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Abstract: With the development of the Web, users spend more time accessing information that they
seek. As a result, recommendation systems have emerged to provide users with preferred contents by
filtering abundant information, along with providing means of exposing search results to users more
effectively. These recommendation systems operate based on the user reactions to items or on the
various user or item features. It is known that recommendation results based on sparse datasets are
less reliable because recommender systems operate according to user responses. Thus, we propose a
method to improve the dataset sparsity and increase the accuracy of the prediction results by using
item features with user responses. A method based on the content-based filtering concept is proposed
to extract category rates from the user–item matrix according to the user preferences and to organize
these into vectors. Thereafter, we present a method to filter the user–item matrix using the extracted
vectors and to regenerate the input matrix for collaborative filtering (CF). We compare the prediction
results of our approach and conventional CF using the mean absolute error and root mean square
error. Moreover, we calculate the sparsity of the regenerated matrix and the existing input matrix,
and demonstrate that the regenerated matrix is more dense than the existing one. By computing the
Jaccard similarity between the item sets in the regenerated and existing matrices, we verify the matrix
distinctions. The results of the proposed methods confirm that if the regenerated matrix is used as
the CF input, a denser matrix with higher predictive accuracy can be constructed than when using
conventional methods. The validity of the proposed method was verified by analyzing the effect
of the input matrix composed of high average ratings on the CF prediction performance. The low
sparsity and high prediction accuracy of the proposed method are verified by comparisons with the
results by conventional methods. Improvements of approximately 16% based on K-nearest neighbor
and 15% based on singular value decomposition, and a three times improvement in the sparsity
based on regenerated and original matrices are obtained. We propose a matrix reconstruction method
that can improve the performance of recommendations.

Keywords: recommendation system; collaborative filtering; content-based filtering; data sparsity;
matrix regeneration

MSC: 68U35

1. Introduction

With the development of the Web and the extensive use of various smart devices,
people can provide substantial information to the Web in real-time, while simultaneously
consuming information. Users who access the Web with the main focus on information
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consumption face large amounts of available information. The information to which
users are exposed contains not only the information they seek, but also spam or a lot
of information that they do not want. As users are spending increasing time accessing
information they seek on the Web, recommender systems have emerged to provide users
with preferred content by filtering large amounts of information, along with providing
means of exposing the search results to users more effectively.

Recommender systems generally operate based on collaborative filtering (CF) and
content-based filtering (CBF) [1–4]. CF operates according to memory-based and model-
based methods [1,4,5]. Both methods use the user–item matrix, which is a matrix that
indicates the preference information evaluated by the user for the item [1,4,5]. The memory-
based method first calculates similar users or items in the user–item matrix and applies
similar user or item information to predict the user preferences for items to determine
recommendation lists [1]. Matrix factorization (MF) is a typical example of the model-based
approach [5]. The MF method consists of factorizing the user–item matrix and learning the
user propensity based on the decomposed matrix to derive the predictive preference. CBF
is a method that involves classifying and recommending users or items by analyzing the
user demographic information or item features [4,6,7]. Numerous types of methods exist
for CBF, as the available information differs depending on the domain.

The recommendation system is proposed with a variety of approaches, using deep
learning as well as MF. First, there is neural collaborative filtering (NCF) model that has
developed MF into a deep neural network [8]. There are other methods such as using
autoencoder and item2vec [9–11]. These approaches leverage dimension reduction or em-
bedding to produce recommendation results. Since deep learning requires the embedding
process of user preferences or item information, it is suggested to embed the input matrix
as well as to embed item features or similarity of the user and item [12,13]. In addition
there are studies using the structure of autoencoder to improve top-k recommendation per-
formance, sequential recommendation, or learning the recommendation structure [14–16].
However, these deep neural network based recommendation models do not always provide
more precise recommendation results than MF for all situations since the models have a
non-linear structure [17].

Recommendation systems offer the advantage of providing appropriate information to
users rapidly. However, several disadvantages exist. First, because CF-based recommender
systems operate based on information regarding the user using a specific item, such as a
user–item matrix, the cold-start problem may exist, which decreases the recommendation
reliability when little or no information regarding the user or item is available [18,19].
Moreover, magic-barrier issues may arise when predicting the user preferences based on
numerical information, which make it difficult to reflect 100% of the user preferences [20,21].
Accuracy problems are a field of continuous research in recommender systems [1,5,22–24].
Problems such as cold-start do not exist in certain CBF approaches as they are not based on
the user action history for items such as preferences. However, because CBF operates based
on metadata, the recommendation accuracy cannot be guaranteed. That is, the extraction
of significant features from various metadata requires a more complex process than CF
and it is difficult to ensure the reliability of the predicted user preferences based on the
results [4,25–27]. We use the advantages of CBF to extract the user preference data and
propose a method that can improve existing CF. Thus, we derive a means of improving the
existing recommendation accuracy by applying the CBF perspective in CF.

We propose a method for improving the sparseness and increasing the accuracy of
the user–item matrix by using item features selected by the users. For this purpose, we
apply a hybrid method incorporating CBF and CF. The existing CF method extracts the
user information from the user–item matrix (similar users or items for the memory-based
approach and latent factors for the model-based approach) and the prediction results are
derived. Prior to applying the existing user–item matrix to the CF as input, we regenerate
the matrix based on item categories to implement CF.
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To achieve this, we first extract the category ratio of the selected items for each
user. Thereafter, we apply the extracted information, namely the category ratio, as a
filter for the user–item matrix and regenerate the matrix. Therefore, the existing user–
item matrix is regenerated based on the category ratio. This regenerated matrix (RM)
is assumed to be more user appropriate than the conventional matrix and is applied
to the CF. The results are compared with those obtained through the existing matrix.
Moreover, we test the sparsity of the regenerated and original matrices, and demonstrate
the improvement in the sparsity and accuracy in our approaches. We use the MovieLens
dataset (https://grouplens.org/datasets/movielens/, accessed on 26 November 2020) and
consider the genre information of the movie as category information in the experiments.

We verify the significance of the RM through various experiments, thereby demon-
strating that our approaches are superior compared to the recommendation results derived
by conventional CF. Our main research questions can be summarized as follows:

• Can we reconstruct the original input for collaborative filtering to a more dense matrix
using user preferences and item features?

• Can the reconstructed matrix alleviate the sparsity problem of the original input?
• Are the results derived through the reconstructed matrix based on various collabora-

tive filtering approaches as accurate as the results of the original matrix?

The remainder of this paper is organized as follows. Related works are introduced in
Section 2. The proposed algorithm is presented in Section 3. The experiments and results
are detailed in Section 4, and Section 5 provides concluding remarks.

2. Related Work

The recommendation systems based on collaborative filtering approaches can suffer
form the cold-start problems and the sparsity issues for the users’ reactions since it operates
by utilizing users’ preferences which means reactions for the items. There exist the studies
to alleviate the problems in recommender systems by addressing the metadata of the
items, such as category information [28–32]. In this section, we introduce and analyze
various studies based on collaborative filtering (CF), content-based filtering (CBF), and
deep learning approaches to alleviate the cold-start problems, including the sparsity issues
in the recommender systems.

2.1. Studies for the Recommendation Systems to Alleviate the Cold-Start Problems

Several studies on hybrid recommender systems have combined methods to overcome
the limitations of existing approaches, such as accuracy or cold-start problems. Hybrid
recommender systems combine two or more recommendation approaches in different
manners, thereby reducing the disadvantages of each method and enhancing each ad-
vantage [33]. We focus on hybrid systems addressing collaborative filtering (CF) and
content-based filtering (CBF) in various manners.

Various studies have analyzed hybrid recommender systems based on CF and CBF.
CBF has been applied not only to e-commerce and e-learning, but also to news recom-
mendation and user preference analysis [33–37]. These approaches utilized item or user
features, such as category or demographic information [28–32].

These works addressed the various problems arising from recommender systems [33,38].
Several CBF methods have used item or user features, such as category or demographic
information to deal with cold-start problems for new items or new users [28,39,40].

The studies utilize item or a user features in recommendation processes. In other
words, items are classified based on the item features such as category and used to derive
the recommendation results, or features are used as input from deep neural networks
to learn the features together numerical values [8,9]. In addition to this, there is also a
method of reconfiguring the input matrix by reusing the results of the MF to improve the
performance of the recommendation [41].

Choi and Han [42] proposed a prediction model for new items by using the option of
representative users extracted from user rating networks, for which item features, such as

https://grouplens.org/datasets/movielens/
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category information were utilized. Gantner et al. [43] attempted to cluster new items with
no user responses by addressing the feature data. The clustering method based on feature
data mitigated the item-side cold-start problem; that is, the authors applied CBF concepts
using side information, such as item features to mitigate cold-start in recommender systems.
Sun et al. [44] clustered items using the attribute data and preferences, and created a
decision tree that could be applied to new and existing items, and could predict preferences
for new items. Volkovs et al. [45] combined content- and neighbor-based models, namely
CBF and CF, to address the cold-start problem in recommender systems, and their approach
produced consistent results in actual testing.

Moreover, studies have been conducted on various hybrid recommender systems to
improve the accuracy [6,46,47]. In [6], the authors proposed a Bayesian network model
incorporating user, item, and feature nodes. The proposed model was based on a combina-
tion of CF and CBF, as it used various features to derive predictions through CF. Superior
recommendation quality was provided based on the proposed model. In [47], the authors
constructed user features based on the action history of the users, following which the simi-
larities between users and the items (website content) were derived to recommend items.

Meel et al. [48] proposed an approach that could improve the CF accuracy through
various analyses of the item features. They analyzed the item features using techniques,
such as word2vec and tf–idf, and applied singular value decomposition (SVD) to derive
the recommendation results. The item features were analyzed based on the CBF concept
and the embedding method was used, which analyzes items through frequency-based
methodologies and applies these to CF. Duong et al. [10] generated the tag genome of
movie data by applying a natural language processing (NLP) technique. The authors also
proposed a three-layer autoencoder to create a more compact representation of the tags.
Thereafter, they provided recommendation results by implementing MF. Chen et al. [49]
proposed a hybrid recommendation algorithm. They used a latent Dirichlet allocation
topic model to reduce the user data dimension and generated a user theme matrix that
could reduce the data sparsity for CF. The VGG16 deep learning model was used to extract
the feature vectors. The generated matrix and vectors were used as input for content-
based recommender systems, following which the recommendation results were derived.
Mehrabani et al. [50] proposed a method to extract the item features as words based on the
NLP method word2vec. The vectors were used to calculate the similarities between features.
After calculating the similarities, the proposed system derived the recommendation results
according to the content-based concept.

2.2. Studies for the Recommendation Systems to Improve the Sparsity Issues for Inputs

Recently, various studies related to the improvement of the data sparsity have been
conducted [51,52]. These studies are not only attempting to improve based on the existing
CF method, but also are being studied based on various methods applying deep learning
approaches [52–55].

In the case of studies that attempt to improve based on the CF method, the features of
users or items are used. Zhao et al. [51] proposed a new item-based CF algorithm based on
Kullback–Leibler (KL) divergence to measure item similarity. They first try to improve the
accuracy of similarity results. Then adjusted prediction results, more rating information
is integrated with explicit user preferences in prediction processes. The results of the
proposed algorithm show better recommendation quality in the sparsity dataset.

Jiang et al. [53] propose a recommendation model for service API based on knowledge
graph and collaborative filtering. They applied latent dimensions in collaborative filtering
for analyzing the potential relations between mashups and APIs to reduce the impact
of data sparsity. Based on the proposed model, authors have significantly improved the
accuracy of service recommendation.

Ahmadian et al. [54] propose a novel recommendation method to address the issues
that the existing recommendation methods focused on accuracy of recommendation with-
out the time factor of users. The proposed method first incorporates the temporal issues



Mathematics 2023, 11, 292 5 of 26

based on the effectiveness of the users’ rating by utilizing a probabilistic approach. They
measure the quality of the prediction with respect to the changes of users’ preferences over
time since the proposed method addresses temporal reliability and data sparsity. Through
their approaches, the method can remove ineffecive users in the neighbor which means
the set of similar users based on the changes of users’ preferences over time. For this step,
authors can show the temporal reliability of their recommendation approaches.

Ajaegbu [56] focused on addressing the sparsity and cold-start situations in collabo-
rative filtering by improving the conventional similarity measurements, such as Cosine
similarity, Pearson correlation coefficient, and Adjusted cosine similarity. In existing col-
laborative filtering, by adjusting similarity measurement, author improve the accuracy of
recommendation results in sparsity and cold-start situations compared with the results of
the conventional similarity measurements.

Khaledian et al. [57] propose trust-based matrix factorization technique (CFMT) that
addresses trust network in user data. They utilize the social network data in recommen-
dation processes as trusters and trustees. By using the trust network and integrating
ratings and trust statements authors alleviate the sparsity and cold-start problems in a
recommendation model.

Zhou et al. [58] propose a hybrid collaborative filtering approaches for consumer
service recommendation in mobile cloud using user preferences to deal with the issues for
data sparsity and recommendation accuracy. The proposed service recommendation model
reduces the sparsity and improves the accuracy of recommendation.

Deep learning-based studies are being conducted using an integrated method of ex-
isting CF and neural networks or learning cross-domain. Althbiti et al. [52] propose a
novel model based on artificial neural network model CANNBCF (Clustering and Artificial
Neural Network-Based Collaborative Filtering) to improve the data sparsity in collabo-
rative filtering. They utilize various domains including books, music, jokes, and movies
to evaluate the proposed model. Through the experiments they show that CANNBCF
effectively improve the quality of the results for recommendation.

Chen et al. [55] propose attribute-based neural collaborative filtering (ANCF) to im-
prove the approaches that address auxiliary information, such as user/item attributes for
sparsity problems in conventional collaborative filtering. The existing approaches deal with
the attributes equivalently, whereas the information can differently affect recommendation
results. To improve these problems, authors utilize the attention mechanism for integrating
and distinguishing the attributes and obtaining complete feature results of user/item. They
also use multi-layer perceptron in ANCF for learning non-linear relationships between
user/item. Chen et al. show the effectiveness of their approaches through experiments by
addressing four publicly available datasets.

Existing models that utilize adversarial learning for cross-domain to alleviate the
data sparsity problems in recommendation positively affect side effects for collaborative
filtering, such as sparsity problems, however, the models only address the domain-shared
features in multiple domains. To leverage not only domain-shared features but also domain-
specific knowledge among multiple domains, Liu et al. [59] suggest a novel framework
DAAN based on a deep adversarial and attention network. They tried to integrate model-
based collaborative filtering, which means matrix factorization with deep adversarial
via an attention network. The proposed framework is leveraged to common features
in two domains and adjusts the degree of effect between domain-shared and domain-
specific knowledge.

Graph collaborative filtering methods that leverage the interaction graph based on
users’ preferences for items can positively affect the results of recommendation however,
the methods still have side effects, such as data sparsity in real situations. Although there
are approaches to reduce the data sparsity using contrastive learning in graph collaborative
filtering, the approaches conventionally construct the contrastive pairs ignored for the
relationship between users or items. To derive the potential of contrastive learning for
recommendation Lin et al. [60] propose a novel contrastive learning approach (NCL-
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Neighborhood-enriched Contrastive Learning) by addressing different GNN layers for the
representations of users and similar groups.

Aljunid et al. [61] propose a neural recommendation model based on non-independent
and identically distributed (Non-IID) by integrating explicit and implicit interaction for
collaborative filtering. In this study, the explicit interactions are composed of two models;
intra and inter couplings using attributes for users and items. Intra-coupled model is
leveraged convolutional neural networks and it is integrated with the inter-coupled model.
Through the integrated collaborative filtering model, the performance of recommendation
is improved.

2.3. Analysis and Motivation

In order to alleviate the cold-start and sparsity problem many studies currently con-
struct and propose a method of predicting users’ preferences for items using information,
such as the feature of items [28–32]. In addition, various studies have been conducted
to predict users’ evaluation by extracting and analyzing feature vectors of items using
deep learning approaches [52–55]. However, current studies are attempting research that
transforms the shape of the existing system using metadata of users or items. Namely, it
proposes methods that can produce users’ evaluations in cold-start and sparse situations to
produce more accurate results.

The previous studies have the advantage of improving or alleviating the current
recommendation performance or the problems of existing recommendation techniques.
However, more analysis is required to use the proposed techniques in real situations. For
example, in the case of neural collaborative filtering (NCF), a neural network-based recom-
mendation technique, research shows that conventional collaborative filtering approaches,
such as matrix factorization produces more accurate results in general situations [17]. The
approaches currently being studied can produce more accurate results in specific situations,
but have the disadvantage of not having universality, such as conventional collaborative
filtering. In addition, the sparsity problems persist since most studies still utilize the
same input form [52,53,55]. To overcome these problems, we propose a methodology for
reconstructing an input matrix in a form that can alleviate the sparsity problem. We also
apply this reconstructed form of input to conventional collaborative filtering approaches
by constructing the same structure as the original input, i.e., our approach can be utilized
in more versatile situations than related studies and alleviate sparsity problems.

In this paper, we propose a method that can perform data preprocessing by focusing
on feature engineering rather than a recommendation method using the metadata of items.
There are many studies that produce predictions based on novel recommendation method-
ologies [28–30,52,54,55]. However, if we can re-construct the input matrix by applying the
metadata of items, we can derive the recommendation results from existing approaches
itself. For example, if different inputs are used in model-based collaborative filtering based
on matrix factorization, there is a difference in the prediction results. Similarly, even when
different methodologies are applied to the same input, there is a difference in the predic-
tion results. As discussed in this section, the majority of current studies use the view of
recommendation techniques rather than the view of changing inputs to alleviate cold-start
and sparsity problems.

We propose a method of regenerating the input form rather than the perspective
of proposing novel recommendation techniques for alleviating cold-start and sparsity
problem. We propose an input reconstruction scheme that can yield more reliable results
from the techniques used by many existing e-commerce and content recommendation
services. Our approach has the advantage of being able to utilize memory-based and
model-based CF approaches that have been commercialized and gained a lot of trust. In
addition, the reliability of the method proposed in this paper can be verified by comparing
the results derived from the original input form.
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3. Our Approach

Prior to applying the original matrix (OM) to collaborative filtering (CF), we filter the
OM based on the item category information and regenerate the matrix into a more suitable
form for the user. In the conventional method, the OM is applied to CF as input and the
prediction results are derived. Figure 1 presents the differences between the conventional
CF and proposed method. Compared to the conventional CF, we analyze the user selection
propensity and extract a matrix that reflects the user preferences from the OM.

Figure 1. Differences between conventional CF and our approach.

We first extract the category ratio of the selected items by user and regenerate the OM
based on the category percentage. The regenerated matrix (RM) is assumed to be more
user-appropriate than the OM and is applied to the CF. We conduct experiments using
the MovieLens database, and consider the genres that exist in movie information as the
category information. Accordingly, we take the movie database as an example to explain
the proposed method.

3.1. Database

We employ the MovieLens dataset (https://grouplens.org/datasets/movielens/, ac-
cessed on 26 November 2020), as indicated in Table 1, which comprises 9125 movies and
671 users. The movie database provides genre information as an item feature. All movies in
the database have at least one genre and each movie has a genre combination. For example,
the genres for “Toy Story” are classified as Animation, Children’s, and Comedy. Table 2
presents the 18 genres of the database.

Table 1. MovieLens database.

Dataset Attribute Explanation

Movie dataset MovieID, Title, Genre A total of 9125 movies

Rating dataset UserID, MovieID, Rating, Times-
tamp

A total of 100,004 ratings provided by
671 users

https://grouplens.org/datasets/movielens/
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Table 2. 18 genres.

No Genre No Genre

G1 Action G10 Film-Noir

G2 Adventure G11 Horror

G3 Animation G12 Musical

G4 Children’s G13 Mystery

G5 Comedy G14 Romance

G6 Crime G15 Sci-Fi

G7 Documentary G16 Thriller

G8 Drama G17 War

G9 Fantasy G18 Western

3.2. Matrix Regeneration Based on User Preference Filter

Recommendation systems generally use the user–item matrix as an input. The user–
item matrix consists of item ratings evaluated by the user. Let U = u1, u2, ..., un be the set of
users and I = i1, i2, ..., im be the set of items, where there are n users and m items. Let R be
the set of ratings, where ri,j is a rating provided by user ui for item ij. The user–item matrix
is composed of U, I, and R. We consider the user–item matrix as the OM in this study.

We extract the user preference vector (PV) from the OM. Thereafter, we filter the OM
using the PV and perform matrix regeneration.

3.2.1. Extracting User PV

To extract the user PVs, we first extract genres from the items evaluated by users in
the OM and calculate the percentage of genres that have been evaluated by users. The
item is composed of various features, including the year, actor, genre, and country. We
select only the genre among these and calculate the user selection ratio. In a movie, a
genre is information selected by a group of experts that can serve as a standard for the
characteristics of an item, similar to a category in general e-commerce [28]. A total of
18 genres are included in the MovieLens dataset. Thus, the calculated vectors have a total
of 18 dimensions, each with a user-selected ratio for each genre. Figure 2 presents the
process of extracting the PVs for each user from the OM.

Figure 2. Process of extracting PVs for each user from OM.

In Figure 2, we extract the items that have user preferences, namely ratings, from the
OM. For example, in Figure 2, user u1 evaluated a total of q items from items i1 to iq. We
count the frequency of the genre appearing in these evaluation items, following which
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we can obtain vectors for the genre selection frequency by the users. The frequency of
genre vectors that exist for each user is below 18 because a total of 18 genres are included
in the database. Thus, the maximum number of dimensions is 18; however, certain users
may not select a particular genre at all, so the total may be 18 or less. The value of the
frequency vector for each user is subsequently calculated through percentile normalization
to calculate the user PV.

In Figure 2, assume that users u1 and u2 have the same frequency number for genre
G1. However, the value of G1 may differ in each user PV. This is because when the total
numbers of frequencies for G1 selected by u1 and u2 are 100 and 20, respectively, u1 has a
preference of approximately 10% for G1 and u2 has a preference of 50% for G1.

Normalization is applied to the frequency vectors because, depending on the total
number of selected genres, the preference ratio may vary for each user. We derive the
PVs taking into account the proportion of the selection-based preferences of these users.
Therefore, the preferences can be considered as a percentage of the genre selected by
the user.

3.2.2. Matrix Regeneration Using PV

We calculate GlobalPV based on the PV extracted from each user. GlobalPV is derived
by calculating the average PV for each user. Equation (1) presents the process of calculating
the average rate for a genre in the PV.

AvgGn =
∑vi∈U vi

|U| , (1)

where Gn is the nth genre in the dataset, U is a set of users, and vi is the preference rate of
user i for genre Gn. Therefore, the result of Equation (1) is the average of the preference
rates of all users for genre Gn.

We apply Equation (1) to all genres (from G1 to G18) and derive GlobalPV. Figure 3
presents the process for deriving GlobalPV.

Figure 3. Process for deriving GlobalPV.

In Figure 3, a genre preference ratio exists for each user. We derive the average of each
column. That is, the average of each genre preference ratio from G1 to G18 is calculated in
the form depicted in Figure 2 to derive GlobalPV.

We use GlobalPV to extract a more user-appropriate matrix from the OM. Thus, we
consider GlobalPV as a filter and apply it to the OM to regenerate the matrix in which the
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user preferences are considered. Figure 4 depicts the process of constructing the RM by
applying the PV filter to the OM.

Figure 4. Process of constructing RM by applying PV filter to OM.

In Figure 4, for the matrix regeneration, we first classify the items by genre in the
OM. Thereafter, we reconstruct the items in the OM based on GlobalPV. For example,
suppose that there are 100 items in G1 classified from the OM. Assume that the ratio of G1
in GlobalPV is 10%. Based on this ratio, we extract 10, which is 10% of the total of 100 items
in G1 of the OM. We apply this to G18, and, subsequently, the items to which the genre ratio
of GlobalPV is applied are extracted from the OM.

When the set of items in the OM is I and the set of items extracted based on GlobalPV
from the OM is I

′
, |I| ≥ |I ′ |. Suppose that a user ua has evaluated all items in the OM.

When the set of items extracted from the OM based on PV for ua is Ia, |I| = |Ia|. In all cases
except this, |I| > |I ′ |.

Thereafter, all users who evaluated the set of items I
′

are extracted. If the set of users
existing in the OM is U and the set of users extracted based on I

′
from the OM is U

′
, |U|

≥ |U′ |. In the extracted user set, similar to the item set, |U| = |U′ | for users who have
evaluated all items. For all cases except this, |U| > |U′ |.

We extract all users who have evaluated the extracted item set I
′
. Suppose that the

set of users extracted based on I
′

is U
′
. Then, we can construct a new matrix RM using I

′

and U
′
.

4. Experiments

We applied the regenerated matrix (RM) and original matrix (OM) to collaborative
filtering (CF), and analyzed the results. Figure 5 presents the entire experimental process. In
our experiments, we do not provide the environments for experiments since our approaches
including collaborative filtering have no real-time issue. Because of this reason, we show
the experimental process and the results of our test. We first describe the CF approaches
utilized for our experiments. Then we provide and analyze the experimental results using
RM and OM as input for each CF approach.
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Figure 5. Experimental process.

We first introduce the CF methods used in the experiment. Thereafter, we present the
experimental design and the method used to compare the results. Finally, the results and
analyses are provided. We used the mean absolute error (MAE) and root mean square error
(RMSE) to verify the accuracy in the experiments. We calculated the sparsity of the input
matrices and analyzed the results. Moreover, the differentiation of the results was verified
through the Jaccard similarity of the set items in each matrix.

4.1. CF Approaches Used in Experiments

We leverage the conventional CF approaches that utilize various applications in real-
services for the experiments. The conventional CF can be divided into memory-based and
model-based methods. The memory-based approach is considered as being neighborhood
based, and provides a method of identifying similar users and using them to derive
recommendation results [1]. Model-based methods are considered as latent factor models
and are represented by matrix factor models [5]. We applied the RM and OM to both
types of methods to compare the results. The following CF approaches were used in
the experiments:

4.1.1. K-Nearest Neighbor (KNN) Approaches

KNN approaches [62] measure the similarity between users or items in the OM and
select a similar user or item. The selected similar users or items are referred to as neighbors.
Cosine similarity [1] or the Pearson correlation coefficient [63] is used to calculate the
similarity. The similarity calculations can be carried out on a user or an item basis. In this
paper, the process is explained on a user basis.

After selecting a similar user, namely a neighbor, the prediction results are calculated
based on the existing ratings of the neighbor. We used the following four prediction
methods for the experiments in this study.

• KNN (Basic): this method obtains the prediction results through the weighted average
of the neighbor ratings, for which we use Equation (2).

r̂u,i =
∑v∈Nk

i (u)
sim(u, v) · rvi

∑v∈Nk
i (u)

sim(u, v)
, (2)
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where u is a user and i is an item to predict for u. Furthermore, N is a set of similar
users to user u, so v is one of the similar users as an element of the set N, sim(u, v)
indicates the similarity between users u and v, and r(v, i) is a rating for item i by
user v.

• KNN (Means): this method obtains the prediction results by considering the average
of the neighbor ratings, for which we use Equation (3).

r̂u,i = µ(u) +
∑v∈Nk

i (u)
sim(u, v) · (rvi − µ(v))

∑v∈Nk
i (u)

sim(u, v)
, (3)

where µ(u) is the average rating of user u. The other variables are the same as in
Equation (2).

• KNN (Zscore): this method obtains the prediction results by considering the z-score
normalization of the neighbor ratings, for which we use Equation (4).

r̂ui = µ(u) + σu

∑v∈Nk
i (u)

sim(u, v) · (rvi − µ(v))/σv

∑v∈Nk
i (u)

sim(u, v)
, (4)

where σu and σv are the standard deviations for the average ratings of users u and v,
respectively. The other variables are the same as in Equation (3).

• KNN (Baseline): this method is similar to KNN (Means); however, it uses the baseline
instead of the average and adds the baseline to a user. For this purpose, we use
Equation (5).

r̂u,i = bu,i +
∑v∈Nk

i (u)
sim(u, v) · (rvi − bv,i)

∑v∈Nk
i (u)

sim(u, v)
, (5)

where bu,i and bv,i are the baselines of users u and v, respectively, and bu,i is defined
by Equation (6).

r̂u,i = bu,i = µ + bu + bi, (6)

where µ is the global average rating of the OM, and bu and bi are the bias (or baseline)
for the user and item, respectively.

4.1.2. MF Approaches

MF [64] determines the values of the decomposed matrix through learning in the
process of factoring and recombining the user–item matrix; that is, the input matrix. In
this case, it is known as a latent factor model, as the intentions of the users or items can be
understood in the process of identifying the decomposed matrix. The prediction results are
derived through the process of adding these latent factors. We used two MF approaches,
namely SVD and non-negative MF (NMF), in this paper. SVD and NMF both use stochastic
gradient descent for learning.

• SVD: this is one methodology of MF and can be expressed in the form of R = UΣVT .
In this case, R is the input matrix, U is a matrix of size m×m, Σ is a matrix of size
m× n with a non-diagonal component of 0, and V is the matrix n× n. This constitutes
probabilistic MF and the prediction results are derived through Equation (7).

r̂u,i = µ + bu + bi + qT
i pu, (7)

where µ is the global average rating, bu and bi are the bias of the user and item,
respectively, and qi and pu are the latent vectors for the item and user, respectively.

• NMF: This method is similar to SVD, and we use Equation (8) to derive the predic-
tion results.
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r̂u,i = qT
i pu (8)

4.2. Experimental Design

We conducted the experiments using the database introduced in Table 1. Three methods
were used as the basis for item composition in the process of reconstructing the matrix,
as follows:

• Selection based (RM-1): a method of extracting items in the order of user selection in
the matrix reconstruction. Figure 6 presents the selection-based matrix reconstruction.

Figure 6. Process of selection-based matrix reconstruction.

For example, in Figure 6, GlobalPV has 10% of G1. Suppose that G1 has a total of
100 items in the OM. Then, we sort the 100 items in descending order based on the
user selection frequency. Thereafter, we extract the top 10 items from the sorted items
and select the items of G1 in the RM.

• Average based (RM-2): a method of extracting items in the order of the average
user ratings in the matrix reconstruction. Figure 6 depicts the average-based matrix
reconstruction.
Figure 7 is similar to Figure 6 except for the item selection process. For example, the
difference is that G1 items in the OM are sorted in descending order based on the
average rating. We applied this process to all genres.

Figure 7. Process of average-based matrix reconstruction.

• Random based (RM-3): a method of extracting items randomly according to the ratio
of GlobalPV in the matrix reconstruction.

We selected RM-1 and RM-2 as the proposed methods for the RM composition. For
comparison testing, RM-3 was added, with random extraction at a rate of GlobalPV used by
RM-1 and RM-2. The comparative experiments with RM-3 demonstrated the significance
of RM-1 and RM-2. We conducted the experiments with RM-1, RM-2, and RM-3 as the
CF input.

Moreover, for further comparative experiments, the OM and the following method
were used as the CF input.
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• Method for comparative experiments: we extracted the user-level RM (rmu) and con-
catenated the matrices, based on which the CF results were derived. The concatenated
matrix was the result of adding the items (I

′
u) of rmu derived from each user. The set

of items in RMc could be considered as a result of combining the genre preferences
of each user in the OM. The difference from RM extracted through the GlobalPV
filter was the result of considering the average genre preferences of the OM users
in the case of RM and RMc was the result of adding the genre preferences of each
user. Figure 8 depicts the process of generating RMc. We used two methods for each
user rmu, namely the selection-based and average-based methods, as in the case of
deriving RM.

Figure 8. Process of generating RMc.

Table 3 summarizes the matrices used as the CF input in the experiments.

Table 3. Matrices used in experiments.

Method Description

Average
genre rate

RM-1 Results of applying GlobalPV to OM,
consisting of an item set based on user selection frequency

RM-2 Results of applying GlobalPV to OM,
consisting of an item set based on high user average preference

RM-3 Results of applying GlobalPV to OM,
consisting of an item set based on random selection

Total
genre rate

RMc-1 Results of concatenating each rmu,
consisting of an item set based on high user selection frequency

RMc-2 Results of concatenating each rmu,
consisting of an item set based on high user average preference

OM Original Matrix,
namely user–item matrix

We used the MAE and RMSE to compare the accuracy of the methods. Equations (9)
and (10) express the MAE and RMSE, respectively.
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MAE =
1
|T| ∑n∈T

|rn − r̂n|, (9)

RMSE =

√
1
|T| ∑n∈T

(rn − r̂n)
2, (10)

where T is the test set of items and n is one of the test items. Furthermore, rn and r̂n denote
the real rating and predicted rating for item n, respectively.

For a more precise and varied analysis, we divided the test set using 10-fold cross-
validation [63,65,66] for each matrix and conducted experiments to derive the MAE and
RMSE results. In general, if we use k-fold cross-validation for the experiments, more
reliable experimental results can be provided based on a small set of data. In this pa-
per, we conducted an experiment using 10-fold cross-validation to provide more reliable
experimental results on a limited size dataset. In total, 10 experimental results can be
provided for the same input, which is derived from different test sets. That is, we can
derive 10 different test results from the same input through 10-fold cross-validation. We
utilize 10-fold cross-validation to derive more experimental results from limited input data.

4.3. Experimental Results
4.3.1. Analysis of Accuracy

Table 4 shows the CF methods used in our experiments and its ID. These IDs are
utilized in Tables 5 and 6. Tables 5 and 6 display the results of the 10-fold cross-validation
with each CF approach. In the tables, Fold− n indicates each dataset for the 10-fold cross-
validation, whereas Mean and St.dev. denote the average and standard deviation of the
MAE for each dataset, respectively.

Table 4. CF method and ID.

ID Method

1 KNN (Basic)

2 KNN (Baseline)

3 KNN (Means)

4 KNN (Zscore)

5 SVD

6 NMF

It can be observed from Table 5 that the MAE of RM-2 in almost all folds, namely
in each dataset, was better than those of the other matrices. Moreover, RM-1 exhibited
superior results in our approaches. In the Mean column, RM-1 and RM-2 exhibited superior
results to the OM, which means that our approaches could derive better prediction results.
In comparison, the results of RM-3 were more inaccurate than those of the OM. Thus, the
extraction methods of RM-1 and RM-2 were significant. Moreover, RMc-1 and RMc-2 exhib-
ited better performance than the OM, but were worse than RM-1 and RM-2, respectively.

In Table 5, from the perspective of each CF approach, it can be observed that RM-1 and
RM-2 still derived more accurate results than the OM. Among the four KNN approaches,
RM-2 exhibited the best performance, and the same results were achieved by SVD and
NMF, which are MF approaches. Thus, RM-1 and RM-2 yielded higher accuracy in all
methodologies than the results derived from the OM as input.
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Table 5. MAE results for 10-fold cross-validation with each CF approach.

ID Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean St. Dev.

1

RM-1 0.7006 0.6897 0.703 0.7036 0.7008 0.6962 0.7048 0.6914 0.6997 0.6936 0.6983 0.005
RM-2 0.5982 0.6297 0.6177 0.6088 0.6239 0.6249 0.6149 0.6259 0.6425 0.6396 0.6226 0.0127
RM-3 0.8052 0.8004 0.8307 0.837 0.7935 0.8164 0.8059 0.8022 0.8151 0.8195 0.8126 0.0131
RMc-1 0.6984 0.7134 0.7159 0.7086 0.69 0.7035 0.6992 0.7015 0.7108 0.7097 0.7051 0.0076
RMc-2 0.6249 0.6453 0.6366 0.6007 0.6224 0.6365 0.6034 0.6382 0.6222 0.6206 0.6251 0.014

OM 0.7419 0.7393 0.7424 0.7392 0.7319 0.7419 0.7369 0.7339 0.7382 0.7407 0.7386 0.0033

2

RM-1 0.66 0.6617 0.66 0.6614 0.6554 0.6573 0.6518 0.6556 0.6545 0.6535 0.6571 0.0033
RM-2 0.5881 0.5765 0.5726 0.6018 0.5725 0.5923 0.5911 0.5879 0.5855 0.577 0.5845 0.0091
RM-3 0.7399 0.7357 0.7469 0.746 0.7447 0.7438 0.7364 0.7504 0.7321 0.7514 0.7427 0.0061
RMc-1 0.6698 0.6607 0.6679 0.6627 0.6604 0.671 0.6539 0.6559 0.6604 0.6501 0.6613 0.0065
RMc-2 0.6063 0.5878 0.6008 0.5781 0.5803 0.5755 0.5807 0.584 0.5834 0.5954 0.5872 0.0098

OM 0.6904 0.6903 0.6871 0.6767 0.6801 0.6844 0.6764 0.6768 0.6883 0.6787 0.6829 0.0055

3

RM-1 0.6679 0.665 0.669 0.6779 0.6787 0.6564 0.6622 0.6794 0.6489 0.6622 0.6668 0.0095
RM-2 0.5752 0.5762 0.5865 0.5981 0.5935 0.5851 0.6021 0.6035 0.5715 0.5883 0.588 0.0108
RM-3 0.7395 0.753 0.7618 0.7441 0.7736 0.7803 0.7672 0.7693 0.756 0.7549 0.76 0.0123
RMc-1 0.6733 0.6575 0.6746 0.671 0.6722 0.6794 0.6758 0.678 0.6708 0.6722 0.6725 0.0057
RMc-2 0.5865 0.5954 0.5888 0.5817 0.5743 0.5634 0.6122 0.5844 0.5929 0.5917 0.5871 0.0123

OM 0.6879 0.6933 0.6957 0.7059 0.693 0.7049 0.7058 0.7094 0.6924 0.7049 0.6993 0.0072

4

RM-1 0.6627 0.6697 0.6737 0.6606 0.6618 0.6579 0.6559 0.6568 0.683 0.6573 0.6639 0.0084
RM-2 0.599 0.5855 0.5919 0.593 0.6028 0.5987 0.5814 0.5936 0.5766 0.5773 0.59 0.0088
RM-3 0.7696 0.7352 0.7609 0.77 0.7794 0.7608 0.7498 0.7364 0.7397 0.7519 0.7554 0.0145
RMc-1 0.6792 0.6659 0.6626 0.6647 0.669 0.6824 0.6737 0.6658 0.6593 0.67 0.6693 0.0069
RMc-2 0.5843 0.5712 0.5795 0.569 0.5845 0.5949 0.6012 0.614 0.5869 0.6033 0.5889 0.0137

OM 0.6846 0.6951 0.6928 0.6951 0.693 0.7002 0.7017 0.7055 0.6957 0.6949 0.6959 0.0054

5

RM-1 0.6595 0.6625 0.6663 0.6459 0.6661 0.6705 0.6705 0.6714 0.6658 0.6729 0.6651 0.0075
RM-2 0.5825 0.5811 0.5873 0.5843 0.5753 0.5898 0.5791 0.5887 0.5889 0.5927 0.585 0.0052
RM-3 0.6964 0.7344 0.7024 0.7217 0.7351 0.72 0.7154 0.7049 0.7188 0.7105 0.716 0.0122
RMc-1 0.6616 0.6588 0.6784 0.6645 0.667 0.6638 0.6719 0.6754 0.6792 0.6722 0.6693 0.0068
RMc-2 0.5696 0.5951 0.5735 0.5923 0.6 0.5719 0.585 0.5878 0.5644 0.5612 0.5801 0.0129

OM 0.6823 0.6865 0.6851 0.6834 0.6854 0.6791 0.6922 0.6886 0.7052 0.6817 0.6869 0.007

6

RM-1 0.6751 0.6777 0.6863 0.6868 0.6951 0.6737 0.6939 0.6944 0.687 0.6815 0.6852 0.0075
RM-2 0.6577 0.6443 0.6285 0.631 0.6566 0.6349 0.6394 0.6241 0.6352 0.6327 0.6384 0.0107
RM-3 0.8112 0.8168 0.8039 0.7865 0.8283 0.8169 0.8084 0.8002 0.7983 0.7946 0.8065 0.0117
RMc-1 0.7005 0.6916 0.69 0.6918 0.6918 0.7017 0.69 0.6894 0.7011 0.6914 0.6939 0.0048
RMc-2 0.641 0.6434 0.6375 0.6414 0.6375 0.6351 0.6336 0.6409 0.6311 0.647 0.6389 0.0046

OM 0.713 0.726 0.7285 0.7125 0.723 0.7276 0.7311 0.7132 0.7196 0.7254 0.722 0.0066

Similar results were demonstrated in the RMSE cases. It can be observed from Table 6
that RM-1 and RM-2 yielded higher accuracy when applying CF compared to the OM.
There was no significant difference between RMc-1 and RMc-2, but the overall results of
RM-1 and RM-2 were more accurate, respectively. Thus, the prediction results of applying
the average ratio to the user genre preferences were more accurate than the prediction
results obtained by concatenating each user ratio. Furthermore, it can be observed that the
method using the PV filter yielded more accurate results than the OM.

Figures 9 and 10 present the means in Tables 5 and 6, respectively.
The results of RM-2 and RMc-2, which selected items based on high average ratings,

exhibited very high accuracy. Thus, the following hypothesis can be stated: “If the average
of ratings constituting the matrix; that is, ri,j in the matrix, is high, the accuracy of the
predictions is high”. To confirm this hypothesis, we computed the average of ri,j making
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up RM-1, RM-2, RM-3, and OM. Table 7 displays the averages and standard deviations of
the ratings in each matrix.

Table 6. RMSE results for 10-fold cross-validation with each CF approach.

CF Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Mean St. Dev.

1

RM-1 0.907 0.9082 0.918 0.9167 0.9139 0.9156 0.9206 0.9013 0.9129 0.9017 0.9116 0.0064
RM-2 0.7786 0.8113 0.8051 0.8012 0.8104 0.8315 0.7994 0.825 0.8526 0.8327 0.8148 0.02
RM-3 1.0278 1.0408 1.0689 1.08 1.0393 1.0572 1.0494 1.0399 1.0506 1.0597 1.0514 0.0148
RMc-1 0.9152 0.9313 0.941 0.9274 0.9004 0.9202 0.9107 0.9106 0.9178 0.9304 0.9205 0.0115
RMc-2 0.8195 0.8493 0.8339 0.7792 0.815 0.8368 0.7805 0.8449 0.8108 0.8186 0.8188 0.023

OM 0.963 0.9666 0.9663 0.9563 0.9516 0.9693 0.9548 0.952 0.963 0.9704 0.9613 0.0067

2

RM-1 0.868 0.8688 0.8631 0.868 0.8539 0.8607 0.8528 0.8593 0.8573 0.8564 0.8608 0.0056
RM-2 0.7833 0.7444 0.7452 0.7887 0.7564 0.7889 0.7773 0.7783 0.7634 0.7628 0.7689 0.016
RM-3 0.9644 0.973 0.9759 0.9684 0.9587 0.9628 0.9575 0.9803 0.949 0.9813 0.9671 0.01
RMc-1 0.8681 0.8731 0.8712 0.873 0.8649 0.879 0.8616 0.8596 0.8607 0.8455 0.8657 0.009
RMc-2 0.7997 0.7768 0.781 0.766 0.7563 0.767 0.7561 0.7785 0.7689 0.7808 0.7731 0.0124

OM 0.9092 0.8989 0.8957 0.8825 0.8838 0.8944 0.8863 0.8836 0.8986 0.8862 0.8919 0.0084

3

RM-1 0.8787 0.8691 0.8709 0.8835 0.8823 0.8607 0.8699 0.8866 0.8541 0.8685 0.8724 0.0098
RM-2 0.7557 0.7487 0.7843 0.7807 0.7798 0.7592 0.797 0.8091 0.7569 0.7702 0.7741 0.0186
RM-3 0.9508 0.982 1.0008 0.9739 1.0253 1.0122 1.0139 1.0091 0.9817 0.9881 0.9938 0.0214
RMc-1 0.8714 0.8614 0.8778 0.8768 0.8828 0.8836 0.8822 0.8874 0.8765 0.8847 0.8785 0.0072
RMc-2 0.7772 0.7847 0.7706 0.7687 0.76 0.7379 0.7924 0.7818 0.7742 0.794 0.7742 0.0157

OM 0.8969 0.9096 0.9077 0.9193 0.9114 0.9206 0.9202 0.9243 0.9076 0.92 0.9138 0.0081

4

RM-1 0.8691 0.8747 0.8822 0.8698 0.881 0.866 0.8606 0.8644 0.8943 0.8629 0.8725 0.01
RM-2 0.8082 0.7793 0.7942 0.7718 0.7855 0.8009 0.7617 0.785 0.7623 0.7605 0.7809 0.0161
RM-3 1.0049 0.9592 0.9906 1.0203 1.015 0.9951 0.9906 0.9742 0.9745 0.9986 0.9923 0.018
RMc-1 0.892 0.8763 0.8711 0.8732 0.8795 0.8931 0.8807 0.8784 0.8657 0.882 0.8792 0.0081
RMc-2 0.7751 0.7657 0.7829 0.7408 0.7635 0.7981 0.797 0.8039 0.7864 0.7998 0.7813 0.0191

OM 0.8959 0.9158 0.9126 0.9109 0.914 0.9163 0.9194 0.9286 0.9162 0.9155 0.9145 0.0077

5

RM-1 0.8594 0.8631 0.865 0.8406 0.8769 0.8755 0.8762 0.8759 0.8709 0.8769 0.868 0.011
RM-2 0.7576 0.766 0.773 0.7639 0.768 0.7715 0.7562 0.7697 0.7804 0.7917 0.7698 0.01
RM-3 0.9046 0.9413 0.9077 0.9183 0.9474 0.9235 0.929 0.9113 0.9369 0.9194 0.9239 0.0138
RMc-1 0.8681 0.8596 0.8867 0.8592 0.8666 0.8617 0.8768 0.8789 0.8866 0.8845 0.8729 0.0106
RMc-2 0.7495 0.7836 0.7625 0.7733 0.7884 0.7708 0.7758 0.7684 0.7225 0.7348 0.763 0.0201

OM 0.8827 0.8901 0.8907 0.8904 0.8883 0.8813 0.8988 0.8999 0.9175 0.8856 0.8925 0.0101

6

RM-1 0.8802 0.8847 0.8952 0.8939 0.9155 0.8732 0.9024 0.9073 0.9037 0.8944 0.8951 0.0123
RM-2 0.8475 0.831 0.8115 0.8118 0.851 0.8269 0.8332 0.7962 0.8212 0.823 0.8253 0.0158
RM-3 1.041 1.053 1.0382 1.0188 1.0666 1.0534 1.048 1.0322 1.0315 1.0307 1.0413 0.0133
RMc-1 0.9143 0.8977 0.8956 0.8992 0.9049 0.9166 0.8977 0.9104 0.9148 0.8955 0.9047 0.0082
RMc-2 0.8371 0.8371 0.8199 0.824 0.8289 0.8329 0.8269 0.8301 0.8096 0.8395 0.8286 0.0086

OM 0.9322 0.9395 0.9483 0.9267 0.9422 0.9538 0.9493 0.9349 0.9315 0.9475 0.9406 0.0086

Table 7. Averages and standard deviations of ratings in each matrix.

Method Average Standard Deviation

RM-1 3.5135 0.5470
RM-2 4.4453 0.3545
RM-3 3.3601 0.7041
OM 3.2921 0.8819
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Figure 9. Average MAE of 10-fold cross-validation for each input matrix.

Figure 10. Average RMSE of 10-fold cross-validation for each input matrix..

According to Table 7, the highest average was provided by RM-2. This is a reasonable
result because the items were extracted from the OM in the order of high average ratings
when regenerating RM-2. In comparison, the other three methodologies, namely RM-1,
RM-3, and OM, did not extract the items in the order of average ratings, so it can be
confirmed that these produced relatively lower averages than RM-2.

Based on the low MAE and RMSE, it can be observed that RM-1, which exhibited the
best results apart from RM-2, had higher average ratings than the other two methods. In
the case of OM, which had the next highest MAE and RMSE, the lowest average value was
observed, and RM-3, which exhibited the worst accuracy as per Tables 5 and 6, resulted in
a higher average than the OM. Thus, a high average rating does not guarantee prediction
accuracy. Furthermore, Figure 11 and Table 8 present the changes in the average, MAE, and
RMSE of the different methodologies based on the OM in percentages. We calculated the
change rates using Equation (11).

dn =
|val(RMn)− val(OM)|

val(OM)
∗ 100, (11)
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where val(RMn) and val(OM) indicate a value, such as the average, MAE, or RMSE for
RM-n and the OM, respectively.

Table 8. Change percentages for average, MAE, and RMSE of each method (OM-based).

Method Average Metric KNN (Basic) KNN (Baseline) KNN (Means) KNN (Zscore) SVD NMF

RM-1&OM 7%
MAE

5% 4% 5% 5% 3% 5%
RM-2&OM 35% 16% 14% 16% 15% 15% 12%
RM-3&OM 2% 10% 9% 9% 9% 4% 12%

RM-1&OM 7%
RMSE

1% 1% 1% 1% 1% 1%
RM-2&OM 35% 11% 11% 12% 11% 12% 9%
RM-3&OM 2% 14% 12% 13% 13% 6% 15%

Figure 11. Change percentages for average, MAE, and RMSE of each method (OM-based).

In Figure 11, the x-axis and y-axis indicate the comparison criterion and change
percentage, respectively. RM-1&OM represents the change of RM-1 based on the OM. For
example, when the average rating of the OM was 3.29 and the average rating of RM-1 was
3.51, the average of RM-1&OM was |3.29− 3.51|/3.29 * 100, which was approximately 6.7%
(it could be rounded to 7%). If the average of RM-2 was 3.4, the average of RM-1&OM was
|3.29− 3.4|/3.29 * 100, which was approximately 3.3%. It means that the results derived
from RM-2 is more close than RM-1 for the result derived from OM. The results were
derived by applying this process to each methodology for the MAE and RMSE. RM-2&OM
and RM-3&OM represent the changes of RM-2 and RM-3, respectively, based on the OM.

Comparing the change rates of the MAE and RMSE in Figure 11 and Table 8, it can be
observed that, in all methodologies, there was a difference in the change rate for the average
and that for the accuracy. The average change rate for RM-1&OM was approximately 7%.
The change rate between the MAE and RMSE varied between approximately 1% and 5%.
Moreover, the average change rate for RM-2&OM was approximately 35%, and the change
rate of the MAE and RMSE ranged from approximately 9% to 16%. It can be observed from



Mathematics 2023, 11, 292 20 of 26

the comparison results that the change in the prediction results was insignificant compared
to the change in the average values.

In the case of RM-3&OM, the change rate for the average was approximately 2%,
whereas the change rate for the MAE and RMSE varied between approximately 9% and
16%. Accordingly, it can be confirmed that the change rate of the prediction accuracy was
greater than that of the average, which means that the difference in the average rating has
less of an effect on the accuracy.

4.3.2. Analysis of Sparsity

Our approach not only can improve the recommendation accuracy, but can also
alleviate the data sparsity. Table 9 and Figure 12 present the data sparsity of the OM
and RM. In Table 9, usersize and itemsize indicate the number of users and items in each
matrix, respectively. Moreover, #o f ratings denotes the number of ratings in each matrix and
sparsity indicates the amount of data sparsity in each matrix as the result of Equation (12).

Figure 12. Data sparsity of OM and RM according to the various combinations of method.

SP =
# of ratings

user size ∗ item size
(12)

Table 9. Data sparsity of OM and RM.

Method Item Size Sparsity

RM-1 1230 0.0685
RM-2 1223 0.0226
RM-3 4590 0.0070
OM 9125 0.0164

It can be observed that the results for the sparsity of RM-1 and RM-2 were higher than
those for the OM. This means that RM-1 and RM-2 had denser matrices than the OM; that
is, when using two RMs, we can obtain more ratings and can apply CF based on the matrix
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with more ratings than the OM. Thus, through RM extraction, we can construct a denser
matrix, which can alleviate the sparsity of the OM.

4.3.3. Analysis of Jaccard Similarity

We determined the similarities of the items composing each matrix to verify the
differentiation of the results. For the verification, we used the Jaccard similarity, which can
be derived according to Equation (13) [67].

J(X, Y) =
|X ∩Y|
|X ∪Y| , (13)

where X and Y indicate sets. The result of the Jaccard similarity yields 1 when the two sets
are the same and 0 when there is no common element. Therefore, the result of Equation (13)
represents the ratio of the elements shared by two sets as a real number between 0 and 1.

For example, suppose that the sets of items in RM-1 and RM-2 are I1 and I2, respectively.
If the elements of both sets are the same, the result of the Jaccard similarity is 1; if all
elements are different, the result is 0.

Table 10 presents the results of the Jaccard similarity between the item sets of each
matrix. It can be observed that the Jaccard similarity between RM-1 and RM-2, which had
higher accuracy than the OM, was approximately 0.087. This means that the item lists of
the two matrices shared approximately 9% of items. RM-1 and RM-2 exhibited superior
performance over the OM, and Table 10 indicates that the ratio of items shared by the
two matrices was actually smaller than the others. Therefore, it can be considered that
the results obtained through the two matrices were not derived through matrices with
similar contents.

Table 10. Jaccard similarity between item lists in each matrix.

Method Jaccard Similarity

RM-1 & RM-2 0.0873
RM-1 & RM-3 0.2404
RM-2 & RM-3 0.1218
RM-1 & OM 0.1357
RM-2 & OM 0.1349
RM-3 & OM 0.5063

In conclusion, the high prediction accuracy and low sparsity of our approach are
verified by comparisons with the OM results. We can check that the proposed method
can improve the prediction accuracy of 16% and 15% for KNN and SVD, respectively.
We can also find that a three times improvement in the sparsity based on RM-1&OM is
obtained. Although our approach can improve existing methods by utilizing regenerated
input, we cannot regenerate an input matrix in the absence of metadata and users’ reaction
information in a domain. Therefore, we can consider that our experimental results can be
derived for domains where users’ reaction data and metadata exist.

5. Conclusions

Recommendation systems operate based on the various user reactions to items. As
such systems operate according to user responses, problems exist whereby recommenda-
tions are difficult to apply for new or less responsive items. Moreover, it is known that
recommendations based on sparse datasets are less reliable.

Thus, we have proposed improving the sparseness and increasing the accuracy of the
user–item matrix by using item features selected by users. Based on the content-based
filtering (CBF) concept, the collaborative filtering (CF) input matrix was regenerated from
the original user–item matrix by using item features, such as the category. That is, prior to
applying the original user–item matrix to CF, we regenerated the matrix as the CF input.
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We first extracted the category ratio of the selected item by users. Moreover, we
proposed a method for regenerating the original user–item matrix based on the extracted
ratio. We assumed that the regenerated matrix (RM) considered the user preferences
compared to the original matrix (OM) and applied it to CF.

Our contributions can be divided into academic and industrial sides. Based on the
academic contributions, we can solve our research question. The academic contributions
are summarized as follows:

• We have proposed a novel approach that can regenerate the input from the OM for
CF by constructing user PVs based on category selection rates and filtering the OM
through user PVs.

• The accuracy was verified by applying the regenerated input matrices to a total of six
CF approaches. The prediction accuracy of the proposed method was verified through
comparative experiments using the OM as input.

• We have demonstrated that the results obtained by our approach are more precise
than those of conventional CF approaches.

• The low sparsity and high prediction accuracy of the proposed method were verified
by comparisons with the OM results. (Improvements of approximately 16% based on
KNN (MAE) and 15% based on SVD (MAE), and a three times improvement in the
sparsity based on RM-1&OM were obtained.)

The recommender systems based on collaborative filtering approaches are currently
addressed in various web services, such as Amazon and Netflix [1,2,5]. These approaches
utilize the user–item rating matrix as input to generate recommendation results. Because of
this reason, if we can construct the same shape of the input matrix, then we can utilize the
constructed matrix as the input of the collaborative filtering approaches.

In our approach, we have reconstructed the input as the same structure by utilizing the
original input matrix. It means that if the original matrix has users as a row and items as a
column, the reconstructed matrix also has the same row and column. Because of this reason,
we can easily apply our approach to the conventional collaborative filtering approaches.
The industrial contributions of our approach are summarized as follows:

• In the case of e-commerce or media content recommendation systems, most of them
suffer from sparsity problems for input data. The matrix reconstruction scheme
proposed in this paper can alleviate the sparsity problems for the real inputs.

• Furthermore, based on the input matrix with reduced sparsity, we can derive a higher
prediction accuracy than the existing input for the aspect of the average ratings.

• Through our approach, it is possible to provide more reliable recommendation results
to online service users with less input.

• In addition, online service providers can build more reliable recommender systems
based on less data.

We regenerated the matrix using the number of selections and average ratings of the
items. The results were compared using the random-based RM and OM as inputs for the
CF. We tested our approach using the MAE and RMSE. Moreover, we confirmed that the
RM produced higher recommendation accuracy than the results obtained through the OM.

The sparsity of each matrix was calculated and the proposed matrix was verified to be
denser than the OM. The differences in the items contained in the RM were demonstrated
by calculating the Jaccard similarity of the set of items in each matrix. On this basis, we
verified the differentiation of the RM derived from each methodology, and, finally, a method
for constructing a denser input matrix, as well as a method for deriving high accuracy
were presented.

We have proposed and simulated our approach based on the MovieLens dataset,
however, we can apply the regenerated method to other domains such as music, books,
and e-commerce items. Namely, if the domain has category information and users’ reaction
to the items in the domain, we can regenerate the input matrix since our approach has
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utilized the feature for the item. Thus, there exist the possibility to apply our approach to
various types of domains that have item features such as category information.

In future work, we will apply this approach to more diverse databases with various
item features to analyze the results. Furthermore, we will apply the user PVs obtained
through the item features to cross-domain recommender systems to verify the usability.

In addition, as deep learning-based recommender system studies progress, it the
embedding approaches has been proposed in various ways using autoencoder or item2vec.
We have introduced the data preprocessing process based on item features that can be
used in terms of deep learning recommendation model. In other words, we have sug-
gested the method of regenerating the input matrix to a more dense form by using the
item features. The proposed method can be used as an input to various deep learning
recommendation models.
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