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ABSTRACT

Motivation: Many hereditary human diseases are polygenic,
resulting from sequence alterations in multiple genes. Genomic
linkage and association studies are commonly performed for
identifying disease-related genes. Such studies often yield lists of
up to several hundred candidate genes, which have to be prioritized
and validated further. Recent studies discovered that genes involved
in phenotypically similar diseases are often functionally related on
the molecular level.
Results: Here, we introduce MedSim, a novel approach for ranking
candidate genes for a particular disease based on functional
comparisons involving the Gene Ontology. MedSim uses functional
annotations of known disease genes for assessing the similarity of
diseases as well as the disease relevance of candidate genes. We
benchmarked our approach with genes known to be involved in 99
diseases taken from the OMIM database. Using artificial quantitative
trait loci, MedSim achieved excellent performance with an area under
the ROC curve of up to 0.90 and a sensitivity of over 70% at 90%
specificity when classifying gene products according to their disease
relatedness. This performance is comparable or even superior to
related methods in the field, albeit using less and thus more easily
accessible information.
Availability: MedSim is offered as part of our FunSimMat web
service (http://www.funsimmat.de).
Contact: mario.albrecht@mpi-inf.mpg.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
More than 1800 human hereditary disorders are known to be caused
by mutations in a single gene (O’Connor and Crystal, 2006).
However, most of these diseases are very rare. In contrast, many
diseases of major importance to public health, like cancer, diabetes
and cardiovascular disorders, are influenced by simultaneous
alterations in several genes (Gibson, 2009). In order to identify
genes involved in such multi-factorial diseases, genomic linkage
and association studies are performed (Altshuler et al., 2008; Cordell
and Clayton, 2005; Teare and Barrett, 2005). The genomic regions
resulting from these studies may comprise as many as several
hundreds of candidate disease genes, most of them unrelated to
the disease of interest. Experimental testing of the complete list
of candidate genes is generally impractical because of the time and
cost involved in such an extensive procedure. Therefore, several
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studies examined the specific properties of genes and their products
known to be associated with human genetic disorders and explored
networks linking diseases based on the involved genes (Feldman
et al., 2008; Goh et al., 2007; Jimenez-Sanchez et al., 2001; Lee
et al., 2008; van Driel et al., 2006). In particular, the discovered
relationships between properties of genes and gene products as well
as their involvement in genetic disorders are exploited by a number
of bioinformatics approaches for ranking and prioritizing disease
gene candidates (Ala et al., 2008; Ideker and Sharan, 2008; Kann,
2007, 2010; Navlakha and Kingsford, 2010; Oti and Brunner, 2007;
Tranchevent et al., 2010; Turner et al., 2003; van Driel and Brunner,
2006; van Driel et al., 2006; Yu et al., 2008).

Most computational approaches rely on the integration of
several sources of heterogeneous data such as sequence features,
gene expression data and protein–protein interactions (PPIs). For
example, PROSPECTR is a sequence-based approach that uses
decision trees trained on features such as the length of gene and
protein sequences and the number of exons (Adie et al., 2005).
The subsequent method SUSPECTS by the same authors combines
sequence features with gene expression, protein domains and Gene
Ontology (GO) term similarity of candidates and known disease
proteins (Adie et al., 2006). Endeavour is another method that
relies on the integration of biological evidence resulting from many
different kinds of data, for instance, PPIs, pathways, gene expression
and sequence similarity (Aerts et al., 2006). The characteristics
of known disease genes were extracted from each data source
separately to rank candidate genes; the resultant ranking lists were
then combined to a final overall ranking.

Recently, several methods have been published (Chen et al., 2009;
Franke et al., 2006; Ortutay and Vihinen, 2009; Ozgür et al., 2008;
Shriner et al., 2008) that build on both interaction networks and
GO annotations (Ashburner et al., 2000). In particular, Chen et al.
(2009) applied different algorithms originating from the analysis
of social and web networks to disease gene prioritization. They
concluded that methods using functional annotation are generally
better than network-based methods, but that network data provide
some valuable information. Ortutay and Vihinen (2009) integrated
GO annotation and protein interactions for finding genes involved in
immunodeficiencies. To this end, three different network topology
parameters were computed pertaining to an interaction network of
genes known to be related to the immune system. For each of these
parameters, a set of genes was selected from the gene network and
then subjected to GO enrichment analysis. Genes received higher
priority if they were annotated with enriched terms and achieved
some significant network parameter value.

A number of methods for disease gene prioritization uses
similarity measures for phenotypes, which leverage cross-references
to structured vocabularies (Chen et al., 2007; Freudenberg and
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Fig. 1. Flow chart of the MedSim approach. First, the functional profiles of
the disease of interest and the disease gene candidates are created using one
of the annotation strategies. Afterwards, the functional profile of the disease
is scored against each functional profile of a candidate, and the candidates
are ranked according to this functional similarity score.

Propping, 2002; Lage et al., 2007; Oti and Brunner, 2007; Perez-
Iratxeta et al., 2002, 2007; Robinson et al., 2008; Tiffin et al., 2005;
van Driel and Brunner, 2006; van Driel et al., 2006; Wu et al.,
2008; Yilmaz et al., 2009; Yu et al., 2008). Different controlled
vocabularies such as MeSH (Lowe and Barnett, 1994) and eVOC
(Kelso et al., 2003) have already been utilized, and the ACGR
method by Yilmaz et al. (2009) is specifically based on manual
annotation of diseases with GO terms. Candidate genes are selected
based on the number of annotated GO terms shared with the disease
in question. Subsequently, each candidate is assigned a similarity
value based on the annotation similarity to the input disease. The
authors did not perform a large-scale validation of their approach,
but limited themselves to using three rare syndromes (AICARDI
syndrome, CHARGE syndrome and focal dermal hypoplasia) as
case studies. The required manual annotation of the disease with
GO terms is a major hurdle for the large-scale application of the
ACGR method.

In the following, we present MedSim, a novel approach to
disease gene prioritization that exploits the similarity between the
functional annotations of diseases and candidate genes (Fig. 1).
This methodological advance is in contrast to other methods that
consider only identical annotations or are based on GO enrichment
computations. In particular, we automatically derive functional
profiles consisting of GO terms for a certain disease phenotype based
on the genes and proteins that are already known to be related to the
phenotype.

Since the annotation of the human genome with GO terms is
rather incomplete, we introduce and test several new strategies for
automatically extending the available annotations of disease and
candidate genes or proteins. The resulting functional profiles are
compared with each other using GO and our sophisticated functional
similarity measures (Schlicker et al., 2007). Using different sets
of proteins encoded by known disease genes, we demonstrate
that our novel method allows for assigning known disease genes
specifically to the correct phenotype. Most importantly, we show
that MedSim is able to significantly outperform previous more
complex methods that rely on more diverse and voluminous, and
thus harder accessible data and we further explore the effect of
different semantic similarity measures on prediction performance.
MedSim also affords the distinction of disease phenotypes with a
common functional basis from unrelated phenotypes. Finally, we
implemented the best MedSim method in our FunSimMat web server
(http://www.funsimmat.de), making it easily usable by biological
and medical users (Schlicker and Albrecht, 2010).

2 METHODS

2.1 Data sources
OMIM is a database of human genes and genetic disorders. OMIM entries
describe either a single gene that is involved in some genetic disease or a
phenotype with known or putative, but unknown, genetic basis. We extracted
all phenotypes (entries starting with ‘#’ or ‘%’) from OMIM (downloaded
on October 10, 2007). The mapping of proteins encoded by human disease
genes to the OMIM phenotypes was obtained from UniProtKB release
12.3 (UniProt Consortium, 2009). Additionally, protein annotations with GO
terms from all three ontologies, that is, biological process (BP), molecular
function (MF) and cellular component (CC), were extracted from this
UniProtKB release. We included annotations based on all GO evidence codes
in our analysis; ∼62% of the human GO annotations in our dataset were
derived by automatic methods (IEA).

Our set of human PPIs was compiled from the Human Protein Reference
Database (HPRD, version 7) (Prasad et al., 2009), IntAct (downloaded on
May 16, 2008) (Kerrien et al., 2007), the Molecular Interactions Database
(MINT, downloaded on April 7, 2008) (Chatr-Aryamontri et al., 2007),
the Database of Interacting Proteins (DIP, downloaded on February 14,
2008) (Salwinski et al., 2004), protein complexes extracted from SIFTS
(downloaded on March 4, 2008) (Velankar et al., 2005) and the CORUM
database (downloaded on May 19, 2008) (Ruepp et al., 2008). All protein and
gene identifiers used by these sources were mapped to UniProtKB accession
numbers. Since members of the same protein complex possibly affect the
same diseases, the matrix model (all possible pairs of interacting proteins
in the complex) was chosen for decomposing protein complexes into pair-
wise PPIs. A set of random PPIs was created by keeping one partner of an
interaction fixed and randomly assigning a new partner from the interacting
proteins.

Mouse orthologs for human proteins were obtained from Inparanoid
version 6.1 (Berglund et al., 2008). Mouse and human proteins with an
inparalog score of 1.0 were extracted as ortholog pairs from each Inparanoid
cluster. An inparalog score of 1.0 indicates that the two proteins form the
reciprocally best matching pair of orthologs. MGI (Blake et al., 2009)
and Ensembl (Hubbard et al., 2009) accessions used by Inparanoid were
converted to UniProtKB accessions using data from Ensembl BioMart
(downloaded on May 14, 2008). Additionally, the chromosomal location of
human genes and the cross-references to UniProtKB proteins were obtained
via BioMart on October 21, 2008.

2.2 Functional profiles
Human diseases are usually described using natural language and are
annotated with genes or proteins known to be involved in the respective
diseases. However, they are not directly annotated with structured
vocabularies like GO. GO consists of the three ontologies BP, MF and CC,
which are organized as directed acyclic graphs (Ashburner et al., 2000).
Biological concepts are represented as nodes in these graphs and relationships
between concepts as edges. If a gene product is annotated with a GO term, the
so-called ‘true path rule’states that all of its parents are also valid annotations.

For functional comparisons, we developed several new strategies for
automatically annotating OMIM disease entries with GO terms (Table 1).
In the remainder of this article, we refer to the GO annotation of a disease
phenotype or a candidate gene product as its functional profile. The first
annotation strategy (AS-base) transfers all GO terms annotated to proteins
encoded by known disease genes in UniProtKB to the corresponding OMIM
entry. Genes and proteins are often annotated with terms from different
levels of the GO hierarchy, which can lead to functional profiles that contain
ancestral terms. Since annotation with a term implies annotation with all its
predecessors, ancestral terms are redundant. Therefore, a term is removed
if one of its descendants from the GO hierarchy is also contained in the
functional profile.

In case of AS-base, OMIM entries cannot be annotated if the known
disease genes and proteins lack any GO annotation. Furthermore, the
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Table 1. Summary of the different annotation strategies used to create
functional profiles of diseases

Annotation strategy GO annotation source

AS-base Known disease genes/proteins
AS-ortho Known disease genes/proteins

Orthologs of known disease genes/proteins
AS-inter Known disease genes/proteins

Interaction partners of known disease genes/proteins
AS-sem Known disease genes/proteins

Semantically similar terms

The table lists sources of GO annotation used by the different annotation strategies.
Term filtering can be applied to functional profiles created by any of these annotation
strategies.

annotated disease genes and proteins may not cover all functions and
processes involved in the respective disease. Therefore, we explored several
possibilities to automatically extend the available annotation. The second
annotation strategy (AS-ortho) adds GO terms from mouse orthologs of
human disease proteins to the functional profile, and the third annotation
strategy (AS-inter) augments the profile with GO terms from direct
interaction partners of disease proteins (Table 1). Both strategies involve the
removal of redundant GO terms after adding the new terms to the profile. A
fourth strategy for expanding the functional profiles (AS-sem) is based solely
on GO. The simRel measure (see Section 2.6 below) is used to identify terms
that are highly related to at least one other term in the same profile. Two
different simRel cut-offs, 0.90 and 0.95, are applied for selecting and adding
related terms to a profile. Functional profiles of candidate disease genes and
proteins are always generated by applying the same annotation strategy as
used for the disease phenotype.

If a protein has many interaction partners with diverse functions or
the dataset contains false positive interactions, the described automatic
strategies might lead to a diffuse functional profile containing diverging
GO annotations for BPs, MFs and CCs. Therefore, we implemented a term
filtering step for removing unrelated terms from the functional profiles. In this
step, terms are retained only if they have a simRel score above a predefined
threshold with at least one other term in the profile. For example, if we
consider a functional profile consisting of four GO terms and two of these
terms are similar to each other and the other two terms are not related to any
term in the profile, the latter two are removed from the profile. In contrast,
if the latter two terms are similar to each other as well, all four terms are
retained in the profile. We tested the two simRel thresholds 0.60 and 0.80.
The term filtering step was applied to all functional profiles consisting of at
least three GO terms. If the functional profile of a disease contained no GO
term pair with simRel exceeding the threshold, the respective disease was
not included into the benchmark.

2.3 Benchmark set 1
Several prioritization methods assess the probability of a gene or protein to
be generally associated with some disease, but are unspecific for the disease.
In order to test whether MedSim allows for specifically assigning known
disease gene products to the correct disease phenotype, we conducted leave-
one-out cross-validation on a set of diseases and known disease-associated
proteins. For this benchmark, we selected a preliminary set of 99 OMIM
disease phenotypes, each of which is associated with at least three known
disease proteins (Supplementary Table S5). For each of these phenotypes,
one disease protein was randomly selected and removed. Subsequently,
the functional profiles of the 99 phenotypes were derived using annotation
strategies AS-base, AS-ortho or AS-inter based on the remaining known
disease proteins. Disease phenotypes were discarded if either the phenotype
or the randomly selected protein was not annotated with terms from all three
GO ontologies. This led to benchmark set 1 consisting of 78 phenotypes

with 78 randomly selected known disease proteins. Five of these proteins are
known to contribute to two diseases in the test set and were coincidentally
chosen for both phenotypes. Supplementary Table S1 summarizes the number
of GO terms annotated to phenotypes and randomly selected proteins in
benchmark set 1.

2.4 Benchmark set 2
Genomic loci found to be associated with a disease may contain up to
several hundred candidate genes. The second benchmark simulates such
a genomic experiment, which results in a quantitative trait locus (QTL)
and the corresponding list of candidate disease genes. For each of the 519
disease gene-encoded proteins associated with one of the 99 phenotypes
in benchmark set 1, leave-one-out cross validation was performed for
classifying the protein according to its disease relatedness. After a protein p
was removed from the list of known proteins for some disease, the functional
profile of this disease was derived using the remaining associated proteins.
An artificial QTL (aQTL) of size 10 Mbp was centered at the genomic start
position of the gene encoding p, and all proteins translated from any gene
in this aQTL were added to the list of putative disease proteins. Benchmark
set 2 contains 519 different aQTLs for 99 phenotypes. All four annotation
strategies were applied to annotate benchmark set 2. Additionally, term
filtering with both thresholds 0.60 and 0.80 was applied together with AS-
base and AS-inter, as well as term filtering using threshold 0.80 with AS-sem.
As control, random PPIs were used for AS-inter (Section 2.1).

2.5 Benchmark set 3
Several approaches, for example, Endeavour (Aerts et al., 2006), had been
benchmarked using random artificial QTL (rQTLs) that contain one known
disease gene and 99 random genes. To facilitate a performance comparison
between MedSim and these methods, we created a third benchmark set.
This set was compiled using the same set of phenotypes as benchmark
set 2 but differs in the methodological details of creating the rQTLs. Here,
each disease protein annotated with terms from all three ontologies was
complemented with 99 proteins randomly drawn from the set of all human
proteins annotated with terms from all three ontologies. Benchmark set 3
consists of 287 distinct rQTLs for 99 different phenotypes. To the phenotypes
and rQTLs in this benchmark set, we applied AS-base without and with term
filtering (threshold 0.80) as well as AS-sem (cut-off 0.95) with term filtering
(threshold 0.80).

2.6 Functional similarity measures
The similarity between functional profiles of diseases and candidate
proteins was computed using the Functional Similarity Search Tool (FSST
version 1.3.1) (Schlicker et al., 2007). The computed functional similarity
scores apply the best-match average approach, which determines whether
a function contained in one profile is also contained in the second profile.
The functional similarity scores are based on a semantic similarity measure
for comparing two GO terms. The simRel score (Schlicker et al., 2007),
which assesses the differences and commonalities between GO terms, was
used to determine the semantic similarity of GO terms. This score is
affected by the level of detail of the annotated terms. In order to find
out whether the performance of MedSim depends on the choice of the
semantic similarity measure, Lin’s (1998) measure was used as well. This
similarity score measures the commonalities and differences between two
GO terms, but is not affected by the degree of specificity of some term
as given by the GO hierarchy. To compare two functional profiles, several
similarity scores are evaluated: BPscore for BP, CCscore for CC, MFscore for
MF, rfunSim combining BPscore and MFscore and rfunSimAll combining
BPscore, CCscore and MFscore. A detailed description of all semantic and
functional similarity scores can be found in the Supplementary Data.

2.7 MedSim implementation
We implemented the MedSim approach in our FunSimMat database and
web service (http://www.funsimmat.de). FunSimMat contains precomputed
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functional similarity values for proteins and protein families, accessible
through a web front-end as well as XML-RPC and RESTlike interfaces.
The functional profiles for all OMIM entries and human proteins in
UniProtKB were derived using strategy AS-base without and with term
filtering (threshold 0.80), and all functional scores are pre-calculated. The
FunSimMat web page offers a simple HTML form for prioritizing a list
of candidates, which requires the user’s input of the OMIM accession
of a specific disease and the UniProtKB accessions of the corresponding
candidate disease proteins. The results table contains the candidates ranked
by the functional similarity score. An alternative for providing a candidate
list is the possibility of scoring all human proteins against the disease of
interest. Additionally, programmatic access to the data is possible through
the XML-RPC and RESTlike interfaces.

3 RESULTS

3.1 Performance and coverage using different
annotation strategies

To measure the ability of MedSim to detect the correct protein for
each disease, we applied receiver operating characteristic (ROC)
analysis and determined the area under the ROC curve (AUC).
Additionally, we calculated the sensitivity and specificity of the
predictions. Sensitivity is the percentage of correctly identified
disease proteins ranked above a preset rank or score cut-off.
Specificity is the percentage of proteins not involved in the disease
ranked below this cut-off. When stating sensitivity values, we will
always refer to a specificity threshold of 90%. The performance
values presented in the remainder of the text constitute conservative
estimates due to the following two reasons. First, the ranking list
of proteins may contain several proteins associated with a disorder,
but solely the randomly left-out protein is considered a true positive.
Second, proteins labeled as true negative might, in fact, be as yet
unknown true positives.

A detailed discussion of the results for benchmark set 1 can be
found in the Supplementary Data. Briefly, MedSim achieved anAUC
of up to 0.81 on this set using strategy AS-ortho. This shows that
MedSim effectively assigns top ranks to the correct protein in a list
of known disease proteins.

Benchmark set 2 was designed for simulating the most common
application scenario for disease gene prioritization methods. The
task is to rank a list of candidate disease genes or proteins such that
the most likely candidates are on top of the list (Fig. 1). Benchmark
set 2 contains 519 aQTLs of size 10 Mbp, which encompass 312
proteins on average, including one known disease protein. FSST was
used to calculate functional similarity between diseases and proteins
in the corresponding aQTLs. Supplementary Table S2 displays
the number of annotated diseases and proteins in the aQTLs, and
Supplementary Table S3 contains the mean and median number of
annotated terms for benchmark set 2. The results for benchmark set 2
using the different annotation strategies are listed in Supplementary
Table S7. Regarding strategy AS-base, the best prediction AUC of
0.81 is achieved using the BPscore and the rfunSim score with a
sensitivity of 0.51 and 0.50, respectively (Fig. 2 and Supplementary
Fig. S4).Adding ortholog annotation leads to virtually identicalAUC
(Supplementary Fig. S7) and sensitivity values. However, prediction
performance using MFscore drops slightly, which also affects the
results obtained with the rfunSim score. AS-inter performs worse,
the best AUC being 0.71 for the rfunSimAll score (Supplementary
Fig. S8). Sensitivity, however, is only slightly decreased by adding

Fig. 2. AUC values of MedSim on benchmark sets 2 and 3 using AS-base
with term filtering (0.80) and without.

protein interaction data. We also applied AS-sem to benchmark set 2
using two different simRel cut-offs, 0.90 or 0.95, for adding terms.
In both cases, theAUC and sensitivity values are similar to the scores
obtained with AS-base (Supplementary Figs S15 and S17).

When inspecting the availability of GO annotation
(Supplementary Table S3), it becomes evident that AS-ortho
improves the coverage with functional annotation while preserving
the performance. AS-inter increases coverage even more, but
it negatively affects the prediction performance slightly. We
carefully checked that this performance decrease is not due to
an implementation error, and the application of AS-inter to a
set of random PPIs yielded AUC values as expected for random
prioritization (see Supplementary Data for details).

By increasing the coverage, AS-ortho and AS-inter potentially
allow for ranking candidate disease genes and proteins that are
not amenable to analysis using AS-base due to the lack of direct
GO annotation. Thus, we studied the results with the rfunSim
and rfunSimAll scores for aQTLs to which we could not apply
the strategy AS-base. For these cases, the sensitivity of MedSim
using AS-ortho and AS-inter is 46% and 25%, respectively, with
rfunSimAll. This indicates that both annotation strategies help
ranking candidates if known human disease genes and proteins are
not yet annotated with GO terms.

3.2 Improving prediction performance by filtering
dissimilar terms

The findings above indicate that prediction performance is
negatively influenced by semantically unrelated terms. Thus, we
applied a semantic similarity term filter to the functional profiles of
benchmark set 2 created by AS-base and AS-inter. The term filter
removes all terms that do not have a simRel score greater than a
specific threshold (here, 0.60 or 0.80) to any other term in the profile.
With respect to AUC, the results are inconclusive for AS-base (Fig. 2
and Supplementary Figs S5 and S6). The AUC drops slightly for
BP and MF using both thresholds, but the AUC of CC and of the
combined scores are larger than without term filtering. The bestAUC
is achieved with AS-base using the rfunSim score (AUC 0.85) and
term filtering with the threshold 0.80. If the functional profiles are
complemented by PPIs in AS-inter, term filtering improves the AUC
in most cases (Supplementary Figs S13 and S14). The rfunSimAll

i564

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/26/18/i561/206147 by guest on 16 August 2022



[10:59 28/8/2010 Bioinformatics-btq384.tex] Page: i565 i561–i567

Improving disease gene prioritization using semantic similarity

score has anAUC of 0.82 usingAS-inter and term filtering (threshold
0.80), which is even better than the best performance of AS-base
without term filtering. The sensitivity values show the same trend,
and the maximum is reached at 65% using AS-base with term
filtering (threshold 0.80). The annotation coverage of proteins in
aQTLs is lower after applying the term filtering procedure, but when
using AS-inter, it is about as high as with AS-base without term
filtering. In case of the combined scores, rfunSim and rfunSimAll,
however, the coverage is significantly lower using term filtering.
Applying term filtering (threshold 0.80) before adding terms based
on high-semantic similarity does not improve the results compared
to term filtering alone.

We have already shown above that adding terms from protein
interaction partners helps ranking candidates in aQTLs that are not
amenable to analysis with AS-base. When considering only cases
in which the disease or the left-out protein could not be annotated
using AS-base with term filtering (threshold 0.80), AS-inter with
term filtering achieves a sensitivity of 31% with rfunSim and 36%
with rfunSimAll. This further confirms that data from PPIs aids in
identifying disease-related proteins if known human disease proteins
are not annotated with GO terms.

3.3 Performance on rQTLs increased over aQTLs
Benchmark set 3 was created in a fashion that is similar to previous
publications for facilitating a comparison of the performance of
MedSim and other prioritization methods. This benchmark set
consists of 287 rQTLs, each containing 100 proteins annotated with
BP, MF and CC. Functional profiles for diseases in benchmark
set 3 were derived using AS-base without and with term filtering
(threshold 0.80), and AS-sem (cut-off 0.95) with term filtering
(threshold 0.80). The ranking results for benchmark set 3 are listed in
Supplementary Table S8. Using AS-base (Fig. 2 and Supplementary
Fig. S19), the best performance is achieved with the combined
scores, rfunSim (AUC 0.85) and rfunSimAll (AUC 0.84). Using
each combined score improves the sensitivity (57%) over the use of
any other score (42–53%). Applying term filtering, deteriorates the
AUC of the BPscore and the MFscore, but increases the sensitivity
of the CCscore from 42% to 57% and of the MFscore from 47% to
51% (Supplementary Fig. S20). In case of the combined scores,
both performance measures improve if AS-base is applied with
term filtering (Fig. 2). The rfunSimAll score reaches a maximal
AUC of 0.90 and a sensitivity of 73%. Virtually the same AUC
and sensitivity are achieved when applying term filtering to AS-sem
(Supplementary Fig. S21).

The impact on the coverage with GO annotation caused by
the removal of unrelated GO terms from functional profiles was
already described for benchmark set 2. For benchmark set 3, term
filtering reduces the coverage to 36–59% in the cross-validations
(Supplementary Table S4). To calculate the combined scores, the
functional profiles have to contain either both BP and MF terms
for rfunSim or terms from all three ontologies for rfunSimAll.
Therefore, term filtering has a much higher impact on the combined
scores, reducing the coverage to ∼10% compared to ∼95% without
term filtering.

3.4 Results for exemplary diseases
Several inherited diseases involve cellular processes whose
functional relationship on the molecular level is not clear yet. One
such example is inflammatory bowel disease (OMIM #266600)

(Schreiber et al., 2005). UniProtKB currently maps five proteins
reported by genome-wide association studies to this disease (Cho,
2008): the nucleotide-binding oligomerization domain-containing
protein 2 (NOD2, Q9HC29), the solute carrier family 22 members
4 and 5 (SLC22A4, Q9H015; SLC22A5, O76082), interleukin 10
(IL10, P22301) and the interleukin 23-receptor (IL23R, Q5VWK5).
In benchmark set 2, MedSim ranks all proteins except NOD2 in the
top 22% when applying strategy AS-inter and the rfunSimAll score.
Notably, SLC22A5 and SLC22A4 are ranked in the top 6% and top
11%, respectively. NOD2 is ranked in the top 11% using the rfunSim
score and strategy AS-base. Further exemplary prioritization
results for photosensitive trichothiodystrophy (OMIM #601675),
susceptibility and resistance to human immunodeficiency virus type
1 (HIV-1) (#609423), Parkinson disease (OMIM #168600), prostate
cancer (OMIM #176807) and familial hypertrophic cardiomyopathy
(OMIM #192600) are described in the Supplementary Data.

3.5 Comparison with other prioritization methods
First of all, it is important to note that several aspects hamper a fully
objective comparison between different disease gene prioritization
methods. Many methods are not readily available, making it
impossible to apply them on exactly the same benchmark set.
Furthermore, the biological contents of the datasets used by different
methods influences the prediction results, which limits any detailed
comparison. Nevertheless, it is possible and necessary to conduct a
general performance comparison by utilizing large-scale benchmark
sets that are created in a methodologically similar way. To this end,
the procedure applied for creating benchmark set 3 is very similar
to previous publications (Aerts et al., 2006; Chen et al., 2007).

Endeavour (Aerts et al., 2006) is a state-of-the-art method based
on the integration of multiple data sources. It can be used to prioritize
genes based on single data sources or a combination of different
sources. The authors validated their approach with a benchmark set
of rQTLs that were constructed with a strategy similar to benchmark
set 3. With GO annotation as the only data source, Endeavour
achieved an AUC of slightly over 0.75. MedSim, on the other hand,
reached an AUC value of up to 0.90 at a sensitivity of 73 % when
relying only on GO annotation. In case of prioritization using all data
sources, Endeavour was reported to achieve an AUC value of 0.87
and a sensitivity of 74% (at 90% specificity), which is comparable to
the performance of the less complex MedSim approach using only
GO annotations as data source.

Recently, Chen et al. (2007) devised the ToppGene method
that uses annotation with terms from the Mammalian Phenotype
(MP) ontology (Smith et al., 2005) among other data sources,
for instance, biomedical literature and protein interactions. For
comparing their tool to Endeavour, the authors used a benchmark
similar to benchmark set 3. The reported AUC values are 0.91 and
0.89 with and without using MP annotation, respectively, and a
sensitivity of 74% with MP annotation. This means that MedSim
performs comparatively, while using a much simpler prediction
approach based on GO annotation alone. Further comparisons to
other methods that are based on GO annotations and PPI data are
provided in the Supplementary Data.

4 CONCLUSIONS
We presented the new approach MedSim for disease gene
prioritization that introduces several novel strategies for
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automatically annotating diseases with GO terms from known
disease genes or proteins, and from their mouse orthologs or
interacting human proteins. We also explored the possibility of
increasing prediction performance by augmenting the functional
profiles with semantically similar terms and filtering out dissimilar
terms. The results obtained with several extensive benchmark
experiments show that MedSim is able to specifically associate
diseases with known proteins. Furthermore, despite its simplicity,
MedSim achieves high AUC (up to 0.90) and sensitivity (up to
73%) values and is able to perform at least as well as more complex
state-of-the-art methods like Endeavour (Aerts et al., 2006) and
ToppGene (Chen et al., 2007). Moreover, we find that functional
similarity can be used to distinguish diseases with a common
functional basis from unrelated diseases, which enables further
research on clustering diseases using functional criteria.

In detail, the functional similarity scores BPscore, rfunSim
and rfunSimAll perform best for differing benchmark sets and
annotation strategies. The transfer of GO annotations from
mouse orthologs to human proteins is particularly useful for
increasing the coverage with GO annotation without lowering
performance. Adding annotation from protein interaction partners
greatly increases coverage (up to 41%), but can have a negative
impact on the overall performance. Nevertheless, our results provide
evidence for the fact that the use of GO annotations from orthologous
mouse proteins or protein interaction partners aids in ranking
candidate genes and proteins accurately if the latter do not already
possess a suitable GO annotation. In particular, term filtering
increases the performance and allows for finding a tradeoff between
high coverage and high performance, especially when applied to
functional profiles created with the help of protein interaction data.

In general, our comparison of the prediction results from different
benchmarks demonstrated that the assessed performance of a method
depends on the actual construction of the benchmark set. The
AUC and sensitivity for benchmark set 3 are generally higher
than for benchmark set 2 using the same annotation strategy for
both sets. This effect was also observed in our exemplary study of
susceptibility to HIV-1. The effect is most likely due to the fact that
the rQTLs in benchmark set 3 are of smaller size on average and that
the unrelated proteins are randomly drawn from the whole proteome.
Therefore, it is important to take into account how a benchmark
set was constructed when comparing the performance of different
prioritization approaches. All benchmarks used for validating the
MedSim approach were compiled in such a way that every candidate
list contains exactly one true positive. However, in real settings, it
might happen that none of the candidates is related to the disease
of interest. In such situations, the whole list might be rejected if no
candidate scores significantly better than the rest of the candidates.
If the functional similarity scores obtained for different disease are
compared, it is important to normalize the absolute values because
they are not directly comparable.

In addition, we presented strategies for automatically extending
the existing GO annotation of human genes and proteins using
orthologs from model organisms or interaction partners. Our
approach is not restricted to GO as functional annotation source.
Since the semantic and functional similarity measures used are
applicable to any vocabulary that is organized as a tree or directed
acyclic graph, MedSim could also leverage annotations from
other vocabularies like the Human Phenotype Ontology (Robinson
et al., 2008). The availability of functional annotations is generally

expected to improve considerably in the near future because
of comprehensive annotation efforts like the Reference Genome
Annotation Project (Reference Genome Group of the Gene Ontology
Consortium, 2009). The functional profile of a phenotype might also
be used to predict functions for uncharacterized genes and proteins
implicated in this phenotype. In particular, AS-ortho and AS-
inter are useful for transferring GO annotations from functionally
annotated orthologs from model organisms or interaction partners,
respectively.

It should be noted that the use of OMIM has some limitations.
First, OMIM was initiated as database of Mendelian disorders
and contains many entries describing single genes. These cannot
be used for benchmarking methods that aim at the prioritization
of candidates for polygenic diseases. Second, the information in
OMIM is manually curated, which increases the quality but is
labor-intensive. Therefore, OMIM does not contain all currently
known genes affecting diseases as it became apparent in our
exemplary study of susceptibility to HIV-1. Third, OMIM does not
provide a hierarchical classification of phenotypes and contains free-
text descriptions. This renders it difficult to automatically derive
ontologies like the Human Phenotype Ontology and to use this
information without further manual curation.

Finally, the most promising MedSim annotation strategy, AS-
base with term filtering (threshold 0.80), is available via our
FunSimMat online service (Schlicker and Albrecht, 2010). In
particular, FunSimMat contains functional profiles for all OMIM
disease entries and human proteins derived by annotation strategy
AS-base with and without term filtering (threshold 0.80). The pre-
computation of functional similarity scores affords the fast ranking
of genes in QTLs or even of the whole genome with respect to the
disease of interest. Moreover, the MedSim approach can be easily
incorporated into other disease gene prioritization methods.
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