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Abstract so it is reasonable to expect that their optimization will

lead to a descriptor with performance superior to the state-
In this paper we propose to transform an image descrip- of-the-art, e.g. with higher repeatability or discrimiivat
tor so that nearest neighbor (NN) search for correspon- power. This idea has been recently exploredin [
dences becomes the optimal matching strategy under the as- In the paper, we propose to transform et space so
sumption that inter-image deviations of corresponding de- that the nearest neighbor (NN) search for correspondences
scriptors have Gaussian distribution. The Euclidean NN in in step (3) becomes the optimal matching strategy under the
the transformed domain corresponds to the NN according toassumption that inter-image deviationsof T descriptors
a truncated Mahalanobis metric in the original descriptor have Gaussian distribution. This assumption might not be
space. We provide theoretical justification for the prombse fully satisfied, but it is more realistic than the assumptibn
approach and show experimentally that the transformation isotropic Gaussian noise implicit in standasd-T match-
allows a significant dimensionality reduction and improves ing. The Euclidean NN in th&-SIFT space corresponds to
matching performance of a state-of-the a1 descrip- the NN according to a truncated Mahalanobis metric in the
tor. We observe consistent improvement in precision-kecal original SIFT space. We carry out an extensive evaluation
and speed of fast matching in tree structures at the expenseavhich shows that the transformed descriptor is (i) more dis-
of little overhead for projecting the descriptors into tsen  criminative than the original one, (ii) 3-4 times more mem-
formed space. In the context sfFT vs. transformedu- ory efficient, (iii) no computational overhead, as it does
SIFT comparison, tree search structures are evaluated ac- not require spatial Gaussian weighting of image measure-
cording to different criteria and query types. All searckdr ~ ments within a patch. These properties are important since
experiments confirm that transformedsiFT performs bet-  memory and efficiency are the limiting factors of large scale
ter than the originalsIFT. recognition method</[/].
1. Introduction The possibility to matcrsiFT-like descriptors by sub-
, . linear tree-based search methods is one of its key propertie
In 1999, D. Lowe published a papet(] describing  5n4 has heen explored in different systeri p1, 23, 27.
an object recognition method that mtegrat_ed three COM-\ne therefore carefully compargFT and M-SIET perfor-
ponents: (1) a .scale-covanant de.tect(_)r of interest region ance with different search structures, variants of kegre
ba§ed on the. D|ff§rence—of-GaUSS|an filter, (2? shier de- _and metric (ball) trees. Besides demonstrating thegiFT
scriptor', an invariant and stable representation of region ¢ nerformssiFT, valuable insight into relative merits of
appearance by a collection of weighted histograms of gra- jtterent search trees in the context of wide-baseline matc

dient orientations and (3) a fast matcher based on kd-treemg, object recognition and categorization is obtained.
search for establishing local correspondences. Since then

these components have been used in many state-of-the-at!F T relatedwork. - The idea of representing image parts
solutions for vision problems that require local image-to- Py histograms of gradient locations and orientations has
image correspondences, such as wide-baseline matching been used in biologically plausible vision systerfisgnd

panorama buildingd], image retrieval 1, 27, 29 and ob- in recognition P]. Lowe’s [20] SIFT is a similar descriptor
ject recognition £3. which performs best in the context of matching and recog-

nition [24]. Several attempts to improve tiserT have been
reported in the literature3] 10, 15, 17, 24].
Ke and Sukthankarl[] developed thercA-SIFT de-
1Terminological remark. SIFT stands for “Scale-Invariant Feature ~ SCriptor which represents local appearance by principal
Transform”. Lowe P1] uses the term to refer to the combination of steps  components of the normalized gradient field. Different

(1) and (2).‘ In the literature, the termFTqﬁen refers just to the descrip- performance results were reported CA-SIFT On vari-
tor, as e.g. in%4, ?]. We use the ternsIFTin the latter sense.

2E.g., most of the top competitors in the ICCV 2005 Computeiori ous test datalf, 24], ar?d it .iS also Signiﬁca.mly slower
Contest (http://research.microsoft.com/iccv2005/estituseds I FT. thansIFT to compute. Mikolajczyk and Schmi@{] mod-

SIFT represents the state-of-the-art and yet few of its
standard parameter choices have a theoretical justifitatio




ified thesIFT descriptor by changing the gradient location- the extensions to handle the dimensionality problem in kd-
orientation grid as well as the quantization parameters of tree was proposed in] based on spatial decomposition to
the histograms. The descriptor was then projected to lowerguarantee exponential cardinality of points and geometric
dimensional space with PCA. This modification slightly im- reduction of node sizes as descending the tree.
proved performance in matching tests. Dalal and Triggs Metric based indexing methods seem to be more suit-
[10] proposed ‘histogram of gradientsH0G). The HOG able for general NN search problem in high dimensional
differs from thesIFTin technicalities like normalizationand spaces. Generalized hyperplane partitioning for building
spatial distribution as well as size of the bins in its many binary metric trees, termed gh-tree, was introducedif [
variants. Lazebnik et al.l[/] proposed a rotation invariant and extended in/]. Simplified versions of such trees were
version called RIFT, which overcomes the problem of dom- used in [L8, 23, 27] for matching image descriptors. More
inant gradient orientation estimation required iy, at a detailed review of metric trees and other index structures
cost of lower discriminative power. Bay at ak] [proposed can be found in, 14].
an efficient implementation ofIFT by applying the inte- In our experiments we use several speed up techniques to
gral image to compute image derivatives and quantizing theextend the trees proposed ing 27] and provide extensive
gradient orientations in a small number of histogram bins. evaluation ofsIFT andM-SIFT features.
Winder and Brown §] learn optimal parameter settingona Overview. The rest of the paper is organized as follows.
large training set to maximize the matching performance. In section2 we define the context of this work and basic
In summary, the modifications of tteFT are driven by ~ assumptions. Sectidhdescribes our method for improving
requirements of particular applications and striking eliff ~ image descriptors. Sectichrevises data structures evalu-
ent performance trade-offs. The modified versions outper-ated in this paper. Finally, sectiépresents and discusses
form the original one in some tests, but do worse in others. the experimental results.
So far, no method has emerged that would repkiea as
the descriptor of choice in a wide range of application. The 2. Correspondence by SIFT Matching
promising strategy seems to be a method for learning de-
scriptors for a particular application rather than degigra
general descriptor for any application.

Our objective is to transform descriptors to improve their
matching performance. More precisely, we aim at reduc-
tion of the percentage of false matches among the tentative
Tree structure related work.  Tree structures have been correspondence formed by descriptor matching while pre-
frequently used to handle the problem of fast descriptor serving the desirable property of speed of computation and
matching. A vast number of data structures for fast near- compact representation. To this end, we adopt the following
est neighbor (NN) search has been proposed in data miningnodel of the matching process.
literature. We focus on two categories of search trees, hwhic Two sets of feature§; and Fp* are given. In differ-
have been recently applied in context of image recognition ent computer vision problems, the two sets appear under
like kd-trees {I, 21, 26] and metric treesl[8, 23, 27]. In our different names, but play essentially identical roles. bR o
experiments, we simultaneously compare different searchject recognition,7; is the set of descriptors detected in the
methods as well as the performancesafT andm-SIFT. test image andFp the set of descriptors in the database,

Kd-tree [L7] belongs to a category of geometric data representing objects acquired in the training stage. Irewid
structures based on hierarchical decomposition of space inbaseline matchingF; and Fp represent features detected
multidimensional rectangles. Itis frequently reportethia in the left and right images respectively. Panorama stitghi
literature that kd-trees are inefficient for dimensiongér  may be formulated as either repeated wide-baseline match-
than 10. Given that the most powerful descriptors used in ing or a recognition problem.
vision have many more dimensions, one would not consider The problem of finding correspondences (matching re-
kd-tree as a possible solution. However, an approach togions) is defined as a search for a functiBn: F; —
overcome the dimensionality problem is to search for ap- p U x, that assigns to every; € F; either ax; from
proximate NN [L, 19]. Vision applications have found this the databasé or x; representing no match. Three re-
solution to be sufficient]l, 26] as other parts of the recog- marks about this formulation are in order. First, symmetric
nition systems are highly inaccurate too. A modified kd- wide-baseline matching can be easily formulated by either
tree with priority queue and approximate NN search in 128 performing the matching twice, exchanging left and right
dimensional space was successfully used for fast matchimages, or by defining bottf; and Fp as unions of de-
ing in [21]. Superior performance of this structure over scriptors from both images and constrainidgto avoid
ball-tree P9 is reported in [6]. This indicates that in  matching two points from the same image. Both options
Some specific pro_bl_ems_ kd-ree can provide satisfying so- 3Notation. Different fonts are used to distinguish sfsectorsx, ma-
lutions. However, it is still unclear whether kd-tree outpe  cesc and functionsB, g, A. Symbol|.||> denotes the Euclidean norm,
forms other methods in matching image descriptors. One of P(.|S) conditional probability.




are conceptually simple, but make notation more compli-
cated; for brevity, we therefore use the asymmetric formu-
lation appropriate for the object recognition problem. Sec
ond, the formulation ignores the fact that the mapping
should be, with the exception of the ‘no match’ element
Xg, One-to-one (a bijection), respecting the constraint that
no xJ’- € Fp\xp matches more than one feature frofia

3. MSIFT: Mahalanobis SIFT

We discuss the descriptor transformation usingr but
the procedure is applicable to any other descriptor. We
model the probability that two patches are in correspon-
dence as

P(xi,%5]5) = P(|lxi — x5l ) = N(0,Cs),  (3)

and Vice verse. Enforcing the one-to-one constraint makesWhereCs is a covariance matrix with rank. The subscript

the decision whethex; is assigned to:j dependent on ev-
ery single observation itF; U Fp . Matching algorithms
that respect this uniqueness have computational complexit

much higher than the simple kd-tree nearest neighbor al-

S indicates thats models variations of observations of the
sameSurface. The mean of the distribution is zero, since
it is a difference of two identically distributed random ivar
ables. Estimating full-rank is feasible on a large train-

gorithm and are therefore not considered. We assume, iniNg set of correspondingIFT pairs. Nevertheless, there

line with common practice, that uniqueness among the ten-

tative correspondences is enforced ex post. Finally, we not
that by positingFp U xg as the domain o3, we have im-
plicitly defined that a region can be matched to either zero
or one counterpart. However, the probabilistic model pre-
sented below can be easily extended to situation wiikere
maps ta2” 7, i.e. where the matching procedure associates
with each feature of the input image a (possibly empty) sub-
set of Fp (see sech).

The standard procedure &fiFT matching (step (3) of
Lowe’s method) P0] assigns tox; its Euclidean nearest

neighbor? Bu( (1)

For the chosen formulation of the matching process, the
optimal procedure from the point of view of generating a

xi) = arg min [|x; — x|,
J

are several reasons to choose the dimensionalityf the
covariance matrixC as low as possible. Firstly) defines
the number of dot products that transfoem 1 to M-SIFT.
Secondly,D/128 is the fraction of memory required by
M-SIFT compared to 128-dimensionslFT. Moreover,M-
SIFT matching performance peaks for values/ofthat are
only a fraction of 128.

To be able to benefit from the efficiency of the fast NN
methods and yet to take into account the approximation of
the inter-image variability of region appearance modeled b
Eq. 3 we apply a whitening linear transform of treFT
space. The whitening transform is not defined uniquely and
we choose the linear transformation so that the new space
facilitates dimensionality reduction. Details about tinear
transformation are given next.

maximum number of true correspondence among the estabComputing M-sIFT by simultaneous diagonalization.

lished correspondences is based on the likelihood ratio
P(x;,x4|S
)= pog) @
(xi, x}|5)
where P(x;, x;|5) is the probability that the two observa-
tions xi,fo correspond to two views of the same surface
patchS, P(x;, x| |S) is the probability that their pre-images
are different. In other wordspP(x;, x;|S) models inter-
image variations of appearance of pathP(x;, x; |S) ex-
presses natural image statistics. Rl j(stifies theBy,
assignment of Eql{ under the following condition
P(xi,x5]5) = P(||xi — xl29) = g(lIxi — xjll2),
where g(.) is a monotonic function. The obvious, but
not unique, case i(x; — x;|S) ~ N(0,diage)), i.e.
P(.|S) has a zero-mean isotropic Gaussian distribution and
g(x) e~®. The Br model thus implicitly states: (i)

A(xi, X!

the probability that two descriptors correspond to the same

surface patch depends only on their difference and (ii) the
inter-image difference has isotropic Gaussian distrdnuti
the value ofr is irrelevant.

4This is a simplified description which also applies to anyeotte-
scriptor. The two most important technicalities omitted:afi) no match
is assigned if the second nearest point fregis not far enough, i.e. if
ming ez, % = Xjllz2/ it e\, () 15 = X[l > €, default
e = 0.8 and (ii) themin operation is carried out only approximately.

We collected a training sets of difference vect@gs and

7T5. Difference vectors are iffg if they have the same
pre-image. Estimates of the covariance matriceandCs

are computed using the training sets. The linear transfor-
mation T that is applied to thesIFT space is the inverse
of the square root of the 'same surface’ covariance matrix
Cs: T = Cs—2. We will denote vectors in the transformed
space ay; = Tx;. In they-space, Euclidean distance is a
monotonic function of the probability that the two descrip-
tion vectors involved originate from the same surface patch

>

(xi,x])€Ts
The diagonality ofcy is preserved if (i) they-space is ro-
tated, i.e. transformed by any orthonormal magjgR" =
1 and (i) if some dimension are dropped. We use these two
properties to reduce the dimensionality of the transformed
descriptor space. A second transformation is appliednalig
ing the axis with the eigenvectors of the covariance matrix
¥ modeling the variation of two randomly chosen patches.
The transformation is a rotation, since a symmetric ma-
trix like C} has orthonormal eigenvectors. Finally, we drop
128 — D dimensions with the smallest variandejs estab-
lished experimentally. The final projection into theesiFT

space is a matrix multiplication bg x 128 matrix
P = DRT, (4)

c = T(x; — x})(xi —x}) ' T' =TCsT' = 1.



wherer is the matrix of eigenvectors af sorted by eigen-
value magnitude anblis a selector or the firsb-rows.

The procedure can be summarized as whiteningsof
within a simultaneous diagonalizationd] of Cs and Cg,
followed by a PCA. (The whitening is applied so that the
data match the Euclidean nearest neighbor rule. The di-
mensionality reduction part removes directions in ¢hiet
space not contributing to the match.

4. Efficient Matching

Our approach modifies the descriptor to achieve better
matching performance in different data structures. Before
we present the experiments, we briefly revise the data struc-
tures recently used for matching interest point descriptor
in the context of visual recognition. We then explain search
strategies and pruning techniques, which we apply to im-
prove the matching used ir,[18, 21, 27].

4.1. Tree structures

. . ) . Figure 1. (Top-left) Kd-tree. (Top-right) Bbd:-tree. (Baoth-|eft)
Kd-tree. The recognition algorithm used int[21] is  Bottom-up ball-tree. (Bottom-right) Top-down kmeans.
based on kd-tree structure. The tree is created by |terat|veterin with predefined branching factor was aoolied recur
partitioning. At each iteration, the data set is split at the 9 P 9 pp

median of the dimension of largest variance. This creates aswely starting from the top node to partition the data point

balanced binary tree with deptbe, N (cf. Fig. 1). How- into children nodes. Each node was represented by a cen-
9 . . 1).

ever, the aspect ratio of rectangular cells of the tree is notit;mdrh;?g(rjngg; ?r?e\z/as?rtjgtirlz ;hueﬁztfslcgreonrﬁy cr);g;eerﬁgritr']tt'ﬁg'
in general bounded, e.g. the cells may be very long in Cmesigto k-means, e.g. sensitivity to outliers ﬁn osed K-cen
dimension and short in others. Consequently, during search’ .  €.9. y to outliers, imp '

troids far from real clusters resulting in large cells. Ireth

a query sphere can intersect many such elongated cells. . . .
modification of kd-tree called balanced box-decomposition%onom'Up approach, agglomeratlvg average-link C|.USQEI‘I
was used to create the tre=J] (cf. Fig 1). The algorithm

tree was proposed inl]. Its spatial decomposition guar- tarts with the leaf nod tered at h dat it At
antees exponential decrease of the cardinality of poirds an starts with the feal nodes centered at €ach data point.
each iteration two nearest nodes are merged creating a par-

geometric reduction of node sizes as descending the tree.

They define a cell by box or the set theoretic difference of ent node. The ”."eth"d continues until top nades are merggd.
two boxes, outer box and an optional inner box. To obtain A post processing method merges some parents with chil

even partitions, two splits are applied alternately: a regu dren to tre(tjUC? the gumber tOf nod;ehs ta.ndﬂ:o form”a rrore
lar hyperplane split and a shrinking split which uses a box compact structure. t-ompactness, that 1S the smaf volume

rather than a hyperplane. Thus an evenly partitioned bal—of hyperballs maximizes the number of prunings that may

anced tree with bounded aspect ratio of cells is constructed accur du”?r? NN Se?rcq thl;sbmt?kes the setf;l]rcg faQ@}i(r [ it
Fig. 1illustrates the hyperplane splits in blue and box par- . owever, the complexity of bottom-up methods maxes |
titions in red. impractical for large data sets. Middle-out techniqiid is

Metric tree. A ball tree (or metric tree) is a hierarchical a trade-off between efficiency and compactness of the tree.

structure for representing a set of points where the badls ar
regions bounded by a hypersphere in a multidimensional
metric spacej(]. Each node (ball) of the tree contains sev- I this section we define different query types evaluated
eral children balls and is represented by the center and raJn this paper, which are typically used in matching applica-
dius. The center node is a mean vector of its children leaf tlONS.

nodes, and the radius is determined by the point farthestRange search. The objective is to find all data points
from the center. Unlike in kd-trees, cells in ball-treesaan  within a given distance from the query. Ball-trees based on
tersect and do not have to partition the entire space (cf.Fig Euclidean distance are suitable for such search. The search
1). There are many methods to build metric tree§]| starts with the top nodes and verifies the query and node in-
the approaches can be classified as top-down partitioningtersections. Euclidean distance is computed to every node
bottom-up agglomerative and middle-out methods. A top- center and the intersections are inferred given the quety an
down approach was used ia] (cf. Fig. 1). K-means clus-  the node radii. All nodes which intersect with the query

4.2. Search strategies



radius have to be traversed. Priority queues. Priority queues are successful in lim-
KNN search. This method is concerned with finding iting the number of traversed nodes in approximate NN
nearest neighbors given a query pointklf= 1, the search search. Given a termination criterion, we increase the prob
returns a single NN. The tree is first traversed by entering ability of encountering nearest points earlier by exargnin

cells which are closest to the query point. The branches arenOd,es in ordgr (.)f increasing distance. One possibility is _to
explored untilk leaf nodes are found. The distance to khe maintain a priority queue of all encountered nodes and dis-

th neighbor is then used to bound the search and only node42nces to them. A new node from the top of the queue is
which are closer to the query have to be examined. examined as soon as the tree is traversed down to the leaf

] ] ] ) node. Another method is to verify the top node from the
ANN, approximate kNN search. In high dimensional 0gueue every time the distance to a node is computed. The

spaces, a query sphere can intersect with a large numbers ode, to which the distance is smaller, is traversed.
nodes and the search for NN becomes inefficient since all

intersecting nodes have to be visited. The number of visited5 Results

cells can be significantly reduced if the NN search is only ~°

approximate. The procedure is similar to exact KNN except  Inthis section, we present experiments testing the match-
that the search is continued while a given criterion is satis ing performance of theIrT transformed with the proposed
fied. The criterion can e.g. constrain the maximum number method, using tree data structures. We first describe the
of leaf nodes to visit. Another possibility is to terminate evaluation framework and then investigate the performance
the search if the distance from the closest cell to the queryof the descriptors according to different criteria.

exceeds = d(p,q)/(1 + ¢), wherep is the NN found so )

far, g — query is a positive termination parameter. In other 9.1. Experimental framework

words, it guarantees that no subsequent point to be found e adopt the evaluation criteria and test data proposed
can be closer tg thand. In ball-tree structure, the node in [24], where the best repeatability and region accuracy is

radius can also be defined by a quantile of ordered leaf dis-achieved by the MSER detectcr]]; we therefore use this
tances from the node center. Thus points, which are far fromgetector in all experiments. Three variants of theT de-

the node center are not considered. This reduces the numb%(;riptor are evaluated. The origirmm:'r serves as a refer-
of intersections and allows to prune many nodes early on inence, with PCA projections if 40 or 20 dimensions are only
the search process. These points can be still close to othefised. Next, aIFT without spatial Gaussian weighting of
node centers since the nodes intersect. In all these techimage gradients within a region, termedsirT, is tested.
niques a certain percentage of returned points are not thewe also apply the Mahalanobis like normalization to the
exact nearest neighbors. Many parts of visual recognition original siFT and denote imo-sIFT. Finally, we include
systems are highly inaccurate therefore approximate kearc the implementation aft-siFT which is transformed by of

often provides sufficient results. Eq.4, but is not weighted by the 2D spatial Gaussian.
) ) The covariance matrice% andCs needed for computa-
4.3. Pruning techniques tion of P are estimated on an independent set of 30 image

Tree search methods differ mainly in how the hierarchy pairs®. DimensionalityD of M-siFTandmo-SIFT (the rank
is traversed and how the branches are pruned to reduce th@f P) is varied and results are presented for different number
number of nodes examined during search. We briefly dis- of dimensions.
cuss the methods used in this paper. Further details can be We also test the performance of the descriptors in four
foundin [1, 14, 24]. different data structures for NN search: two kd-tree vasan

Branch and bound. This method can be used in kNN calledssr [4, 21] andBBD [1] and two types of ball-trees;

search and it makes use of the distance between the que pottom-upsy [1] and top-dowrTo [27] with speedup im-

and the leaf points found so far to reduce the query radius rovements. ) _
during the search. This allows to reject all the cells, to Test data. Results for the variants of th@FT descriptor

which the distance from the query is larger than the distance@'® presented for two sequences with viewpoint and scale
to kth neighbor found so far. change. Results on other sequences from the publicly avail-

able seft are consistent with those presented here. Each se-
guence consists of 6 images with gradually increasing trans
formation and ground truth homographies.

To evaluate matching in data structurd$’® features
were collected from11] training images. Furthermore, two

Triangle inequality. In the case of a metric obeying
this inequality, given distancé(a,b) between pointsu
and b, and d(b,c) between pointsb and ¢ we can
compute lower and upper bounds on distanke, c),
|d(a,b) — d(b,c)| < d(a,c) < d(a,b)+d(b,c). A node
can be rejected if the bounds fall outside of query radius.  Shttp://lear.inrialpes.fr/people/mikolajczyk/Datakas
These pruning criteria can be used in both, the tree con- ° http://www.robots.ox.ac.uk/"vgg/research/affine
struction and the search.
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sets of10% query points were prepared. "Near queries”, — ot — oo
termedNQ, simulate matching and retrieval scenario. Fea- o — wsit 40
tures from images showing the same scenes but viewe: )

from a different angle and scale were used. "Far queries”,
FQ were collected from images with similar scenes to those
in the database. This set simulates matching for categor :
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recognition and contains many points which come froma  *  * oo’ ° R
different distribution. Note, that the difference betweem 1 1 :
andrQ s the average distance to their nearest neighbors ir 1 w0 ot
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the database. =

Finally, for testing the recognition performance we use
UIUC multi-scale car images and TU-Darmstadt multi- E—r
scale motorbikesI[1] . et

Performance measure. Following the evaluation frame- -
work proposed inf4], we match each of the images from a
sequence to the reference image. Two features are considEigure 2. Precision-recall area for sequences. (Left) Wit
ered matched if their similarity distance is below a thresh- (Grafitti). (Right) Scale change (Boat). (Top) Transforimat
old. The match is correct if the spatial overlap of regions (BOttom) Dimensionality.

projected with the homography is more than 40%. We vary gjg (hottom) shows the precision-recall area for differ-
the similarity threshold and obtain a precision-recalMeur ot number of dimensions. The results were obtained for
for each image pair as defined ia4. In order to present 0 viewpoint angle, and 2.5 scale change. We observe

the results for one image sequence in a compact form, We, ¢ the performance increases up to 40 dimensions. Using
consider the area below a precision-recall curve. One curveémgre dimensions does not bring significant improvements.
represents results for entire image sequence. _ The top score for all sequences is obtainedigIFT; MO-
Matching efficiency for different data structures is mea- g,r1 comes second. Unweighted=T obtained lower score
sured with respect to the_ exhaustive search and the treghich again validates the use of a weighting window over
matches are compared with those returned by the exhausine interest region. Thus, the proposeesiFT projection

tive search. If a different point was returned by the tree reqyits in better performance and lower memory require-
search, it was counted as an approximate NN. The percentinants for negligible projection cost.

age of ANN was controlle_d with based criterion or by Iim_— Search queries. The tree structures were constructed
|t|ng thg numbgr of examlned nodes. Th_e cost ofdescrlpt.orwith algorithms proposed in the corresponding publica-
projections is included in the comparative results. In this tions [L, 4, 18, 27] and the search was done with the im-

evaluation we use the truncated Euclidean distance WhiChprovements discussed in sectios. Tablel shows speedup
accelerated the exhaustive search by a factor of 1.4. factors and the construction time compared to exhaustive
52 R search. The numbers show that kd-trees have a great ad-
.2. Results . . o
vantage over bottom-up metric trees in the efficiency of the
Matching performance. The results shown in  tree construction. In the NN search experiments we have
Fig. 2(top) are computed for image pairs with in- obtained significantly different results for neag and far
creasing transformation. Performance of the origsigT FQ queries. The methods were set to return 10% of ap-
is already high on this test data, therefore even small proximate NN. Search ongQ in kd-tree is extremely fast
improvements are significant. The figures demonstratesand accurate. 1NN was found 36000 times faster than with
that Mo-sIFT performs better tharsiFT, which shows  the sequential search i)® 128-dimensional features. The
that the Mahalanobis like normalization still improves NN feature is quite often found in first few investigated leaf
matching. Further improvement given bysSIFT indicates  nodes and the search terminates very early. The gain in
that there exist a better weighting function than a Gaussian search speed is however much lower fa;, e.g. 2 for bbf-
which can be learnt from the training data. However, the tree. This discrepancy is smaller for metric trees e.g. 27
lower results for unweighted descriptorsiFT show that for NQ and 4.1 forFQ. In the remaining experiments we
the Gaussian window does have a positive impact on theprovide results for negative far queries, which give a lower
SIFT performance. These observations are consistent forpound on matching speed.
different scenes and image transformations. Fast search. In this experiment we compare the perfor-
Dimensionality. The main advantage of the proposed mance of the proposed descriptor in different data struc-
method is the dimensionality reduction while maintain- tures. We search for 10NN in 40-dimensionalsIFT space
ing the high performance level of the originaiFT. with FQ. Fig. 3(top-left) shows speed improvements com-

®

)

precision-recall area
IS

precision-recall area

~

20 100 140 20 100 140

60 60
#dimensions #dimensions



bbf-tree bbd-tree bu-tree td-tree
#NN 1 | 10 1 | 10| 1 | 10| 1 | 10
NQ 128 || 33000 | 83 | 1500 | 7 32 | 27 | 29| 22
NQ40 || 27000 | 8 35 2 12| 11| 10| 9
FQ40 2.2 2 03 | 01|44]41]37]|33
| Train. || 22s | 185s | 47h | 6255 |

lower than updating and verifying the queue. The previous
experiments were therefore done without priority queues.
Priority queues can be useful in large databases where the
access to cells stored on different hard drives is expensive
However, this may vary for different implementations since
inconsistent reports on performance of priority queues can
Table 1. Comparison of speedup factors as well as tree eanstr  P€ found in the literaturelf 4, 5, 14, 21]. Fig. 3(bottom-

tion time for near and far queries in 128 and 40 dimensionatep ~ fight) shows that the number of examined nodes is con-
sistently smaller fom-sIFT than SIFT in 40-dimensional
space, which indicates that similar data pointavirsiFT
space are lying closer to each other compareslita. We

: - N also observed that limiting the number of examined cells
erage twice slower that the metric tree built with bottom- improves the efficiency but the fraction of ANN signifi-

up techniquesu. BBD kd-tree shows the lowest perfor-  canyy vary for different queries. Distance based stopping
mance. Range search is noticeably slower than 10NN SinC&yiterion allows to control the level of NN approximation at

no query radius reduction is done during search. &{®p-  |itle expense of speed. Pruning based on triangle inequal-
right) compares 1NN search with 10NN in 40 and 128- v improved the search speed by a factor of 1.4. Traversing

dimensional space. The speedup gain of metric trees iSyayic tree to the first leaf node only, as donedf]| results

larger for 128 than 40 dimensions, as expected. Interest; 9904 of ANN for FQ and 45% of ANN fomq. Although
ingly, to obtain less than 20% of ANN in 128 dimensional s search technique is extremely fast, the matching tyuali
kd-tree the search is slower than the sequential one whichg (4iher low. Using multiple trees with randomized parti-

makes the use of kd-tree questionable. In contrast, kd-treg;, o may provide improvement as reported ]|
of 40 dimensional points provides an improvement alreadv | 1

for 2% of ANN. The benefit of using-siIFTinstead of PCA o o ‘ ~N
projectedsIFT in both, kd-tree and metric tree, is demon- || | rior ' N : :
strated in Fig.3(bottom-left). The presented experiments s« | % o
show that the proposed descriptor makes possible to use k £, e
trees in the categorization scenario and gives betterteesul =

than standard PCA approach. o

pared to exhaustive search for different percentage of ANN.
In contrast to the results orQ, the fastest search foQ
was obtained with the metric treesBF kd-tree is on av-
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Figure 4. Object recognition results. (Left) TUD-Motorbik
/.8 (Right) UIUC-Cars.
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Recognition. In this experiment we compare recogni-
tion results obtained with range, 1NN, and 10NN search.
We use recognition system fromJ], which is based on
matching features to a visual vocabulary. The matched vi-
sual words indicate positions of objects in a voting space.
The search methods were set to return less than 10% of
ANNSs. Fig.4(left) and (right) show precision-recall results
on multi-scale motorbike test set and multi-scale car test
set, both accessible from. ]]. Note that although our pri-

5 L R S O T mary goal here is to compare different matching and search
C P im0 aomoimate fowwoe aoam strategies, the recognition score outperforms statéyefart
Figyre 3. Efficiency of the similarity search. (Top-left)eErcom- results in [L1, 23. This is due to the large number of fea-
parison. (Top-right) Dimensionality results. (BottonitjeDe- ;a5 sampled from the training data which are efficiently
scriptor comparison. (Bottom-right) Priority queues. dealt with by trees. The processing of a test image takes
Pruning. Priority queues reduce the number of traversed less than one second and most of the computation is in the
nodes by examining them in order of distance to the queryfeature extraction. Range search in bottom-up treetof
but the overhead for maintaining the queues slows downsiIFT features gives the highest score. Good results are also
the search. We observed that, although the number ofobtained with 10NN search in contrast to 1NN. Many ob-
examined nodes is low compared noqueuesearch (cf.  ject instances are correctly detected when 1NN is correct
Fig. 3(bottom-right)) the actual speed decreases by a factorhowever any matching errors made at these stage are hard
of 2. This indicates that the cost of computing distance is to recover later in the recognition process. 10NN search
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strategy with kd-trees seems to be a good tradeoff to avoid [8] S.Winderand M. Brown. Learning Local Image Descriptors

complexity problems of metric trees. In CVPR 2007.1, 2
[9] M. Brown and D. Lowe. Recognishing panoramaslQcV,
Conclusions and discussion 2003. 1 o _ _
[10] N. Dalal and B. Triggs. Histograms of oriented gradgefar
In this paper we presented a method for improving im- human detection. ICVPR 2005.1, 2

age descriptors by learning optimal projections. Experi- [11] M. Everingham and et. al. The 2005 PASCAL Visual Object
mental results show that the approach leads to a significant ~ Classes Challenge. PASCAL Challenges Workshop, LNAI

dimensionality reduction as well as to an improvement of 2005.5, 6,7 _ _
the matching performance. We observe consistentimprove{12] J. H. Friedman, J. L. Bentley, R. A. Finkel. An algorithm
ment in matching quality and speed of fast tree search. for finding best matches in logarithmic expected tid&M

Trans. Math. Softw3(3):209-226, 19772
[13] K. Fukunaga.ntroduction to Statististical Pattern Recogni-
tion. Academic Press, 199@.

In addition, we perform an evaluation of tree structures
using SIFT and M-SIFT according to different criteria and
on different queries. The r.esultfs Sho"V extremely high per- [14] G.R. Hjaltason and H. Samet. Index-driven similarigasch
formfance of kd-trees in high dimensional spaces on near in metric spaces. ACM Trans. Database Sys28(4):517—
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are obtained with metric trees although the construction [15] y. ke and R. Sukthankar. PCA-SIFT: a more distinctive-re
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