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Detecting changepoints in time series becomes difficult when the series are short and
the observation variance is high. In the context of time series of environmental resource
maps, it is often safe to assume that the abrupt events are spatially continuous, and so are
the changepoints. We propose to utilise this assumption by means of hierarchical models
where the changepoints are modelled using a spatial model. We demonstrate utility of
the approach by constructing a Bayesianmodel based on the Potts model, with additional
assumptions relevant to changepoint detection in national multi-source forest inventory
maps. We discuss implementation issues and demonstrate the idea’s performance using
a simulation study. We then apply the model to forest resource maps in order to detect
felling events.
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1. INTRODUCTION

Maps are often utilised as tools in science–policy interfaces such as REDD+, IPCC
or IPBES to communicate state of environments to policy makers (Ojanen et al. 2021).
Forest resources maps are also needed for local decision making, for instance regarding
forest management, timber trade and planning of harvest operations (e.g. Kangas et al.
2018). Increased availability of remote sensing data has enabled large area maps of forest
resources. In Finland, the first national-level thematic maps describing the status of forests
were published already in the 1990’s (Tomppo 1996). These maps were based on satellite
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images and National Forest Inventory (NFI) plots. Currently similar maps are produced also
based on laser scanning data (e.g. Nord-Larsen et al. 2017; Nilsson et al. 2017; Hauglin
et al. 2021).

Besides the current forest resources, assessing the changes in them is of great impor-
tance (e.g, Hansen et al. 2013; Healey et al. 2018). Global Forest Watch, for instance, mon-
itors changes in the forest canopy cover globally using satellite images. Changes observed
in forests can be due to both natural disturbances (forest fire, wind damage, etc.) and
human-induced disturbances (harvests), and their impacts can be either persistent or resilient
(Kennedy et al. 2014). Besides the above-mentioned abrupt changes, also more subtle and
continuous disturbances exist, such as those related to drought stress or insect infestation
(Coops et al. 2020).

The assessment of changes has been made possible through the vast archives of satellite
images freely accessible for researchers (Zhu 2017; Kennedy et al. 2018). In addition, time
series of more detailed airborne data have been used to detect changes (Zhao et al. 2018).
The change analyses vary in both temporal and spatial scale. Changes are detected in either
tree level (Yu et al. 2004), pixel level of satellite images (Hansen et al. 2013) or forest stand
level (Pitkänen et al. 2020). The extent of analysis varies from individual plots to global level
(Duncanson and Dubayah 2018; Hansen et al. 2013). In temporal scale, the analyses vary
from detection of changes between two time points to the analyses of trends over decades
(e.g. Pitkänen et al. 2020; Katila et al. 2020; Wulder et al. 2020).

One important application of the change analysis is to analyse a time series of satellite
images in order to detect the time point of a disturbance, and assess the resilience of the
landscape after the disturbance. Kennedy et al. (2014) define five different shapes of change
that can be observed: decreasing, increasing, jump, jump with resilience and cyclic. Moisen
et al. (2016) also mentions flat, vee or down-up, inverted vee or up-down and double jump.
The time series can also be analysed to detect the persistence of the effect of disturbance (e.g.
Coops et al. 2020). Figure1 shows four basic shapes alongside examples of these shapes
from the Finnish growing stock volume series that we will be analysing. It is evident that
the shorter the time series data available, the more challenging it is to detect more complex
behaviour, such as double jump or vee and inverted vee, compared to simpler behaviour, i.e.
increasing, decreasing or just a single jump.

A number of algorithms exist for analysing such time series, for instance the LandTrendr
developed by Kennedy et al. (2010) to analyse Google Earth Engine time series (Kennedy
et al. 2018). Usually, the time series analysis is carried out based on a time series of satellite
images or satellite image composites. In the case of Finnish multi-source National Forest
Inventory (NFI), a time series of interpreted forest resources maps from over two decades
is available, and they provide an opportunity for detecting trends and disturbances directly
in terms of various forest characteristics such as growing stock, biomass or tree species
proportions (Katila et al. 2020); Fig. 1 illustrates the data series and Fig. 7 the spatial raster.
In contrast to a typical satellite image analysis with monthly or weekly images, the number
of these maps is quite low for the requirements of most time series analysis algorithms. In
addition, the year-to-year variability in the resource maps can be high, posing additional
challenges to the analysis. Many of the recent techniques are developed for series with
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Figure 1. A Idealised series of data with high sampling frequency, low error variance, increasing (A.1) or decreas-
ing trend (A.2), and series with changepoints (A.3,A.4).B Examples of Finnish National Forest Inventory growing
stock volume series data at different locations, with low sampling frequency, high error variance, and with increas-
ing (B.1) or decreasing (B.2) trends and with probable changepoints (B.3, B.4). Solid lines with dots show the
values for each focal pixel, and dashed lines show the values in adjacent pixels .

hundreds of time points (e.g. Messer et al. 2018; Jewell et al. 2022) or moderate length
series with high signal-to-noise ratio (Moisen et al. 2016).

Vast majority of the methods in the literature analyse the time series in each pixel sep-
arately. Our hypothesis is that when checking for a changepoint due to an event that is
spatially continuous, the low number of highly variable observations in a time series can be
augmented with information from the surrounding pixels. That is, with reference to Fig. 1,
we suggest exploiting potential changepoints of the dashed lines to better understand the
focal line. Previously, for instance Hughes et al. (2017) have addressed change for a map
that is spatially segmented to patches for utilising the neighbourhood in the analysis. Others
have used neighbouring pixels to stabilise focal time series (Hamunyela et al. 2016) or to
construct predictors (Sebald et al. 2021) before pixelwise changepoint analysis. But to the
best of our knowledge, no studies exist that explicitly account for the potential changepoints
in the spatial neighbourhood of focal location. The goal of this study is to demonstrate
how the neighbourhood information can be modelled and to assess the usefulness of such
information.

The work is organised as follows. In Sect. 2, we introduce the NFI data. In Sect. 3, we
formalise the changepoint detectionproblem in aprobabilistic setting, introduceour proposal
for incorporating spatial correlation and describe simulation trials for benchmarking the
proposed method. In Sect. 4, we discuss the simulation trial results and apply the method to
theNFI data. Section5 summarises thework and discusses its limitations,wider applicability
and future development.

2. MATERIAL

The Finnish multi-source National Forest Inventory thematic maps used in this study
are from the MS-NFI-8 (Tomppo et al. 1998), MS-NFI-9 (Tomppo 2008), MS-NFI-2002
Mäkisara et al. (2001), MS-NFI-2005 (Tomppo et al. 2009), MS-NFI-2007 (Tomppo et al.
2012), MS-NFI-2009 (Tomppo et al. 2013), MS-NFI-2011 (Tomppo et al. 2014), MS-
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NFI-2013 (Mäkisara et al. 2016), MS-NFI-2015 (Mäkisara et al. 2019), MS-NFI-2017 and
MS-NFI-2019 (Mäkisara et al. 2022). NFI field plot data from 4- to 5-year time period
were typically used in the multi-source NFI. During the MS-NFI-8 and MS-NFI-9, the NFI
progressed by region and field plots was mostly from the same year as the satellite images.
Since the tenth NFI (2004–2008), one-fifth of the clusters have been measured annually in
major parts of Finland. Therefore, the NFI plots from the last five years have been employed
in the multi-source NFI as training data since MS-NFI-2005.

In addition to NFI field plots, the data sources behind the multi-source NFI estimates
are medium-resolution multi-spectral satellite images with pixel sizes of about 10–30ms
(Landsat TM, ETM+ and OLI, Spot XS HRV, IRS-1 LISS-III, Sentinel-2AMSI) and digital
map data of land use from the National Land Survey of Finland. The survey’s topographic
database has been the digital map data source since MS-NFI-2005. The digital map data are
used to separate forestry land (FRYL) from other land classes (an output is a FRYL mask)
as well as to stratify FRYL and corresponding field plots into open bogs and fens, mineral
soil and peatland strata for k-NN estimation purposes (Katila and Tomppo 2002; Tomppo
2008).

The resulting 11 maps have spatial resolution of 16m and cover all of Finland. For this
study, we consider the 11 map rasters in an example sub-region with size approximately
15 × 15 km and process them by mean-aggregating the images to a 32m resolution. The
resulting raster stack with resolution 480×480×11 will be referred to as the (multi-source)
NFI data. The region and the pixelwise mean over the 1994–2019 period of the NFI growing
stock volume maps are illustrated in Fig. 7.

3. METHODS

3.1. PRELIMINARIES

Let I = {i : i = 1, . . . , N } denote a set of units with representative spatial locations xi
where the variable of interest, yil , is available at T > 0 time points tl , l = 1, . . . , T . For
our NFI example, I represent 32m×32m square cells in a regular grid covering a square
sub-region of Finland in projection etrs- tm35fin (Fig. 7), N = 230400, yil is the predicted
growing stock volume (m3/ha) in each cell i , and the T = 11 time points are non-equidistant
tl = 1994, 1998, 2002, 2005, 2007, 2009, 2011, 2013, 2015, 2017, 2019.

In the multi-source NFI data, the pixel values are predicted forest characteristics (e.g.
growing stock volume, biomass, height, diameter), not satellite image channel values or
their modifications (e.g. NDVI). This approach can be partly seen as a process to remove
differences between the used images due to, e.g. light and cloud conditions, and, more
importantly, to facilitate direct interpretation of changes in terms of variables of interest.
Motivated by the properties of the NFI time series, we make the following assumptions on
the data:

1. Series are short, the number of time steps T << 100. In the examples of this paper,
T = 11.
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2. The unstructured variability due to, for example, observation noise is relatively high,
coefficient of variation CV >> 5%.

3. The changepoint events are temporally correlated in spatial neighbourhoods.

Assumption 1. rules out many of the modern change detection algorithms. Assumption 2.
reduces the efficiency of statistical changepoint detection, but, as will be demonstrated,
assumption 3. can compensate and improve the efficiency to useful levels.

For the purposes of demonstrating the approach in the context of NFI data ,we will set
two further simplifying assumptions:

4. There is at most 1 changepoint event.

5. The events represent harvest events and are therefore negative shifts.

Assumption 4. can be relaxed if longer series are available, see e.g. Killick et al. (2012).
Assumption 5. is not strictly necessary for the developed model, but it improves identifia-
bility.

3.2. PROBABILISTIC MODEL FOR TIME SERIES CHANGEPOINTS

We formalise a changepoint in the context of probabilistic modelling. We will consider
time series observed on a fixed set of time points t1 < · · · < tT . Without great loss of
generality, let us consider a parametric model connecting the variable of interest at location
(pixel) i at time tl , yil ∈ R, to its mean, μil , l = 1, . . . , T , by assuming for the vector of
values yi = (yi1, . . . , yiT ) ∈ R

T the relationship

yi = μi + εi εi ∼ Fε(�i ) (1)

with a mean vector μi = μi (θ i ) = (μi1(θ i ), . . . , μiT (θ i )) depending on the vec-
tor of parameters θ i , and some distribution Fε with parameters �i for the error terms
εi = (εi1, . . . , εiT ).

Without change events, the parameters θ ,� are constant in time. A time point tk , with
index k ∈ {1, . . . , T − 1}, is defined to be a changepoint for yi if the distribution before
(inclusive) and after the changepoint is different, that is, θ i,tl≤tk �= θ i,tl>tk or �i,tl≤tk �=
�i,tl>tk If we consider only changes in the mean,

yil =
{

μil(θ i,tl≤tk ) + εil , when l = 1, . . . , k
μil(θ i,tl>tk ) + εil , when l = k + 1, . . . , T .

(2)

We reserve the special case k = T to indicate “no changepoint”. Note that auto-correlation
can still exists between the errors over the changepoint. A changepoint could affect also the
variance parameters; for example, switching satellite data to higher quality could reduce the
variance considerably for following observations.

For applications such as the NFI harvest detection, we are content to consider the linear
model, with the mean function

μil = X ilθ i tl (3)
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where relevant trend components such as environmental factors, nonparametric spline basis
coefficients, or, particularly, (polynomials of) time variable tl , are included in the row vector
X il . Then we can formulate the parameters and their change as

θ i t = θ i t ≤ tk, θ i t := θ i + δi t > tk (4)

where δi quantifies the change in the parameters of the mean function at location i .
In this paper, we consider the simple independent and identically distributed Gaussian

errormodelwith a constant varianceσ 2, togetherwith a linear trend in timewith X il = [1 tl ].
We stack X il rowwise to create the regressormatrix X i . Thevector θ i contains theparameters
corresponding to the constant level and the slope in time. We will further restrict ourselves
to studying changes only in the intercept of the mean function; thus, δi = [δi 0]ᵀ. The
observationmodel for each location i = 1, . . . , N then reduces to the T -dimensional normal
distribution,

yi | θ i , δi , ki , σ ∼ NormalT
(
X iθ i + δiψ

k, σ 2 IT×T

)
(5)

where ψk is the vector with k 0’s followed by (T − k) 1’s and IT×T is the identity matrix.
Additional properties such as auto-regressive errors and higher-order trends can bemodelled,
when data permit, bymodifying� and X i , respectively. Extensions tomultiple changepoints
are more involved, but roughly follow the pattern in Eq (2) with additional δi ’s in Eq (4).

We will estimate the parameters within Bayesian framework (Gelman et al. 2014) in
order to quantify uncertainty of the estimates, not always possible in special algorithms
based on optimisation formulations of the problem (Jewell et al. 2022). The optimisation
formulation methods are usually implicitly based on a probabilistic models but trade quan-
tifiable uncertainty for computational efficiency. In this paper, we aim to show utility of
the neighbourhood correlation, and sacrifice computational efficiency for methodological
transparency.

Using a hierarchical modelling approach, we can also incorporate external information
via the prior distributions, usefulness of which is evident from being able to set a trun-
cated Gaussian prior for the δi s according to our desire to discover only negative changes
(Assumption 5.). At this stage of the model specification, we set the priors

θ i ∼ Normal2(mθ , Sθ ) (6)

δi ∼ trunc-Normal(mδ, s
2
δ , lδ, uδ) (7)

σ 2 ∼ Inv-Gamma(a, b) (8)

where, if not otherwise stated, we set the tuning parameters mθ = 0, Sθ = 105 I2×2,mδ =
0, s2δ = 105, lδ = −∞, uδ = 0, a = 5, b = 5000.

3.3. INCLUDING NEIGHBOURHOOD INFORMATION

We introduce correlation between the series of neighbouring locations via hierarchical
modelling of the changes. Smoothing the image, as, for example, done by Hamunyela et al.



570 T. Rajala et al.

(2016), is akin to connecting θ i to neighbouring θ j , and we could alternatively achieve this
in our model by setting a spatially correlated prior on the θ i s. But instead of (or in addition
to) connecting the trends, we suggest connecting the actual changepoints variables {ki }.

Our approach is similar to that of panel data analysed by Bardwell et al. (2019). Consider
that the area represented by each pixel i ∈ I is small enough so that each event of interest,
say final felling between the years tk and tk+1, affects a group of pixels (Assumption 3.).
With the restriction of at most one event per pixel, the object of interest is then the latent
image, say Ik = {ki : i ∈ I}, where each pixel describes the presence or absence of a
changepoint event with values ki = 1, . . . , T .

The goal of changepoint detection is to recover the image Ik . Consider first assuming that
there is no spatial dependency.Thenwecould add to thehierarchicalmodel (5) independently
across the pixels a categorical prior model ki ∼ Cat(T ;π). The unit simplex vector
π = (π1, . . . , πT ) ∈ [0, 1]T defines prior probabilities for the change to occur at each time
point, with the “no jump” probability given byπT . Then in order to estimate Ik with the prior
assumption of spatial correlation, we can extend the categorical model to a multi-variate
model with the Markovian form

p(ki = k | {k j : j ∼ i},�,π) ∝ πk exp

⎡
⎣∑

j∼i

γkk j

⎤
⎦ , (9)

where j ∼ i are neighbours of i and� = [γkk′ ] is a T ×T -dimensional matrix of interaction
parameters. Each component γkk′ describes the interaction of the changepoint of focal pixel
i at the time point tk with the changepoints of neighbouring pixels at time point tk′ . If
γkk′ > 0, then the probability of ki = k given k j = k′ is adjusted upwards from the prior
πk . If � = 0, neighbours do not add to the likelihood of a changepoint, but in any other case
the model introduces correlation across the image Ik and thus in the changepoint estimate
of the pixel i and the changepoint estimates of its neighbours.

In this work, we consider the simple diagonal � ≡ γ IT×T where γ ∈ R, and, if not
otherwise stated, neighbourhood of focal pixel consists of the 8 adjacent pixels. Then the
conditional probability model (9) describes the well studied Potts model (Wu 1982). In
general, the model (9) can be viewed as the auto-logistic model discussed by Besag (1974),
and, for example, the� could be non-diagonal. An example of non-diagonal� is to consider
γk,k+1 �= 0 to model a temporal lag component which might help identify events on a forest
patch edges next to another patch with an event of the previous or following year. An
obvious example for such a situation is a storm damage at the edge of a final felling carried
out previous year, or a bark beetle damage following a storm damage.

Another extension is to consider different neighbourhood “kernel” shapes and size, say
by adding a scalar weight wi j into the sum in Eq. (9). The 8-adjacent-pixel kernel is the
uniform kernel using max norm, and we will briefly discuss some alternatives to it. The
shapes and sizes are illustrated in Fig. 8. In order to have comparable results with a fixed
γ , we scale the kernels so that the sum over all pixels that have nonzero weight in Eq. (9)
is at maximum 8γ . Note that the neighbourhood together with � can be understood as
geo-statistical co-variance model. In our example model, however, the “smoothing” occurs
on the multi-nomial timing variables k instead of the response variables (growing stock
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volume). As a result, the mean, the trend, and the event magnitude can vary freely over the
pixels.

3.4. COMPUTATION

In the presented work, we consider the variables � = γ IT×T and π fixed and given as
tuning parameters. We will discuss the parameter π1 := 1 − πT and assume otherwise flat
prior πk = π1/(T −1), k < T . Inference on the � is difficult as the normalising constant of
the likelihood is numerically intractable for any � �= 0, and needs to be approximated with
significant computation cost, even though recent development seems promising (Moores
et al. 2020).

With γ , π1 and the data y fixed, the posterior distribution of the parameters {θ i , δi , ki }N1
and σ can be sampled using a Gibbs sampler (Gelman et al. 2014). The details of the
algorithm are provided in Appendix Sect.B. A more efficient algorithm would optimise
the model with, for example, gradient descent or an EM approach, with required simpli-
fications, but care must be taken where to cut corners: we tested a mean field variational
approximation with deteriorated quality of the results. The purpose for this paper is not
optimal computational efficiency; thus, the Gibbs sampler suffices.

Since the Potts prior theoretically connects each pixel with all other pixels (weakly, but
still), simultaneous estimation of large rasters becomes difficult both in computational time
and in memory requirements: The traces of the sampler should be kept at least for the N
probability vectors, each of size T , to access the posteriors of ki ’s. Mixing of the chain is
also typically slow with discrete latent variables. For convenience of running our prototype
estimation algorithm, we opted for a mutually independent partitioned estimation. In this
approach, the original raster is divided into nx × ny sub-rasters (“tiling”) and the model
is fitted independently in each of them. The pixels at the each sub-raster edges have lower
neighbour counts than in the full raster, and to alleviate this, we overlap spatially adjacent
sub-rasters by including a buffer (“buffering”). The buffer size was set to the number of
pixels used in the neighbourhood definition. The model was then estimated independently
on these buffered sub-rasters. When collating the posterior estimates on the full raster from
the sub-raster estimates, the estimates for pixels in each sub-raster’s buffer, those that belong
to neighbouring sub-rasters, are excluded. This ensures that each pixel will be considered in
only one sub-raster and will have a unique posterior estimate. Figure9 illustrates the tiling
and the buffering.

In our trivially parallelisable implementation, each sub-raster will have its own variance
parameter σ , so as a side effect the tiling relaxes the homogeneity assumption (cf. Equation
(5)) that is unlikely valid over large landscapes anyway. Figure15 depictsMonte Carlo traces
for key variables in three example cells of the NFI data and is provided as evidence for the
convergence of our proof-of-concept algorithm implementation. All processing and compu-
tations were done using the R software (R Core Team 2022), and the code for reproducing
the experiments is distributed through the first author’s Github profile.
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3.5. BENCHMARKING THE MODEL

Weconstructed a simulated dataset forwhich the change eventswere knownand forwhich
we could then assess the detection quality. The idea was to emulate the NFI application, with
T = 11. An in silico map of change events, the ki ’s in Ik , was created by simulating the
Potts model using an extended number of times T ′ = 29 (using Gibbs sampling on a 6252

grid with γ = 2.0, “external field constant” 2, 5M iterations) and then identifying times
12–29 as 11. This was done to get the amount of pixels with a jump event, i.e. ki < 11, to
around 35%, a reasonably realistic estimate over a 25-year period. To emulate linear features
(road, power line), a 1-pixel-wide line was added diagonally through the region. Illustration
of the resulting Ik is given in the top panel of Fig. 3.

To generate many series similar to the NFI data, a selection of 27 series with no harvest
events was selected visually from the NFI dataset, and the linear regression coefficients
(“pool”) and the median error standard deviation were recorded. Then for each pixel over
the change map, a time series was generated by sampling the regression coefficients from
the pool and adding Gaussian noise using the median standard deviation. For each pixel
with a harvest event, ki < 11, a negative shift was added to the mean after tki . The series
was rejected and re-sampled if the trend took the series mean below 0. The values of the
noisy series were also truncated to be non-negative to imitate the growing stock volume
data. We simulated three sets with f =30%, 50% and 70% harvest at the time of the jump,
δi = − f · (θi1 + θi2tki ), using 11 time steps t = 0, 4, 8, 11, 13, 15, 17, 19, 21, 23, 25. The
three levels were chosen to provide a decent coverage of realistic detection tasks. Since
the spatial effects are fairly localised, we expect datasets with mixed jump levels to have
correspondingly mixed scores.

After the model was fitted to one of the synthetic dataset with known ki ’s, we predicted
the harvest events using the maximal estimated jump timing k̂i = argmaxk P(ki = k| data)

and for overall having a jump event p̂i := P̂(i has a jump) = 1 − P(ki = 11| data),
thresholding at 0.5. We assessed the harvest detection quality by means of true positive rate
(TP: fraction of pixels with p̂i > .5 out of pixels with ki < 11) and the false positive rate
(FP: fraction of pixels with p̂i > .5 out of pixels with ki = 11).

For comparison, we ran pixel-wise changepoint detection using the CUSUM test (Brown
et al. 1975, R function structchange::efp) and an alternative Bayesian changepoint
analysis (Barry and Hartigan 1993, “BCP”, R function bcp::bcp). The latter was com-
puted with time-wise prior-jump probabilities 0.1 and 0.5.

4. RESULTS

With the jump event timings known in the three synthetic datasets, we can explore the
detection quality and their response to changing parameters. In the following, we note the
30, 50 and 70% reduction of target variable by “hard”, “medium” and “easy” case.
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Figure 2. True positive (TP) and false positive (FP) rates in the simulation trial. Three change event sizes (30,
50, and 70% drop in the mean level of yit ), 9 combinations of tuning parameters. The model with γ = 0 refers to
a model where jump timers ki are not correlated in neighbourhoods. Estimated using a 8 × 8 tiling with 2 pixel
buffers. Larger separation between TP (triangle) and FP (circle) is better .

4.1. SYNTHETIC BENCHMARKS

TheTP andFP rates for all three datasetswere estimated using a grid of tuning parameters,
and the results for a chosen 9 combinations are illustrated in Fig. 2. The hard case with mere
30% reduction events turned out to be quite challenging: At best, we reached 50% TP rates
with an elevated 10% FP rate (γ = 0.3, π1 = 0.9). With no neighbourhood correlations,
γ = 0, there is no good balance between TP and FP: Either the TP rate is low or the FP
rate is high. With the easier medium and easy cases of size 50% and 70% reductions, the
quality predictably improves. Most importantly, adding information from neighbourhoods
by setting γ > 0 reduces the FP rate considerably. For example, in the medium case it is
possible to have TP rate of around 80% with FP rate around 13%, and if we accept a TP
rate reduction down to around 65%, the FP rate can drop to 1% (Fig. 2, middle panel).

Increasing γ produces conservative predictions and lowers the TP rate, and one might
imagine this being emphasised, for example, at the border pixels of some “harvested” patch.
Too large a γ should therefore be avoided. As expected, increasing π1 increases TP with
the usual trade-off of spurious false detection occurring more frequently. The model seems
to be conservative in terms of the “jump-anywhere” prior probability π1, as the FP rates
start increasing only after π1 > 0.5.

Classical CUSUM testing had no power in any of the cases (0% TP and FP; excluding
trend the rates were 14% TP and 9% FP for easy case, but the model is then clearly mis-
specified). The approach in BCP is similar to ours and reached a TP 46% with FP 4% when
jump-prior was 0.1. Increasing the prior to 0.5 increased TP 79% but, as with γ = 0 case,
also increased FP to 29%. Results for more difficult cases are illustrated in 10; the pattern
is the same, with lower TP rates.

To understand the lacklustre classification performance in the hard case a bit more, we
grouped the pixels with a jump event by “signal-to-noise ratio” | δi | /σ to below and above 2,
which roughly group the pixels to thosewith low or high just-before-jump levelswith respect
to the variability (true σ ≈ 22). With γ = 0.3, π1 = 0.9, the TP rate in the below/low class
is at best 36% but in the above/high class reaches 72%. This indicates that the model can be
adjusted to be reasonably sensitive to 30% jump events while at the same time maintaining
a low FP overall rate as long as the coefficient of variation at the time of the event is below
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30%/2 = 15%. Setting the same coefficient of variation threshold for the medium and easy
cases, the above/high class TP rates reach 98% and 99%, although more FPs occur at this
high level π1 = 0.9.

To check the biases from parallelising the calculation into sub-rasters, we computed the
quality for a small sub-raster of size 62×63 with varying divisions and buffers. Overall, the
bias seems to be small, few percentage point differences in the true and false positive rates
(Fig. 12). If partitioning is required, then buffering should be included, or else the pixels on
the edges can be expected to have a higher FP rate. The amount of edge pixels increases
with more divisions, but buffering mere 2 pixels seems to remove the biases well for both
4 × 4 and 8 × 8 mosaics in our tests.

To visually compare the detection rates, in Fig. 3 we zoom in on the central 100 ×
75 pixel sub-image and inspect the per-pixel posterior modes, jump probabilities and the
misclassifications of the medium case. Neither γ = 0 nor γ = 0.3 estimates are able to
fully detect each changepoint cluster, but most clusters are partially detected. Comparing
γ = 0 and γ = 0.3 (left v right columns), the neighbourhood correlation seems to “fill
in” holes, for both jump clusters and non-jump regions. The estimated jump probabilities
are more polarised, and pixels within clusters are pulled towards majority. Spurious false
positives are mostly removed, but the correlation also increases false negative count and
their clustering. The linear “road” feature passing through the area is mere 1pxl wide, so
pixels on it face 3 against 6 votes in the isotropic neighbourhoods, and as a result, the road
is poorly identified.

To explore what effects changing the neighbourhood definition has, we compared the
medium difficulty case rates using a square neighbourhood, a circular neighbourhood and
a radially weighted (squared exponential of cell centre distance) neighbourhood. We also
altered the radius of the neighbourhood from 1 to 3 pixels away; see Fig. 8 for illustration.
Recall that we scale the neighbourhoods to be cross-comparable for a given γ . The results
across combinations of γ = 0.3, 0.6 and π1 = 0.7, 0.9 (Fig. 11) indicate that kernel size
is more important than the shape. Increasing radius from 1 to 3 pixels decreases TP rates
(average change −10.8%). Circular neighbourhoods, with less diagonal neighbours, lead to
slightly less conservative predictions (on average +3.5% to FP rate). Distance-weighting did
not provide any benefits over the square. Altering the kernel might have more benefits when
events are expected to be occur in larger patches, or when we want to target anisotropic
shapes such as linear features.

The final observationwemake is independent of the neighbourhood definition: the timing
of the changepoint affected in our examples the detection power. Generally, changepoints at
the extremes of a series are harder to detect because the increased before–after sample size
imbalance. But because in our examples the magnitude of the jump was relative to the mean
at the time of the jump, it follows that the detection rate depends on the trend of a series
(Fig. 13). The trends in our examples were mostly positive (i.e. growth), so the absolute
jump sizes of changepoints later in time became higher and were therefore easier to detect.
For example, in the medium case (50% jumps) using model γ = 0.0, π1 = 0.5, the true
positive rates for changepoints at time point k = 2 were quite similar, 34% and 35%, for
pixels with negative and positive trends, respectively. But for changepoints at k = 8, the
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Figure 3. Top row: 100×75 pxl central region of the true changepoint image used in the simulation trial. Colours
encode time steps, same encoding as on the 2nd row. 2nd row: Posterior mode, i.e. predicted changepoints. 3rd
row: Posterior probability of a jump. 4th row: False negatives (FN) and false positives (FP) of detecting a jump if
using posterior probability threshold P(jump) > 0.5. Estimates are presented for the medium case of 50% jumps,
and for two models with prior π1 = 0.7 and either γ = 0 (left) or γ = 0.3 (right).
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rates diverge and changepoints of series with positive trends were detected with rate 72%
while for negative trend series the detection rate stayed closer to 30%.

4.2. NFI RESULTS

We then applied themodelling approach to part of themulti-sourceNFI data (cf. Figure7)
using 8 × 8 tiling with 2-pixel-wide buffers, and interaction parameters γ = 0, 0.3, 0.6
and jump priors π1 = 0.5, 0.7, 0.9. Figure15 illustrates the algorithm’s convergence. The
estimated fraction of pixels with a changepoint ranges with π1 = 0.5 from 17% (γ = 0.6)
to 27% (γ = 0), and with π1 = 0.9 from 34% (γ = 0.6) to 97% (γ = 0). The last estimate
is most likely a gross overestimate due to false positives. We will report in more detail the
results using γ = 0.6 and π1 = 0.7, for which the estimated rate was 20%, and based on
the simulations, should have a low false positive rate.

Figure 4 depicts the estimated changepoints bypixel for tuningparametersγ = 0.6, π1 =
0.7. The Finnish Forest Act regulates that a forest owner has to file the forest use declaration
before a certain stand or stands are harvested. We have overlaid these declarations from
the years 1997–2018 with the estimated changepoints in Fig. 4. It is important to note that
some of the declared harvests are never implemented, so we do not expect them to represent
“true positives”. But we do observe several detected clusters outside the planned regions.
With changepoint years 1994 and 1998, the actual NFI input data predate the first declaration
register year 1997, and in anyyear, the area delineated in the declaration is not always precise,
but more study is needed to understand why large regions appear to have been harvested
outside the register. In Finland, around 3 per cent of harvests have been done without a
proper declaration, which is considered illegal harvest (even if the owners harvest their own
stands); in Sweden, the level reached 10 per cent before monitoring started (Pitkänen et al.
2020; Sawyer et al. 2015).

For a visual check of the detection, we provide a close up of the multi-source NFI raster
data together with aerial photographs in a small sub-region at two time points. (The sub-
region is highlighted in Fig. 7.) Figure5 shows the predicted change overlaid on the NFI
growing stock data rasters from years 2011 and 2019, and Fig. 6 shows aerial photographs
from closest available years 2012 and 2019. Visual inspection of the NFI data confirms a
general trend of growth, with large final felling regions visible (e.g. lower right corner) and
also well detected by the algorithm. The algorithm is also capable of detecting intermediate
thinnings, such as the 2015–2018 event near the centre of the region. (We checked also γ =
0.6, π1 = 0.9 with which the corresponding registry event is discovered nearly completely.)
Some small events are harder to justify based on the aerial photographs (e.g. individual pixel
2011–2014 events in the top right corner), possibly due to misalignment of the aerial photo
dates and the NFI dates, or a road construction appearing in some special way with the 32m
raster resolution.

Figure 14 provides scales of the estimated harvesting events by mapping the relative
amount of growing stock removed at each changepoint event pixel. Most estimated events
are large in scale, with reduction of growing stock estimated to be between −100% and
−80%, but some smaller events of scale −40% to −20% are also predicted.
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Figure 4. Changepoint estimates for NFI example data using tuning parameters γ = 0.6, π1 = 0.7. Colours pro-
vide estimated years after which harvesting event occurred. Overlaid with cyan lines are all forest use declarations
over the period 1997–2018.

With tuning parameters γ = 0.6, π1 = 0.7, the standard deviation estimates σ̂ ranged
from 27 to 40, median 37, over the 8 × 8 = 64 sub-rasters in the computational tiling. The
spatial pattern of the noise variability estimates was similar across all tuning parameters,
with a group of lower values in the western and north-western tiles.

5. DISCUSSION

We have introduced a novel approach to incorporate spatial correlation into (proba-
bilistic) time series changepoint detection in the many series, few-time-point setting often
present in such applications as national forest resource mapping. We benchmark a proof-of-
concept instance of the proposed model on simulated datasets, and the results clearly show
the benefits of incorporating spatial information, especially when compared to non-spatial



578 T. Rajala et al.

Figure 5. Illustration of the changepoint detection in a subset of the main Häme region. The multi-source NFI
growing stock volume data, years 2011 and 2019, pixel clusters with detected changepoints using γ = 0.6, π1 =
0.7 overlaid. Changes before the first image are overlaid with black, and in these regions the natural positive trend
of the growing stock is clearly visible. Compare to the aerial photographs in Fig. 6.

counterparts which, in the worst case, have no detection power whatsoever. We also applied
the approach to a real-world forest inventory data to detect sudden changes in growing stock.

The probability of observing a change in the forests from satellite images is the harder,
the smaller the change. For instance, Pitkänen et al. (2020) analysed both thinnings and
final fellings. The accuracy of detecting the final fellings was good, but that of thinnings
considerably lower. Thus, it can be assumed that the final felling areas or large severe natural
disturbances are found without utilising information from neighbouring pixels, but in case
of thinnings or less severe natural disturbances the neighbouring information is especially
useful. The driving tracks within a stand are a clear sign of a carried out thinning, but these
tracks only affect a small part of the thinned area and the effect on each pixel is not very
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Figure 6. Illustration of the changepoint detection in a subset of the main Häme region. Aerial photographs
courtesy of National Land Survey of Finland, years 2012 and 2019, pixel clusters with detected changepoints
using γ = 0.6, π1 = 0.7 overlaid. Changes before the first image are overlaid with black, and in such regions the
natural positive trend of the growing stock is clearly visible.

large nor very long-lasting. Then, information of occurrence of such a track or other small
opening in the neighbourhood adds to the evidence that harvest has probably also happened
in the target pixel.

In this study, we assessed the changepoints of time series at the 32×32m pixel level.
When we wish to detect the changes at the stand level, it is enough for a large part (>50%)
of the pixels to show change within a same year for us to conclude that the whole stand
has been thinned or that it has experienced some natural hazards. So, even if the thinned
stands are only partially detected, it is possible to conclude that a harvest has happened.
Delineating such thinned stands, which show only partial change, would possibly improve
the analysis. This remains to be examined in the future.
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The quantity of surfaces used in change detection is typically the pixel values, which
have some physically meaningful unit such as reflectance (Pasquarella et al. 2022). In this
study, we used predicted values of growing stock volumes (m3/ha) instead of pixel values of
satellite images or their transformations. The stock volume prediction model uses field plot
data in addition to satellite images. Similar approach of using modelled surface instead of
pixel values of satellite images has been used, for example, in Yin et al. (2018) and Main-
Knorn et al. (2013). In our case, the use of a modelled surface provided certain advantages
over the direct use of pixel values of satellite images. Growing stock was estimated image
by image using field plots from the region that the image covers. This way conversion from
the raw pixel values to bottom-of-atmosphere reflectance and seasonality issues due to time
differences between training plots and target population are avoided. It also makes sense
to compare the quantity of interests, here growing stock volume. The downside of using
predicted growing stock volume is that predictions have error and it is not guaranteed that
errors in successive predictions are correlated.

We showed by analysis of simulated and multi-source NFI time series data that mod-
elling interaction between changepoints of neighbouring pixels can improve the detection
of changes in challenging cases where the time series are relatively short and observa-
tion noise is relatively high. We constructed a statistical model which was inspired by the
environmental application, and it has clear limitations. Straightforward extensions include
geo-statistical generalised linear models for the observed variables (such as spatially corre-
lated Poisson regression), temporally auto-regressive errors and pixel-wise over-dispersion.
Including more than one potential changepoint is more difficult and requires care, as the dis-
crete latent space ofmulti-jumpvariables grows exponentially, theGibbs sampler needs to be
well designed (or swapped for a more efficient algorithm) and even more data are required;
see, for example, Kennedy et al. (2010) and Zhao et al. (2019) for how to approach the issue.
Using the current model, the most likely missed behaviour in the short series NFI example
is the double thinning, which the model probably classifies as negative overall trend instead
of two abrupt changes. For improved modelling of the NFI application, one could tie the
changepoint probability to the growing stock volume as forest management is tied to the
life stages of the forest stand. Because of modular construction, the model can be tuned for
specific purposes, for example by using elongated neighbourhoods to detect linear features,
or by designing non-diagonal � to add temporal correlation to discover events such as storm
damages at edges of final fellings.

The thinning event can appear in multiple variables of interest simultaneously within
each location, e.g. growing stock by species, and combining them in a joined model can
improve detection (Chen et al. 2022). In our approach, we intentionally did not correlate
the observed variables directly, which means that any multi-variate series with mixtures of
counts, binary values or continuous values can be modelled jointly with the least amount
of added computational complexity. In its simplest, we need only formulate additional
observation models in Eq. (5) for each additional observed variable, and the latent jump
variables can then be estimated based on them all.

Funding Open access funding provided byNatural Resources Institute Finland (LUKE). The fundingwas provided
by Academy of Finland (Grant Nos. 337655, 323484).



Improving Detection of Changepoints in Short and Noisy Time Series 581

Declarations
Conflict of interest The authors declare that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

[Received January 2023. Revised April 2023. Accepted April 2023. Published Online May 2023.]

A. ADDITIONAL FIGURES

See Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15.

Figure 7. NFI example application region in Finland. The central square depicts the NFI pixelwise averaged
growing stock values over the series runtime 1994–2019. The rectangle inside the square is described in more
detail in Results. Background maps from OpenStreetMap .
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Figure 8. Illustration of the considered neighbourhood definitions (kernels), giving weights as functions of the
cell centre locations. The larger circles (o) are the neighbours of the central cell (+), having nonzero weight. The
shading shows the weight given to the neighbour. Top row has range 1 and bottom row range 3. If not otherwise
stated, square with range 1 is used in this work, and to allow direct comparisons, all other kernels are scaled to
also sum to 8. The square: Uniform kernel with max norm. The circle: Uniform kernel with L2-norm. The sqexp:
Squared exponential kernel with L2-norm, truncated at (range + 1).

Figure 9. Illustration of the tiling used in the partitioned estimation. The illustration is for a spatial raster with size
60× 80 square cells. The outer line is the bounding box of the raster. The dots represent cell (pixel) centroids. The
division by lines and the numbers describe a 3× 3 tiling, and the shading describes the overlapping of the buffered
tiles when using a 2 pixel buffer. The white dashed rectangle highlights the cells used in estimation corresponding
to tile No. 5, whereas the white solid rectangle highlights the cells whose posterior estimates are kept only from
the estimation corresponding to tile No. 5. Cells in buffer overlaps provide information to multiple analysis, but
only one set of posteriors is kept for each cell. Cells at the edges of the raster, e.g. left-hand side buffer of tile No.
4, are suspect to edge effects and will be discarded .
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the models have also linear trend. Three different difficulty levels, ranging from 30 (left) to 70% (right) reductions
in response variable mean after change.
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Figure 11. Comparing different neighbourhood kernel definitions. Dataset is simulation trial case “medium” with
50% reductions in response variable after change. For illustration of the different kernels, see 8.

Figure 12. Change in the true positive (TP) and false negative (FP) rates due to tiling. Left: With 2pixel buffer and
increasing number of divisions. Right: With a 4× 4 division and increasing buffer size. Value above (below) zero
indicate higher (lower) rate than without tiling. Model estimate using γ = 0.5, π1 = 0.8, tested on the 62 × 63
sub-raster at the centre of the simulation region, with rates computed after removing 4-pixel-wide slice from each
edge in order to compare the same set of pixels.
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Figure 13. True positive rates in changepoint occurrence classes, separated by time series trend. Time series
lengths T = 11.

Figure 14. Estimates of reduction in growing stock volume after changepoint using tuning parameters γ =
0.6, π1 = 0.7. Overlaid with cyan lines are all forest use declarations over the period 1997–2018 .
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B. DESCRIPTION OF THE GIBBS SAMPLER

For the numerical demonstrations in this work, we sampled the model parameters condi-
tional on data using a Gibbs sampler, that is, we approximate the posterior distributions of
model parameters given data using a Markov chain Monte Carlo algorithm. Let yil denote
the observation (e.g. wood stock volume) at cell i at time tl ∈ {t1, . . . , tT }. We will write
(column) vectors in bold, for example yi := [yi1 . . . yiT ]T and θ i = [θi1 θi2]T . Define
X i := [1 t] for the T × 2 matrix with first column 1s and second column the times of
observation. Define also ψk := [0 0 . . . 1 1]T with k 0s followed by T − k 1s, and π a
T -dimensional simplex vector.

The probabilistic model we considered in this work is given by the following definitions:

yi |ki , X i , θ i , δi , σ
2
i ∼ Normal(X iθ i + δiψki , σ

2 IT×T )

θ i ∼ Normal(mx , Sx )

δi ∼ truncated-Normal(md , s
2
d , ld , ud)

{ki : i = 1 . . . N } ∼ Potts(π , �)

σ 2 ∼ Inverse-Gamma(a, b)

where mx , Sx ,md , sd > 0, ld < ud , a > 0, b > 0,π and � are fixed and known. We used
� = γ IT×T , with fixed γ .

The full probability density, omitting prior constants from notation, is

p({ yi , θ i , ki , δi : i = 1, . . . , N }, σ 2) =
[

N∏
i=1

p( yi |θ i , ki , σ 2)p(θ i )p(δi )

]
·

p({ki : i = 1, . . . , N })p(σ 2)

Next we provide the full conditional densities used in the Gibbs sampler.

B.1. UPDATING THE LATENT TIMERS {ki }
The timer variables ki ∈ {1, . . . , T } are modelled using a Potts model. We will use

shorthand i ∼ j for neighbours j of cell i . The joint density for all ki ’s is

p({ki : i = 1, . . . , N }) = ZN (�,π) exp

⎡
⎣ N∑

i=1

logπki +
N∑
i=1

∑
j∼i

�ki k j

⎤
⎦

The normalising constant ZN (�,π) is a sum over all possible configurations {ki : i =
1 . . . N } and cannot be directly evaluated.

The full conditional of interest for the Gibbs sampling, for each ki , writing ηi := X iθ i ,
is

log qi (k) := log p(ki = k|{kl : l �= i}, θ i , δi , σ 2, yi )

= const+
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− 1

2σ 2

[
k∑

l=1

(yil − ηil)
2 +

T∑
l=k+1

(yil − ηil − δi )
2

]

+ logπk +
∑
j∼i

�k,k j

Normalising qi ’s to sum to 1 over k = 1, . . . , T leads to the full conditional
Cat (T ; {qi (1), . . . , qi (T )}) for ki .

B.2. UPDATING THE REGRESSION AND JUMP SIZE PARAMETERS

The full conditional of θ i is Normal(m̃x , S̃x ) with

S̃x = [σ−2XT X + S−1
x ]−1, m̃x = S̃

−1
x [σ−2X ỹ + S−1

x mx ]

The full conditional of the jump size δi is truncated-Normal(m̃d , s̃2d , ld , ud ) with

s̃2d = [(T − k)σ−2 + s−2
d ]−1, m̃ = s̃−2

d [σ−2
T∑

l=k+1

(yil − ηil) + s−2
d md ]

where again we use ηi := X iθ i .

B.3. UPDATING THE VARIANCE PARAMETER σ 2

The full conditional for the variance parameter σ 2 is Gamma(ã, b̃) with

ã = a + N/2, b̃ = b +
N∑
i=1

T∑
l=1

e2il/2

where ei = yi − X iθ i − ψki δi .

B.4. UPDATE STRATEGY

We ran the chains for a fixed amount of iterations. Initial values were sampled from the
priors. We used a random order sweep to go through the N cells per iteration.

Given previous iteration values for σ 2 and {θ i , δi , ki } for all pixel, we updated the chain
using the full conditional densities in these steps:

1. Draw a random permutation P of the N raster cell indices

2. For each pixel in order P , say i = 1, . . . , N :

(a) Update ki → k′
i given k′

1:(i−1), k(i+1):N and θi

(b) Update θ i → θ ′
i given k′

i

(c) Update δi → δ′
i given k′

i , θ
′
i
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3. Update σ 2

Here (a : b) = (a, a + 1, . . . , b) for 0 ≤ a ≤ b ≤ N , ∅ otherwise.
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