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Simple Summary: Forecasting dengue cases often face challenges from (1) time-effectiveness due
to time-consuming satellite data downloading and processing, (2) weak spatial representation due
to data dependence on administrative unit-based statistics or weather station-based observations,
and (3) stagnant accuracy without historical dengue cases. With the advance of the geospatial big
data cloud computing in Google Earth Engine and deep learning, this study proposed an efficient
framework of dengue prediction at an epidemiological week basis using geospatial big data analysis in
Google Earth Engine and Long Short Term Memory modeling. We focused on the dengue epidemics
in the Federal District of Brazil during 2007–2019. Based on Google Earth Engine and epidemiological
calendar, we computed the weekly composite for each dengue driving factor, and spatially aggregated
the pixel values into dengue transmission areas to generate the time series of driving factors. A
multi-step-ahead Long Short Term Memory modeling was used, and the time-differenced natural
log-transformed dengue cases and the time series of driving factors were considered as outcomes
and explantary factors, respectively, with two modeling scenarios (with and without historical cases).
The performance is better when historical cases were used, and the 5-weeks-ahead forecast has the
best performance.

Abstract: Timely and accurate forecasts of dengue cases are of great importance for guiding disease
prevention strategies, but still face challenges from (1) time-effectiveness due to time-consuming
satellite data downloading and processing, (2) weak spatial representation capability due to data
dependence on administrative unit-based statistics or weather station-based observations, and
(3) stagnant accuracy without the application of historical case information. Geospatial big data,
cloud computing platforms (e.g., Google Earth Engine, GEE), and emerging deep learning algorithms
(e.g., long short term memory, LSTM) provide new opportunities for advancing these efforts. Here,
we focused on the dengue epidemics in the urban agglomeration of the Federal District of Brazil (FDB)
during 2007–2019. A new framework was proposed using geospatial big data analysis in the Google
Earth Engine (GEE) platform and long short term memory (LSTM) modeling for dengue case forecasts
over an epidemiological week basis. We first defined a buffer zone around an impervious area as
the main area of dengue transmission by considering the impervious area as a human-dominated
area and used the maximum distance of the flight range of Aedes aegypti and Aedes albopictus as a
buffer distance. Those zones were used as units for further attribution analyses of dengue epidemics
by aggregating the pixel values into the zones. The near weekly composite of potential driving
factors was generated in GEE using the epidemiological weeks during 2007–2019, from the relevant
geospatial data with daily or sub-daily temporal resolution. A multi-step-ahead LSTM model was
used, and the time-differenced natural log-transformed dengue cases were used as outcomes. Two
modeling scenarios (with and without historical dengue cases) were set to examine the potential of
historical information on dengue forecasts. The results indicate that the performance was better when
historical dengue cases were used and the 5-weeks-ahead forecast had the best performance, and the
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peak of a large outbreak in 2019 was accurately forecasted. The proposed framework in this study
suggests the potential of the GEE platform, the LSTM algorithm, as well as historical information
for dengue risk forecasting, which can easily be extensively applied to other regions or globally for
timely and practical dengue forecasts.

Keywords: dengue; Google Earth Engine; LSTM; geospatial big data; risk forecasting

1. Introduction

Dengue fever is a mosquito-borne viral disease mainly transmitted in urban and
suburban areas in tropical and subtropical regions worldwide and tends to expand to
new areas [1,2]. A dengue early warning system (EWS) permits the accurate forecasting
of dengue outbreaks in advance and provides sufficient time to implement preventive
measures [3], which often requires routine access to dengue data collected within admin-
istrative units [4,5] and a set of climate and environmental factors affecting the number
and spatial distribution of dengue mosquito vectors (i.e., Aedes aegypti and Aedes albopictus),
such as rainfall, air temperature, relative humidity data from in situ observations, and
normalized difference vegetation index (NDVI) from remote sensing [6–8]. However, effi-
cient and accurate dengue forecasting faces challenges. First of all, data downloading and
processing takes a large amount of time, which hinders the time-effective generation of time
series of various climate and environmental factors. Second, the spatial representation and
matching of cases, and driver data, are different. Dengue cases were often collected from
administrative unit-based statistics, while the climate data are dependent on meteorological
observations and vegetation data are from spatially explicit remote sensing data.

Thanks to the rapid development of remote sensing and cloud computing techniques,
dengue-related climate and environmental factors can be collected and processed based
on geospatial big data as well as via the cloud-based platform of Google Earth Engine
(GEE) [9–11]. The GEE platform integrates multi-sensor satellite images, ready-to-use
datasets, and various algorithms (e.g., image preprocessing, image composite-visual in-
terpretation, feature extraction, traditional machine learning, and deep learning) [12–14].
The GEE has been used to identify the driving factors of malaria transmission and is proven
to be useful to generate climate and environmental factors and match with spatio-temporal
resolutions of epidemiological data [15,16]; however, it has not been used in dengue risk
forecasting yet.

Numerous factors contribute to the spread of dengue through human populations
that causes non-stationarity in dengue cases time series (i.e., the features of the dynamical
epidemiological processes evolve with time) [17,18]. Despite this, historical dengue infor-
mation is one of the useful features for forecasting future dengue risk [5]. In terms of the
models of dengue case forecasting, autoregressive integrated moving average (ARIMA),
machine learning (ML), and deep learning (DL), have been widely used in previous studies
and ARIMA is often used as a benchmark to evaluate the performance of other mod-
els [4–8,19–21]. The ARIMA is a univariate linear model that needs stationary input time
series. Using ARIMA, the stationarity of dengue data time series should be fully investi-
gated by multiple statistical tests (e.g., the Augmented Dickey–Fuller (ADF) test and the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test [22]), and the non-stationarity should be
removed to obtain a better forecast performance in real applications. Recently, long short
term memory (LSTM) has become the most active and effective network for forecasting the
dengue risk and shows good performance [5,6,23] as it can use multivariate time series as
input features, and learn the nonlinearities and long-term dependencies in time series [24].
Although LSTM is not sensitive to the non-stationarity of time series, making features and
target time series stationary will reduce the prediction complexity and improve forecast
accuracy, especially in real applications with limited length of time series of dengue cases.
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The Federal District of Brazil (FDB) was selected as the study area, which was created
in 1960 to house the new national capital, Brasilia, with rapid urbanization and population
growth in the past decades [25]. The urban agglomeration in the FDB has become the
third-largest metropolis in Brazil, and has been greatly affected by dengue epidemics in
past years [26,27]. In Brazil, the Notifiable Diseases Information System (SINAN) is the
official portal for entering and processing reported dengue cases. According to the dengue
cases in the FDB collected by SINAN, the dengue epidemic presents a seasonal pattern, and
the annual incidence steadily increases [27]. A great dengue outbreak was observed in 2019,
with 47,745 reported cases [27]. However, to our knowledge, the model of dengue risk
prediction has not been established to date. Moreover, weather stations are insufficient and
the spatial distribution is uneven in the FDB [28], which also hinders the implementation
of accurate dengue risk prediction.

In this context, taking the FDB as study area, this study aims to propose a novel frame-
work of dengue risk forecasting based on cloud-based analyses of geospatial big data in
the GEE platform and historical information-aided LSTM modeling. Specifically, this study
expects to make three important contributions: (1) time series of climate and environmental
factors were processed using GEE-based analysis of geospatial big data. It showcased the
potential of cloud computing and geospatial big data for timely dengue forecasting to a
broader audience in public health; (2) historical dengue cases were considered in LSTM
modeling; (3) a forecast of dengue cases at an epidemiological week (namely epi week)
basis was proposed, focusing on the epidemics during 2007–2019 and considering the
epidemic during 2018–2019 as the outcome.

2. Materials and Methods

A new framework of weekly dengue case forecasting using GEE and LSTM was
proposed (Figure 1). It includes (i) defining the epi weeks during the study period
(i.e., 2007–2019) and generating a stationary time series of weekly dengue data; (ii) defin-
ing the main area of dengue transmission and computing the time series of climate
and environmental factors based on the analysis of geospatial big data in the GEE plat-
form; (iii) implementing 1-week to 12-week ahead forecasts that consider different time
lags (i.e., 1 to 12 weeks) in advance of dengue epidemics and evaluating LSTM models.
The detailed information is presented as follows.

Figure 1. The framework of dengue risk forecasting based on the analysis of geospatial big data in
GEE and LSTM modeling.
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2.1. Study Area and Dengue Cases

This study was carried out in the FDB, with fragmented and unevenly distributed
impervious land (Figure 2a). The significant urban expansion and population growth in
the past decades make dengue an important public health issue. In this study, dengue cases
from 2007 to 2019 were obtained from the Notifiable Diseases Information System (SINAN)
database, the official portal for entering and processing reported dengue cases throughout
Brazil [26,27,29]. In this region, suspected cases from healthcare units (i.e., public hospitals,
emergency units, basic healthcare units, private hospitals, and private laboratory) were
confirmed by the central laboratories and the health regions. We computed the dengue case
count per epi week for the FDB, and a time series of 678 weekly dengue case count values
during 2007–2019 was generated (Figure 2b). We computed the natural log-transformation
for weekly dengue cases plus one and then the difference between two consecutive time
steps (Equation (1)) to obtain a stationary time series of weekly dengue data as a dependent
factor (namely time-differenced log-transformed weekly dengue cases). In the processing of
epidemiological data, both the ADF and KPSS tests were used to examine the stationarity:

Dt = log(Nt + 1)− log(Nt−1 + 1) (1)

where Dt represents the time-differenced natural log-transformed weekly dengue cases, Nt
and Nt-1 represent the dengue cases per epi week at time t and t + 1, respectively.

Figure 2. Geolocation of the Federal District of Brazil (a) and the number of dengue cases per
epidemiological week during 2007–2019 (b). The impervious land indicates the human-dominated
area, and the buffer zone of 1 km indicates the main area of dengue transmission.

2.2. Climate and Environmental Factors

Several climate and environmental factors were used as explanatory factors in LSTM
modeling, including daily land surface temperature (dLST), night land surface temperature
(nLST), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI),
total rainfall (R), temperature (T), and relative humidity (RH) (Table 1), which have been
used for predicting dengue risk in previous studies [4,30]. In order to generate the weekly
composite for each factor during 2007–2019, we first selected the data covering our study
area, with daily or sub-daily temporal resolution in the GEE platform. Two LST factors
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(dLSTmean and nLSTmean) were derived from the MODIS MOD11A1 product with daily
temporal resolution and 1000 m spatial resolution [31]; two vegetation indices (NDVImean
and EVImean) were derived from the MODIS MOD09GA product with daily temporal reso-
lution and 500 m spatial resolution [32]; total rainfall (Rsum) was derived from the Tropical
Rainfall Measuring Mission (TRMM) 3B42 product with 3-hourly temporal resolution and
0.25× 0.25 degree spatial resolution [33]; both mean temperature (Tmean) and mean relative
humidity (RHmean) were derived from the Global Land Data Assimilation System Version
2.1 (namely GLDAS-2.1), which is a global, ready-to-use dataset of land surface states
and fluxes with daily temporal resolution and 0.25 × 0.25 degree spatial resolution and
generated using satellite- and ground-based observational data, land surface modeling and
data assimilation techniques [34]. We then created a suite of weekly composites according
to the start date and end date of epi weeks and each weekly composite gives the value
per pixel.

Table 1. Summary of explanatory factors and data sources used in this study.

Explanatory Factors Unit Algorithm Data Sources and Spatio-Temporal Resolutions

Log-transformed weekly dengue cases Number Sum SINAN weekly (epi week), city

dLSTmean
◦C Average

MOD11A1 daily, 1000 m
nLSTmean

◦C Average

NDVImean - Average
MOD09GA daily, 500 m

EVImean - Average

Rsum mm Sum TRMM 3B42 3-hourly, 0.25 × 0.25 degree

Tmean
◦C Average GLDAS-2.1

daily, 0.25 × 0.25 degree
RHmean % Average GLDAS-2.1

Considering both human-dominated areas during 2007–2019 and flight range of
dengue vectors (i.e., Aedes aegypti and Aedes albopictus) reported in previous studies [35,36],
we used the impervious map of 2013 and defined a buffer of 1 km around urban land pixels
to delineate the area of dengue transmission in the FDB. We obtained a time series for each
factor by spatially aggregating the pixel values of the weekly composite covering buffer
zone according to the algorithms listed in Table 1. We tested the variance of individual
factors and the correlation between two factors to filter the climate and environmental
factors, and the factors having low variance (i.e., less than 0.02) and high correlation with
others (i.e., greater than 0.6 with p-value < 0.05) were not used in LSTM modeling.

2.3. LSTM

The core idea of the common LSTM is to add the concept of a forgetting gate to the
ordinary Recurrent Neural Network (RNN) unit to save historical information in order
to achieve better training results. In an ordinary RNN, the hidden layer at each moment
is determined not only by the input layer at that moment, but also by the hidden layer
at the previous moment, and generally the neural unit weight matrix at each moment is
the same. When the input is too large, ordinary RNN will have the problem of gradient
disappearance and explosion due to too much memory. The idea of the forgetting gate of
LSTM was created to solve this problem, because it has the function of selective storage.
In LSTM, there are three types of gates: forget gates, input gates and output gates. LSTM
can be regarded as an evolution of ordinary RNN units. The ordinary RNN unit has only
the unit h that can be regarded as a short-term memory, while the LSTM adds a memory
unit C that stores past information. The forget gate is used to process the information in
the previous state. Its formula is expressed as:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(2)



Biology 2022, 11, 169 6 of 14

where σ represents the sigmoid function, W f is the weight matrix of the unit, ht−1 represents
the history information of the previous unit and b f represents the offset matrix of the unit.

The input gate updates the state of the memory cell through a weighted sum operation
of the input and the memory cell. The formula is often expressed as:

it = σ(Wi·[ht−1, xt] + bi) (3)

C̃t = tanh(WC·[ht−1, xt] + bC) (4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

where Wi and bi are the weight matrix and paranoia matrix of the unit, respectively. Ct
represents the state of the memory unit.

After obtaining the new memory cell state through the above update formula, the final
output gate determines the new output and updates the historical state. The formula is
expressed as:

ot = σ(Wo·[ht−1, xt] + bo) (6)

ht = ot ∗ tan h(Ct) (7)

Since LSTM is used for classification problems, a single neuron is added to the last
layer to obtain the predicted label, and the loss function uses the error between the real
output yt and the predicted label.

2.4. Multi-Step-Ahead LSTM Modeling, Training, Validation and Testing Sets

The time series of historical dengue data, climate and environmental factors, and
time-differencing natural log-transformed weekly dengue cases (i.e., the dependent factor
used in this study), were combined to generate a dataset, which was divided into training,
validation, and testing set, with the data for 2007–2015 as the training set, data for 2016–2017
as the validation set, and data for 2018–2019 and peak season in 2019 (i.e., January to
August in 2019) as the testing set. The validation set was used to fix the parameters of
LSTM (i.e., number of units, epoch, batch size, learning rate, and dropout rate) and the
testing set was used to evaluate the generalization of LSTM. Moreover, in order to examine
the role of historical dengue data and GEE-based external factors in dengue prediction, we
defined multi-step-ahead forecast scenarios (i.e., 1- to 12-week-ahead) with two groups of
input features (i.e., LSTM with climate and environmental factors and LSTM with historical
dengue data and climate and environmental factors). A total of 24 LSTM models of dengue
risk prediction were generated. Finally, the predicted value in target week and the number
of weekly dengue cases in previous weeks were used to compute the number of weekly
dengue cases in target weeks.

2.5. Model Evaluation

In order to select the best LSTM model of dengue risk prediction, we first quan-
tified the model accuracy based on the predicted and actual time-differencing natural
log-transformed weekly dengue cases in testing set by computing the root mean squared
error (RMSE) and mean absolute error (MAE) as follows [37]:

RMSE =

√
1
n

n

∑
i=1

(oi − yi)
2 (8)

MAE =
1
n ∑n

i=1|oi − yi| (9)

where oi represents the observed value for epi week i, and yi represents the predicted value
for epi week i. In these models, the larger the indices value, the larger the error and the
worse the model effect.
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Then, we applied the Dropout method to examine the uncertainty of 1- to 12-week
ahead LSTM models, which has been used in estimating the uncertainty of LSTM-based
disease risk prediction [38]. Specifically, based on the fixed parameters of LSTM and the
testing set, we outputted 50 predictions by dropping a fixed percent of units randomly and
computed the maximum, minimum, and mean of 50 predicted values for each epi week to
generate the predicted interval. We analyzed whether the observed value fell within the
predicted interval to examine the uncertainty of the LSTM model.

Moreover, we used ARIMA as a baseline to provide a point of comparison for un-
derstanding the performance of 1- to 12-week ahead LSTM models. ARIMA, a univariate
time series prediction model, makes predictions based on the autoregression (namely p),
non-seasonal difference (namely d), and moving average (namely q) of stationary historical
data, and has been used as a baseline model in dengue risk prediction [21]. In this study,
based on natural log-transformed weekly dengue cases, the d in ARIMA was determined
using ADF and KPSS. The best p and q values were determined by computing the Autocor-
relation Function (ACF) and Partial Autocorrelation Function (PACF). We quantified the
accuracy of ARIMA models by computing RMSE and MAE in both 2018–2019 and peak
period for dengue in 2019.

3. Results
3.1. Time Series of Historical Dengue Data and Input Climate and Environmental Factors

Figure 2b shows the temporal pattern of weekly numbers of reported dengue cases in
the FDB during 2007–2019. Large outbreaks could be found in 2010, 2013, 2014, 2015, 2016,
and 2019. There was a sharp increase in weekly dengue cases in 2019. For each year, the
epidemic season was mainly from February to May. Table 2 presents the results of the ADF
test and KPSS test, and only the time-differencing natural log-transformed weekly dengue
cases are stationary for both tests.

Table 2. Results of the stationarity ADF test and KPSS test of time series of dengue data and
external factors.

Dengue Data ADF KPSS

Weekly dengue cases −6.28 * 0.399 **

Natural log-transformed weekly dengue cases −5919 * 0.789 **

Time-differencing natural log-transformed weekly dengue cases −5.67 * 0.068 *

NDVImean −7.875 * 0.061 *

RHmean −7.662 * 0.293 *

Rsum −8.387 * 0.052 *

Tmean −7.497 * 1.008 **

1% level −3.4401 0.739

5% level −2.8658 0.463

10% level −2.569 0.347
* Stationary ** Non-stationary.

Moreover, the correlations among the individual climate and environmental factors
are presented in Figure 3a. The variance of all these factors is greater than 0.02. Based on
these estimates, NDVImean, RHmean, Rsum, and Tmean were included in LSTM modeling.
Figure 3b–3e presents the temporal patterns of the natural log-transformed dengue cases
per epi week and the four selected factors during 2007–2019.
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Figure 3. The correlations among the climate and environmental factors (A) and the temporal pattern
of time series of the natural log-transformed weekly dengue cases and four selected driving factors
(NDVImean, RHmean, Rsum, and Tmean) during 2007–2019 (B–E). One asterisk (*) and two asterisks (**)
in (A) represent a p-value of correlation coefficient less than 0.05 and 0.01, respectively.

3.2. Outcomes of LSTM Modeling

The LSTM networks used in this study were modeled using TensorFlow (version 2.0.0)
and all the LSTM models used the same set of parameters (Table 3). All experiments were
implemented in Python 3.6.5 that were run in 64-bit Windows with a 3.6 GHz, Intel Core
i7-9700K CPU. Table 3 presents the parameters used for LSTM modeling with/without
historical dengue information.
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Table 3. The parameters in LSTM models used in this study. Time step refers to the length of input
features used to make predictions. Loss function measures the difference between predicted and
observed values. Number of units refers to the number of units in the LSTM layer. Epoch represents
the number of completed training using all data in a training set. Batch size refers to the size of the
input data used to update LSTM parameters one time. Learning rate refers to the rate for updating
LSTM parameters. Optimizer refers to the algorithm for updating parameters. Dropout rate is the
percent of units in the LSTM layer that is randomly discarded in the model training. The two groups
of LSTM parameters were fixed separately by comparing the RMSE and MAE computed, based on
validation, dataset.

Parameters LSTM with NDVImean, RHmean, Rsum and Tmean LSTM with Historical Dengue Data, NDVImean,
RHmean, Rsum and Tmean

Time step 12 12
Loss function MSE MSE

Number of units 64 64
Epoch 1150 2000

Batch size 12 12
Learning rate 0.005 0.001

Optimizer Adam Adam
Dropout rate 0.8 0.65

The predicted accuracies for forecasting the weekly dengue cases in the FDB during
2018–2019 and peak period in 2019 are presented in Table 4. Evidently, the ARIMA model
had less accurate predictions in both periods. It is observed that the 4-week-ahead forecast
using NDVImean, RHmean, Rsum, and Tmean obtained the lower values of RMSE and MAE;
however, most of the predicted curves differed greatly from that of observed dengue cases
(Figure 4). By contrast, while the historical dengue data were used as input features, 1-, 2-
and 5-ahead forecasts obtained the lower values of RMSE and MAE, and the correspond-
ing curves are similar to that of observed dengue cases. Moreover, Figure 4 shows that
using historical dengue data as one of the input features could make the predicted curve
fluctuation more stable.

Table 4. Accuracy comparison of multi-step-ahead LSTM modeling with two groups of input features
and ARIMA using root-mean-square error (RMSE) and mean absolute error (MAE). The two indices were
computed based on the actual and predicted weekly changes in natural log-transformed dengue cases.

Model
2018–2019 2019 Peak Period

RMSE MAE RMSE MAE

LSTM modeling

LSTM with NDVImean, RHmean, Rsum, and Tmean

1-week 0.36 0.29 0.28 0.23
2-week 0.35 0.28 0.30 0.23
3-week 0.36 0.28 0.34 0.26
4-week 0.32 0.25 0.22 0.18
5-week 0.36 0.29 0.29 0.24
6-week 0.36 0.29 0.31 0.25
7-week 0.38 0.3 0.35 0.29
8-week 0.37 0.29 0.36 0.28
9-week 0.38 0.3 0.34 0.29

10-week 0.36 0.29 0.34 0.27
11-week 0.36 0.29 0.34 0.29
12-week 0.36 0.27 0.31 0.25

LSTM with historical dengue data, NDVImean,
RHmean, Rsum, and Tmean

1-week 0.35 0.27 0.23 0.20
2-week 0.34 0.27 0.22 0.19
3-week 0.34 0.27 0.25 0.20
4-week 0.35 0.26 0.25 0.21
5-week 0.34 0.27 0.22 0.19
6-week 0.40 0.31 0.26 0.21
7-week 0.37 0.30 0.28 0.22
8-week 0.38 0.29 0.29 0.23
9-week 0.38 0.29 0.32 0.27

10-week 0.39 0.31 0.28 0.22
11-week 0.34 0.27 0.28 0.23
12-week 0.40 0.33 0.33 0.28

Baseline ARIMA (3, 1, 2) 1.60 1.18 2.68 2.51
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Figure 4. The 1- to 12-week-ahead prediction with two types of input features for the FDB. The red
points represent the number of observed cases per epi week during 2018-2019. The blue interval
represents the number of predicted cases per epi weekusing LSTM with historical dengue data,
climate factors and environmental factors. The grey interval represents the number of predicted cases
per epi week using LSTM with climate and environmental factors.
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4. Discussion

This study developed a framework for forecasting dengue cases per epi week based
on the analyses of geospatial big data in the GEE platform and historical information-aided
LSTM modeling. This framework permits the effective definition of the main area of dengue
transmission according to remote sensing-based human-dominated areas, generating the
time series of dengue risk predictors, directly forecasting the time-differenced natural
log-transformed weekly dengue case and then computing the predicted number of dengue
cases per epi week.

Previous studies reported that climate data collected from weather stations are not
practical to generate the time series of climate factors due to scare data, limited numbers,
and uneven spatial distribution of stations in the target study area. These factors limit the
choice of optimal spatial and temporal scales of risk prediction, accuracy, and the definition
of prevention and control strategies [39,40]. By contrast, the GEE platform integrates an
amount of geospatial data, diverse algorithms, and high-speed computing power, which
provides greater convenience and more possibilities in the collection, preprocessing and
spatio-temporal aggregation of multi-source data. It offers the opportunity to adjust the
spatial and temporal scales according to different target study units (e.g., urban village,
health unit, neighborhood, and city) and temporal resolutions of epidemiological data
(e.g., daily, weekly, and monthly), respectively. The GEE’s climate and environmental
data with daily or sub-daily temporal resolution satisfy the weekly dengue case count
forecast. Compared with weekly dengue risk forecasting, there are more geospatial data
options with the monthly or sub-monthly temporal resolutions to achieve monthly risk
forecasting worldwide. Moreover, the annual data of global artificial impervious areas
during 1985–2018 with 30 m spatial resolution and global human settlement layers for
1975, 1990, 2000 and 2016 have been generated in the GEE platform [41,42], which permits
the definition of the main area of dengue transmission in a specific area worldwide and
provides an opportunity to reflect the dynamic changes of dengue transmission areas.

Previous studies indicated the importance of using historical dengue data in dengue
risk forecasting [43–45]. To improve the forecasting accuracy, many studies implemented
the natural log-transformation for dengue time series to make it stationary. It should be
noted that, by using only historical data in LSTM modeling, it is difficult to truly predict
the information itself, as the autocorrelation in time series makes the LSTM underfitting
(i.e., using the value at the previous time as the predicted one at the current time). Adding
more external factors and using time-differenced dengue time series as target factors are
two common ways to avoid underfitting. In this study, we used the time-differenced
natural log-transformed weekly dengue cases as the target factor.

LSTM time series forecasting is suitable for predicting weekly dengue cases. It can
capture the non-linearity and long-term dependency in the complex system of dengue
transmission [5,21]. The parameter timestep in LSTM (i.e., the length of input time series)
allow us to describe the impact of past climate and environmental conditions on mosquito
populations. Then, LSTM is easy to integrate with different prediction scenarios (e.g., n-week-
ahead prediction in this study), which might reflect the incubation period of dengue fever and
the delay of dengue case notification. Moreover, the comparison between ARIMA and LSTM
models also indicates the capacity of LSTM in the prediction of weekly dengue cases (Table 4).

Despite the involvement of historical data and external factors leading to higher accuracy
(Table 4), we still cannot quantify the contribution of each feature in LSTM modeling. Future
studies could focus on analyzing the importance of predictors (e.g., adding the self-attention in
LSTM modeling [46]) in dengue risk prediction to understand the role of historical dengue data.
Moreover, other RNN models, such as BiLSTM, GRU and Transformer, could be compared
with LSTM and can be combined to generate the optimal prediction of dengue cases [19].
We could also integrate the prior knowledge of the response of mosquitos to climate and
environmental conditions into the preprocessing of input time series to improve the model’s
performance with climate and environmental factors [30]. Moreover, the geospatial big data
analyses in dengue risk prediction only considered the climate and environmental factors.
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However, dengue transmission is affected by a complex interplay of human, climate, mosquito,
and virus. Data related to immune population status [47], population movement [48], mosquito
population [49,50], and cycle of dengue serotypes (DENV 1–4) [47] should be further collected
and used in the deep learning model to improve the prediction accuracy.

It should be noted that this study focused on the prediction of the time series of weekly
dengue cases using GEE-based external factors and historical dengue information and
the prediction accuracy was evaluated using two common indices (i.e., RMSE and MAE).
However, there are other needs for practical applications, such as predicting peak intensity
and peak timing [21,51,52]. It thus needs to define the evaluation indices according to the
different prediction targets.

There are some limitations for applying the proposed model in real applications. For
example, many factors cause the misdetection of dengue cases in the FDB, such as people’s
health seeking behavior, local health services’ misunderstanding of the importance of
notifying dengue cases, and the lack of human resources for digitizing the notification
forms [27]. Using reported cases could underestimate the real situation of dengue infection
as asymptomatic and mild cases were most likely missed [53]. In addition, there is a time
delay for the notified cases to be registered in the FDB due to the lack of human and
technological resources and better integration in private healthcare [27]. These facts might
impede the application of proposed models in this region using the proposed model as we
directly predicted the change in dengue cases between two adjacent weeks and it needs
to compute the number of dengue cases in target week based on the value of last week.
Thus, optimizing the dengue surveillance system, improving the efficiency for dengue case
notification, and raising awareness of seeking health care for dengue fever could greatly
facilitate the application of the proposed model.

5. Conclusions

The accurate and timely dengue risk forecast enables enhancement of the effectiveness
of dengue control. Multi-source data and interdisciplinary knowledge (e.g., epidemiology,
remote sensing and geoinformation science) are needed to generate predictors of dengue
risk at certain spatial and temporal scales that often impede the timely and accurate
forecast of dengue risk. This study used GEE to rationally and efficiently generate the time
series of dengue predictors according to the spatial pattern of urban land and the flight of
Aedes aegypti and Aedes albopictus. It demonstrates the great potential of the GEE platform
in epidemic prediction through the exploration of climate and environmental predictors
based on geospatial big data. Then, using the change in dengue cases per epi week as
outcomes, a framework of time-differenced dengue risk forecasting is proposed based on
LSTM modeling with historical dengue cases, total rainfall, mean temperature, and mean
relative humidity. Our findings show that the proposed framework can forecast dengue
cases in the future successfully. This study efficiently and rationally explores the potential
of geospatial big data and deep learning for advancing the infectious disease forecast.
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