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ABSTRACT

The latest large-scale data centers offer higher aggregate bandwidth
and robustness by creating multiple paths in the core of the net-
work. To utilize this bandwidth requires different flows take differ-
ent paths, which poses a challenge. In short, a single-path transport
seems ill-suited to such networks.

We propose using Multipath TCP as a replacement for TCP in
such data centers, as it can effectively and seamlessly use avail-
able bandwidth, giving improved throughput and better fairness on
many topologies. We investigate what causes these benefits, teasing
apart the contribution of each of the mechanisms used by MPTCP.

Using MPTCP lets us rethink data center networks, with a differ-
ent mindset as to the relationship between transport protocols, rout-
ing and topology. MPTCP enables topologies that single path TCP
cannot utilize. As a proof-of-concept, we present a dual-homed
variant of the FatTree topology. With MPTCP, this outperforms
FatTree for a wide range of workloads, but costs the same.

In existing data centers, MPTCP is readily deployable leveraging
widely deployed technologies such as ECMP. We have run MPTCP
on Amazon EC2 and found that it outperforms TCP by a factor of
three when there is path diversity. But the biggest benefits will
come when data centers are designed for multipath transports.

Categories and Subject Descriptors

C.2.2[Computer-Comms Nets]: Network Protocols

General Terms: Algorithms, Design, Performance

1. INTRODUCTION
During the last decade, data centers have risen to dominate the

computing landscape. Today’s largest data centers have hundreds
of thousands of servers, and run distributed applications that spread
computation and storage across many thousands of machines. With
so many hosts, it is impractical to manually manage the allocation
of tasks to machines. While applications may be written to take
advantage of locality within the data center, large distributed com-
putations inevitably are spread across many racks of machines, with
the result that the network can often be the bottleneck.

The research literature has proposed a number of data center
topologies[1, 6, 7, 2] that attempt to remedy this bottleneck by pro-
viding a dense interconnect structure such as those shown in Fig. 1.
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Topologies like these have started to be deployed; Amazon’s latest
EC2 data center has such a redundant structure - between certain
pairs of hosts there are many alternative paths. Typically switches
run a variant of ECMP routing, randomly hashing flows to equal
cost paths to balance load across the topology. However, with most
such topologies it takes many simultaneous TCP connections per
host to generate sufficient flows to come close to balancing traffic.
With more typical load levels, using ECMP on these multi-stage
topologies causes flows to collide on at least one link with high
probability. In traffic patterns that should be able to fill the network,
we have observed flows that only manage 10% of the throughput
they might expect and total network utilization below 50%.

In this paper we examine the use of Multipath TCP [4] within
large data centers. Our intuition is that by exploring multiple paths
simultaneously and by linking the congestion response of subflows
on different paths to move traffic away from congestion, MPTCP
will lead to both higher network utilization and fairer allocation of
capacity to flows.

From a high-level perspective, there are four main components
to a data center networking architecture:

• Physical topology

• Routing over the topology

• Selection between multiple paths supplied by routing

• Congestion control of traffic on the selected paths

These are not independent; the performance of one will depend
on the choices made by those preceding it in the list, and in some
cases by those after it in the list. The insight that we evaluate in
this paper is that MPTCP’s ability to balance load spans both path
selection and congestion control, and fundamentally changes the
dynamics of data center traffic management. Further, by explor-
ing many paths and only utilizing the effective ones, it enables the
use of network topologies that would be inefficient with single-path
TCP. Thus we set out to answer two key questions:

• MPTCP can greatly improve performance in today’s data cen-
ters. Under which circumstances does it do so, how big are the
benefits, and on what do they depend?

• If MPTCP were deployed, how might we design data centers
differently in the future to take advantage of its capabilities?

We have examined many topologies and traffic patterns, and in
almost all of them MPTCP provided significant advantages over
regular single-path TCP. Where there was no benefit, flows were
limited at the sending or receiving host. We found no case where
MPTCP performed significantly worse than single-path TCP.

We also looked at new network topologies designed to take ad-
vantage of MPTCP’s end-host load-balancing mechanisms. For
example, a dual-homed FatTree running MPTCP can, for the same
cost, provide twice the throughput of a single-homed FatTree run-
ning MPTCP for a wide range of likely workloads. Without MPTCP,
such a topology makes little sense, as the capacity is rarely usable.
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Fig. 1: Two proposed data center topologies. The bold lines show multiple paths between the source and destination.

Finally we have validated the results on Amazon’s EC2 cloud
using our Linux implementation. We observed that in the EC2 data
center, the 2/3 of flows that have access to multiple paths achieve
approximately three times the throughput using MPTCP than with
regular TCP. As MPTCP is no more aggressive than TCP, this in-
dicates that MPTCP is very effective at finding unused capacity.

2. DATA CENTER NETWORKING
Before examining how MPTCP changes things, we will briefly

discuss the components that comprise the data center architecture.

2.1 Topology
Traditionally data centers have been built using hierarchical topolo-

gies: racks of hosts connect to a top-of-rack switch; these switches
connect to aggregation switches; in turn these are connected to a
core switch. Such topologies make sense if most of the traffic flows
into or out of the data center. However, if most of the traffic is intra-
data center, as is increasingly the trend, then there is a very uneven
distribution of bandwidth. Unless traffic is localized to racks, the
higher levels of the topology become a serious bottleneck.

Recent proposals address these limitations. VL2[6] and FatTree
(Fig. 1(a)) are Clos[3] topologies that use multiple core switches to
provide full bandwidth between any pair of hosts in the network.
They differ in that FatTree uses larger quantities of lower speed
(1Gb/s) links between switches, whereas VL2 uses fewer faster
(10Gb/s) links. In contrast, BCube[7] abandons the hierarchy in
favor of a hypercube-like topology, using hosts themselves to relay
traffic (Fig. 1(b)).

All three proposals solve the traffic concentration problem at the
physical level — there is enough capacity for every host to be able
to transmit flat-out to another randomly chosen host. However the
denseness of interconnection they provide poses its own problems
when it comes to determining how traffic should be routed.

2.2 Routing
Dense interconnection topologies provide many possible parallel

paths between each pair of hosts. We cannot expect the host itself
to know which of these paths is the least loaded, so the routing
system must spread traffic across these paths. The simplest solution
is to use randomized load balancing, where each flow is assigned a
random path from the set of possible paths.

In practice there are multiple ways to implement randomized
load balancing in today’s switches. For example, if each switch
uses a link-state routing protocol to provide ECMP forwarding then,
based on a hash of the five-tuple in each packet, flows will be split
roughly equally across equal length paths. VL2 provides just such
a mechanism over a virtual layer 2 infrastructure.

However, in topologies such as BCube, paths vary in length, and
simple ECMP cannot access many of these paths because it only
hashes between the shortest paths. A simple alternative is to use
multiple static VLANs to provide multiple paths that expose all the
underlying network paths[9]. Either the host or the first hop switch
can then hash the five-tuple to determine which path is used.

2.3 Path Selection
Solutions such as ECMP or multiple VLANs provide the basis

for randomized load balancing as the default path selection mecha-
nism. However, as others [2] have shown, randomized load balanc-
ing cannot achieve the full bisectional bandwidth in most topolo-
gies, nor is it especially fair. The problem, quite simply, is that
often a random selection causes hot-spots to develop, where an un-
lucky combination of random path selections cause a few links to
be overloaded and links elsewhere to have little or no load.

To address these issues, the use of a centralized flow scheduler
has been proposed. Large flows are assigned to lightly loaded paths
and existing flows may be reassigned to maximize overall through-
put[2]. The scheduler does a good job if flows are network-limited,
with exponentially distributed sizes and Poisson arrivals, as shown
in Hedera [2]. The intuition is that if we only schedule the big
flows we can fully utilize all the bandwidth, and yet have a small
scheduling cost, as dictated by the small number of flows.

However, data center traffic analysis shows that flow distribu-
tions are not Pareto distributed [6]. In such cases, the scheduler has
to run frequently (100ms or faster) to keep up with the flow arrivals.
Yet, the scheduler is fundamentally limited in its reaction time as it
has to retrieve statistics, compute placements and instantiate them,
all in this scheduling period. We show later through simulation
that a scheduler running every 500ms has similar performance to
randomized load balancing when these assumptions do not hold.

2.4 Congestion Control
Most applications use single path TCP, and inherit TCP’s con-

gestion control mechanism which does a fair job of matching of-
fered load to available capacity on whichever path was selected.

In proposing the use of MPTCP, we change how the problem is
partitioned. MPTCP can establish multiple subflows on different
paths between the same pair of endpoints for a single TCP con-

nection. The key point is that by linking the congestion control
dynamics on these multiple subflows, MPTCP can explicitly move
traffic off more congested paths and place it on less congested ones.

Our hypothesis is that given sufficiently many randomly cho-
sen paths, MPTCP will find at least one good unloaded path, and
move most of its traffic that way. In so doing it will relieve conges-
tion on links that got more than their fair share of ECMP balanced
flows. This in turn will allow those competing flows to achieve their
full potential, maximizing the bisectional bandwidth of the network
and also improving fairness. Fairness is not an abstract concept for
many distributed applications; for example, when a search appli-
cation is distributed across many machines, the overall completion
time is determined by the slowest machine. Hence worst-case per-
formance matters significantly.

3. MULTIPATH TCP IN SUMMARY
Multipath TCP[4] extends TCP so that a single connection can be

striped across multiple network paths. MPTCP support is negoti-
ated in the initial SYN exchange and the client learns any additional
IP addresses the server may have. Additional subflows can then be
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opened. An additional subflow can be between the same pair of IP
addresses as the first subflow, but using different ports, or it can use
any additional IP addresses the client or server may have. In the
former case, MPTCP relies on ECMP routing to hash subflows to
different paths; in the latter the paths are implicitly identified by the
source and destination IP addresses. Both techniques may be used,
depending on the routing scheme used in a particular data center.

Once multiple subflows have been established, the sending host’s
TCP stack stripes data across the subflows. Additional TCP op-
tions allow the receiver to reconstruct the received data in the orig-
inal order. There is no requirement for an application to be aware
that MPTCP is being used in place of TCP - in our experiments
we have used unmodified applications running on our MPTCP-
capable Linux kernel. However enhanced applications may them-
selves wish to use an extended sockets API to influence which sub-
flows are set up and how data is striped between them (the full
MPTCP protocol is described in [4]).

Each MPTCP subflow has its own sequence space and main-
tains its own congestion window so that it can adapt to conditions
along the path. Although each subflow performs TCP-like additive-
increase on acks and multiplicative decrease on losses, MPTCP
links the behaviour of subflows by adapting the additive increase
constant. The algorithm is:

• For each ACK on subflow r, increase the window wr by
min(a/wtotal, 1/wr).

• Each loss on subflow r, decrease the window wr by wr/2.

wtotal is the sum of the windows on all subflows. a determines the
aggressiveness of all the subflows; it is calculated as described in
the IETF draft specification[12].

Broadly speaking, there are two key parts to this algorithm. First,
by making the window increase depend on the total window size,
subflows that have large windows increase faster than subflows
with small windows. This actively moves traffic from more con-
gested paths to less congested ones, load-balancing the network.

Second, by adapting a, MPTCP can compensate for different
RTTs and can ensure that if all the subflows of a connection traverse
the same bottleneck, they will compete fairly with a regular TCP
flow. However, if the subflows encounter multiple unloaded paths,
one connection can fill them all. The design of the algorithm has
been detailed in [14].

4. MPTCP IN DATA CENTERS
It seems there might be three main benefits from deploying MPTCP

in today’s redundant data center networks:

• Better aggregate throughput, as exploring more paths and load-
balancing them properly should reduce the number of underuti-
lized and idle links.

• Better fairness; the throughputs of different MPTCP connec-
tions should be closer than if TCP were used, as congestion on
network core links should be more evenly distributed.

• Better robustness. If a link or switch fails, routing will route
around it, even without MPTCP, but this takes time. MPTCP
uses many paths; if one fails the others can continue without
pausing. Worse are failures that are not bad enough to trigger
re-routing, but which cause link autonegotiation to fall back to
a low link speed, or which cause very high packet loss rates.
Single-path TCP has no choice but to trickle data through the
slow path; MPTCP can simply avoid sending traffic on a very
congested path.

In this section we examine the extent to which these potential ben-
efits can be realized. As we will see, the benefits depend on:

• The congestion control scheme used.

• The physical topology.

• The traffic matrix generated by the applications.

• The level of load in the network.

Although we cannot predict what future data center applications
will look like, we can at least map out broad areas where MPTCP
gives considerable benefits and other areas where the bottleneck is
elsewhere and MPTCP cannot help.

4.1 A Note on Simulation
In section 6, we give results from running our Linux MPTCP

implementation on a small cluster in our lab, and on Amazon EC2.
But most of the results in this paper come from simulation for two
reasons. First, we do not have access to a large enough data center
to examine issues of scale. But perhaps more importantly, simula-
tion lets us tease apart the causes of complex behaviors.

For this paper, we wrote two simulators. The first, htsim, is a full
packet level simulator that models TCP and MPTCP in similar de-
tail to ns2, but which is optimized for large scale and high speeds.
Even with this simulator, there are limits to what we can model. For
example, simulating the 576-node Dual-homed FatTree in Section
5 with 100Mb/s links requires simulating 46,000 MPTCP subflows
generating 115 Gb/s of traffic. Even a fairly small data center topol-
ogy stresses the limits of simulation.

Today’s larger data centers don’t have hundreds of hosts. They
have tens of thousands1 . To examine these scales we must sacrifice
some accuracy and the ability to model flow arrivals, and resort
to flow-level simulation. Our second simulator models TCP and
MPTCP throughput as a function of loss rate, and uses an iterative
approach to find the equilibrium traffic pattern for a fixed set of
arbitrary duration flows.

Comparing the two approaches on the same topology shows the
flow-level simulator is a fairly good predictor of packet-level per-
formance for long flows. Its main limitation is at high congestion
levels, where it fails to model timeouts, and so predicts higher con-
gestion levels than we see in reality. We mostly use packet-level
simulation, but resort to flow-level to extrapolate to larger scales.

4.2 Examples of Benefits

Throughput Fig. 2 shows the aggregate throughput achieved by
long-lived TCP and MPTCP in a FatTree network. The left his-
togram shows throughput in a FatTree with 128 hosts, 80 eight-
port switches, and 100Mb/s links. The grey bars are from a de-
tailed packet-level simulation, and the black bars are from the flow-
level simulator. The right histogram scales up the topology to 8192
hosts, and shows only flow-level results. The traffic pattern is a
permutation matrix; every host sends to one other host chosen at
random, but with the constraint that no host receives more than one
flow. This is a simple randomized traffic pattern that has the poten-
tial to saturate the FatTree. Of the multiple shortest paths, one is
chosen at random for each subflow, simulating flow-based ECMP
routing.

The bars show the number of MPTCP subflows used, or in the
case of single subflow, shows the behavior with regular single-path
TCP. The figure illustrates several points. Single-path TCP per-
forms rather poorly, achieving less then half of the available capac-

1Microsoft’s Chicago data center reputedly has the potential to hold
as many as 300,000 hosts

268



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

TCP 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t 
(%

 o
f 
o
p
ti
m

a
l)

FatTree, 128 Nodes

No. of MPTCP Subflows

FLOW
PKT

TCP 2 3 4 5 6 7 8

FatTree, 8192 Nodes

No. of MPTCP Subflows No. of MPTCP Subflows

Fig. 2: Multipath needs eight paths to get good utilization in
FatTree, independent of scale

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120

T
h
ro

u
g
h
p
u
t 

(%
 o

f 
o
p
ti
m

a
l)

Rank of Flow

Packet-level, 128 nodes

Single Path TCP
MPTCP

 0  2000  4000  6000  800

Rank of Flow

Flow-level, 8192 nodes

Single Path TCP
MPTCP, 8 subflows

Fig. 3: Distribution of throughput in FatTree

ity. The reason is simple - the full capacity is only available if no
two flows share the same link. If n flows share a link, each only
achieves 1/n of the capacity it should achieve. ECMP’s random
hashing of a flow onto a path results in sufficiently many collisions
that total throughput is less than 50% of the full bisectional band-
width, while many links go idle.

MPTCP explores more paths. With the same ECMP hashing,
fewer links go idle, and so total throughput increases. Interestingly,
it takes around eight subflows per MPTCP connection to properly
utilize the network.

Comparing the left and right histograms, we see the behavior is
largely scale-invariant. In this and other experiments we find that
increasing the network size by two orders of magnitude slightly
reduces the overall performance for both TCP and MPTCP.

Comparing the grey and black histograms, we see that the packet
and flow level simulations are in agreement about the performance
benefits and the number of subflows required. The flow-level simu-
lator slightly underestimates throughput in the single-path TCP and
two-subflow cases.

Fairness Fig. 3 shows the throughput of individual connections
from the 128 host packet level simulation and the 8,192 host flow-
level simulation in Fig. 2, comparing the single-path TCP case with
the eight subflow MPTCP case. Every host’s throughput is shown
ranked in order of increasing throughput. Is is clear that not only
did the utilization improve with MPTCP, but also the fairness im-
proved. With single-path TCP, some flows perform very well, but
many perform poorly, and some get less than 10% of the potential
throughput. With eight subflows, most MPTCP flows get at least
90% of the available capacity, and none get less than 50%. For
applications that farm work out to many workers and finish when
the last worker finishes, such fairness can greatly improve overall
performance.

The subtle difference between packet-level and flow-level simu-
lation is also visible in these curves. The flow-level simulator does
not model timeouts, so flows that traverse multiple congested links

get a little more throughput than they should. These flows then
degrade the performance of competing flows that do not traverse
multiple congested links, so reducing overall performance a little.

4.3 Analysis
The permutation traffic matrix used above is rather artificial, but

it serves to demonstrate that MPTCP can provide substantial gains
over single-path TCP in today’s data centers that are engineered to
provide high bisectional bandwidth using commodity technology
such as cheap gigabit switches. We will investigate where these
gains come from, under which circumstances MPTCP provides
large gains, and when it does not. In particular:

• How does the topology influence the performance of single-
path vs MPTCP?

• How does the traffic matrix and load affect performance?

• How many subflows does MPTCP require? On what does this
depend?

• Can these same benefits be provided using an application that
simply opens multiple regular TCP flows?

4.3.1 Influence of Topology

We start by examining the effect that the network topology has
on performance. The research literature proposes a number of dif-
ferent topologies for data centers, with the aim of providing high
bisectional bandwidth. Two that are particularly enlightening are
VL2[6] and BCube[7].

Like FatTree, VL2 is a Clos[3] topology - essentially a multi-
routed tree using multiple core switches to provide full bandwidth
between any pair of hosts in the network. Unlike FatTree where
every link is cheap gigabit ethernet, VL2 uses ten times fewer links
in the upper layers, but uses 10-gigabit ethernet for them. With
current prices, a VL2 network costs more than a FatTree topology.

We also examined a future version of VL2 that might be built
when 10 gigabit ethernet becomes cheap enough to be used by all
hosts. The core links in this VL2-40 network are then upgraded to
run at 40Gb/s.

The BCube topology shown in Fig. 1(b) is completely different;
instead of using ethernet switches to perform all the switching, it
uses a hybrid of host switching and hardware switching. To route
between nodes on the same ethernet switch, a direct switched path
is used, but to route between nodes that do not share an ethernet
switch, an intermediate host relays the traffic. This provides a very
large number of possible paths between any two hosts, but some of
the host’s resources are used for packet forwarding.

Fig. 4 shows the throughput of VL2, VL2-40 and BCube, us-
ing the permutation traffic matrix for single-path TCP and vary-
ing numbers of MPTCP flows. BCube shows similar performance
gains to FatTree when using MPTCP, and also requires a large
number of subflows to realize these gains. With VL2, the perfor-
mance gains are smaller, and most of the gains are achieved with
only two subflows.

Intuitively, BCube suffers from the same problem with collisions
that FatTree does - when n flows share a link, each achieves approx-
imately 1/n of the capacity (unless it is constrained elsewhere).
With the permutation traffic matrix, the mean number of flows on a
core VL2 link should be 10. However, when ECMP randomly puts
n flows on such a VL2 core link, each of those flows either achieves
1 Gb/s if n < 10, or 10/n Gb/s if n > 10 (unless the flow is con-
tained elsewhere). Thus the impact of uneven flow allocations to
links is smoothed out across many more flows, and few links are
severely underutilized. The result is that while FatTree needs eight
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(a) VL2(11520) (b) VL2-40(8K) (c) BCube4,4(1K)

Fig. 4: VL2 and BCube throughput against number of flows,
using a permutation traffic matrix.
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Fig. 5: Flow rates with VL2, VL2-40 and BCube. With BCube,
multipath flows are not limited to a single interface.

MPTCP subflows to achieve 90% throughput, on VL2 only two
subflows are needed per MPTCP connection. In VL2-40, the 4:1
ratio between core and host linkspeeds increases the effect of colli-
sions compared to VL2; single path TCP throughput is around 70%
of optimal, and we need 4 subflows to utilize 90% of the network.

The aggregate throughput does not tell the whole story. Fig. 5
shows the rates achieved by individual flows, comparing single-
path TCP with MPTCP. Although the total VL2 throughput is fairly
high using single-path TCP, the fairness is relatively low with ap-
proximately 25% of flows achieving less than 60% of what they
should be able to achieve. While two MPTCP subflows bring most
of the throughput gains, adding more subflows continues to im-
prove fairness. VL2-40 gives less fairer throughputs compared to
VL2; here too adding more subflows here significantly increases
fairness. With BCube the distribution is similar to FatTree, except
that as each BCube host has more than one interface, so hosts are
not limited to the interface speed.

4.3.2 Number of Subflows

When we first started to examine MPTCP on FatTree, we were
surprised that eight subflows were needed to achieve 90% through-
put. Why eight, and on what does this depend? A simple analytical
model casts some light on the issue.

In m-way multipath on a k-ary FatTree, let each path contribute
weight 1/m. Assume a permutation traffic matrix, with random
(independent) routing. The total weight on an access link is always
1. To calculate the expected number of flows on intra-pod links
and pod-core links, we need to factor in that some flows stay local
to the rack and some stay local to the pod. The total weight on a
within-pod link is random, with an expected value Ep and variance
Vp. Similarly, Ec and Vc for the pod-core links:
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Fig. 6 shows how variance Vp changes as we add subflows for
varying sizes of network. Vc is very similar. Almost independent of
the size of the network, the variance settles down above eight sub-
flows. Although this model is too simplistic to predict throughput
(it cannot factor in how congestion on one path can free capacity on
another), it captures the dominant effect that determines how many
subflows are required, at least for the permutation traffic matrix.
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4.3.3 Oversubscribed Topologies

All the topologies above all aim to provide full bisectional band-
width; the goal is that every host should be able to transmit at the
full interface speed, regardless of the location of the destination.
This would allow applications to be deployed across any set of
nodes without regard to the limitations of the network topology. We
have seen that even with such topologies, it is hard to actually use
all the network capacity with single-path transport protocols routed
using flow-based ECMP routing. But in fact the goal itself may
be misleading. Such topologies are expensive, and no data center
application we know of sends at its full interface rate constantly.

In a large data center, running many simultaneous applications, it
is extremely unlikely that all will burst simultaneously. Thus these
topologies seem to be overkill for the task at hand - they are much
more expensive than is necessary.

We must therefore consider topologies that oversubscribe the
network core (at least in terms of potential load, not necessarily
actual load). To do this, we created a Clos-style networks, but over-
subscribed the capacity of the uplinks from the top-of-rack switches
by 4:1 (for every four Gb/s from the hosts in the rack, one 1Gb/s
uplink capacity is provided). Again we use a permutation matrix as
a baseline, but now we also need to examine what happens when
the oversubscribed network is overloaded (and underloaded).

Fig. 8(a) shows what happens as we increase the number of con-
nections per host; the y-axis shows the total throughput achieved by
MPTCP connections using four subflows, as a multiple of the total
throughput achieved by single-path TCP using the same traffic pat-
tern. At very low load, the few flows that exist almost never share
a link with another flow, so they saturate the host NIC with both
TCP and MPTCP. At very high load levels, the core is severely
congested with high packet loss, and there are sufficient flows to
saturate all the links in the core, irrespective of whether MPTCP
is used. For a very wide range of load in between, MPTCP pro-
vides significant improvements in throughput, with the maximum
improvement occuring at 0.25 connections per host, which is the
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(a) Permutation, all
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(b) Permutation, slowest 25%
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(c) Random, all
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(d) Random, slowest 25%

Fig. 8: Relative MPTCP performance as a function of load when running Permutation or Random traffic matrices for differing topolo-
gies. Mean performance and the performance of the slowest quarter of flows are shown.

minimum load level to fill a 4:1 oversubscribed topology. The av-
erage throughput improvement depends on the topology used; the
maximum for oversubscribed Fat-Tree is 65%, while VL2-40 and
VL2 improve by 15% and 11% respectively.

It is also instructive to look at the speeds of the slower flows in
these experiments, as these dictate when jobs finish. The average
improvement again depends on topology and load, but the gains are
bigger: MPTCP improves throughput for the slowest flows by 1.5x
to 3x for medium to moderately high load levels.

There is one exception for a highly loaded VL2 where the slower
flows have lower throughput with MPTCP. On closer inspection,
in turns out that the slow flows have very small windows on each
of their subflows, which leads to repeated timeouts and reduced
throughput for those flows; this is despite total network throughput
being higher for MPTCP compared to TCP. For VL2-40 and Fat
Tree the same effect does not apply, as there is more heterogeneity
in the speeds of the individual subflows; at least one or a few of
these have a big enough window to avoid timeouts. A very simple
heuristic can be applied to avoid VL2 throughput degradation for
small flows: if the stack has many subflows with small windows, it
will close some of them to reduce until the remaining windows are
big enough to avoid timeouts.

Irrespective of whether MPTCP is used, we believe data center
designers will be likely to attempt to engineer their networks so that
the core is neither underloaded nor overloaded. An overloaded core
is a performance bottleneck; an underloaded core costs money that
would have been better spent elsewhere. So it appears likely that
the sweet-spot for MPTCP is close to the load level for which the
data center designer would provision.

4.3.4 Influence of the Traffic Matrix

The permutation traffic matrix is useful as a baseline for compar-
ison because it is easy to reason about how much throughput should
be available from the network. With a topology that provides full
bisectional bandwidth, the load is just sufficient to fully load the
network. It is however, not terribly realistic.

A random traffic matrix chooses randomly the sources and des-
tinations, allowing traffic concentrations on access links. Because
of this, traffic flowing through the core is much less than in a per-
mutation TM for the same number of flows.

Fig. 8(c) shows average throughput improvement with MPTCP
vs. TCP in the Fat Tree, VL2 and VL2-40 4:1 oversubscribed
topologies. The results are very similar to the permutation TM, but
the relative improvements are slightly smaller; this is the effect of
access link collisions. Fig. 8(d) shows the throughput improvement
for the slowest 25% of flows; MPTCP increases their throughput on
average by 1.3 to 1.8 times, for a wide range of loads.

We ran the same experiments with full-bisection topologies. Fat-
Tree improved by maximum of 30%, while BCube improved by
150% to 300%, depending on the load level. The BCube improve-

ments come from MPTCP’s ability to simultaneously use multiple
interfaces for the same flow.

Full-bisection VL2 and VL2-40 showed no improvement, which
was puzzling. To understand this effect, say we randomly allocate
n flows to n hosts. The probability that a host sends no flow is:

p[no flow] =

„

1 −
1

n

«

n

→
1

e

The number of hosts that do not send are then n

e
; this bounds the

total throughput. In fact the throughput is lower. For example, of
the hosts that send only one flow, many of these will be received by
a host receiving more than one flow, so the sender will be unable
to send at its full speed. Numerical analysis shows that when this
is taken into account, the maximum achievable throughput by any

load-balancing algorithm with random traffic is limited by collid-
ing flows on the sending and receiving hosts to less than 1

2
of the

bisectional bandwidth.
With such a workload, none of VL2’s 10Gb/s core links is ever

saturated, so it makes no difference if TCP or MPTCP is used.

Locality of Traffic The random and permutation traffic matri-
ces provide no locality of traffic. With a full bisection topology,
it should in principle not be necessary for applications to local-
ize traffic, although as we have seen, this is only really true under
very light or heavy loads, or when multipath transport uses suffi-
ciently many paths. However, with oversubscribed topologies, ap-
plications can always get better performance if they can localize
traffic to the rack, because that part of the topology is not oversub-
scribed. MPTCP provides no performance improvement within the
rack, because such flows are limited by their link to the top-of-rack
switch. Just how good does application-based traffic localization
have to be for the advantages of MPTCP to be nullified?

We simulated a 4:1 oversubscribed FatTree and generated a ran-
dom traffic matrix, with the constraint that a fraction of the flows
were destined for a random host with the sender’s rack, while the
rest were destined for an unconstrained random host. Every host
sends one flow, so without locality this corresponds to the 1 flow-
per-host data point from Fig. 8(a) - a rather heavily loaded network.
Fig. 7 shows the aggregate throughput as locality is increased. Un-
surprisingly, as traffic moves from the oversubscribed core to the
non-oversubscribed local hosts, aggregate performance increases.
However, MPTCP continues to provide approximately the same
performance benefits until around 75% of the flows are rack-local.
Above this point the network core is lightly loaded, and all flows are
limited by the sending or receiving hosts, so MPTCP provides no
improvement. We see similar benefit with a localized permutation
traffic matrix, though the absolute throughput values are higher.

Finally, we examined many-to-one traffic patterns; there the ac-
cess links are heavily congested, no alternative paths are available,
and so MPTCP and TCP behave similarly.
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4.3.5 Influence of Congestion Control

Do we need all of MPTCP’s mechanisms to get the performance
and fairness benefits above? MPTCP establishes multiple subflows
per connection, and links the congestion control behavior of these
subflows to achieve two goals:

• It is fair to single-path TCP flows, even when multiple subflows
of a connection traverse the same bottleneck.

• It explicitly moves traffic from the more congested subflows to
the less congested subflows.

To understand what is going on, we must tease apart the mecha-
nisms. We compare MPTCP with these algorithms:

Uncoupled TCP. Each subflow behaves independently, exactly as
if an application had opened multiple TCP connections and
striped data across them. An UNCOUPLED flow will be un-
fair to regular TCP; if it has n subflows through a bottleneck,
it will achieve approximately n times the throughput of a
competing TCP.

Equally-Weighted TCP (EWTCP). Each subflow runs TCP’s ad-
ditive increase, multiplicative decrease algorithm, but the in-
crease constant is decreased depending on the number of ac-
tive subflows. An EWTCP flow will be fair to regular TCP
at a bottleneck, even if all the EWTCP subflows traverse that
bottleneck. However, it will not actively move traffic away
from congested paths.

A rather different multipath solution would be to deploy per-
packet ECMP multipath routing, spreading the packets of a single
flow across multiple paths, as opposed to per-flow ECMP which
hashes the five-tuple to maintain a consistent path for each flow.
For this to work, a single-path TCP endpoint must be modified to
avoid unintentionally treating reordering as an indicator of packet
loss. Thus we also tested:

PACKETSCATTER. The switches perform per-packet load bal-
ancing across all the available alternative paths. The TCP
sender runs a more robust fast-retransmit algorithm, but re-
tains a single congestion window as it is unaware of the mul-
tiple paths.

Fig. 9 shows the throughputs of individual connections for each
algorithm. This is a packet-level simulation with 128 nodes in
a FatTree topology, running a permutation traffic matrix of long
flows. The result sugegsts that it does not matter whether multipath
transport is performed within TCP, or at the application level, and
that the load balancing aspects of MPTCP’s linked congestion con-
trol do not greatly affect throughput. In fact the best performance is

 50  100  150  200  250  300

p
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Fig. 12: The effect of short flows competing with different
multipath congestion controllers

given by PACKETSCATTER, which spreads over all possible paths,
but as we shall see, this result is fragile and only applies to over-
provisioned networks with no hot spots.

It is clear that many of the performance benefits seen so far are
the results of spreading load over many paths. Given this result,
is there any reason to deploy MPTCP, as opposed to multipath-
capable applications running over regular TCP?

To understand the differences between these algorithms, we have
to look more closely. Fig. 10 shows the loss rates for all the links
of the FatTree topology used in Fig. 9. We show core links sepa-
rately from access links because congesting the core is qualitatively
different from self-congestion at the host’s own NIC.

UNCOUPLED TCP is clearly much more aggressive than single-
path TCP, resulting in much higher packet loss rates, both in the
core and access links. Although this does not directly impact per-
formance for long-running UNCOUPLED flows, it does affect com-
peting traffic.

MPTCP, EWTCP and Single-path TCP are equally aggressive
overall, and so congest the access links equally. In the core, MPTCP
performs as expected, and moves traffic from the more congested to
the less congested paths, relieving congestion at hot spots. EWTCP
lacks this active load redistribution, so although it does not increase
loss at hot spots, it doesn’t effectively relieve it either. EWTCP is
also not as aggressive as MPTCP on the less loaded paths, so it
misses sending opportunities and gets slightly lower throughput.

With per-packet round-robin ECMP, PACKETSCATTER cannot
congest the core links; consequently the losses required to constrain
its transmit rate are concentrated on access links.

Short Flows Fig. 12 examines how the algorithms affect com-
peting short flows. The topology is the 4:1 oversubscribed Fat-
Tree; each host sends to one other host; 33% send a continuous
flow using either TCP or one of the multipath algorithms, provid-
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ing enough traffic to congest the core. The remaining hosts send
one 70 Kbyte file on average every 200ms (poisson arrivals) using
single-path TCP (ECMP sends each via a new path), and we mea-
sure how long these flows take to complete. The averages in these
experiments are:

Algorithm Short Flow Finish Network Core
Time (mean/stdev) Utilization

SINGLE-PATH TCP 78 ±108 ms 25%
PACKETSCATTER 42 ± 63 ms 30%
EWTCP 80 ± 89 ms 57%
MPTCP 97 ± 106 ms 62%
UNCOUPLED 152 ± 158 ms 65%

It is clear that UNCOUPLED significantly hurts the short flows.
Single-path TCP fails to spread load within the core, so while many
short flows complete faster, some encounter more congestion and
finish slower. MPTCP fills the core, but isn’t overly aggressive,
having much less impact than UNCOUPLED. Compared to TCP,
MPTCP increases mean completion time by 25% but decreases
the finish time of the slowest short flows by 10%. EWTCP has less
impact on short flows than MPTCP, which should not be surpris-
ing - while it does use multiple paths, it does not load-balance as
effectively as MPTCP, failing to use capacity quickly where it is
available.

PACKETSCATTER lets short flows finish quickest, but gets very
low network utilization, close to what TCP provides. This is be-
cause long flows back off on all paths as soon as one path looks
congested, despite congestion being transient due to short flows.
MPTCP achieves almost all of the performance that UNCOUPLED

can manage, but its lower aggressiveness and better load balancing
greatly reduce impact on competing traffic.

Robustness What happens when there is a hot spot in the net-
work? We drop a single link in the core network from 1Gb/s to
100Mb/s. Such a failure is quite common: Gigabit ethernet requires
two copper pairs in a Cat-5e cable; if one RJ45 conductor fails to
seat properly, it can fall back to 100Mb/s which only requires a sin-
gle pair. Similar results would be seen if a single unresponsive flow
saturated one link (e.g. a FCoE or UDP flow).

Results, shown in Fig. 11, show that MPTCP does what it de-
signed to do, moving traffic off the hot link onto alternative paths;
other flows then move some of their traffic off these alternative
paths, and so on, so the effect of the failure is negligible. EWTCP
and UNCOUPLED do not shift traffic away from congestion, giv-
ing less throughput to the flows that pass through the bottleneck.
PACKETSCATTER behaves worst: it has no way to separate the bad
link from the good ones. It just observes a high loss rate, and backs
off. Every single connection that has any available path through the
bad link achieves about 10% of the throughput it should achieve.

Network Efficiency The example below shows another difference
between EWTCP and MPTCP, and is taken from [14]. If there are
multiple different length paths to a destination, pathological traf-
fic matrices are possible where the network resources are wasted.
MPTCP will explicitly move traffic off the paths that traverse mul-
tiple congested links, avoiding such pathologies. Such examples
do not occur in FatTree-style topologies, but they can occur with
BCube.

To illustrate the issue, consider a many-to-one traffic matrix, as
in a distributed file system read from many servers. Typically the
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distributed file systems store the data on hosts close in the network,
to allow higher throughput writes. In our experiment each host
reads from 12 other hosts, chosen to be the host’s neighbors in the
three levels in BCube(4,3). The per-host total read throughputs are:

SINGLE-PATH 297 Mb/s
EWTCP 229 Mb/s
MPTCP 272 Mb/s
PACKETSCATTER 115 Mb/s

Due to the locality, single-path TCP can saturate all three of the
host’s 100 Mb/s NICs, and achieves maximum throughput. EWTCP
uses multiple paths and long paths congest short ones. MPTCP’s
linked congestion control mechanism moves almost all of the traf-
fic onto the shortest path, avoiding paths that traverse multiple con-
gested links, and so greatly reduces the self-congestion.

PACKETSCATTER suffers particularly badly in this case. It spreads
traffic across both short and longer paths, and with this regular traf-
fic matrix it actually succeeds in equalizing the loss rate across all
paths. However, most of the traffic takes multi-hop paths using the
network very inefficiently. If we wish to take advantage of multi-
path in the cases where it benefits flows and also avoid this scenario
and that of Fig. 11, it seems inevitable that each subflow must have
its own sequence space and congestion window[11]. These choices
dictate the core design of MPTCP.

4.4 Scheduling and Dynamic Flow Arrivals
With single-path TCP is it clear that ECMP’s randomized load

balancing does not perform sufficiently well unless the topology
has been specifically tailored for it, as with VL2. Even with VL2,
MPTCP can increase fairness and performance significantly.

ECMP however is not the only single path selection algorithm;
Hedera proposes using a centralized scheduler to supplement ran-
dom load balancing, with the goal of explicitly allocating large
flows to paths. Specifically, Hedera flows start off using ECMP,
but are measured by the centralized scheduler. If, during a schedul-
ing period, a flow’s average throughput is greater than 10% of the
interface speed, it is explicitly scheduled. How well does MPTCP
compare with centralized scheduling?

This evaluation is more difficult; the performance of a scheduler
can depend on lag in flow measurement, path configuration, and
TCP’s response to path reconfiguration. Similarly the performance
of MPTCP can depend on how quickly new subflows can slowstart.

We use a 128-host FatTree running a permutation traffic ma-
trix with closed loop flow arrivals (one flow finishes, another one
starts). Flow sizes come from the VL2 dataset. We measure through-
puts for single-path TCP with ECMP, MPTCP (8 subflows), and a
centralized scheduler using the First Fit heuristic Hedera [2].2

The total throughput is shown in Fig. 13. Again, MPTCP out-
performs TCP over ECMP. Centralized scheduler performance de-
pends on how frequently it is run. In [2] it is run every 5 sec-

2First Fit is much faster than Simulated Annealing; execution speed
is essential to get benefits with centralized scheduling.
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onds. Our results show it needs to run every 100ms to approach the
performance of MPTCP; even if it runs every 500ms there is lit-
tle benefit because in high bandwidth data center even large flows
complete in around a second.

Host-limited Flows Hedera’s flow scheduling algorithm is based
on the assumption that it only needs to schedule long-lived flows
because they contribute most of the bytes. Other flows are treated
as background noise. It also assumes that a flow it schedules onto
an unused link is capable of increasing to fill that link.

Both assumptions can be violated by flows which are end-host
limited and so cannot increase their rate. For example, network
bandwidth can exceed disk performance for many workloads. Host-
limited flows can be long lived and transfer a great deal of data, but
never exceed the scheduling threshold. These flows are ignored by
the scheduler and can collide with scheduled flows. Perhaps worse,
a host-limited flow might just exceed the threshold for scheduling,
be assigned to an empty path, and be unable to fill it, wasting capac-
ity. We ran simulations using a permutation matrix where each host
sends two flows; one is host-limited and the other is not. When the
host-limited flows have throughput just below the 10% scheduling
threshold, Hedera’s throughput drops 20%. When the same flows
are just above the threshold for scheduling it costs Hedera 17%.

Scheduling App Limited Flows

Threshold Over-Threshold Under-Threshold

5% -21% -22%
10% -17% -21%
20% -22% -23%
50% -51% -45%

The table shows the 10% threshold is a sweet spot; changing it
either caused too few flows to be scheduled, or wasted capacity
when a scheduled flow cannot expand to fill the path. In contrast,
MPTCP makes no such assumptions. It responds correctly to com-
peting host-limited flows, consistently obtaining high throughput.

5. EVOLVING TOPOLOGIES WITH MPTCP
Our previous experiments showed that only a few workloads

saturate the core of full-bisection topologies; these workloads are
somewhat artificial. To justify full-bisection topologies requires:

• There is no locality to the traffic.

• There are times when all hosts wish to send flat-out.

• There is no concentration of traffic on any access link.

In practice, none of these assumptions seem valid, so building a
topology that provides full bisectional bandwidth seems to be a
waste of money.

In section 4.3.3, we examined an oversubscribed FatTree: one
where for the same core network we connected four times as many
hosts. This seems a more likely topology, and hits a better balance
between being bottlenecked on the core and being bottlenecked on
host access links. It also takes advantage of any locality provided
by the application. For example, HDFS places two out of three
replicas in the same rack, and map jobs in MapReduce are assigned
to servers in the same rack as the data. For such topologies, MPTCP
cannot help much with the local traffic, but it does ensure the core
is used to maximal effect.

If we now take a leap and assume all hosts in the data center
support MPTCP, then we should also ask whether different topolo-
gies enabled by MPTCP would perform even better. The obvious
place to start is to consider cases where the workloads we have
examined are bottlenecked on the access links between the hosts

Fig. 14: Dual-homing in the Fat Tree Topology

and the top-of-rack (ToR) switches. These cases can only be im-
proved by adding more capacity, but moving to 10Gb/s ethernet is
expensive. With single-path TCP, there is limited benefit from ad-
ditional 1Gb/s ethernet links to the ToR switches, because a single
flow cannot utilize more than one path. MPTCP does not have this
limitation. Almost all current servers ship with dual gigabit ether-
net onboard, so an obvious solution is to dual-home hosts to ToR
switches, as shown in Fig.14. Whether to overprovision the core
is then an additional question a data center operator must consider,
based on predicted workload.

For our experiments, we wish to keep the cost of the network
constant, so we can directly compare new and existing topologies.
To do so, we impose the artificial constraint that the number of
switch ports remains constant, but that we can move ports from
one place in the topology to another3.

Consider the following two topologies:

Perfect Switch . FatTree and VL2 both try to emulate a single
huge non-blocking switch. VL2 comes closer to succeeding
than FatTree does, but a perfect switch serves as a good con-
trol experiment, giving an upper bound on what any network
core might provide using single links to the hosts.

Dual-homed FatTree (DHFT) . A full FatTree requires five switch
ports per host; one is to the host and four connect the links
between the two layers of switches. If we remove one port
per host from the core and use it to connect the second inter-
face on each server, the network requires the same number
of switch ports.

To produce a regular DHFT topology with this ratio of core-to-
access capacity, we start with a k-port FatTree topology. We leave
the upper-pod switches and aggregation switches the same, and
replace each top-of-rack switch with two 11k/12 port switches.
With FatTree, each ToR switch had k/2 uplinks and connected k/2
hosts. With DHFT, each pair of DHFT ToR switches still has k/2
uplinks, but have 4k/3 downlinks, supporting 2k/3 hosts between
them. In total, there are still five switch ports per host.

For sensible values of k, we cannot produce fully regular DHFT
and FatTree networks with the same number of ports per host.
For this reason we compare DHFT with the Perfect Switch, which
should underestimate the benefits of DHFT.

5.1 Analysis

Effects of Locality It is not our aim to show that DHFT is in any
sense optimal; we cannot define optimality without knowing the
workload and which metrics are most important. Rather, we aim to
show that MPTCP creates new options for data center topologies;
DHFT is a simple example of such a topology.

DHFT presents opportunities single path TCP can’t exploit. If
the network is underutilized, any pair of communicating hosts should
be able to utilize both their NICs, reaching a throughput of 2Gb/s.

3In a real network, the ports per switch would be fixed, and the
number of hosts and switches varied, but this does not allow for a
fair comparison, independent of the prices of hosts and switches
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We wish to tease apart the effects of the topology from the effects
of running MPTCP over the topology. We compare:

• TCP over the Perfect Switch. This is the control experiment,
and is an upper bound on what TCP can do in any single-homed
topology. As there are no parallel paths, MPTCP cannot help
on a Perfect Switch. Locality also has no effect on the results.

• Single-path TCP over DHFT. Although DHFT is not ideal for
TCP, this provides a baseline for comparison.

• MPTCP over DHFT. We wish to understand when MPTCP
over DHFT outperforms any single-homed topology, and see
how much of this is due to MPTCP.

Our first experiment shown in Fig. 15 is a packet-level simula-
tion of the permutation traffic matrix, using long-lived flows with
varying degrees of intra-ToR traffic locality. The DHFT network
has k=12, giving 576 hosts, and 100Mb/s links, giving a maximum
throughput of 43 Gb/s if no traffic is local, and 115 Gb/s if all the
traffic is local to the rack and both links from each host are used.
The dark grey region shows throughputs that are feasible as locality
changes. If only one of the two interfaces on each host is used, as
is the case with single-path TCP, then the light grey region shows
the possible throughputs.

Our baseline for comparison is a perfect switch directly connect-
ing all 576 hosts via 100Mb/s links. This provides an upper bound
on what a regular FatTree with the same number of switch ports as
the DHFT could achieve with perfect traffic scheduling.

MPTCP using eight subflows achieves close to the theoretical
maximum for all degrees of locality. In contrast, due to flow col-
lisions on core links, single-path TCP does not even come close to
the theoretical single-path limits until most of the traffic is not us-
ing the core. If the traffic resembles a permutation traffic matrix,
building a DHFT topology without MPTCP makes little sense.

If no traffic is local, MPTCP on DHFT is outperformed by the
Perfect Switch. But to achieve no locality requires effort - even
with a random traffic, some flows stay local to the rack. In practice,
applications often adaptively arrange for processing to take advan-
tage of locality. MPTCP on DHFT outperforms the Perfect Switch
when at least 12% of traffic is local, and costs the same in switch
ports as a FatTree that is strictly worse than a Perfect Switch.

Effects of Load With a random traffic matrix, throughput can be
limited by access links collisions. For single-path TCP, a DHFT
can reduce this bottleneck, improving performance. Collisions in
the DHFT core remain an issue though. The benefits are much
greater for MPTCP, as it can utilize both access links even when
there are no collisions. Fig. 16 shows how performance depends

on load. At light-to-medium load, MPTCP achieves nearly twice
the performance of the perfect switch. At high load, the DHFT core
is the bottleneck, and the Perfect Switch core has higher bandwidth.

Interestingly, if we keep adding connections, we expect that around
20 connections per host MPTCP will again start to get more through-
put than the perfect switch as more hosts gain at least one rack-local
connection. In the extreme, an all-to-all traffic matrix will achieve
twice the throughput of the perfect switch, with most traffic being
rack-local flows. Such extreme workloads push the limits of our
packet-level simulator, and have no practical relevance.

5.2 Discussion
DHFT costs the same as a Fat Tree (same port count), but has

more links in the access. It provides benefits for traffic patterns
with hotspots, and those where the network core is underutilized.
Compared to an idealized Fat Tree (i.e. perfect switch), DHFT’s
worst case performance is 75% and best case is around 200%. If
all traffic matrices we analyzed are equally likely to appear in prac-
tice, DHFT trades a bit of worst-case performance for substantial
average-case gains.

Beyond performance, DHFT improves robustness: any lower-
pod switch failure does not cut-off an entire rack of servers. As
most racks have dual power supplies, switch redundancy eliminates
the biggest single cause for correlated node failures. In turn, this
will likely increase application locality; for instance HDFS could
choose to store all three replicas of each block in the same rack.

DHFT is not optimal by any measure, but it shows that we can
create topologies with better performance if we assume MPTCP is
the transport protocol. DHFT makes little sense with TCP, as most
of the benefits vanish either due to collisions in the core or TCP’s
inability to use multiple interfaces for a single connection.

With MPTCP as transport, a wider range of topologies are cost-
effective. Multipath TCP allows us to linearly scale bisection band-
width for the same increase in cost. For instance, to create a topol-
ogy with 2Gb/s full bisection bandwidth, we could use a k-port Fat
Tree with k3/8 dual-homed hosts. Transport flows would need to
be split across different host interfaces to reach 2Gb/s. Single path
TCP can’t effectively utilize such a topology.

For really large data centers with hundreds of thousands of hosts,
Fat Tree may not be feasible to deploy. We expect there will be is-
lands of Fat Trees, connected to a super core with 10Gb/s uplinks.

6. EXPERIMENTAL VALIDATION
Simulation is only as good as our ability to predict which prop-

erties of the environment we are modeling will turn out to be im-
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Fig. 18: Performance as a function of
locality in the DHFT testbed
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Fig. 20: 12 hours of throughput, all
paths between forty EC2 nodes.

portant. Ideally we would cross-validate results against the full im-
plementation. We had two opportinities to do this.

First, we built several small FatTree-like topologies in our lab,
with 12 hosts and 7 switches. Although this is too small to see
various statistical multiplexing effects, it does provide a controlled
enviroment for experimentation. We primarily use this for mi-
crobenchmarks to validate aspects that cannot be accurately mod-
eled in simulation.

Our second opportunity was to rent virtual machines on Ama-
zon’s Elastic Compute Cloud (EC2). This is a real large-scale pro-
duction data center, but we can only infer topology and we cannot
control or even measure competing traffic.

6.1 Microbenchmarks
Our Linux implementation is still research-grade code; it has not

been optimized and mature code should perform better. All the
same, it is important to verify that the implementation is capable of
the performance indicated in the simulations. In particular, if eight
subflows per connection are needed, can the implementation cope?
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The histogram above shows host CPU load as the client sends to
the server saturating a Gigabit link. Both machines are 2006-era,
with 2.2GHz single-core Opteron CPUs. Even on old machines,
growing beyond two subflows only increases CPU load by 10%.

Should MPTCP be enabled for all TCP connections in a data
center? We connected two dual-interface machines to a gigabit
switch, and measured the time to setup a connection and transfer
a short file. TCP can only use one interface; MPTCP can also use
the second, but only after the first subflow has negotiated the use
of MPTCP and the second subflow has been established. Figure 17
shows that TCP is quicker for files of less than about 10 packets,
but much slower thereafter. To avoid penalizing short flows, the
code just needs to wait two RTTs after data transmission starts (or
until the window of the first subflow is big enough) and only then
start a second subflow.

6.2 DHFT Testbed Experiments
We built a small DHFT network with 12 hosts in two racks. Each

host connects to the two ToR switches in its rack, which are dual
homed to two aggregation switches, giving four static-routed paths

between hosts in different racks. The switches are soft switches
running Linux on PCs. ToR-to-core links are oversubscribed 3:2.

Our aim is to validate some of the simulations, and to see how
well our Linux MPTCP implementation behaves with multiple paths.
To compare with Fig. 15 we ran the permutation locality traffic
matrix, varying the fraction of rack-local connections. A traffic
pattern quite similar to this is generated by HDFS writes, where
2/3 of the traffic is rack-local. The throughput curve, shown in
Fig. 18, is close to the theoretical value; if 15% of traffic is lo-
cal, DHFT equals the throughput of a perfect switch; with more
local traffic, the improvements are bigger. Aggregate throughput
levels off at 21Gb/s; although MPTCP could send more, the Linux
soft-switches are saturated.

To validate MPTCP’s robustness to link failures we ran the ex-
periment from Fig. 11, downgrading a core link’s speed from 1Gb/s
to 100Mb/s. Single-path TCP cannot avoid this link as such a fail-
ure will not trigger re-routing. We ran a zero-locality permutation
matrix to maximally load the core. Fig. 19 shows a time series of
flow throughputs. Approximately 4 minutes into the experiment,
we downgrade one of the core switches’ links to 100Mb/s. MPTCP
copes well: its congestion control fairly distributes the remaining
core capacity between the flows. When the link returns to 1Gb/s,
MPTCP flows increase to fill the capacity.

6.3 EC2
Amazon’s EC2 compute cloud allows us to run real-world ex-

periments on a production data center. Amazon has several data
centers; their older ones do not appear to be have redundant topolo-
gies, but their latest data centers (us-east-1c and us-east-1d) use a
topology that provides many parallel paths between many pairs of
virtual machines.

We do not know the precise topology of the US East data cen-
ter. Compared to our simulations, it is complicated slightly because
each instance is a virtual machine, sharing the physical hardware
with other users. Background traffic levels are also unknown to us,
and may vary between experiments.

To understand the variability of the environment and the po-
tential for MPTCP to improve performance, we ran our MPTCP-
capable Linux kernel on forty EC2 instances, and for 12 hours
sequentially measured throughput with iperf between each pair of
hosts, using MPTCP with 2 and 4 subflows and TCP as transport
protocols. The resultant dataset totals 3,000 measurements for each
configuration, and samples across both time and topology.4

Fig. 20 shows the results ordered by throughput for each config-
uration. Traceroute shows that a third of paths have no diversity; of

4We also ran the same experiment for 24h with ten machines; re-
sults are qualitatively similar.
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these paths 60% are local to the switch (2 IP hops), while the others
have four IP hops. They roughly correspond to the right-hand 35%
of the flows in the figure; they achieve high throughput, and their
bottleneck is most likely the shared host NIC. MPTCP cannot help
these flows; in fact some of these flows show a very slight reduction
in throughput; this is likely due to additional system overheads of
MPTCP.

The remaining paths are four IP hops, and the number of avail-
able paths varies between two (50% of paths), three (25%) up to
nine. Traceroute shows all of them implement load balancing across
a redundant topology. MPTCP with four subflows achieves three
times the throughput of a single-path TCP for almost every path
across the entire 12-hour period.

7. RELATED WORK
Multipath TCP spans routing, path selection and congestion con-

trol, offering a general solution to flow scheduling in data center
networks. Our design of the MPTCP congestion controller was
presented in [14]; there we also briefly analyzed the applicabil-
ity of MPTCP to current data centers, and the effect of different
congestion controllers. This paper provides a much more detailed
analysis of MPTCP in existing data centers, as well as exploring
new topologies enabled by MPTCP.

There has been much work on scheduling for Clos networks [10,
13, 8]. m = n Clos networks are rearrangeably non-blocking:
there is an assigment of flows to paths such that any source-destination
traffic pattern can be satisfied at maximum speed. However, map-
ping flows to paths is difficult; random path selection can give less
than 50% of the possible throughput. Many heuristic algorithms
have been proposed to utilize Clos networks, but most have draw-
backs either in convergence time or performance [8]. More re-
cently, Hedera provided such a solution for data center networks us-
ing a centralized coordinator and programmable switches to place
flows on paths in the Fat Tree topology [1].

VL2[6] sidesteps the scheduling issue by using 10Gb/s links in
the core and per-flow Valiant Load Balancing (ECMP). The speed
difference between core and access links reduces the effect of colli-
sions. With BCube [7], sources probe congestion on all paths then
use source routing. Unfortunately congestion varies rapidly, and
the initial choice may quickly become suboptimal.

Spreading each connection over multiple paths makes the schedul-
ing problem tractable. Geoffray [5] proposes striping packets across
multiple paths, coupled with layer two back-pressure. The limita-
tions of this solution stem from the limitations of back-pressure: it
is unclear how well this scheme works over multi-hop paths with
heterogeneous hardware, as found in todays data centers. In addi-
tion to changing the switches, the transport protocol must also be
changed to cope with frequent reordering.

Multipath TCP takes the next logical step, making the end-host
aware of the different paths, but not changing the network. MPTCP
is topology agnostic, completely distributed, and can react on the
timescale of a few round trip times to changes in load. MPTCP
finds free capacity in the network, increases fairness and is robust
to congested links or failures. Finally, it can cope with app-limited
flows; network-based solutions struggle here because they have in-
sufficient information. MPTCP gets these benefits because it com-
bines path selection, scheduling and congestion control.

8. CONCLUSIONS
In this paper we examined how the use of MPTCP could improve

data center performance by performing very short timescale dis-
tributed load balancing. This makes effective use of parallel paths

in modern data center topologies. Our experiments show that for
any traffic pattern that is bottlenecked on the network core rather
than on the hosts or their access links, MPTCP provides real per-
formance benefits. Due to cost, we expect network cores to be over-
subscribed in real data centers, so these benefits seem likely to be
common; certainly we observed them in Amazon’s EC2 network.

A surprising result is the need to use as many as eight subflows
for FatTree and BCube to achieve both good throughput and fair-
ness. Only then is the variance of load between core links reduced
sufficiently. The MPTCP protocol and our implementation handle
this without difficulty.

Multipath transport protocols such as MPTCP can change the
way we think about data center design. With the right conges-
tion control, they actively relieve hot spots, with no need for any
form of network scheduling other than simple random ECMP rout-
ing. More importantly, network topologies that make no sense with
TCP can be very effective with MPTCP. Even routing protocols
might benefit. In recent years switch vendors have put a great deal
of effort into reducing failure detection and routing reconvergence
times. But as data centers scale to hundreds of thousands of hosts,
this becomes increasingly difficult. In topologies with many redun-
dant paths and hosts running MPTCP, perhaps fast routing recon-
vergence after failures is less critical.
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