d′ in the first
subscript dimension, where d′ is less than or equal to the cache line size in
terms of array elements. All other subscripts must be identical.

Condition (1) accounts for group-temporal reuse, and condition (2) detects most
forms of group-spatial reuse. Note that a reference can be in only one reference
group, since algorithm RefGroup puts a reference in a group if it meets either
Conditions (1) or (2) with any other reference in the group. We specify |d| ≤ 2
in our implementation because previous work on dependence testing found few
constant distances greater than 2 [Goff et al. 1991]. In addition, given a cache line
size of at least 2 elements and |d| ≤ 2, the references will only require at most 2
cache lines.

Consider the example nest in Figure 1. Because the two references to A fail all
the tests, regardless of the loop, RefGroup always places them in distinct groups.
For the J loop, B(I,J,K) and B(I,J+1,K) satisfy condition (1b), and B(I,J,K) and
B(I+1,J,K) satisfy condition (2). Thus for the J loop, all three references to B are

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

428 · Kathryn S. McKinley et al.

Input:

L = {l1, . . . , ln} a loop nest with headers lbl, ubl, stepl
R = { Ref1, . . . , Refm} representatives from each reference group

tripl = (ubl − lbl + stepl)/stepl
cls = the cache line size in data items,

coeff(f, il) = the coefficient of the index variable il in the subscript f
stride(f1, il, l) = | stepl ∗ coeff(f1, il)|

Output:

LoopCost(l) = number of cache lines accessed with l as innermost loop

Algorithm:

LoopCost(l) =

m∑
k=1

(RefCost(Refk(f1(i1, . . . , in), . . . , fj(i1, . . . , in)), l))
∏
h6=l

triph

RefCost(Refk, l) = 1 if ((coeff(f1, il) = 0) ∧ . . .∧ Invariant

(coeff(fj , il) = 0))
tripl(
cls

stride(f1,il,l)

) if ((stride(f1, il, l) < cls)∧ Unit
(coeff(f2, il) = 0) ∧ . . .∧
(coeff(fj , il) = 0))

tripl otherwise None

Fig. 2. LoopCost algorithm.

in the same group, even though B(I,J+1,K) and B(I,J+1,K) do not satisfy any of the
conditions. Since the I and K loops do not carry the dependence between B(I,J,K)

and B(I,J+1,K), only B(I,J,K) and B(I+1,J,K) belong to the same group for the I

and K loops.

2.4 Loop Cost in Terms of Cache Lines

Once we account for group-reuse, we can calculate the reuse carried by each loop
using the functions RefCost and LoopCost in Figure 2. To determine the cost in
cache lines of a reference group, we select an arbitrary array reference with the
deepest nesting from each group. Each loop l with trip iterations in the nest is
considered as a candidate for the innermost position. Let cls be the cache line size
in data items and stride be the step size of l multiplied by the coefficient of the
loop index variable.

RefCost calculates locality for l, i.e., the number of cache lines l uses: 1 for
loop-invariant references, trip/(cls/stride) for consecutive references, or trip for non-
consecutive references. LoopCost then calculates the total number of cache lines
accessed by all references when l is the innermost loop. It simply sums RefCost
for all reference groups, then multiplies the result by the trip counts of all the
remaining loops. RefCost and LoopCost appear in Figure 2. This method evaluates
imperfectly nested loops (see Section 3.5.1 for an example), complicated subscript
expressions, and nests with symbolic bounds [McKinley 1992].

In Figure 3, we give an example of computing LoopCost on matrix multiply.
Algorithm RefGroup, with respect to all of the three loops, puts both references
to C(I,J) in one reference group, and A(I,K) and B(K,J) each in their own reference
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 429

{ JKI ordering }
DO J = 1, N

DO K = 1, N
DO I = 1, N

C(I,J) = C(I,J) + A(I,K) * B(K,J)

LoopCost (with cls = 4)

Refs J K I

C(I,J) n ∗ n2 1 ∗ n2 1
4
n ∗ n2

A(I,K) 1 ∗ n2 n ∗ n2 1
4
n ∗ n2

B(K,J) n ∗ n2 1
4
n ∗ n2 1 ∗ n2

total 2n3 + n2 5
4
n3 + n2 1

2
n3 + n2

Fig. 3. Loop cost for matrix multiply.

group. RefCost with respect to the I loop detects the self-spatial reuse carried by
C(I,J) and A(I,K) and assigns each reference the cost of (1/cls)n cache lines. B(K,J)

has loop-invariant reuse and a cost of 1. LoopCost for the I loop is thus (1/2)n3+n2

for a machine with cls = 4 and n2 outer iterations of the J and K loops. LoopCost
with respect to the J and K loops is similar.

3. COMPOUND LOOP TRANSFORMATIONS

In this section, we show how the cost model guides loop permutation, fusion, dis-
tribution, and reversal. Each subsection describes tests based on the cost model
that determine when individual transformations are profitable. Using these compo-
nents, Section 3.5 presents Compound, an algorithm for discovering and applying
legal compound loop nest transformations that aim to minimize the number of cache
lines accessed. All of these transformations are implemented in our experimental
compiler.

3.1 Loop Permutation

To determine the loop permutation which accesses the fewest cache lines, we rely
on the following observation.

If loop l promotes more reuse than loop l′ when both are considered for the innermost
loop, l will likely promote more reuse than l′ at any outer loop position.

We therefore simply rank the loops using LoopCost, ordering the loops from out-
ermost to innermost (l1 . . . ln) so that LoopCost(li−1) ≥ LoopCost(li). We call
this permutation of the nest with the least cost memory order. If the bounds are
symbolic, we compare the dominating terms.

We define the algorithm Permute in Figure 4 to achieve memory order when
possible on perfect nests.2 To determine if the order is a legal one, we permute
the corresponding entries in the distance/direction vector. If the result is lexi-
cographically positive, the permutation is legal, and we transform the nest. (By

2In Section 3.5, we perform imperfect interchanges with distribution. The evaluation method can
also drive imperfect loop interchange [Wolfe 1986], but we did not implement it.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

430 · Kathryn S. McKinley et al.

Input:

O = {i1, i2, ..., in}, the original loop ordering
DV = set of original legal direction vectors for ln
L = {iσ1 , iσ2 , . . . , iσn} , a permutation of O with the best estimated locality

Output:

P = L, or a permutation of O that is legally as close to L as possible

Algorithm:

if ∀ DV , L is a legal permutation
return L

P = ∅ ; k = 0 ; m = n
while L 6= ∅

for j = 1, m
l = lj ∈ L
if direction vectors for {p1, . . . , pk, l} are legal
P = {p1, . . . , pk, l}
L = L − {l} ; k = k + 1 ; m = m− 1
break for

endif
endfor

endwhile

Fig. 4. Permute algorithm.

definition, the original distance/direction vector is legal, i.e., lexicographically posi-
tive [Allen and Kennedy 1984; Banerjee 1990].) If a legal permutation exists which
positions the loop with the most reuse innermost, the algorithm is guaranteed to
find it. If the desired inner loop cannot be obtained, the next most desirable inner
loop is positioned innermost if possible, and so on. Because most data reuse oc-
curs on the innermost loop, positioning it correctly is likely to yield the best data
locality.

More formally stated, given a memory ordering L = {iσ1 , iσ2 , . . . , iσn} of the
loops {i1, i2, ..., in} where iσ1 has the least reuse and iσn the most, the algorithm
builds up a legal permutation in P by first testing to see if the loop iσ1 is legal in
the outermost position. If it is legal, it is added to P and removed from L. If it is
not legal, the next loop in L is tested. Once a loop l is positioned, the process is
repeated starting from the beginning of L − {l} until L is empty.

Permute works by positioning the outer k loops such that the partial direction
vectors are lexicographically positive, which means either all entries are zero, or at
least one positive entry precedes negative entries in all the partial direction vectors
{p1, . . . , pk}. Consider placing a loop l at position k+ 1 for a single dependence. If
the direction vector entry at position l is positive or zero, l is legal in position k+1.
If the entry at l is negative and {p1, . . . , pk} positive, l is also legal in position
k + 1. However, if the entry at position l is negative, and {p1, . . . , pk} is zero,
then positioning l would create a negative, illegal direction vector. Notice that no
permutation of {p1, . . . , pk} can change a positive vector to zero and thus enable a
negative entry at l to be placed in position k + 1. This property enables Permute
to work greedily from the outermost loop to the innermost. The following theorem
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 431

holds for the Permute algorithm.

Theorem. If there exists a legal permutation where σn is the innermost loop,
then Permute will find a permutation where σn is innermost.

Given an original set of legal direction vectors, if L is legal then σn is clearly in-
nermost. Otherwise, the proof by contradiction of the theorem proceeds as follows.
Each step of the “for” is guaranteed to find a loop that results in partial, positive
direction vectors; otherwise the original was not legal [Allen and Kennedy 1984;
Banerjee 1990]. In addition, if any loop σ1 through σn−1 may be legally positioned
prior to σn, it will be.

Permute therefore places the loops carrying the most reuse as innermost as pos-
sible. If the desired inner loop cannot be obtained, it places the next most desirable
inner loop in the innermost position if possible, and so on. This characteristic is
important because most data reuse occurs on the innermost loop, so positioning it
correctly is key to achieving the best data locality.

Complexity. When memory order is legal, as it is in 80% of the loops in our test
suite, Permute simply sorts loops according to their LoopCost and tests for legality.
Otherwise algorithm Permute selects a legal permutation as close to memory order
as possible, testing the legality of n(n − 1) loop permutations in the worst case.
However, these steps only involve testing data dependences; evaluating the locality
of the loop nest turns out to be the most expensive part of the algorithm. Our
algorithm computes the best permutation with one evaluation step (i.e., invocation
of LoopCost) for each loop in the nest. The complexity of algorithm Permute is
therefore O(n) in the number of LoopCost invocations, where n is the number of
loops in the nest.

3.1.1 Example: Matrix Multiplication. In Figure 3, we saw that algorithm Ref-
Group for matrix multiply puts the two references to C(I,J) in the same refer-
ence group and A(I,K) and B(K,J) in separate groups for all loops. Algorithm
MemoryOrder uses LoopCost to select JKI as memory order; A(I,K) and C(I,J) ex-
hibit spatial locality, and B(K,J) exhibits loop-invariant temporal locality, resulting
in the fewest cache line accesses.

To validate our cost model, we gathered results for all possible permutations,
ranking them left to right from the least to the highest cost (JKI, KJI, JIK, IJK,

KIJ, IKJ) in Figure 5. Consistent with our model, choosing I as the inner loop
results in the best execution time. Changing the inner loop has a dramatic effect
on performance. The impact is greater on the 512 × 512 versus the 300 × 300
matrices because a larger portion of the working set stays in the cache. Execution
times vary by significant factors of up to 3.7 on the Sparc2, 6.2 on the i860, and
23.9 on the RS/6000. The entire ranking accurately predicts relative performance.

We performed this type of comparison on several more kernels and a small pro-
gram with the same result: memory order always resulted in the best performance.

3.2 Loop Reversal

Loop reversal reverses the order in which the iterations of a loop nest execute and
is legal if dependences remain carried on outer loops. Reversal does not change the
pattern of reuse, but it is an enabler, i.e., it may enable permutation to achieve

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

432 · Kathryn S. McKinley et al.

Execution Times (in seconds) vs. Loop Organization

300 × 300

0

1 0

2 0

3 0

4 0

5 0

6 0

JKI KJI JIK IJK KIJ IKJ JKI KJI JIK IJK KIJ IKJ JKI KJI JIK IJK KIJ IKJ

Sun Sparc2 Intel i860 IBM RS/6000

512 × 512

0

5 0

100

150

200

250

300

350

400

JKI KJI JIK IJK KIJ IKJ JKI KJI JIK IJK KIJ IKJ JKI KJI JIK IJK KIJ IKJ

Sun Sparc2 Intel i860 IBM RS/6000

Fig. 5. Performance of matrix multiply.

better locality. We extend Permute to perform reversal as follows. If memory order
is not legal, Permute places outer loops in position first, building up lexicograph-
ically positive dependence vectors. If Permute cannot legally position a loop in a
desired position, Permute tests if reversal is legal and enables the loop to be put
in the position. Reversal did not improve locality in our experiments; therefore we
will not discuss it further.

3.3 Loop Fusion

Loop fusion takes multiple loop nests and combines their bodies into one loop nest.
It is legal only if no data dependences are reversed [Warren 1984]. As an example
of its effect, consider the code fragment written in Fortran 90 in Figure 6(a) that
performs ADI integration. Scalarizing the Fortran 90 into Fortran 77 results in
the code in Figure 6(b) which exhibits both poor temporal and poor spatial reuse.
The problem is not the fault of the programmer; instead, it is inherent in how the
computation can be expressed in Fortran 90. Fusing the K loops results in temporal
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 433

(a) Sample Fortran 90 loops for ADI Integration

DO I = 2, N
S1 X(I,1:N) = X(I,1:N) – X(I–1,1:N)*A(I,1:N)/B(I–1,1:N)
S2 B(I,1:N) = B(I,1:N) – A(I,1:N)*A(I,1:N)/B(I–1,1:N)

(b) ⇓ Translation to Fortran 77 ⇓
DO I = 2, N

DO K = 1, N
X(I,K) = X(I,K) – X(I–1,K)*A(I,K)/B(I–1,K)

DO K = 1, N
B(I,K) = B(I,K) – A(I,K)*A(I,K)/B(I–1,K)

(c) ⇓ Loop Fusion & Interchange ⇓
DO K = 1, N

DO I = 2, N
X(I,K) = X(I,K) – X(I–1,K)*A(I,K)/B(I–1,K)
B(I,K) = B(I,K) – A(I,K)*A(I,K)/B(I–1,K)

LoopCost (with cls = 4.)

RefGroup K I

X(I,K) n ∗ n 1
4
n ∗ n

A(I,K) n ∗ n 1
4
n ∗ n

B(I,K) n ∗ n 1
4
n ∗ n

total 3 ∗ n2 3
4
∗ n2

S1 total 3 ∗ n2 3
4
∗ n2

S2 total 2 ∗ n2 1
2
∗ n2

S1 + S2 5 ∗ n2 5
4
∗ n2

Fig. 6. Loop fusion.

locality for array B. In addition, the compiler is now able to apply loop interchange,
significantly improving spatial locality for all the arrays. This transformation is
illustrated in Figure 6(c).

3.3.1 Profitability of Loop Fusion. Loop fusion may improve reuse directly by
moving accesses to the same cache line to the same loop iteration. Algorithm
RefGroup discovers this reuse between two nests by treating the statements as if
they already were in the same loop body. The two loop headers are compatible if
the loops have the same number of iterations. Two nests are compatible at level l
if the loops at level 1 to l are compatible and if the headers are perfectly nested up
to level l. To determine the profitability of fusing two compatible nests, we use the
cost model as follows:

(1) Compute RefGroup and LoopCost as if all the statements were in the same
nest, i.e., fused.

(2) Compute RefGroup and LoopCost independently for each candidate and add
the results.

(3) Compare the total LoopCosts.
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

434 · Kathryn S. McKinley et al.

Fuse(L)
Input: L = l1, . . . , lk, nests that are fusion candidates

Algorithm:

Build H = {H1, . . . , Hj}, Hi = {hk} a set of
compatible nests with depth(Hi) ≥ depth(Hi+1)

Build dag G with dependence edges and weights
for each Hi = {h1 . . . hm}, i = 1 to j

for l1 = h1 to hm
for l2 = h2 to l1

if ((∃ locality between l1 and l2)
/∗ ∃ edge (l1, l2) with weight > 0 ∗/
& (it is legal to fuse them))

fuse l1 and l2 and update G
endfor

endfor
endfor

Fig. 7. Fusion algorithm.

If the fused LoopCost is lower, fusion alone will result in additional locality. For
example, fusing the two K loops in Figure 6 lowers the LoopCost for K from 5n2 to
3n2. Candidate loops for fusion need not be nested within a common loop. Note
that the memory order for the fused loops may differ from the individual nests.

3.3.2 Loop Fusion to Enable Loop Permutation. Loop fusion may also indirectly
improve reuse in imperfect loop nests by providing a perfect nest that enables a
loop permutation with better data locality. For instance, fusing the K loops in
Figure 6 enables permutation of the loop nest, improving spatial and temporal
locality. Using the cost model, we detect that this transformation is desirable,
since LoopCost of the I loop is lower than the K loops, but memory order cannot
be achieved because of the loop structure. We then test if fusion of all inner nests
is legal and if it creates a perfect nest in which memory order can be achieved.

3.3.3 Loop Fusion Algorithm. Fusion thus serves two purposes:

(1) to improve temporal locality and

(2) to fuse all inner loops, creating a nest that is permutable.

Previous research has shown that optimizing temporal locality for an adjacent set of
m compatible loop nests is NP-hard [Kennedy and McKinley 1993]. In this work,
the problem is harder, since all the headers are not necessarily compatible. We
therefore apply a greedy strategy based on the depth of compatibility. We build a
DAG from the candidate loops. The edges are dependences between the loops; the
weight of an edge is the difference between the LoopCosts of the fused and unfused
versions. We partition the nests into sets of compatible nests at the deepest levels
possible. To yield the most locality, we first fuse nests with the deepest compati-
bility and temporal locality. Nests are fused only if legal, i.e., no dependences are
violated between the loops or in the DAG. We update the graph, then fuse at
the next level until all compatible sets are considered. This algorithm appears in
Figure 7.
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 435

Execution time (in seconds) vs. Organization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sun Sparc2 Intel i860 IBM RS/6000

hand coded

distributed

fused

Fig. 8. Performance of Erlebacher.

Since we allow loop nests to be reordered due to fusion, we may need to calculate
LoopCost for every pair of loop nests. The complexity of the fusion algorithm is
therefore O(m2) in the number of invocations of LoopCost, where m is the number
of candidate nests for fusion. If we only fused adjacent loop nests, the complexity
of the algorithm would drop to O(m).

3.3.4 Example: Erlebacher. The original hand-coded version of Erlebacher, a
program solving PDEs using ADI integration with 3D arrays, mostly consists of
single-statement loops in memory order. We applied loop distribution by hand to
loops containing multiple statements, placing each statement in a separate loop
nest. Since the loops are fully distributed in this version of Erlebacher, it resembles
the output of a Fortran 90 scalarizer.

From the fully distributed version of Erlebacher, we created two optimized ver-
sions of the program. In the first, we applied Permute to transform individual
loop nests into memory order. In the second optimized version, we applied Fuse
to obtain more temporal locality. In Figure 8, we measure the performance of the
original program (Hand), the transformed fully distributed program (Distributed),
and the fused version (Fused).

Fusion is always an improvement (of up to 17%) over the hand-coded and dis-
tributed versions. Since each statement is in a separate loop, many variables are
shared between loops. Permuting the loops into memory order increases locality
in each nest, but slightly degrades locality between nests, hence the degradation in
performance of the distributed version compared to the original. Even though the
benefits of fusion are additive rather than multiplicative (as in loop permutation),
its impact can be significant. Its impact will only increase as more programs are
written with Fortran 90 array syntax.

3.4 Loop Distribution

Loop distribution separates independent statements in a single loop into multiple
loops with identical headers. To maintain the meaning of the original loop, state-
ments in a recurrence (a cycle in the dependence graph that does not include input
dependences) must be placed in the same loop. Groups of statements which must
be in the same loop are called partitions. In our system we only use loop distri-

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

436 · Kathryn S. McKinley et al.

Distribute(L, S)
Input: L = {l1, . . . , lm}, a loop nest containing

S = {s1, . . . , sk} statements

Algorithm:

for j = m− 1 to 1
Restrict the dependence graph to δ carried at

level j or deeper and loop independent δ
Divide S into finest partitions P = {p1, . . . , pm}

s.t. if sr , st ∈ a recurrence, sr, st ∈ pi.
compute MemoryOrderi for each pi
if (∃ i | MemoryOrderi is achievable with

distribution and permutation)
perform distribution and permutation
return

endfor

Fig. 9. Distribution algorithm.

bution to indirectly improve reuse by enabling loop permutation on a nest that is
not permutable3. Statements in different partitions may prefer different memory
orders that are achievable after distribution. The algorithm Distribute appears in
Figure 9. It divides the statements into the finest granularity partitions and tests
if that enables loop permutation.4 It performs distribution on the innermost loop
that enables permutation. For a nest of depth m, it starts with the loop at level
m− 1 and works out to the outermost loop, stopping if successful.

We only invoke algorithm Distribute if memory order cannot be achieved on a
nest and if not all of the inner nests can be fused (see Section 3.5). Distribute
tests if distribution will enable memory order to be achieved for any of the parti-
tions. The dependence structure required to test for loop permutation is created
by restricting its test to dependences on statements in the partition of interest.
We thus perform distribution only if it combines with permutation to improve the
actual LoopCost. Since LoopCost is calculated for each individual partition, the
complexity of algorithm Distribute is O(m), where m is the number of individual
partitions created by loop distribution. See Section 3.5.1 for an example.

3.5 Compound Transformation Algorithm

The driving force behind our application of compound loop transformations is to
minimize actual LoopCost by achieving memory order for as many statements in
the nest as possible. The algorithm Compound uses permutation, fusion, distribu-
tion, and reversal as needed to place the loop that provides the most reuse at the
innermost position for each statement.

Algorithm Compound in Figure 10 considers adjacent loop nests. It first opti-
mizes each nest independently and then applies fusion between the resulting nests

3Distribution could also be effective if (1) there is no temporal locality between partitions, and

the accessed arrays are too numerous to fit in cache at once, or (2) register pressure is a concern.
We do not address these issues here.
4The compound transformation algorithm in Section 3.5 follows distribution and permutation
with fusion to regain lost temporal locality.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 437

Compound(N)
Input: N = {n1, . . . nk}, adjacent loop nests

Algorithm:

for i = 1 to k
Compute MemoryOrder (ni)
if (Permute(ni) places inner loop in memory order)

continue
else if (ni is not a perfect nest & contains only

adjacent loops mj)
if (FuseAll(mj ,l) and Permute(l)

places inner loop in memory order)
continue

else if (Distribute(ni,l))
Fuse(l)

end for
Fuse(N)

Fig. 10. Compound loop transformation algorithm.

if legal, and data locality is improved. To optimize a nest, the algorithm begins
by computing memory order and determining if the loop containing the most reuse
can be placed innermost. If it can, the algorithm does so and goes on to the next
loop. Otherwise, it tries to enable permutation into memory order by fusing all
inner loops to form a perfect nest. If fusion cannot enable memory order, the algo-
rithm tries distribution. If distribution succeeds in enabling memory order, several
new nests may be formed. Since the distribution algorithm divides the statements
into the finest partitions, these nests are candidates for fusion to recover temporal
locality.

Complexity. The complexity of algorithm Compound is O(nm2) in the number
of invocations of LoopCost, where n is the number of loops in a nest and m the
number of adjacent loop nests. O(n) invocations of LoopCost are needed to cal-
culate memory order for each loop nest, and the process may need to be repeated
up to O(m2) times when applying loop fusion. Fortunately, fusion and distribution
only need to be invoked if the original loop nest cannot be permuted into memory
order. In practice, the loop fusion algorithm is seldomly applied and does not need
to consider many adjacent loop nests. Loop distribution may increase m, the num-
ber of adjacent loop nests, by creating additional loop nests. In the worst case it
can increase m to the number of statements in the program. The increase in the
number of loop nests was negligible in practice; a single application of distribution
never created more than three new nests.

Compilation Time. Accurately estimating the increase in compilation time caused
by applying algorithm Compound is difficult. First, our implementation depends
upon the efficiency of the ParaScope infrastructure [Cooper et al. 1993]. Second,
our implementation on top of ParaScope is not especially efficient. Given these two
caveats, our tests showed a 25% increase in compilation time over just parsing and
dependence analysis when Compound is applied. The time required for algorithm
Compound is only 33% of the time required to apply dependence analysis alone.
We feel that this cost is not prohibitive for highly optimizing compilers.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

438 · Kathryn S. McKinley et al.

3.5.1 Example: Cholesky Factorization. Consider optimizing the Cholesky Fac-
torization kernel in Figure 11(a). Notice that there are references to A(K,K) nested
at different levels. Since these references have temporal locality, RefGroup places
them in the same group. LoopCost then uses the most deeply nested reference to
compute the cost in cache lines of A(K,K). For the entire nest, LoopCost selects KJI

as the best loop organization and ranks the nests from lowest cost to highest (KJI,

JKI, KIJ, IKJ, JIK, IJK). Compound then tries to achieve this loop organization.
Because KJI cannot be achieved with permutation alone, and fusion is of no help

here, Compound calls Distribute. Since the loop is of depth 3, Distribute starts by
testing distribution at depth 2, the I loop. S2 and S3 go into separate partitions
(there is no recurrence between them at level 2 or deeper). Memory order of S3 is
KJI. Distribution of the I loop places S3 alone in a IJ nest where I and J may be
legally interchanged into memory order, as shown in Figure 11(b). Note that our
system handles the permutation of both triangular and rectangular nests.

To gather performance results for Cholesky, we generated all possible loop per-
mutations; they are all legal. For each permutation, we applied the minimal
amount of loop distribution necessary. (Wolfe enumerates these loop organiza-
tions [Wolfe 1991].) Compared to matrix multiply, there are more variations in
observed and predicted behavior. These variations are due to the triangular loop
structure; however, Compound still attains the loop structure with the best perfor-
mance.

4. EXPERIMENTAL RESULTS

To validate our optimization strategy, we implemented our algorithms, executed the
original and transformed program versions on our test suite, and simulated cache
hit rates. We measured execution times on two architectures: the IBM RS/6000

model 540 and the HP PA-RISC model 715/50. To measure our ability to improve
locality, we also determined (for our memory model) the best locality achievable
through loop transformations in the ideal case, assuming correctness could be ig-
nored. We collected statistics on the data locality in the original, transformed, and
ideal programs. These statistics use the cache configuration of the IBM RS/6000.

4.1 Methodology

We implemented the cost model, the transformations, and the algorithms described
above in Memoria, the memory compiler in the ParaScope Programming Environ-
ment [[Carr 1992]; Carr and Kennedy 1994b; Cooper et al. 1993; Kennedy et al.
1993]. Memoria is a source-to-source translator that analyzes Fortran programs
and transforms them to improve their cache performance. To increase the preci-
sion of dependence analysis, we perform auxiliary induction variable substitution,
constant propagation, forward expression propagation, and dead-code elimination
using PFC [Allen and Kennedy 1987].5 Memoria also determines if scalar expan-
sion will further enable distribution. Since scalar expansion is not integrated in

5Note that for our execution-time experiments on the HP PA-RISC, we were only able to perform

dependence analysis on the codes because PFC lost its platform (PFC runs on an IBM 370 and
is written in PL/I.)

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 439

(a) {KIJ form}
DO K = 1,N

S1 A(K,K) = SQRT(A(K,K))
DO I = K+1,N

S2 A(I,K) = A(I,K) / A(K,K)
DO J = K+1,I

S3 A(I,J) = A(I,J) – A(I,K) * A(J,K)

(b) ⇓ {KJI form} Loop Distribution & Triangular Interchange ⇓
DO K = 1,N

A(K,K) = SQRT(A(K,K))
DO I = K+1,N

A(I,K) = A(I,K) / A(K,K)
DO J = K,N

DO I = J+1,N
A(I,J+1) = A(I,J+1) – A(I,K) * A(J+1,K)

LoopCost

Refs K J I

A(K,K) n ∗ n — 1 ∗ n
A(I,K) n ∗ n2 1 ∗ n2 1

4
n ∗ n2

A(I,J) 1 ∗ n2 n ∗ n2 1
4
n ∗ n2

A(J,K) n ∗ n2 1
4
n ∗ n2 1 ∗ n2

total 2n3 + 2n2 5
4
n3 + n2 1

2
n3 + n2 + n

S2 total 2n2 — 1
4
n2 + n

S3 total 2n3 + n2 5
4
n3 + n2 1

2
n3 + n2

Execution times (in seconds) vs. Loop Organization

0

2

4

6

8

1 0

1 2

KJI JKI KIJ IKJ JIK IJK KJI JKI KIJ IKJ JIK IJK KJI JKI KIJ IKJ JIK IJK

Sun Sparc2 Intel i860 IBM RS/6000

Fig. 11. Cholesky factorization.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

440 · Kathryn S. McKinley et al.

the current version of the transformer, we applied it by hand when directed by the
compiler. Memoria then used the resulting code and dependence graph to gather
statistics and perform data locality optimizations using the algorithm Compound.

For our test suite, we used 35 programs from the Perfect Benchmarks, the SPEC

benchmarks, the NAS kernels, and some miscellaneous programs. They ranged in
size from 195 to 7608 noncomment lines. Their execution times on the IBM RS/6000

ranged from seconds to a couple of hours.

4.2 Transformation Results

In Table I, we report the results of transforming the loop nests of each program.
For each program, Table I first lists the number of loop nests (N) of depth 2 or
more which were considered for transformation. Mem Order and Inner Loop
columns reflect the percentage of loop nests and inner loops, respectively, that are:
— O: originally in memory order,
— P: permuted into memory order, or
— F: fail to achieve memory order.
These three numbers sum to 100%. The percentage of loop nests in the program
that are in memory order after transformation is the sum of the original and the
permuted entries. Similarly for the inner loop, the sum of the original and the
permuted entries is the percentage of nests where the most desirable innermost
loop is positioned correctly.

Table I also lists the number of times that fusion and distribution were applied
by the compound algorithm. Either fusion, distribution, or both were applied to
22 out of the 35 programs.

In the Loop Fusion column,
— C is the number of candidate nests for fusion,
— A is the number of nests that were actually fused.

Candidate nests for fusion were adjacent nests, where at least one pair of nests
were compatible. Fusion improved group-temporal locality for these programs; it
did not find any opportunities to enable interchange. There were 229 adjacent loop
nests that were candidates for fusion, and of these, 80 were fused with one or more
other nests to improve reuse. Fusion was applicable in 17 programs and completely
fused nests of depth 2 and 3. In Wave and Arc2d, Compound fused 26 and 12 nests
respectively.

In the Loop Dist column,
— D is the number of loop nests distributed to achieve better loop permutation,
— R is the number of nests that resulted.

The Compound algorithm only applied distribution when it enabled permutation
to attain memory order in a nest or in the innermost loop for at least one of the
resultant nests. Compound applied distribution in 12 of the 35 programs. On 23
nests, distribution enabled loop permutation to position the inner loop or the entire
nest correctly, creating 29 additional nests. In Bdna, Ocean, Applu, and Su2cor,
six or more nests resulted.

LoopCost Ratio in Table I estimates the potential reduction in LoopCost for the
final transformed program (F) and the ideal program (I) over the entire program.
Remember that the ideal program achieves memory order for every nest without
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 441

Table I. Memory Order Statistics

Mem Order Inner Loop Loop Loop LoopCost
O P F O P F Fusion Dist Ratio

Prog N % percentages % C A D R F I

Perfect Benchmarks

adm 106 52 16 32 53 16 31 0 0 1 2 2.5 6.1

arc2d 75 55 28 17 65 34 1 35 12 1 2 2.2 4.1

bdna 56 75 18 7 75 18 7 4 2 3 6 2.3 2.5

dyfsm 80 63 15 22 65 19 16 2 1 0 0 3.0 8.6

flo52 76 83 17 0 95 5 0 4 1 0 0 1.7 1.7

mdg 12 83 8 8 83 8 8 0 0 0 0 1.1 1.7

mg3d 40 95 3 3 98 0 2 0 0 1 2 1.0 1.1

ocean 56 82 13 5 84 13 4 2 1 3 6 2.0 2.2

qcd 45 53 11 36 58 16 15 0 0 0 0 4.9 6.1

spc77 162 64 7 29 66 7 27 0 0 0 0 2.3 5.5

track 32 50 16 34 56 19 25 2 1 1 2 1.9 7.9

trfd 29 52 0 48 66 0 34 0 0 0 0 1.0 15

SPEC Benchmarks

dnsa7 50 64 14 22 74 16 10 5 2 1 2 2.0 2.9

doduc 33 6 6 88 6 6 88 0 0 4 12 1.8 14

fpppp 8 88 12 0 88 12 0 0 0 0 0 1.0 1.0

hyd2d 55 100 0 0 100 0 0 44 11 0 0 1.0 1.0

m300 2 50 50 0 50 50 0 0 0 1 2 4.5 4.5

mdp2 1 0 0 100 0 0 100 0 0 0 0 1.0 1.0

msp2 1 0 0 100 0 0 100 0 0 0 0 1.0 1.0

ora 3 100 0 0 100 0 0 0 0 0 0 1.0 1.0

sucor 36 42 19 39 42 19 39 0 0 4 8 3.5 5.3

s256 8 88 12 0 88 12 0 0 0 0 0 4.9 4.9

tcatv 6 100 0 0 100 0 0 7 2 0 0 1.0 1.0

NAS Benchmarks

appbt 87 98 0 2 100 0 0 3 1 0 0 1.0 1.2

applu 71 73 3 24 79 6 15 3 1 2 6 1.3 8.0

appsp 84 73 12 15 80 12 8 8 4 0 0 1.2 4.3

buk 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0

cgm 6 0 0 100 0 0 100 0 0 0 0 1.0 2.7

embar 2 50 0 50 50 0 50 0 0 0 0 1.0 1.1

fftpd 18 89 0 11 100 0 0 0 0 0 0 1.0 1.0

mgrid 19 89 11 0 100 0 0 3 1 1 2 1.0 1.0

Miscellaneous Programs

erle 30 83 13 4 100 0 0 28 11 0 0 1.0 1.0

lpckd 4 75 0 25 75 0 25 3 1 0 0 1.0 1.1

simpl 22 86 9 5 86 9 5 6 2 0 0 2.4 2.7

wave 85 58 29 13 65 29 6 70 26 0 0 4.2 4.3

total 1400 69 11 20 74 11 15 229 80 23 52 — —

regard to dependence constraints or limitations in the implementation. By ignoring
correctness, it is in some sense the best data locality one could achieve. For the final
and ideal versions, the average ratio of original LoopCost to transformed LoopCost
is listed. This ratio includes loops that Compound did not transform and reveals
the potential for locality improvement.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

442 · Kathryn S. McKinley et al.

Memoria may not obtain memory order due to the following reasons: (1) loop
permutation is illegal due to dependences, (2) loop distribution followed by permu-
tation is illegal due to dependences, (3) the loop bounds are too complex, i.e., not
rectangular or triangular. For the 20% of nests where the compiler could not achieve
memory order, 87% were because permutation and then distribution followed by
permutation could not be applied because of dependence constraints. The rest were
because the loop bounds were too complex. More sophisticated dependence tests
may enable the algorithms to transform a few more nests.

4.3 Coding Styles

Imprecise dependence analysis is a factor in limiting the potential for improvements
in our application suite. For example, dependence analysis for the program Cgm
cannot expose potential data locality for our algorithm because of imprecision due
to the use of index arrays. The program Mg3d is written with linearized arrays.
This coding style introduces symbolics into the subscript expressions and again
makes dependence analysis imprecise. The inability to analyze the use of index
arrays and linearized arrays prevents many optimizations and is not a deficiency
specific to our system.

Other coding styles may also inhibit optimization in our system. For example,
Linpackd and Matrix300 are written in a modular style with singly nested loops en-
closing function calls to routines which also contain singly nested loops. To improve
programs written in this style requires interprocedural optimization [Cooper et al.
1993; Hall et al. 1991]; these optimizations are not currently implemented in our
translator.

Many loop nests (69%) in the original programs are already in memory order,
and even more (74%) have the loop carrying the most reuse in the innermost posi-
tion. This result indicates that scientific programmers often pay attention to data
locality; however, there are many opportunities for improvement. Our compiler was
able to permute an additional 11% of the loop nests into memory order, resulting
in a total of 80% of the nests in memory order and a total of 85% of the inner loops
in memory order position. Memoria improved data locality for one or more nests
in 66% of the programs.

4.4 Successful Transformation

We illustrate our ability to transform for data locality by program in Figures 13
and 12. The figures characterize the programs by the percentage of their nests
and inner loops that are originally in memory order and that we transform into
memory order. In Figure 13, half of the original programs have fewer than 70%
of their nests in memory order. In the transformed versions, 29% have fewer than
70% of their nests in memory order. Over half now have 80% or more of their nests
in memory order. The results in Figure 12 are more dramatic. The majority of the
programs now have 90% or more of their inner loops positioned correctly for the
best locality (according to our memory model). Our transformation algorithms can
thus determine and achieve memory order in the majority of nests and programs.

Unfortunately, our ability to successfully transform programs may not result in
run-time improvements for several reasons: data sets for these benchmark programs
tend to be small enough to fit in cache; the transformed loop nests may be CPU
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 443

<= 20

Original

Final

Percentage of Loop Nests in Memory Order

12

8

4

0

N
um

be
r

of
 P

ro
gr

am
s

>=40 >= 60 >= 70 >=80 >= 90

16

Fig. 12. Achieving memory order for the inner loop.

<= 20

Original

Final

Percent of Inner Loops in Memory Order

0

4

8

12

16

20

N
um

be
r o

f P
ro

gr
am

s

>=40 >= 60 >= 70 >=80 >= 90

Fig. 13. Achieving memory order for loop nests.

bound instead of memory bound; and the optimized portions of the program may
not significantly contribute to the overall execution time.

4.5 Performance Results

In Figure 14, we present the performance of our test suite running on an IBM

RS/6000 model 540 with a 64KB cache, 4-way set-associative replacement policy
and 128-byte cache lines. In Figure 15, we present the performance of our test
suite on an HP 715/50 with a 64KB direct-mapped cache with 32-byte cache lines.
Figures 14 and 15 present detailed results for four kernels from Dnasa: Btrix,
Emit, Gmtry, and Vpenta. Results are reported in normalized execution time with
the base time of 100 not indicated. The arithmetic mean in each figure includes
only those programs shown in the bar graph. On both machines, we used the
standard Fortran 77 compiler with the -O option to compile both the original
program and the version produced by our automatic source-to-source transformer.
All applications successfully compiled and executed on the RS/6000. Applications
Flo52 and Wave did not compile and run on the HP. For those applications not

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

444 · Kathryn S. McKinley et al.
N

o
rm

a
liz

e
d

 E
xe

cu
tio

n
 T

im
e

46

99

84

12

77

102

93
88

99
93

83

A2d Dyf Fl52 Btrx Emit Gmtry Vpta Aplu ApspSmple Lpd WaveMean

20

40

60

80

100 Original

Transformed

Fig. 14. Performance results on IBM RS/6000 model 540.

N
o

rm
a

liz
e

d
 E

xe
cu

tio
n

 T
im

e

55

99

80

25

85
90 90

99

80

A2d Sp77 Btrx Gmtry Vpta Apsp Smple Erle Mean

20

40

60

80

100 Original

Transformed

Fig. 15. Performance results on HP 715/50.

listed in Figure 14 and Figure 15, no performance improvement or degradation
occurred.

Figure 14 and Figure 15 show a number of applications with significant perfor-
mance improvements: Arc2d, Dnasa7 (Btrix, Emit, Gmtry, Vpenta), Appsp, and
Simple. These results indicate that data locality optimizations are particularly
effective for scalarized vector programs, since these programs are structured to
emphasize vector operations rather than cache-line reuse. However, the predicted
improvements did not materialize for many of the programs. To explore these
results, we simulated cache behavior to determine cache hit rates for our test suite.

We simulated cache1, an RS/6000 cache (64KB, 4-way set-associative, 128-byte
cache lines), and cache2, an i860 cache (8KB, 2-way set-associative, 32-byte cache
lines).6 The i860 cache was chosen to reveal the potential of our optimizations on a
small cache. For each program and cache, we determined the change in the hit rates
both for just the optimized procedures and for the entire program. Table II presents
these rates. Small variations in cache hit rates after program transformations can
be caused by changes in cache interference and code generation. Places where the
compiler affected cache hit rates by ≥ 0.1% are emboldened for greater emphasis.

6Carr and Wu [1995] also simulate an HP-style cache, but their results are similar to the RS/6000.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 445

For the Final columns we chose the better of the fused and unfused versions for
each program.

As illustrated in Table II, the reason more programs did not improve on the
RS/6000 is due to high hit ratios in the original programs caused by small data set
sizes. When the cache is reduced to 8KB, the optimized portions have more signif-
icant improvements. For instance, whole program hit rates for Dnasa7 and Appsp
show significant improvements after optimization for the smaller cache even though
they barely changed in the larger cache. Our optimizations obtained improvements
in whole program hit rates for Adm, Arc2d, Dnasa7, Hydro2d, Appsp, Erlebacher,
Simple, and Wave. Improvements in the optimized loop nests were more dramatic.
The improvements did not always carry over to the entire program, since the un-
optimized nests may still dominate the execution time.

We measured hit ratios both with and without applying loop fusion. For the 8KB
cache, fusion improved whole program hit rates for Hydro2d, Appsp, and Erlebacher
by 0.51%, 0.24%, and 0.95%, respectively. We were surprised to improve Linpackd’s
performance with fusion by 5.3% on the subroutine matgen and by 0.02% for the
entire program. Matgen is an initialization routine whose performance is not usu-
ally measured. Unfortunately, fusion also lowered hit rates in Track, Dnasa7, and
Wave; the degradation may be due to added cache conflict and capacity misses
after loop fusion. To recognize and avoid these situations requires cache capac-
ity and interference analysis similar to that performed for evaluating loop tiling
[Coleman and McKinley 1995; Lam et al. 1991]. Because our fusion algorithm only
attempts to optimize reuse at the innermost loop level, it may sometimes merge ar-
ray references that interfere or overflow cache. We intend to correct this deficiency
in the future.

Our results are very favorable when compared to Wolf’s results, though di-
rect comparisons are difficult because he combines tiling with cache optimiza-
tions and reports improvements only relative to programs with scalar replace-
ment [Wolf 1992]. Wolf applied permutation, skewing, reversal, and tiling to the
Perfect Benchmarks and Dnasa7 on a DECstation 5000 with a 64KB direct-map
cache. His results show performance degradations or no change in all but Adm,
which showed a small (1%) improvement in execution time. Our transformations
did not degrade performance on any of the Perfect programs, and performance of
Arc2d was significantly improved.

Our results on the routines in Dnasa7 are similar to Wolf’s, both showing im-
provements on Btrix, Gmtry, and Vpenta. Wolf improved Mxm by about 10% on the
DECstation, but slightly degraded performance on the i860. Wolf slowed Cholesky
by about 10% on the DECstation and by a slight amount on the i860. We neither
improve or degrade either kernel. More direct comparisons are not possible because
Wolf does not present cache hit rates, and the execution times were measured on
different architectures.

4.6 Data Access Properties

To further interpret our results, we measured the data access properties for our
test suite. We report the data access properties for the inner loops on the original
(orig), ideal memory order, and final versions of the programs in Tables III and IV.
Locality of Reference Group classifies the percentage of RefGroups displaying

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

446 · Kathryn S. McKinley et al.

Table II. Simulated Cache Hit Rates

Optimized Procedures Whole Program
Cache 1 Cache 2 Cache 1 Cache 2

Program Orig Final Orig Final Orig Final Orig Final

Perfect Benchmarks

adm 100 100 97.7 97.8 99.95 99.95 98.48 98.58

arc2d 89.0 98.5 68.3 91.9 95.30 98.66 88.58 93.61

bdna 100 100 100 100 99.45 99.45 97.32 97.32

dyfesm 100 100 100 100 99.98 99.97 97.02 96.95

flo52 99.6 99.6 96.7 96.3 98.77 98.77 93.84 93.80

mdg 100 100 87.4 87.4 —— —— —— ——

mg3d 98.8 99.7 95.3 98.7 —— —— —— ——

ocean 100 100 93.0 92.8 99.36 99.36 93.71 93.72

qcd 100 100 100 100 99.83 99.83 98.85 98.79

spec77 100 100 100 100 99.28 99.28 93.79 93.78

track 100 100 100 100 99.81 99.81 97.49 97.54

trfd 99.9 99.9 93.7 93.7 99.92 99.92 96.43 96.40

SPEC Benchmarks

dnasa7 83.2 92.7 54.5 73.9 99.26 99.27 85.45 88.76

doduc 100 100 95.5 95.5 99.77 99.77 95.92 95.92

fpppp 100 100 100 100 99.99 99.99 98.34 98.34

hydro2d 97.9 98.3 90.2 91.9 98.36 98.48 92.77 93.28

matrix300 99.7 99.7 91.6 92.1 93.26 93.26 81.66 81.67

su2cor 100 100 99.2 99.8 98.83 98.83 70.41 70.41

swm256 100 100 100 100 98.83 98.84 81.00 81.11

tomcatv 97.8 97.8 87.3 87.3 99.20 99.20 95.26 95.25

NAS Benchmarks

applu 99.9 99.9 99.4 99.4 99.38 99.36 97.22 97.14

appsp 90.5 92.9 88.5 89.0 99.33 99.39 96.04 96.43

mgrid 99.3 99.8 91.6 92.1 99.65 99.65 96.04 96.04

Miscellaneous Programs

erlebacher 99.4 99.8 94.0 96.8 98.00 98.25 92.11 93.36

linpackd 98.7 100 94.7 100 98.93 98.94 95.58 95.60

simple 91.0 99.1 84.3 93.7 97.35 99.34 93.33 95.65

wave 98.2 99.9 82.9 95.9 99.74 99.82 87.31 88.09

Cache1: 64KB cache, 4-way, 128-byte cache line (RS/6000);
Cache2: 8KB cache, 2-way, 32-byte cache line (i860);

cold misses are not included.

each form of self-reuse as invariant (I), unit-stride (U), or none (N). (G) contains
the percentage of RefGroups constructed partly or completely using group-spatial
reuse. The amount of group reuse is indicated by measuring the average number of
references in each RefGroup (Refs/Group), where a RefGroup size greater than 1
implies group-temporal reuse and occasionally group-spatial reuse. The amount of
group reuse is presented for each type of self-reuse and their average (Avg). The
LoopCost Ratio column estimates the potential improvement as an average (Avg)
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 447

Table III. Data Access Properties

Locality of Reference Groups LoopCost
% Groups Refs/Group Ratios

Program I U N Gp I U N Avg Avg Wt

Perfect Benchmarks

adm orig 4 70 26 0 1.04 1.39 1.34 1.36
final 5 83 12 0 1.03 1.38 1.32 1.36 2.54 2.68
ideal 19 77 4 0 1.50 1.32 1.10 1.34 6.10 6.24

arc2d orig 3 53 44 1 1.53 1.23 1.26 1.25
final 3 77 20 0 2.12 1.34 1.00 1.29 2.21 2.16
ideal 14 66 20 0 1.72 1.31 1.00 1.30 4.14 4.73

bdna orig 2 62 36 0 2.00 1.08 1.04 1.08
final 2 64 34 0 2.00 1.08 1.03 1.08 2.31 2.24
ideal 5 61 34 0 1.52 1.07 1.03 1.08 2.51 2.44

dyfesm orig 8 55 37 0 1.19 1.20 1.25 1.21
final 12 61 27 0 1.44 1.15 1.25 1.21 3.08 3.06
ideal 22 60 18 0 1.46 1.17 1.05 1.21 8.62 9.93

flo52 orig 1 92 7 0 1.50 1.38 1.00 1.35
final 1 94 5 0 1.50 1.37 1.00 1.35 1.72 1.79
ideal 1 94 5 0 1.50 1.37 1.00 1.35 1.72 1.79

mdg orig 1 75 24 0 2.00 1.14 1.00 1.12
final 0 76 24 0 0 1.16 1.00 1.12 1.11 1.09
ideal 1 78 21 0 1.00 1.15 1.00 1.12 1.70 1.63

mg3d orig 0 4 96 0 0 1.26 1.00 1.01
final 0 4 96 0 0 1.26 1.00 1.01 1.00 1.00
ideal 0 4 96 0 1.00 1.27 1.00 1.01 1.13 1.12

ocean orig 0 56 44 0 0 1.07 1.00 1.04
final 0 69 31 0 0 1.06 1.00 1.04 2.05 2.16
ideal 2 67 31 0 1.33 1.05 1.00 1.04 2.20 2.30

qcd orig 34 42 24 0 2.27 1.22 1.53 1.65
final 43 47 10 0 2.03 1.28 1.75 1.65 3.71 3.73
ideal 51 40 9 0 2.05 1.10 1.86 1.65 6.40 6.65

spec77 orig 5 42 53 0 1.57 1.56 1.37 1.46
final 10 43 47 0 3.00 1.58 1.04 1.46 3.22 3.10
ideal 25 33 42 0 2.00 1.59 1.00 1.45 5.59 5.60

track orig 7 75 18 0 1.40 1.09 1.23 1.14
final 7 81 12 0 1.20 1.15 1.00 1.14 1.99 1.84
ideal 36 60 4 0 1.19 1.11 1.00 1.14 7.95 9.68

trfd orig 7 62 31 2 1.50 1.28 1.00 1.21
final 7 62 31 2 1.50 1.28 1.00 1.21 1.00 1.00
ideal 52 34 14 2 1.40 1.00 1.00 1.21 14.81 17.34

SPEC Benchmarks

dnasa7 orig 5 48 47 0 1.41 1.48 1.16 1.33
final 8 57 35 0 1.33 1.48 1.10 1.34 2.08 2.27
ideal 35 37 28 0 1.61 1.27 1.07 1.34 2.95 3.33

doduc orig 10 2 88 0 1.24 1.33 1.17 1.18
final 7 63 30 0 1.00 1.29 1.00 1.18 5.44 5.44
ideal 7 64 29 0 1.00 1.28 1.00 1.18 5.45 5.45

fpppp orig 0 4 96 0 0 1.00 1.00 1.00
final 0 5 95 0 0 1.00 1.00 1.00 1.03 1.03
ideal 0 5 95 0 0 1.00 1.00 1.00 1.03 1.03

matrix300 orig 0 75 25 0 0 1.00 1.00 1.00
final 0 100 0 0 0 1.00 0 1.00 4.50 4.50
ideal 0 100 0 0 0 1.00 0 1.00 4.50 4.50

tomcatv orig 2 70 28 0 1.00 1.24 1.00 1.17
final 2 70 28 0 1.00 1.24 1.00 1.17 1.00 1.00
ideal 2 70 28 0 1.00 1.24 1.00 1.17 1.00 1.00

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

448 · Kathryn S. McKinley et al.

Table IV. Data Access Properties

Locality of Reference Groups LoopCost
% Groups Refs/Group Ratios

Program I U N G I U N Avg Avg Wt

NAS Benchmarks

appbt orig 0 17 83 0 0 1.04 1.00 1.01
final 0 17 83 0 0 1.04 1.00 1.01 1.00 1.00
ideal 0 17 83 0 1.67 1.03 1.00 1.01 1.26 1.38

applu orig 0 26 74 0 2.00 1.05 1.06 1.06
final 1 27 72 0 1.25 1.06 1.06 1.06 1.35 1.50
ideal 8 23 69 0 1.45 1.07 1.01 1.06 8.03 10.06

appsp orig 0 38 62 0 0 1.04 1.08 1.06
final 0 49 51 0 0 1.03 1.09 1.06 1.25 1.24
ideal 8 44 48 0 1.49 1.03 1.02 1.06 4.34 4.43

buk orig 0 0 0 0 0 0 0 0 0
final 0 0 0 0 0 0 0 0 1.00 1.00
ideal 0 0 0 0 0 0 0 0 1.00 1.00

cgm orig 0 38 62 0 0 1.10 1.00 1.04
final 0 38 62 0 0 1.10 1.00 1.04 1.00 1.00
ideal 38 0 62 0 1.10 0 1.00 1.04 2.75 2.62

embar orig 0 50 50 0 0 1.00 1.00 1.00
final 0 50 50 0 0 1.00 1.00 1.00 1.00 1.00
ideal 50 0 50 0 1.00 0 1.00 1.00 1.12 1.12

fftpde orig 0 72 28 0 0 1.02 1.00 1.01
final 0 72 28 0 0 1.02 1.00 1.01 1.00 1.00
ideal 0 72 28 0 0 1.02 1.00 1.01 1.00 1.00

mgrid orig 15 56 29 0 1.12 1.97 1.00 1.56
final 15 56 29 0 1.12 1.97 1.00 1.56 1.00 1.00
ideal 15 56 29 0 1.12 1.97 1.00 1.56 1.00 1.00

Miscellaneous Programs

erlebacher orig 23 82 20 0 1.22 1.52 1.55 147
final 23 82 20 0 1.22 1.52 1.55 147 1.00 1.00
ideal 23 82 20 0 1.22 1.52 1.55 147 1.00 1.00

linpackd orig 0 55 45 0 0 1.00 1.05 1.02
final 0 55 45 0 0 1.00 1.05 1.02 1.00 1.00
ideal 0 57 43 0 0 1.04 1.00 1.02 1.10 1.10

simple orig 0 93 7 0 0 2.25 1.85 2.22
final 0 98 2 0 0 2.26 1.00 2.23 2.48 2.48
ideal 1 97 2 0 1.50 2.27 1.00 2.23 2.72 2.72

wave orig 6 47 47 1 1.95 1.48 1.27 1.41
final 1 71 28 0 2.00 1.55 1.02 1.41 4.26 4.25

ideal 3 70 27 0 1.63 1.55 1.01 1.41 4.30 4.28

all orig 3 37 60 0 1.53 1.26 1.15 1.23
final 3 44 53 0 1.52 1.27 1.05 1.23 — —
ideal 8 41 51 0 1.23 1.26 1.03 1.23 — —

over all the nests, and a weighted average (Wt) uses nesting depth. The last row
contains the totals for all the programs.

Table III reveals that each of the applications we improved (Arc2d, Dnasa7,
Appsp, Simple, and Wave) had a significant gain in self-spatial reuse (Unit) on the
inner loop over the original program. Spatial locality was the key to getting good
cache performance. Although programmers can make the effort to ensure unit-
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 449

stride access in their applications, we have shown that our optimization strategy
makes this unnecessary. By having the compiler compute the machine-dependent
loop ordering, a variety of coding styles can be run efficiently without additional
programmer effort.

The all programs row in Table IV indicates that on average fewer than two
references exhibited group-temporal reuse in the inner loop, and no references dis-
played group-spatial reuse. Instead, most programs exhibit self-spatial reuse. For
many programs (e.g., Adm, Trfd, Dnasa7, Embar), the ideal program exhibits sig-
nificantly more invariant reuse than the original or final. Invariant reuse typically
occurs on loops with reductions and time-step loops that are often involved in re-
currences and cannot be permuted. Our analysis usually determines that spatial
reuse is of more benefit than temporal reuse when they are carried on different
loops. In some cases, tiling may be able to exploit invariant reuse carried by outer
loops and continue to benefit from the spatial reuse carried by inner loops.

4.7 Analysis of Individual Programs

Below, we examine Arc2d, Simple, Gmtry (three of the applications that we im-
proved), and Applu (the only application with a degradation in performance). We
note specific coding styles that our system effectively ported to the RS/6000 and
HP PA-RISC.

Arc2d is a fluid-flow solver from the Perfect Benchmarks. The main computa-
tional routines exhibit poor cache performance due to nonunit stride accesses. The
main computational loop is an imperfect loop nest with four inner loops, two with
nesting depth 2 and two with nesting depth 3. Our algorithm is able to achieve a
factor of 6 improvement on the main loop nest by attaining unit-stride accesses to
memory in the two loops with nesting depth 3. This improvement alone accounted
for a factor of 1.9 on the whole application. The additional improvement illustrated
in Figure 14 is attained similarly by improving less time-critical routines. Our op-
timization strategy obviated the need for the programmer to select the “correct”
loop order for performance.

Simple is a two-dimensional hydrodynamics code. It contains two loops that
are written in a “vectorizable” form (i.e., a recurrence is carried by the outer
loop rather than the innermost loop). These loops exhibited poor cache perfor-
mance. Compound reorders these loops for data locality (both spatial and tempo-
ral) rather than vectorization to achieve the improvements shown in Figure 14. In
this case, the improvements in cache performance far outweigh the potential loss
in low-level parallelism when the recurrence is carried by the innermost loop. To
regain any lost parallelism, unroll-and-jam can be applied to the outermost loop
[Callahan et al. 1988; Carr and Kennedy 1994a]. Finally, it is important to note
that the programmer was allowed to write the code in a form for one type of ma-
chine and still attain machine-independent performance through the use of compiler
optimization.

Gmtry, a SPEC benchmark kernel from Dnasa7, performs Gaussian elimination
across rows, resulting in no spatial locality. Although this structure may have
been how the author viewed Gaussian elimination conceptually, it translated to
poor performance. Distribution and permutation achieved unit-stride accesses in
the innermost loop. The programmer is therefore allowed to write the code in a

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

450 · Kathryn S. McKinley et al.

form that she or he understands, while the compiler handles the machine-dependent
performance details.

Applu suffers from a tiny degradation in performance only on the RS/6000 (2%).
The two leading dimensions of the main data arrays are very small (5 × 5). While
our model predicts better performance for unit-stride access to the arrays, the small
array dimensions give the original reductions in the inner loop better performance
on the RS/6000. Locality within the two innermost loops is not a problem.

5. RELATED WORK

Abu-Sufah [1979] first discussed applying compiler transformations based on data
dependence (e.g., loop interchange, fusion, distribution, and tiling) to improve pag-
ing. In this article, we extend and validate recent research to integrate optimizations
that target parallelism and the memory hierarchy [Kennedy and McKinley 1992].
We extend the original cost model to capture more types of reuse. The only trans-
formation they perform is loop permutation, whereas we integrate permutation,
fusion, distribution, and reversal into a comprehensive approach and present exten-
sive experimental results.

Our approach has several advantages over previous research. We measure both
the effectiveness of our approach and, unlike other optimization studies, the inherent
data locality characteristics of programs and our ability to exploit them. Our
work is applicable to a wider range of programs because we do not require perfect
nests or nests that can be made perfect with conditionals [Ferrante et al. 1991;
Gannon et al. 1988; Li and Pingali 1992; Wolf and Lam 1991]. It is also quicker,
both in the expected and worse case.

Previous research focused on evaluating data locality when given a loop permu-
tation [Ferrante et al. 1991; Gannon et al. 1988]. Since they must evaluate a given
permutation, they may consider up to n! loop permutations (though n is typically
small) in order to find the loop permutation which yields the best data locality.
(Neither paper specifies an algorithm for generating a smaller search space.) In
comparison, our approach evaluates the reuse carried by each loop and directly
determines the best loop permutation. Since evaluation is the most expensive step,
we expect our algorithm will be much faster in practice. Our algorithm is also the
first to combine loop fusion and distribution with loop permutation.

Wolf and Lam [1991] use unimodular transformations (a combination of permuta-
tion, skewing, and reversal) and tiling with estimates of temporal and spatial reuse
to improve data locality. They prune their search space by ignoring loops that
do not carry reuse and loops that cannot be permuted due to legality constraints,
but may still have many legal loop organizations remaining whose locality must be
evaluated. Their memory model is potentially more precise than ours because it
directly calculates reuse across outer loops; however, it may be less precise because
it ignores loop bounds even when they are known constants.

Wolf and Lam’s evaluation is performed on the Perfect Benchmarks and routines
in Dnasa7 in the SPEC Benchmarks, a subset of our test suite [Wolf and Lam 1991;
Wolf 1992]. It is difficult to directly compare our experiments because their cache
optimization results include tiling and scalar replacement and are executed on a
different processor. However, we improve a few more programs/routines than they
do. In addition, their cache optimizations degrade six programs/routines, in one
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 451

case by 20%. We degrade only one program by a slight 2%: Applu from the NAS
Benchmarks. In Wolf and Lam’s experiments, skewing was never needed, and
reversal was seldom applied [Wolf 1992]. We therefore chose not to include skewing,
even though (1) it is implemented in our system [Kennedy et al. 1993] and (2) our
model can drive it. We did integrate reversal, but it did not help to improve locality.

Li and Pingali [1992] use linear transformations (any linear mapping from one
loop nest to another loop nest) to optimize for both data locality and parallelism.
They do not propose exhaustive search, since the search space becomes infinite, but
transform the loop nest based on certain references in the program. They give no
details of their heuristic to order loops for locality. We therefore offer no comparison
on effectiveness or complexity.

Applying an exhaustive search approach is not practical when including loop
fusion and distribution because they create and combine loop nests. Fusion for
improving reuse is by itself NP-hard [Kennedy and McKinley 1993]. By driving
heuristics with a cache model, our algorithms are efficient and usually find the best
loop organization for data locality using permutation, fusion, and distribution.

When compared with previous work [Gannon et al. 1988; Wolf and Lam 1991],
our cache model loses precision in the RefGroup and LoopCost algorithms because
of simplifying assumptions about outer loops. Because our algorithms do not con-
sider the order of outer loops, they miss loop invariance when it spans multiple
inner loops. In practice, this inaccuracy does not affect our ability to derive the
best loop organization, since the algorithms find and compare invariance and other
forms of reuse precisely for innermost loops. If we cannot position the best in-
ner loop, we may miss a better outer loop organization. But this imprecision is
exactly what enables us to achieve a single evaluation step and lower algorithmic
complexity. It is an open question whether a more precise cache model will yield
performance improvements in practice for real applications.

6. TILING

Permuting loops into memory order maximizes estimated short-term cache-line
reuse across iterations of inner loops. The compiler can also apply loop tiling,
a combination of strip-mining and loop interchange, to capture long-term invari-
ant reuse at outer loops [Coleman and McKinley 1995; Irigoin and Triolet 1988;
Lam et al. 1991; Wolf and Lam 1991; Wolfe 1987]. Tiling must be applied judi-
ciously because it affects scalar optimizations, increases loop overhead, and may
decrease spatial reuse at tile boundaries. Our cost model provides us with the key
insight to guide tiling—the primary criterion for tiling is to create loop-invariant
references with respect to the target loop. These references access significantly
fewer cache lines than both consecutive and nonconsecutive references, making
tiling worthwhile despite the potential loss of spatial reuse at tile boundaries. For
machines with long cache lines, it may also be advantageous to tile outer loops if
they carry many unit-stride references, such as when transposing a matrix. In the
future, we intend to study the cumulative effects of optimizations presented in this
article with tiling, unroll-and-jam, and scalar replacement.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

452 · Kathryn S. McKinley et al.

7. CONCLUSION

This article presents a comprehensive approach to improving data locality and is
the first to combine loop permutation, fusion, distribution, and reversal into an
integrated algorithm. Because we accept some imprecision in the cost model, our
algorithms are simple and inexpensive in practice, making them ideal for use in
a compiler. More importantly, the simplifying assumptions used in our model
do not appear to hinder the compiler’s ability to exploit data locality for scientific
applications. The empirical results presented in this article validate the accuracy of
our cost model and algorithms for selecting the best loop structure for data locality.
In addition, they show this approach has wide applicability for existing Fortran
programs regardless of their original target architecture, particularly for vector and
Fortran 90 programs. We believe this is a significant step toward achieving good
performance with machine-independent programming.

ACKNOWLEDGEMENTS

We wish to thank Ken Kennedy for providing the impetus and guidance for much
of this research. We are obliged to Peter Craig at Digital for inspiring the addition
of loop reversal. We are grateful to the ParaScope research group at Rice Univer-
sity for the software infrastructure on which this work depends. In particular, we
appreciate the assistance of Nathaniel McIntosh on simulations. We acknowledge
the Center for Research on Parallel Computation at Rice University for supplying
most of the computing resources for our experiments and simulations. We also wish
to thank Qunyan Wu who ran the experiments on the HP 715/50.

REFERENCES

Abu-Sufah, W. 1979. Improving the performance of virtual memory computers. Ph.D. thesis,
Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign.

Allen, J. R. and Kennedy, K. 1984. Automatic loop interchange. In Proceedings of the SIG-
PLAN ’84 Symposium on Compiler Construction. ACM, New York.

Allen, J. R. and Kennedy, K. 1987. Automatic translation of Fortran programs to vector form.
ACM Trans. Program. Lang. Syst. 9, 4 (Oct.), 491–542.

Banerjee, U. 1990. A theory of loop permutations. In Languages and Compilers for Parallel
Computing, D. Gelernter, A. Nicolau, and D. Padua, Eds. The MIT Press, Cambridge, Mass.,
54–74.

Callahan, D., Carr, S., and Kennedy, K. 1990. Improving register allocation for subscripted
variables. In Proceedings of the SIGPLAN ’90 Conference on Programming Language Design
and Implementation. ACM, New York.

Callahan, D., Cocke, J., and Kennedy, K. 1988. Estimating interlock and improving balance
for pipelined machines. J. Parall. Distrib. Comput. 5, 4 (Aug.), 334–358.

Carr, S. 1992. Memory-hierarchy management. Ph.D. thesis, Dept. of Computer Science, Rice
Univ., Houston, Tex.

Carr, S. and Kennedy, K. 1994a. Improving the ratio of memory operations to floating-point

operations in loops. ACM Trans. Program. Lang. Syst. 16, 6 (Nov.), 1769–1810.

Carr, S. and Kennedy, K. 1994b. Scalar replacement in the presence of conditional control flow.
Softw. Prac. Exper. 24, 1 (Jan.), 51–77.

Carr, S. and Wu, Q. 1995. An analysis of loop permutation on the HP PA-RISC. Tech. Rep.
TR95-03, Michigan Technological Univ., Houghton, Mich. Feb.

Coleman, S. and McKinley, K. S. 1995. Tile size selection using cache organization and data
layout. In Proceedings of the SIGPLAN ’95 Conference on Programming Language Design and
Implementation. ACM, New York.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

Improving Data Locality · 453

Cooper, K., Hall, M. W., Hood, R. T., Kennedy, K., McKinley, K. S., Mellor-Crummey,

J. M., Torczon, L., and Warren, S. K. 1993. The ParaScope parallel programming environ-
ment. Proc. IEEE 81, 2 (Feb.), 244–263.

Cooper, K., Hall, M. W., and Kennedy, K. 1993. A methodology for procedure cloning.
Comput. Lang. 19, 2 (Feb.), 105–117.

Ferrante, J., Sarkar, V., and Thrash, W. 1991. On estimating and enhancing cache effec-
tiveness. In Languages and Compilers for Parallel Computing, 4th International Workshop,
U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds. Springer-Verlag, Berlin, 328–343.

Gannon, D., Jalby, W., and Gallivan, K. 1988. Strategies for cache and local memory man-
agement by global program transformation. J. Parall. Distrib. Comput. 5, 5 (Oct.), 587–616.

Goff, G., Kennedy, K., and Tseng, C.-W. 1991. Practical dependence testing. In Proceedings of
the SIGPLAN ’91 Conference on Programming Language Design and Implementation. ACM,
New York.

Hall, M. W., Kennedy, K., and McKinley, K. S. 1991. Interprocedural transformations for
parallel code generation. In Proceedings of Supercomputing ’91. IEEE, New York.

Irigoin, F. and Triolet, R. 1988. Supernode partitioning. In Proceedings of the 15th Annual
ACM Symposium on the Principles of Programming Languages. ACM, New York.

Kennedy, K. and McKinley, K. S. 1992. Optimizing for parallelism and data locality. In
Proceedings of the 1992 ACM International Conference on Supercomputing. ACM, New York.

Kennedy, K. and McKinley, K. S. 1993. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Languages and Compilers for Parallel Computing,
U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds. Springer-Verlag, Berlin, 301–321.

Kennedy, K., McKinley, K. S., and Tseng, C.-W. 1993. Analysis and transformation in an
interactive parallel programming tool. Concurrency Pract. Exper. 5, 7 (Oct.), 575–602.

Kuck, D., Kuhn, R., Padua, D., Leasure, B., and Wolfe, M. J. 1981. Dependence graphs
and compiler optimizations. In Conference Record of the 8th Annual ACM Symposium on the
Principles of Programming Languages. ACM, New York.

Lam, M., Rothberg, E., and Wolf, M. E. 1991. The cache performance and optimizations of
blocked algorithms. In Proceedings of the 4th International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, New York.

Li, W. and Pingali, K. 1992. Access normalization: Loop restructuring for NUMA compilers.
In Proceedings of the 5th International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, New York.

McKinley, K. S. 1992. Automatic and interactive parallelization. Ph.D. thesis, Dept. of Computer
Science, Rice Univ., Houston, Tex.

Warren, J. 1984. A hierachical basis for reordering transformations. In Conference Record of the
11th Annual ACM Symposium on the Principles of Programming Languages. ACM, New York.

Wolf, M. E. 1992. Improving locality and parallelism in nested loops. Ph.D. thesis, Dept. of

Computer Science, Stanford Univ., Stanford, Calif.

Wolf, M. E. and Lam, M. 1991. A data locality optimizing algorithm. In Proceedings of the
SIGPLAN ’91 Conference on Programming Language Design and Implementation. ACM, New
York.

Wolfe, M. J. 1986. Advanced loop interchanging. In Proceedings of the 1986 International
Conference on Parallel Processing. CRC Press, Boca Raton, Fla.

Wolfe, M. J. 1987. Iteration space tiling for memory hierarchies. In Proceedings of the 3rd SIAM
Conference on Parallel Processing. SIAM, Philadelphia, Pa.

Wolfe, M. J. 1991. The Tiny loop restructuring research tool. In Proceedings of the 1991
International Conference on Parallel Processing. CRC Press, Boca Raton, Fla.

Received August 1995; revised January 1996; accepted March 1996

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 4, July 1996.

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1996

	Improving Data Locality with Loop Transformations
	Kathryn S. McKinley
	Steve Carr
	Chau-Wen Tseng
	Recommended Citation

	Introduction
	Optimization Framework
	Overview

	Background
	Data Dependence
	Sources of Data Reuse
	Reference Groups
	Loop Cost in Terms of Cache Lines

	Compound Loop Transformations
	Loop Permutation
	Loop Reversal
	Loop Fusion
	Loop Distribution
	Compound Transformation Algorithm

	Experimental Results
	Methodology
	Transformation Results
	Coding Styles
	Successful Transformation
	Performance Results
	Data Access Properties
	Analysis of Individual Programs

	Related Work
	Tiling
	Conclusion

