Improving distributed join efficiency with extended bloom filter operations

Loizos Michael”, Wolfgang Nejdl°, Odysseas Papapetrou® and Wolf Siberski®
*Division of Engineering and Applied Sciences, Harvard University loizos @eecs.harvard.edu
°L3S Research Center, Leibniz Universitdt Hannover {nejdl,papapetrou,siberski}@13s.de

Abstract

Bloom filter based algorithms have proven successful as
very efficient technique to reduce communication costs of
database joins in a distributed setting. However, the full
potential of bloom filters has not yet been exploited. Espe-
cially in the case of multi-joins, where the data is distributed
among several sites, additional optimization opportunities
arise, which require new bloom filter operations and com-
putations. In this paper, we present these extensions and
point out how they improve the performance of such dis-
tributed joins. While the paper focuses on efficient join
computation, the described extensions are applicable to a
wide range of usages, where bloom filters are facilitated for
compressed set representation.

1 Introduction

In a distributed database setting, joins are expensive op-
erations, especially with respect to communication costs.
Assume that we want to compute S » T at the site hold-
ing T, called master site. Basic join algorithms require that
all tuples in S (or at least a vertical subset of them) are sent
to the master site, where the actual join computation, - the
intersection between T and S based on the join condition -
takes place.

Instead of sending the actual data, it is sufficient to send
a compressed form of the set of tuples forming S, with just
enough information to test set membership. For this, bloom
filters are the ideal choice.

Bloom filters The Bloom filter data structure was pro-
posed in [4], as a space-efficient representation of sets S =
{e1,er,e3...e,} of n elements from a universe U. A bloom
filter consists of an array of m bits and a set of k independent
hash functions F' = {fi, f>... fi}, which hash elements of U
to an integer in the range of [1,m]. The m bits are initially
set to 0 in an empty bloom ﬁltelﬂ An element e is inserted

'We use the expressions ‘A bit is set to true/false’ and ‘A bit is set to
1/0’ interchangeable.

into the bloom filter by setting all positions f;(e) of the bit
array to 1.

Bloom filters allow membership queries without the
need of the original collection. For any given element
e € U, we can conclude that e is not present in the origi-
nal collection if at least one of the positions computed by
the hash functions of the bloom filter points to a bit which
is set to 0. However, bloom filters allow false positives;
due to hash collisions, it is possible that all bits represent-
ing a certain element have been set to 1 by the insertion of
other elements. The probability that such a membership test
yields a false positive is P(false — positive) ~ (1 — eknimyk.
The information density of a bit filter is optimal when the
probability of each bit to be set is 1/2. For a bloom filter,
this is the case when setting the number of hash functions
to k ~ % xIn(2).

Bloom filters have gained a wide spectrum of applica-
tions, including cache management [[11]], routing in peer-to-
peer systems [[14], novelty estimation in P2P [2]], and queue
management [[7]. A recent survey can be found in [6].

Since their invention, several extensions to bloom fil-
ters have been proposed. Mitzenmacher [19] shows how
to compress bloom filters optimally. Chazelle et al. [8] pro-
pose the bloomier filters which enable any kind of function
to be represented with bloom filters, not only the member-
ship function. Fan et al. [11]] introduced counting bloom
filters, which allow to manage insertions and deletions of
elements. Spectral bloom filters take this one step further
and introduce variable-length counters, allowing arbitrarily
large counters for set elements [10]. Another approach to
multiset representation, the space-code bloom filter is de-
scribed in [13]]. Finally, [12] presents dynamic bloom fil-
ters, which dynamically adapt their size to the number of
inserted elements.

Bloom filter based joins The first hash-based join algo-
rithm has been described in [1]]. The simple hash-join works
as follows: Suppose we want to compute S > T, where
S is the smaller relation. S is called the building rela-
tion, because all tuples from S are added to a main memory

hash tableﬂ Then, each tuple from T (the probing relation)
is accessed and used to probe this hash table. If probing
succeeds, a new result tuple is created. In most cases the
hashing join algorithms perform better than other join algo-
rithms such as the sort-merge join [21} [17]].

To reduce communication costs in a distributed setting,
a semi-join stage can be applied before the actual join [3].
Suppose sites is holding S, siter holds 7', and the join con-
dition is S.a = T.b. Then, siteg first sends just m,(S) to
siter. sitep sends back all tuples from T for which prob-
ing succeeded to siteg, where the final join is computed. If
the join condition is highly selective, this can save signifi-
cant communication costs, because only small fractions of
tuples of S' need to be transmitted.

The Bloomjoin algorithm [5! [18] reduces the amount of
data transmitted further by encoding 7,(S) in a bloom fil-
ter. It proceeds as follows: First sites produces a bloom
filter BF g, including the join key S.a for all its records. The
bloom filter BF is then sent to siter, and used for filter-
ing the records of T that do not satisfy the join, i.e., T.b is
not included in BFg. The rest of the records are then sent
to sites, where the actual join can occur, and any false posi-
tives can be filtered. [[18] shows that Bloomjoin consistently
outperforms the basic semi-join algorithm.

Mullin [20] points out that this two-stage join only saves
costs when the filtering at siter does filter a significant
amount of tuples, which is not always the case. He proposes
to extend the approach to a multi-stage process, where the
sites start with a very small bloom filter, and increase its
size until the additional costs for transmitting the bloom fil-
ter outweigh the gains.

Another approach includes Positionally Encoded Record
Filters (PERFjoin) [[15)]. Positionally Encoded Record Fil-
ters (PERFs) are bitvectors, encoding the matching records
in the backward direction of the 2-way semi-joins. Namely,
executing the R > § as § < R and following R < §
can be optimized in the following manner:(a) S projects
and sends the join attributes to R, (b) R uses the order pro-
posed from S for constructing a bitvector, where it sets the
bits to 1 if the respective record in S should be included
in the relation. The original approach can also be used as
an extension to the bloom join technique, for eliminating
all false positives. The authors show clear network gains
over naively implemented two-way semijoins that transmit
the whole relation instead of only the join attributes. The
approach however is beneficiary only in cases of very low
selectivity, because traditional compression proposed in the
paper has poorer performance than the original bloom filter
technique in the other cases. Also it cannot give benefit in
cases where the join attributes are bigger than the integer
length (i.e. strings).

Based on these techniques, algorithms to optimize multi-

2we use the terminology of [22].

join query plans have been devised. [9] shows how to com-
bine joins and semi-joins to minimize network transmission
costs of the distributed execution. [23]] presents an algo-
rithm for minimizing response times. [16] focuses on op-
timizing the total processing cost of all sub-queries at the
database nodes.

These works on query planning for distributed joins take
bloom filter-based transmission for granted. However, a
closer look shows that it is possible to improve the query
execution efficiency further by optimizing the bloom filters
exchanged between sites. This is especially true if sites
cache bloom filters used for distributed joins. We present
such optimization opportunities in three areas:

e While the optimal bloom filter size has been deter-
mined for a two-site join [20], the situation becomes
more complex when bloom filters from several sites
need to be combined at one master site. We show how
to pre-compute error probabilities for composed bloom
filters, and point out how this affects the optimal bloom
filter size.

e When pipelining the bloom filter based set intersec-
tion, in many cases the number of items in the set
decreases significantly. We show how bloom filter
size can be reduced efficiently without re-hashing;
this allows intermediate sites to optimize the size of
the bloom filter they forward to the next site in the
pipeline.

e To determine the optimal order of joins, the master
site needs to know (or to estimate) the join selectiv-
ity at each site. While it is possible to ask each site
for this data, a master site can estimate it efficiently if
the respective bloom filters for the join condition are
already available. We show how to estimate the size of
a set from the number of "1’ bits in the corresponding
bloom filter. This allows estimating the selectivity of a
join based on the conjunction of the respective bloom
filters.

It is interesting to note that these optimizations can be
applied directly to any distributed querying algorithm based
on semi-joins.

In the following, we consider only natural joins, i.e., join
conditions of the form S.a = T.a. The extension to arbi-
trary equality conditions is straightforward. Joins with non-
equality conditions cannot be optimized using bloom filters,
and therefore are not taken into consideration.

2 Bloom Filter Composition Operations

Motivation Suppose we have sites sitep, - - - sitep,, col-
lecting person information (in a table PERSON(ID, NAME,

---), and other sites siteg - - - siteg, collecting publication
information (in tables PUBLICATION(ID, TITLE, DATE,
--+), AUTHOR(PERS_ID, PUB_ID). A typical query is to
select publications of authors with a specific name:

(Ui=1-m 0NAME="Foo' (PERSON;)) bpERSON.ID=AUTHOR PERS_ID

(Uiz1..n AUTHOR;) MAUTHOR.PUB_ID=PUBLICATION.ID
(Uj=1.., PUBLICATION;)

Suppose, bloom filters BF,,,, ,,cauTHOR,) are cached at
the master site. Then, an efficient distributed query plan
would execute the query as follows:

1. Retrieve bloom filters BFy,, (oyueer ror (PERSONy)) from
sites sitep;

2. Compute the union of these bloom filters by bitwise
OR to BF upgrson

3. Compute the union of AUTHOR;.PERS _ID by bit-
wise OR of the respective cached bloom filters to
BFuaurHoR

4. Compute the PERSON-AUTHOR semi-join by bit-
wise AND of BFUPERSON and BFUAUTHOR to
BF(UPERS ONY<(UAUTHOR)

5. Send the resulting bloom filter to sites siteg; to com-
pute the join on PUBLICATION.

6. Collect the results, check for false positives, and merge
result tuples.

In general, we need bitwise AND to compute the in-
tersections required by joins, and bitwise OR to compute
unions in case of horizontal fragmentation. In both cases,
bloom filters facilitate the required unions and joins with
reduced network overhead. This applies even more when
bloom filters for foreign key attributes are cached at the
coordinating site. However, we need to take care that the
false-positive error rate is strictly controlled. This can only
be done by estimating error rates for the mentioned com-
position operations, and requesting (rsp. caching) bloom
filters of the appropriate size from participating sites.

In the following, we analyze the error probabilities for
computing set intersection and union by bitwise AND
rsp. OR of the involved bloom filters. The oper-
ators, while formally defined for only two bloom fil-
ters, are trivially extended for an arbitrary number of
parameters using recursion: op(BFy,BF,,...BF,) =
op(BF1,0p(BF,...(op(BF -1, BFy)))).

Set union with bloom filters Computing the union of two
sets A and B based on their bloom filters BF4 rsp. BFp is
only possible if BF4 and BF g have the same size and share
the same hash functions. In this case, BF4,p = BF4||BFp,
where || denotes bitwise OR (each bit of BF, is ORed with
the respective bit of BFp).

Let us denote the error probability on bloom filter BF
as Por, and the error probability on bloom filter BF, as
Perror,- Perror 18 calculated using the probability of any ran-
dom bit of the bloom filter to be set to 1. This probabil-
ity P(bit setto 1) is calculated based on the number of the
records already hashed to the bloom filter P(bit setto 1) =

kn
1 - (1 - #) Then, P, is the probability that all k
bits for a random record are set to 1, which equals to
Porror = P(bit set to 1)F.

kung \K1
SO» Perr0r1 = (1 - (1 - L) 1 1) and Perrw’z

my

2
and my = mpy = m. We could try to similarly calcu-

kana \K2
(1 - (1 - ml) ’ 2) and, as a prerequisite k; = k, = k

1 \knor k .
late Perrory, = |1 — (1 - E) , where ngpg is the num-
ber of records contained in BForesr, pr,. However, just
adding the number of records from BF; and BF, is not
accurate, since some records may exist in both the tables.

|\ +m) \F
S0, Perroryy <= (1 - (1 - ;)) can serve as an upper

bound for the error probability Pe,rory-

A lower bound can also be derived for Perrory,:
max(nl’ I’lz) < nor = max(Perrorl B Perrorz) < Perroro,p ThUS,
the error probability bounds are

m

1 \Kou+m) k
max(PerrorlsPerrorz) < Perror()R < (1 - (1 - _))

If the distribution of the objects in the represented
sets is independent — the most frequent case —, we can
compute a better approximation by regarding the error
probability on bit-level. For a bit to be set in BFor(sr,,Br>),
it has to be set either in BF; or BF, (or both). There-
fore, the probability P(bitsettol, BForesr, sr,) =
P(bit setto 1, BFy) + P(bit setto 1, BF>) -
P(bit setto 1, BF) = P(bit setto 1, BF,). The probability of

kny
abit to be true in BF) is P(bit setto 1, BFy) = 1-(1 - L)
Similarly, the probability for the same bit for BF; is
k
P(bitsetto1,BFy) = 1 — (1-L)™.
probability

This gives us a

TEF e
(2 - b

Consequently, the error probability for BForsF, Br,) 1S

Sl

Sl

P.rror(BF oRBF, BF>)) =

(-43) - b4
(-4 < 4]

This probability is less than Pgor, + Perror, and can be
approximated as

2
PerrorOR ~ Max(z * Perror] - P

errory?

2*Permrg_P2)

errory

Set intersection with bloom filters As with set union,
we assume that the involved bloom filters have the same
size and share their hash functions. Let nyyp be the num-
ber of the objects in the set intersection. Then: nyyp <
Min(ny, n2) = Perrorsyy < Min(Perror,s Perror,) (this follows
directly from the formula of P,,,,).

Again, for an independent object distribution a bet-
ter approximation is possible. In this case, the prob-
ability of a bit to be true in the combined bloom fil-
ter is P(bit setto 1, BFAND(BFI,BFZ)) = P(bit setto 1, BFy) *

kn kno \\K
P(bit set 101, BFy) = ((1 ~(1-1) ') . (1 ~(1-14) 2)) _
This probability is significantly less than Pe,or, and Peyror, .

3 Reduction of Bloom Filter Resolution

Motivation Suppose we want to compute R; Mg, 4=r,q
Ry ™R, a=ry.a R3 ™pg,q=r,a R4. If the relations R; are large
and the respective intersections are significantly smaller
than the relation sizes, it is beneficial to avoid the sending
of complete bloom filters BFy,, to a coordinating site. In
that case, we would choose pipelined computation, and af-
ter each semi-join reduce the resulting bloom filter to its
optimal size before forwarding it:

1. compute BFY, , at site; (or use cached BF) and send it
to siter

2. sitep uses cached BFy, , , adapts it to the size of BFg, 4
and computes BFg g, = BFg, o A BFg, 4

3. site; reduces size of BFg, g, to optimum and sends it
to sites

4. repeat semi-join computation until BFg wp,x<rs<R, 15
produced at sitey

5. send back matching tuples of Ry to sites
6. compute R3 > R4 and send it to site,

7. repeat join computation until Ry > R, b4 R3 > Ry is
produced at site;

While we could re-create a new bloom filter of optimal
size at each site, this is much more expensive than just com-
puting bitwise AND of the cached bloom filters, and then
reducing the bit array size without rehashing. For the lat-
ter, we need to (a) calculate the size satisfying our required
error probability, and (b) efficiently shrink the bit array.

We now describe our approach for reducing the reso-
lution of a bloom filter in the absence of the original col-
lection. For comparison purposes, we first describe the
naive approach based on mapping the large bloom filter to
a smaller one (i.e. using the modulo operation) and show
why this is not efficient.

Naive resolution reduction Assume we want to reduce a
large bloom filter BFof length / to a smaller BF’ of length
I, where /I’ is an integer. A simple mapping function like
f(x) = (x mod) can be used to map the bloom filter values
as well as the bloom filter functions to the smaller bloom
filter. BF’ is initialized with no bit set, and for each bit
BF[b] in the original bloom filter, if BF[b] is set, we set
BF’[b mod '] in the reduced bloom filter.

For this approach, the new error probability is much
higher than the optimal probability for the same collection
represented by a bloom filter of the same length /’. In par-
ticular, assuming a uniform hashing, BF’ has an increased
error probability of P'(false positive) ~ (1 — e *"/5)k, Fig-
ure [I] shows the error probability for naive size reduction
and the optimal error probability for a sample bloom fil-
ter of size 32768, containing 400 objects. When this large
bloom filter is reduced to 0.125 of the original (i.e., to 4096
bits) the error probability caused by naive reduction is al-
ready 0.804, while the optimal error probability would have
been 0.007.

The problem is that the number of the hash functions
is not reduced with the size of the bloom filter. We know
that to achieve the optimal error probability, the number of
hash functions has to be chosen such that the density of the
bloom filter becomes 0.5. The reduction of such a bloom
filter to half its size already results in a density of approx-
imately 0.75. As the error probability grows exponentially
with bloom filter density, the naive approach leads quickly
to very high error probabilities. We show how to avoid this
in the next section

Block-partitioned bloom filters The key to reduced er-
ror probabilities is to allow adapting the number of hash
functions without the need to rehash all objects. This can
be achieved by composing the bloom filter from small, in-
dependent bloom filter blocks. Each of these blocks con-
tains all objects, hashed with different functions. Suppose
a block-partitioned bloom filter of size [,,,, reducible to
a minimum size of [,;,, is required. As first and second
blocks, bloom filters of size I,;,, each with the optimized

number of different hash functions are created, populated
with all objects, and concatenated. As third block, a bloom
filter of size 2 - [,,;, is populated, and appended. The process
continues until the size of the /,,,, is reached.

The reduction step for block-partitioned bloom filters is
trivial: to reduce the resolution of a given filter with ® hash
functions to a size of 2¥, we just take the i first bits and the
2% first hash functions as new bloom filter.

Note that the approach is not limited to filter sizes of
2", If other sizes are required, they can easily be formed
by concatenating block-partitioned bloom filters of different
sizes. In this case, the reduction step needs to extract the
respective reduced blocks from each of these filters, and re-
concatenate the extracted blocks.

While on the surface there seems to be a similarity be-
tween block-partitioned bloom filters and dynamic bloom
filters [12]], the approaches are actually different. The pur-
pose of dynamic bloom filters is to grow, as more and more
objects are added. However, dynamic bloom filters can’t be
efficiently reduced. Block-partitioned bloom filters exhibit
exactly the opposite characteristic: they can be reduced eas-
ily, but it is not possible to add new blocks, because any
block needs to contain all objects.

Analysis: We sketch the analysis for finding the error
probability for block-partitioned bloom filters. The analysis
is restricted on filters of length [,,ax, where log,(l,,ax) is
an integer. As noted above, this poses no restriction on the
actual size.

The false positive error probability can be calcu-
lated recursively. A false-positive error occurs on
a block-partitioned bloom filter of length [,,, when
both the last block and the remaining filter (each of
length 1,,,./2) return a false positive error. The solution
of the recursive equation P(false positive,length =
Linax) = P(false positive, length = l’”f)z
is P(false positive,length = Lnax) =
P(false positive,length =)/ where 1, is
the length of the smallest block, the basic building block
of the full bloom filter. Note that there is a lower limit
for 1,;,, the smallest block size; is it is too small, in the
worst case all its bits will be set to one, rendering it useless.
Therefore, [,,;, has to be chosen to satisfy the condition

(1 ~(1- ﬁ)"")k <1.

Comparison: Figure [I] shows the false positive error
probabilities for naively reduced bloom filters and block-
partitioned ones, compared to the optimal size (if the objects
would be re-hashed). The graph is based on a sample bloom
filter of length /,,,, = 32768, containing 400 objects. The
initial number of hash functions is 57, the optimal number
for this setting. For practical issues the only the error rates
for reduction sizes between 512 and 8192 bits are shown.

Error probability for reduced bloom filter resolution

o
=)

Error probability
o o
S w

o
w

o
N

0,11

0

512 1024 2048 3072 4096 5120 6144 7168 8192
Reduced length (bits)

—— Block-partitioned

—=— Naive - - - - Optimal

Figure 1. False positive error probabilities
with different bloom filter reduction tech-
niques

For larger reduction sizes, the difference between both ap-
proaches is not significant. The figure shows that naive
reduction causes extreme high error probabilities. On the
other hand, we see that block-partitioned bloom filters ex-
hibit a near-optimal error probability for all reduction sizes,
without requiring a rehashing of the original collection.

4 Estimation of Bloom Filter Set Size

Motivation Consider the case of the following query:
01 : Ry ™R, a=Ry.a Ro ™Mpya=Ry.a R3 ™Ryp=R,b R4 ™R, b=Rsb
Rs. In contrast to the previous scenarios, the joins occurring
in this query are based on more than one attribute (R; to R;3
are joined on a, R3 to Rs are joined on b etc.). For this type
of queries, bloom filters alone are not sufficient for filtering
all non-satisfying records. Instead, any evaluation of such
queries has to partially execute all sub-queries, then ex-
change a possibly large amount of possibly non-satisfying
records, and finally filter them (progressively or centrally in
a moderator). In our example, a possible query plan for QO
is:

e Break the query into sub-queries SQ;,SQ,...SQ,,
such that each sub-query has the maximum length of
joins with the same attribute. For Q;, that would be
SQi = Ri ™Ra=r,a R2 ™r,a=r,a R3 and SQ; =
R3 R, b=, b R4 MR, p=r;.» Rs.

e Use cached bloom filters on the join attributes to com-

pute BF snp, bloom filters of each sub-query SQ;, e.g.,
BF anp, = BFR, o A BFR, 4 N BFg, , for sub-query SQ;.

o Attach BF anp,, BFanp, - .. BF anp,, to the sub-queries,
and use pipeline computation to execute them.

The above plans, although requiring significantly less
network transmissions than simple joins, can still be sub-
optimal. To increase efficiency as well as reduce transmis-
sion costs, we have to order the sub-query evaluation in the
pipeline so that the order of the sequential execution of the
joins reduces the size of intermediate result sets as early as
possible. For instance, if S Q; in the above example would
result in only 1 record, it would be wise to first execute S Oy,
and then pipeline the 1 result record to the sub-query pro-
cessing. However, asking each of the sites for a count on the
number of local records that satisfy the whole query is not
feasible. Due to the different join attributes, the sites cannot
locally compute the number of records remaining after the
joins. Estimating the cardinality of each sub-query based on
the density of the joined bloom filters does not work either,
since each of the sub-queries may produce different bloom
filters sizes (i.e. by combining the optimizations already
proposed from section [3).

Therefore, we devised a formula to derive the estimated
object set size from a given bloom filter. Now, a moderator,
i.e. the query initiator, can first execute the semi-joins for
sub-queries SQ;, and then use this formula to estimate join
selectivities from the resulting bloom filters BF,yp,. The
joins are then ordered and executed based on these estima-
tions, analogous to the selectivity statistics used in central-
ized databases.

Set size estimation An estimation of elements hashed
into a bloom filter can be derived based on the bits set to
true in the bloom filter as follows.

Lemma 4.1 The expected number of true bits in a bloom
filter of length m with k hash functions after n elements were

hashed is: S (n) = m * (l - (1 - #)kn) Also, the following

inequalities hold:

Upper bound: The probability of the number of true bits
to be more than (1 + 6) * S(n) is P(# true bits > (1 +
8) = S(n)n) < e S /3,

Lower bound: The probability of the number of true bits
to be less than (1 — 0) * S(n) is P(# true bits < (1 —8) *
Sn)n) < e S/,

Proof: Given a bloom filter of size m with k hash func-
tions and n elements hashed into it, we can compute the
expected number of true bits as follows. For this task, we
define the random variables Z, Z,, . .. Z,, where Z; is inter-
preted to be the indicator variable for the event that the i
bit in the bloom filter is set to true. The probability that the
i bit is set to true is P(i = true) = 1 — (l - %)kﬂ Having
a bloom filter of length m, the expected number of true bits

N kn
equals to S(n) = X1, P(i = true) = m * (1 _(1 - l))

m

The bounds follow directly from the Chernoff inequality,
by assuming (as is standard in the analysis of Bloom filters)
that the random variables Z,7,, . . . Z,, are independent.

We now proceed to estimate the number of documents
hashed in a bloom filter. We denote by S-1(#) the inverse
of S (n), so that given a number of true bits ¢, $~1(¢) returns
the number of documents that would result on an expected
number of 7 true bits in the bloom filter. We can find $ ~(¢)
using the probability of a bit to be true:

¢ 1 kS0
P(iztrue)z—:l—(l——) =
m

m
kS (@)
(1—1) LN
m m
.- | t
K §71 @)« In[1 - = :ln(l——):
m m
R In(1-4+
S—l(t)z (m)
kwn(1- 1)

S$-1(#) is the most likely number of hashed documents
given the state of the bloom filter, and can be used as a rough
estimate when a single number of hashed documents is re-
quired. However, strict error margins can only be derived
for intervals of set sizes. The following theorem provides
for a given interval the probability that the real set size is
indeed within the given bounds.

Theorem 4.2 Given a bloom filter BF of length m with k
hash functions and t bits set to true. For any n;, n, such that
S‘_l(%) < <8 Nt-1)and S~ (t + 1) < n,, the number
of elements hashed in BF lies in the range (n;,n,) with a

_(/*lif(n[))z 18 (mr)?
probability of at least | —e ¥ — ¢ 2860

Proof If the number of documents is n < n; then
P# true bits > tln) < P(# true bits > t|n;). Choosing n;
and ¢; such that (1 + ¢;) = S (n;) < t, we obtain by lemma
that this probability is P(# true bits > (1 + 6;) = S (n)ln) <
e~St% /3 Similarly, if the number of documents is n > n,,
then P(# true bits < tln) < P(# true bits < t|n,). Choos-
ing n, and 6, such that (1 — ¢,) = Sn,) > t, we ob-
tain by lemma [4.1] that this probability is P(# true bits <
(16, %S (nln,) < eS@12,

For choices of n;, 6;, n,, 3, as described above, we get that
with probability 1 — e5®5/3 — ¢=81)5/2 the number of
documents is in the range (n;,n,). We compute a value for

8, such that (1 + 6;) * S(n)) < t. Clearly, 6; = %
1

satisfies the inequality. Similarly, we compute a value for J,

such that (1 -6,)* S (n,) > 1. Clearly, 6, = % satisfies

the inequality.

B (r—liﬁ(nl))z

We conclude that with probability 1 — e 3w —

_@+1=Sp))? o
e Pen | the number of documents is in the range (n;, n,.).

Applications may need to ensure a certain confidence
that the estimation is correct. In this case, Theorem[4.2] can
also be used to compute upper and lower bounds of the set
size for a given error probability.

These size estimation results do also hold for set unions
created by bitwise OR of the respective bloom filters (cf.
Section . However, estimation of the size of an intersec-
tion represented by a bloom filters composed with bitwise
AND is not directly possible using theorem The rea-
son is that the same bits may have been set in BF| and
BF, from two distinct objects, one belonging only to set
S| and the other only to S,. The resulting sparsity of the
composite bloom filter will thus be incorrectly influenced.
The probability for such a bit collision is also quite high:
(1-(1- le)klm)*(l —(1- mLz)kz"Z). These bits would also be
set to 1 in the resulting BF 4y p, but no element from the real
intersection would set these bits in BF 4yp. Consequently,
our previously introduced estimation of elements becomes
incorrect. If BF| and BF, are still available, we can esti-
mate the size of the intersection indirectly by exploiting the
factthat |S;NS3| = [S1|+1S2] =[S US,|. Thus, to estimate
the intersection of S| and S, we first compute their union,
and then derive the resulting estimation from the other three
given bloom filters.

5 Conclusions

This work includes three techniques which improve the
join efficiency in distributed query execution based on
Bloom filters. These techniques are based on three new op-
erations on bloom filters: a) creating set intersection and
union (and estimating their error probabilities) from given
bloom filters, b) reducing the resolution of a bloom filter
while maintaining a low error probability, and c) estimating
the number of elements that are hashed in a bloom filter.

Some of the scenarios for which the above operations are
useful are described in this paper. More scenarios are possi-
ble, in fact, each of the proposed operations can also be in-
tegrated in existing distributed query engines for improving
the performance of their query planning algorithms. Addi-
tionally, as bloom filters were already used in several ap-
plication domains ranging from distributed query execution
and web caching to P2P query routing and set reconcilia-
tion, we can imagine several enhancements to the existing
algorithms using our extensions.

Future work: Our next task will be to align our opti-
mizations in a fully distributed query execution engine. To
do this, we currently examine several approaches on pre-
computing bloom filters (e.g. for all indexed keys) and/or
caching them (e.g. for repeatedly occurring sub-queries), to
increase join performance. Some other issues are still open,
like where the bloom filters are stored and how they will be

updated. A further extension is comprehensive cost-based
query planning based on the estimations retrieved from the
bloom filters.

References

[1] E. Babb. Implementing a relational database by means of
specialized hardware. ACM Trans. Database Syst., 4(1):1—
29, 1979.

[2] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Improving collection selection with overlap
awareness in p2p search engines. In Proceedings of the 28th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 67-74,
2005.

[3] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and
J. B. R. Jr. Query processing in a system for distributed
databases (sdd-1). ACM Trans. Database Syst., 6(4):602—
625, 1981.

[4] B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Commun. ACM, 13(7):422-426, 1970.

[5] K. Bratbergsengen. Hashing methods and relational algebra
operations. In Proceedings of the Tenth International Con-
ference on Very Large Data Bases (VLDB), pages 323-333,
1984.

[6] A. Broder and M. Mitzenmacher. Network applications of
bloom filters: A survey. In Allerton Conference, 2002.

[7]1 W. chang Feng, D. D. Kandlur, D. Saha, and K. G. Shin.
Stochastic fair blue: A queue management algorithm for en-
forcing fairness. In Proceedings of the Twentieth Annual
Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM), pages 1520-1529, 2001.

[8] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static support
lookup tables. In Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms (SODA), pages
30-39, Philadelphia, PA, USA, 2004. Society for Industrial
and Applied Mathematics.

[9] M.-S. Chen and P. S. Yu. Combining join and semi-join
operations for distributed query processing. IEEE Trans.
Knowl. Data Eng., 5(3):534-542, 1993.

[10] S. Cohen and Y. Matias. Spectral bloom filters. In Proceed-
ings of the 2003 ACM SIGMOD International Conference
on Management of Data, pages 241-252, 2003.

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-
mary cache: a scalable wide-area Web cache sharing proto-
col. IEEE/ACM Transactions on Networking, 8(3):281-293,
2000.

[12] D. Guo, J. Wu, H. Chen, and X. Luo. Theory and network
applications of dynamic bloom filters. In Proceedings of the
25th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), 2006.

[13] A. Kumar, J. Xu, J. Wang, O. Spatscheck, and L. Li. Space-
code bloom filter for efficient per-flow traffic measurement.
In Proceedings of the 23rd Annual Joint Conference of
the IEEE Computer and Communications Societies (INFO-
COM), 2004.

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

A. Kumar, J. J. Xu, and E. W. Zegura. Efficient and scal-
able query routing for unstructured peer-to-peer networks.
In INFOCOM, 2005.

Z. Li and K. A. Ross. Perf join: An alternative to two-
way semijoin and bloomjoin. In Proceedings of the Inter-
national Conference on Information and Knowledge Man-
agement (CIKM), pages 137-144, 1995.

B. Liu and E. A. Rundensteiner. Revisiting pipelined par-
allelism in multi-join query processing. In Proceedings of
the 31st International Conference on Very Large Data Bases
(VLDB), pages 829-840, 2005.

H. Lu, K.-L. Tan, and M.-C. Shan. Hash-based join algo-
rithms for multiprocessor computers. In 16th International
Conference on Very Large Data Bases (VLDB), pages 198—
209, 1990.

L. F. Mackert and G. M. Lohman. R* optimizer validation
and performance evaluation for distributed queries. In Pro-
ceedings of the Twelfth International Conference on Very
Large Data Bases (VLDB), pages 149-159, 1986.

M. Mitzenmacher. Compressed bloom filters. IEEE/ACM
Trans. Netw., 10(5):604-612, 2002.

J. K. Mullin. Optimal semijoins for distributed database sys-
tems. IEEE Trans. Software Eng., 16(5):558-560, 1990.

D. A. Schneider and D. J. DeWitt. A performance evaluation
of four parallel join algorithms in a shared-nothing multipro-
cessor environment. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages
110-121, 1989.

D. A. Schneider and D. J. DeWitt. Tradeoffs in processing
complex join queries via hashing in multiprocessor database
machines. In 16th International Conference on Very Large
Data Bases (VLDB), pages 469-480, 1990.

C. Wang, A. L. P. Chen, and S.-C. Shyu. A parallel execu-
tion method for minimizing distributed query response time.
IEEE Trans. Parallel Distrib. Syst., 3(3):325-333, 1992.

	Introduction
	Bloom Filter Composition Operations
	Reduction of Bloom Filter Resolution
	Estimation of Bloom Filter Set Size
	Conclusions

