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Abstract

In this paper, we investigate class level object detection of deformable ob-
jects. To this end, we aim for cell detection in volumetric images of dense plant
tissue (Arabidopsis Thaliana), obtained from a confocal laser scanning micro-
scope. In 3D volumetric data, the detection model does not have to deal with
scale, occlusion and viewpoint dependent changes of the appearance, however,
our application needs high recall and precision. We implement Felsenszwalb’s
Deformable Part Model for volumetric data. Corresponding locations for part
training are obtained via elastic registration. We identify limitations of its star
shaped deformation model and show that a pairwise connected detection model
can outperform the star shaped Deformable Part Model in this setting.

1 Introduction

The analysis of biological or medical images is often done by fitting a model to the
data. This model fitting is the basis for a further analysis, e.g. to interpret gene
expression patterns in the correct anatomical context. If the location of the sought
structures is unknown, the model fitting usually consists of a coarse localization step
(detection) followed by a finer grained fitting to the data (alignment), e.g. [3]. A
crucial part in this processing is the discriminative power of the detection model: If
the wrong object is detected, the best alignment cannot correct for this error. Mai et
al. [11] use a rigid detector based on histograms of oriented gradients (HOG) and an
elastic registration to detect and align a certain type of cells in Arabidopsis Thaliana,
in order to get a segmentation and reconstruction of the root. This approach, how-
ever, fails to produce good results for other layers with less distinctive cell shapes.
The reason is the rigid detection model. While it can account for some local defor-
mation of the cells, as illustrated in Fig. 1(b), false positive detections are frequent

c© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 MAI ET AL.: DETECTION OF DEFORMABLE OBJECTS IN VOL. DATA

Figure 1: Illustration of different detection approaches and how they deal with de-
formation. (a) Overlay of the rigidly aligned positive training examples. (b) A rigid
detection model allows for small local deformations due to the (soft-) binning of the
gradients in the HOG cells. (c) The star shaped structure of the DPM allows parts
to move independently. (d) Proposed model: The parts are connected pairwisely.
(e) A Detection sample that is wider than most of the training examples. (f) The
rigid filter barely detects the object. (g) Every part filter of the DPM has to pay
a displacement penalty. (h) The parts of the proposed model only get penalties for
horizontal displacements.

if multiple different interpretations of the data result in a similar score. An example
is given in Fig. 5: Two small cells are mistaken for one big cell. The detection gets
a high score, as the outer hulls of the two neighboring small cells receive high scores,
and the context of the cells also fits well. Taking context into account can be bene-
ficial as [5] have shown, but in this case it worsens the situation: in [11] the actual
volume of a cell is represented by ∼ 15% of the detection filter.

The Deformable Part Model (DPM) [7] augments the rigid detection filter with a
set of high resolution part filters, that model parts of the object that move together
when the object undergoes a deformation. These part filters are anchored to the root
filter and can move independently, thus forming a star shaped deformation model.
The gain in detection performance of the DPM over the rigid detection filter is drastic
as Felsenszwalb et al. demonstrate on the PASCAL [6] dataset. We will show that
the increase is also true in a 3D setting where the variation of the objects mostly
stems from their deformable nature while occlusion, scale and viewpoint dependent
appearance changes are not present.

However, a shortcoming of this model is illustrated in Fig. 1(g): When an ob-
ject undergoes an elastic deformation, it is reasonable to assume that neighboring
locations move in a similar manner. This means, that locally consistent displace-
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ments should not be penalized, while locally inconsistent displacements should. The
patches of the DPM can not account for this due to the star shaped structure of the
deformation model.

The poselet detection framework [2] offers pairwise connectivity between poselet
activations, however, their approach is more focused on modeling appearance changes
based on viewpoint and articulation. The poselets are too big for modeling local
deformations and the pairwise connections via keypoint predictions are used for a
greedy clustering and rescoring.

The research on deformable image registration has produced powerful deformation
models for the elastic alignment of data, e.g. [1, 12]. For an overview and a systematic
classification of state of the art methods, see [14]. Many classes of deformations can
be modeled, however, those models are not designed to have the discriminative power
of above mentioned detection approaches. A comparison of alignments from different
objects based on their registration score is therefore not very meaningful, as we show
in the experiments section.

Contribution. We combine the ideas of discriminative detection and elastic reg-
istration by using a discriminative similarity measure with a pairwise deformation
model, see Fig. 1(d,h). To this end, we show that deformable detection approaches
can be formulated in a general elastic registration framework. We implement the
proposed pairwise model and the DPM with a non-latent part training for 3D vol-
umetric data. We show that we can improve precision and recall by rescoring with
the alignment scores of the proposed model. We plan to make our software publicly
available1.

2 Modeling Deformations

In this section we introduce the formal framework used for deformable registration.
We then show that detection of deformable objects is an instance of deformable
registration by formulating two popular approaches in this framework and thereby
motivate our approach.

2.1 Deformable Registration

The goal in non-linear deformable registration is to estimate a transformation
θ : R3 → R

3 that transforms the volumetric moving image M onto the fixed im-
age F such that it is most similar to the fixed image with respect to a given similarity
measure. We define a volumetric image I as a function:

I : R3 →R. (1)

We can denote the transformation of the moving image M with the function compo-
sition operator ◦:

M̃ = M ◦θ (2)

1http://lmb.informatik.uni-freiburg.de/people/maid/
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Formally, we can now state the goal of the deformable registration as the optimization
of the following energy functional:

E(F,M,θ) = S(F,M ◦θ)+λR(θ) (3)

S measures the degree of alignment between the fixed image F and the transformed
moving image M ◦ θ . R regularizes the transformation θ . λ controls the strength
of this regularization. S is a mapping from the joint image space to the real values
(R3 →R,R3 →R)→R.

2.2 Discriminative Detection

The goal in object class detection is to locate an object of a certain class in an image.
We will first have a look at rigid detection, as illustrated in Fig. 1(b). This approach
can be formalized in the elastic registration framework (Eqn. 3):

Erigid(C,M,r) =C
(

f
(
M ◦θ r

))

, (4)

where f crops the image and transforms it into a vectorial feature-space. C is the
classifier that obtains the similarity score of the observed image region and the object
model. The transformation θ r is parameterized by r. In rigid 2D detection for natural
images it usually has three degrees of freedom: two translational (r1,r2) and one for
scale (r3). Transformations that result in local optima of E give the object locations.
This approach was popularized by Dalal and Triggs [5] who introduced HOG features
and use a linear support vector machine (SVM) as classifier:

C
(

ξ r

)

= 〈w,ξ r〉, (5)

with w being the separating hyperplane. For simplicity of notation we define
ξ r := f

(
M ◦θ r

)
. They optimize it by performing an exhaustive search over all lo-

cations and scales using a sliding window approach in a Gaussian scale-space. There
is no penalty on the applied transformation (λ = 0), as all transformations are as-
sumed to be equally likely. However, the ability of the model to cope with small local
deformations is encoded in the HOG feature representation (Fig. 1(f)): No penalty
is paid for a gradient that moves within a feature cell. Due to the soft binning, a
gradient that enters a neighboring cell receives a lower score.

Felsenszwalb et al. [7] augmented the rigid detection model with a star shaped
deformation model that is regularized by a quadratic penalizer. The concept of their
Deformable Part Model is illustrated in Fig. 1(c): The Model consists of a root filter
and several part filters, whose locations are “anchored” to the root filter. The root
filter is a rigid detection filter as introduced by Dalal and Triggs and responsible for
the coarse localization of the object. The part filters are much smaller than the root
filter, but at twice the resolution. They are responsible for the precise localization of
regions of the object that are assumed to move together when the object undergoes
a deformation.

All filters wi are realized as linear SVMs, with w0 being the root filter. During
training, the relative mean locations of the parts w1 . . .wn are learned along with the
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costs for a displacement of the part from its most likely location:

EDPM(w0, . . . ,wn,M,r, t1, . . . , tn) = 〈w0,ξ r〉+

n∑

i=1

〈wi,ξ
i
ti
〉−λ

n∑

i=1

R
(
ti

)
(6)

The root filter location and scale r are searched exhaustively as in the rigid setting.
For each location the optimal relative part-placements ti, i ∈ {1, . . . ,n} are indepen-
dent translations that can be found efficiently by using generalized distance trans-
forms [8]. Note that the root filter location and the part placements also could have
been expressed by a parameterized dense transformation θ(r, t1, . . . , tn) in the sense
of Eqn. 3.

Mai et al. [11] use elastic registration to generate a sharp mean image that rep-
resents a cluster of positive training images. They choose the image with minimal
average bounding box distance to all other images in the cluster as reference image.
All other images are elastically registered to this reference image (Fig. 2). We took
over this strategy and use the deformation fields to establish correspondences on the
training examples of every cluster. Therefore we do not need to treat the part lo-
cations as latent variables as we know the exact locations of the patches on every
training image.

Figure 2: The training images (green) of one cluster are all registered to the ref-
erence image (red). The deformation fields (green arrows) can be used to obtain
corresponding locations and the expected displacement of a patch.

3 Proposed model

As we have seen, we can formulate the DPM approach (Eqn. 6) in the elastic reg-
istration framework (Eqn. 3). We are now able to motivate our model from two
perspectives:

1. Coming from the DPM, we change this model in the following way: We replace
the star shaped sparse part model with a pairwisely connected dense part model.
Therefore we do not need the anchoring to the root filter anymore. But as it
would be computationally too demanding to optimize the model in a detection
setting, with the majority of locations not containing the sought object, we also
can motivate our approach

2. coming from the deformable registration framework point of view. Here we
introduce a new discriminatively trained data term that can easily be integrated
into existing frameworks as we show in the experiments section.
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We propose a Discriminative Deformable Model (DDM):

Eprop(w1, . . . ,wNp ,M,U) =

Np∑

i=1

〈wi,ξ θ(pi)
〉

︸ ︷︷ ︸

discriminative data term

−λ
∑

(i, j)∈E

∥
∥
∥U(pi)−U(p j)

∥
∥
∥

2∥
∥
∥pi −p j

∥
∥
∥

2
︸ ︷︷ ︸

pairwise deformation model

(7)

For the explanation of the symbols, have a look at Fig. 1(d): We discretely sam-
ple Np control points pi at equidistant image locations. Each control point is the
center of a linear support vector machine wi that encodes the appearance for the
respective patch. We will train all the wi jointly. U : R3 → R

3 is a displacement
field. The relationship between a transformation and a displacement field is the fol-
lowing: θ(p) = U(p)+p. The feature representation of an image patch extracted at
the location p+U(p) is represented by ξ θ(p). The regularizer penalizes inconsistent
movements of neighboring patches: The deviation vector d = U(p1)−U(p2) is 0 when
two connected control points move with the same displacement. It is normalized by

the initial edge length
∥
∥
∥pi −p j

∥
∥
∥

2
. E is the connectivity set, i.e. all the edges (i, j)

between the parts. λ controls the degree of regularization.

3.1 Training

In this section we describe how we train the patch detectors wi and estimate λ which
controls the degree of regularization. As the patch detectors are linear support vector
machines, we need to present them with normalized positive and negative training
examples. For the normalization, the effect of the transformation θ needs to be
canceled out. For instance, to train a rigid detector, the positive examples need to
be position and scale normalized (Fig. 1(a)). As we want to normalize for non linear
deformations, we use the detection and alignment framework from [11] to mine shape
normalized positive and negative training examples.

We describe the processing pipeline for a single detection hypothesis yielded from
a single detector. We put the sharp mean image Z on the rotation normalized image
B at the detection location. We compute the alignment Z̃ = Z ◦ θ using the elastic
registration from [12]. Then we compare the corresponding warped segmentation
mask S̃Z with the ground truth segmentation to classify the detection whether it will
be the basis for a positive (+) or a negative (−) training example. Now we shape
normalize the image B at the detection location by aligning it to the sharp mean
image with the inverse transformation: B̃ = B◦θ−1. We create a set of Np equidistant
control points pi, such that the induced patches at the control point locations pi form
a partition of the sharp mean image Z. We compute 3D HOG features from the shape
normalized image B̃ and extract the patches ξ pi

for every control point.

We process all detections obtained from the training dataset in the described

manner and end up with a positive training set S+
i =

{

ξ 1
pi
, . . . ,ξ

N+
pi

}

and a negative

training set S−
i =

{

ξ 1
pi
, . . . ,ξ

N−
pi

}

for each control point pi.

Finally, we jointly train the patch detectors wi using libsvm [4]. To this end we
concatenate the features from all patches. A training vector Ti has the following
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structure:

Ti =

[

(ξ i
p1
)⊺, . . . ,(ξ i

p|P |
)⊺
]

, i ∈ [1,N], N = N++N− (8)

After training, the joint separating hyperplane has the structure W =

[

w
⊺

1 , . . . ,w
⊺

|P|

]
⊺

— the single patch detectors wi can thus easily be obtained.
As the codomain of the wp is not normalized, it is crucial to find a good value

for the strength of the regularization λ . We achieve this by doing an exponential
grid search with the goal of maximizing the intersection over union of the aligned
segmentation masks with the ground truth segmentations.

3.2 Optimization

The structure of our model Eqn. 7 is identical to the model used in the vibez regis-
tration [12]. The only difference is that we replace the normalized cross correlation
based data term with the discriminative patch detectors wi. We formulate it as
a discrete labeling problem (Markov Random Field) with unary and binary costs.
The sought label is the displacement U(pi) at a control point. This means that we
have to evaluate a discrete set of displacement hypotheses d j ∈ R

3 at every con-
trol point to obtain the unary costs −〈wi,ξ p+d j

〉. As in the vibez registration, we

search along the axes and diagonals within a certain radius r, therefore we have
d j ∈ {r · (e1,e2,e3)

⊺ | r ∈N,ei ∈ {−1,0,1}}. The initial dense displacement field U

is set to zero.
The binary costs are given by the regularizer of the model, as they couple neigh-

boring control points: λ
∑

(p1,p2)∈E
1

‖p1−p2‖ 2

∥
∥U(p1)−U(p2)

∥
∥

2
.

We solve it with iterated graph cuts using the very efficient fastPD algorithm [9].
The values of U between the control points are obtained through a cubic spline
interpolation. As the performance breaks down for very big search radii r, we need
a coarse initialization. Therefore we run the optimization on top of the detection
hypotheses of a rigid detector or a DPM detector.

4 Experiments

For the quantitative evaluation we had two roots (r06, r14 ) with ground truth seg-
mentation available. We use one root for training and one for testing and vice versa.
Each root contains about ∼ 2500 cells, so the generation of ground truth is cumber-
some work. It is obtained by manually verifying a watershed segmentation computed
on enhanced data [10]. For the available roots, this bottom up segmentation method
gives good results, but it fails for data of worse quality [11], where the generation
of reliable ground truth segmentations is nearly impossible. However, the goal of
this section is to give a quantitative comparison between the different detection and
alignment strategies discussed in this paper.

We chose a cell layer (Fig. 3), where the rigid detection followed by alignment
approach from [11] fails to produce good results (Fig. 4). We follow their training
procedure and split the training data into 15 clusters. For each cluster, we train a
rigid detector and a DPM detector, as well as a sharp mean image for the gradient
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Figure 3: (left) A Volume rendering of the root r06, the layer used for training and
detection is colored green. (right) A slice of the original raw data.

based alignment and the proposed Discriminative Deformable Model (DDM). The
roots have a volume of 944×413×360 (r14) and 1030×433×384 (r06) voxels, each
with a root coordinate system [13] attached for rotation normalization. As the sliding
window detector cannot account for rotations, we extract 3×36 overlapping rotation
normalized boxes along the main axis with an angle stepping of 10◦ and a size of
301×101×131 voxels. All detectors work on 3D HOG features [11] with 20 bins for
the gradient orientation, equally sampled on the unit sphere. The spatial pooling is
realized by a triangular filtering with radius Hr and a subsampling with a factor of Hs.
The rigid detectors have an average size of 54×65×43 voxels, the HOG features are
parameterized with Hr = 5 and Hs = 2. For the DPM detectors, the rigid detectors
are augmented by 10 cubic parts with size of 123 voxels at full resolution (Hs = 1,
Hr = 3) to enable a spatially more precise localization. The parts are placed evenly
across the border of the cells: At those locations, the positive root filter energy is
the highest and the displacement fields for the deformation learning (Fig. 2) are the
most reliable. The patch size of the DDM is set to 73 voxels, as this is the best value
for the vibez registration in this context. The patch-SVMs are also trained at full
resolution (Hs = 1, Hr = 3) to allow for spatially precise localizations.

For testing, we run the 15 rigid and DPM detectors on the rotation normalized
boxes of both roots: {r06,r14}×{rigid,DPM}. We use a sliding window approach and
we compute the convolutions efficiently in the Fourier domain. We perform a non-
maximum suppression based on the volume of the segmentation mask corresponding
to the detector. On a six core workstation, for one rotation normalized box, the rigid
detection for 15 clusters takes ∼ 50s, the DPM detection ∼ 835s while using ∼ 10×
more memory. The time is spent mostly on the computations of the score maps for
the patches. For each detection hypothesis, we align the sharp mean image with
the gradient based data term from [11] and the proposed DDM. The computation of
the alignment takes ∼ 1.5s for either alignment strategy. This means, that during
the time needed for one DPM detection, we can run the rigid detection and ∼ 500

alignments. Note that the computations for detection and alignment are nearly
perfectly parallelizable. Finally, we transform the aligned detections back to the
original root. We do this in a greedy fashion, starting with the highest scoring
detection.

We investigate 4 strategies (Fig. 4): 1. Rigid detection with alignment of the sharp
mean image using the gradient based data term (cyan) 2. DPM detection with an
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(a) (b)

Figure 4: Precision-recall Graphs of the different detection strategies for the two
roots (a) r06 and (b) r14. The alignment and rescoring with the proposed Discrim-
inative Deformable Model (DDMalign, black curve and blue curve) produces the
best results, independent of the underlying detector.

alignment of the sharp mean image using the gradient based data term (red) 3. Rigid
detection with an alignment of the sharp mean image using the Discriminative De-
formable Model and rescoring (black) 4. DPM detection with an alignment of the
sharp mean image using the Discriminative Deformable Model and rescoring (blue).

We evaluate them using the intersection over union (IOU) measure. Therefore
we compare the implied segmentation mask of the aligned detection hypothesis with
the ground truth segmentation of the cell. For two volumes V and W the IOU is
defined as

Miou(V,W ) =
|V ∩W |

|V ∪W |
. (9)

Following the PASCAL VOC criterion [6], We accept a detection as valid, iff
IOU > 0.5. We visualize the results in a precision-recall graph (Fig. 4): The de-
tections are sorted in descending order by thr detector score or the DDM alignment
score. Then for every recall value r ∈ [0, . . . ,rmax], the corresponding precision is plot-
ted. The average precision (AP) is computed as the area below the precision-recall
curve.

We can see that the result is relatively independent of the underlying detection
approach. While the rigid detection based strategies perform better on r06 (Fig. 4(a)),
the DPM detection based strategies are better on r14 (Fig. 4(b)). The reason why
the DPM does not perform consistently better than the rigid detector can be found in
the gradient based alignment step that is performed for every detection hypothesis.
Prior to the alignment, the DPM detector has a better yield ratio of valid detections
with an IOU > 0.5 over the rigid detector: 0.37 vs. 0.3 for r06 and 0.33 vs. 0.29

for r14. However, the alignment step that improves the precise localization of the
detections drastically [11] seems to cancel out the advantage of the DPM prior to the
alignment.

Both strategies that use a gradient based alignment without rescoring (1,2) pro-
duce a mean AP around ∼ 0.52, with an average IOU of 0.70 for the valid detections.
The strategies based on the DDM based alignment with rescoring outperform the
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Figure 5: Two examples for the rescoring with the Discriminative Deformable Model.
(a) Example for a ground truth cell (blue). (b) It is coarsely detected. (c) The
alignment with the DDM results in a better localization and a better score for this
detection. (d) Two ground truth cells in (cyan) and (blue). (e) A detector for a bigger
cell produces a false positive detection. (f) The DDM alignment also encompasses
both ground cells (false positive), but the produced alignment score is very low: In the
greedy reconstruction, this detection is very unlikely to be considered, as its location
will most likely already be taken by correct detections with higher alignment scores.

others by a margin of 0.23 percentage points with a mean AP of 0.75. The average
IOU for the valid detections is 0.69. The reason for this substantial gap can be found
in the more expressive scores produced by the DDM. We did not find an improve-
ment by rescoring with the alignment scores of the gradient based data term. Two
qualitative examples of the rescoring are given in Fig. 5.

5 Conclusions

In this paper, we introduced the Discriminative Deformable Model and showed that
we can improve the average precision for volumetric deformable detection substan-
tially. We achieved this by connecting the successful discriminative classification ideas
from class level object detection with the powerful deformation models and highly
efficient optimization methods from nonlinear deformable image registration.
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