
Improving Dynamic Voltage Scaling Algorithms with PACE*

Jacob R. Lorch and Alan Jay Smith
Computer Science Division, EECS Department

University of California at Berkeley
Berkeley, CA 94720-1776

{lorch,smith}@cs.berkeley.edu

ABSTRACT

This paper addresses algorithms for dynamically varying (scaling)
CPU speed and voltage in order to save energy. Such scaling is use-
fill and effective when it is immaterial when a task completes, as
long as it meets some deadline. We show how to modify any scal-
ing algorithm to keep performance the same but minimize expected
energy consumption. We refer to our approach as PACE (Proces-
sor Acceleration to Conserve Energy) since the resulting schedule
increases speed as the task progresses. Since PACE depends on the
probability distribution of the task's work requirement, we present
methods for estimating this distribution and evaluate these methods
on a variety of real workloads. We also show how to approximate
the optimal schedule with one that changes speed a limited number
of times. Using PACE causes very little additional overhead, and
yields substantial reductions in CPU energy consumption. Simu-
lations using real workloads show it reduces the CPU energy con-
sumption of previously published algorithms by up to 49.5%, with
an average of 20.6%, without any effect on performance.

1. INTRODUCTION
The growing popularity of mobile computing devices has made

energy management important for modem systems, because users
of these devices want long battery lifetimes. A relatively recent
energy-saving technology is dynamic voltage scaling (DVS), which
allows software to dynamically vary the voltage of the proeassor.
Various chip makers, including Transmeta, AMD, and Intel, have
recently announced and sold processors with this feature.

Reducing CPU voltage can reduce CPU energy consumption
substantially. Performance suffers, however: over the range of
allowed voltages, the highest frequency at which the CPU will
run correctly drops approximately proportionally to the voltage
(f c~ V). Since the main component of power consumption is
proportional to V 2 f , and energy per cycle is power divided by fre-
quency, energy consumption is proportional to frequency squared

*This material is based upon work supported by the State of California MICRO pro-
gram, Ciseo Systems, Fujitsu Microeleetronies, IBM, lntel Corporation, Maxtor Cor-
poration, Miorosoi~ Corporation, Quantum Corporation, Sony Research Laboratories,
Sun Miorosystems, Toshiba Co~poration, and Veritas Software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies ate not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ACM SIGMETR/CS 2001 6/01 Cambridge, MA., USA

© 2001 ACM ISBN 1-58113-334-0/01/06.-$5.00

(E c< f2). So a CPU can save substantial energy by running more
slowly; e.g., it can run at half speed and thereby use 1/4 the energy
to run for the same number of cycles.

Two factors limit the utility of trading performance for energy
savings. First, a user wants the performance for which he paid.
Second, other components, such as the disk and backlight, also
consume power [12]. If they stay on longer because the CPU runs
more slowly, the overall effect can be worse performance and in-
creased energy consumption. Thus, one should reduce the voltage
only when it will not noticeably affect performance.

A natural way to express this goal is to assign a soft deadline to
each of the computer's tasks. (We call a deadline soft when a task
should, but does not have to, complete by this time.) For example,
user interface studies have shown that response times under 50--
100 ms do not affect user think time [21]; we can thus make 50 ms
the deadline for handling a user interface event. Also, multimedia
operations with limited buffering, e.g. on real-time streams, need to
complete processing a frame in time equal to one over the display
rate, and there is no need for any earlier completion. When goals
can be codified this way, the job of a DVS algorithm is to run the
CPU just fast enough to meet the deadline with high probability.

Our soft deadline's key property is that if the task completes by
then, its actual completion time does not matter. Thus, if we run the
task more slowly, but it still completes by its deadline, performance
is the same. Our primary goal is to improve DVS algorithms so that
performance remains the same but energy consumption goes down.

Current DVS algorithms incorrectly assume that a constant speed
consumes minimal energy even when task work requirements are
unknown. But, we will show that in this common case expected
energy consumption is in fact minimized by increasing speed as
the task progresses. We therefore call our approach for improving
algorithms PACE: Processor Acceleration to Conserve Energy.

We will give a formula for a speed schedule that minimizes ex-
pected energy consumption without changing performance. But,
there are two problems with using this formula in practice. First,
it depends on the probability distribution of a task's work require-
ment. Second, the schedule gives speed as a continuous function of
time but real CPU's cannot change speed continuously.

To solve the first problem, we must estimate the distribution of
task work from the requirements of previous, similar tasks. We de-
scribe and compare various methods for this and find some general
and practical methods that work well on a variety of real work-
loads. For the second problem, we present and test heuristics for
approximating the schedule with a piecewise constant one.

Using trace-driven simulations of real workloads, we show that
our improvements significantly reduce the energy consumption
of previously published algorithms without changing their perfor-
mance. We also show that our approaeh is practical and efficient.

50

Note that PACE is not a complete DVS algorithm by itself; it is
a method for improving such an algorithm. For example, it does
not change characteristics of the algorithm that affect performance.
So, we compare certain algorithms to show which ones work best
when modified by PACE. For reasons we discuss, we do some such
comparisons empirically rather than analytically.

This paper is organized as follows. Section 2 discusses related
work, including DVS algorithms others have proposed. Section 3
presents our model of the DVS problem and introduces useful ter-
minology. Section 4 describes how to improve algorithms with
PACE. Section 5 discusses what algorithms work best when modi-
fied by PACE. Section 6 describes the workloads we use for analyz-
ing algorithms' energy consumption and performance. Section 7
presents these analyses and discusses results. Section 8 suggests
possibilities for future work. Finally, section 9 concludes.

Although we explain terms when we first present them, the
reader may find Table 1, which summarizes these terms, helpful.

2. RELATED WORK
Researchers have studied CPU scheduling for decades. One im-

portant result is that if a set of tasks has feasible deadlines, schedul-
ing them in increasing deadline order will always make all the dead-
lines [11]. Another useful result, described by BhZewicz et al. [2,
pp. 346-.350], is that when the rate of consumption of some re-
source is a convex function of CPU speed, an ideal schedule will
run each task at a constant speed. Yao et al. [24] observe that with
DVS, power consumption is a convex function of CPU speed. They
show how to compute an optimal speed-setting policy by construct-
ing an earliest-deadline-first schedule, and then choosing the mini-
mal possible speed for each task that will still make the deadlines.

However, one can only compute such optimal schedules if the
tasks' CPU requirements are known in advance, and task require-
ments in most systems are unpredictable random variables; see,
e.g., [20]. For this reason, most research on scheduling for DVS
has focused on heuristics for estimating CPU requirements and at-
tempting to keep CPU speed as constant as possible.

Weiser et al. [23] recommended interval-based algorithms for
DVS. These divide time into fixed-length intervals and set each in-
terval's speed so that most work is completed by the interval's end.
Chan et al. [4] refined these ideas by separating out an algorithm's
two parts: prediction and speed-setting. When an interval begins,
the prediction part predicts how busy the CPU will be during the
interval (i.e., how much work there will be to do), and the speed-
setting part uses this information to set the speed. They measure
how busy the CPU is via the utilization, the fraction of the interval
the CPU spends non-idle.

Several authors, including Pering et al. [17] and Grunwald et
al. [7], have shown that Weiser et al. and Chan et al.'s algorithms
are impractical because they require knowledge of the future. How-
ever, they have proposed practical versions of these algorithms.
Prediction methods they suggest include:

• Past. Predict the upcoming interval's utilization will be the
same as the last interval's utilization.

• Aged-a, Predict the upcoming utilization will be the aver-
age of all past ones. More recent ones are more relevant, so
weight the kth most recent by a k, where a < 1 is a constant.

• LongShort. Predict the upcoming utilization will be the av-
erage of the 12 most recent ones. Weight the three most re-
cent of these three times more than the other nine.

• Flat-u, Always predict the upcoming utilization will be u,
where u < 1 is a constant.

Speed-setting methods they suggest include:

• Weiser-style. If the utilization prediction x is high (> 70%),
increase the speed by 20% of the maximum speed. If the
utilization prediction is low (< 50%), decrease the speed by
60 - x% of the maximum speed.

• Peg. If the utilization prediction is high (> 98%), set the
speed to its maximum. If the utilization prediction is low
(< 93%), decrease the speed to its minimum positive value.

• Chan-style. Set the speed for the upcoming interval just high
enough to complete the predicted work. In other words, mul-
tiply the maximum speed by the utilization to get the speed.

We refer to previously published algorithms by concatenating
the names of their methods. For example, the Flat/Chan-style al-
gorithm uses the Flat prediction method and the Chan-style speed-
setting method.

Note that dividing time into intervals and using those boundaries
as deadlines is somewhat arbitrary. For example, if a task arrives
near the end of an interval, it does not really have to complete by
the end of that interval. Furthermore, without deadlines, there is no
particular reason to complete any given task by a certain time; it is
best to simply measure the average number of non-idle cycles per
second and mn the CPU at that speed. (Transmeta's LongRun TM

system does something like this [10].) Pering et al., recognizing
this, suggested considering deadlines when evaluating DVS algo-
rithms [17]. To do so, they suggest considering a task that com-
pletes before its deadline to effectively complete at its deadline.

Grunwald et al. [7] considered deadlines when they compared
several of the algorithms described above (as well as others not
listed here) by implementing them on a real system. They decided
that although none of them are very good, Past/Peg is the best: it
never misses any deadlines for the workload they considered, yet
still saves a small but significant amount of energy.

3. MODEL
In our model of the CPU, voltage can change continuously over

some range. Over this range, CPU speed increases continuously
between some minimum and maximum speeds. We assume CPU
energy consumption per cycle is proportional to the speed squared.

A DVS algorithm is one that decides how quickly to run a task
as that task progresses. This task has some work requirement (W),
the number of CPU cycles it takes to complete. We will sometimes
refer to this simply as the task's work. The task has some deadline
(D): the number of seconds in which the algorithm should try to
complete the task. The number of seconds the task actually takes,
given the algorithm's CPU speed choices, is its completion time.
Its effective completion time is the maximum of its completion time
and its deadline; this reflects the fact that if a task completes by its
deadline, it may as well have completed at its deadline. Its delay is
the number of seconds it takes beyond its deadline, i.e., its effective
completion time minus its deadline. Its excess is the number of
cycles it still has left to do after reaching its deadline.

When a task arrives, an algorithm must decide on the CPU speed
to use in completing it. In general, the algorithm may choose to
vary the CPU speed as the task progresses; for instance, it might
choose to use 300 MHz for the first 10 ms then 400 MHz for any
remaining time. Thus, the algorithm is actually choosing the speed
as a function of time. We call this function the speed schedule, and
denote it by f : f(t) is the speed, in cycles per second, that the
algorithm will run the CPU after the task has run for t seconds.

We can think of a speed schedule as consisting of two parts, the
pre-deadline part and the post-deadline part. The former is the
part of f that describes what happens before the task reaches its
deadline (when t < D), and the latter describes what happens after

51

Term (and abbreviation)
Work requirement / work (W)
Completion time
Deadline (D)

Effective completion time

Delay
Excess

Cumulative distribution func-
tion (CDF or F)
Tail distribution function (.F c)
Megacycle (Me)
Speedscbedule(f ors)

, Transition point
Ire-deadline cycles (P D C)

,, Performance equivalent
Parametric iiivihod

Nonparametric method
Kernel density estimation

b~itTl[l~'

The number of seconds a task takes to con dote.
The number of seeonds a task has to complete. Generally, a deadline will be soft, meaning some tasks may miss their deadlines. The key
property of a deadline is that as long as a task completes by its deadline, its actual completion time does not matter.
The completion time of a task, or its deadline, whichever is greater. This measure reflects the fact that as long as a task completes by its
deadline, its actual completion time does not matter.
The number of seconds a task takes beyond its deadline.
The number of cycles of work a task still has left to do after its deadline has passed.
A function describing the probability a task will require various amounts of work. F(w) is the probability that the task will require no more
than w cycles.
One minus the cumulative distribution function. F ¢ (w) is the probability that the task will require more than w cycles.
1,000,000 CPU cycles.
A function that describes how CPU speed will vary as a task runs. f(t) is the speed after the task has run for t seconds, s(w) is the speed after
the task has completed w cycles of work.
A point at which a practical speed schedule changes from one speed to another.
The number of cycles the CPU can complete by the deadline according to some speed schedule. For example, if the speed schedule calls for
the speed to always be 300 MHz, and the deadline is 50 ms, then PDC = 15 Me. Note: even if the task only requires 8 Me of work, PDC is
still 15 Me, since the schedule could have completed 15 Me by the deadline.
Guaranteed to yield the same effective completion time, no matter what the task's work requirement.
A way to estimate a probability distribution from a sample by assuming the distribution belongs to some family of distributions (e.g., normal)
and estimating the parameters of that distribution (e.g., the mean).
A way to estimate a probability distribution from a sample without assuminl~ any distribution ty ~e. It thus lets the data "speak for themselves."
A nonparumetric method that builds up a probability distribution by adding up little distribution each centered on one of the sample points.
The width of each little distribution in kernel density estimation.

Table 1: Terms used in this paper, along with their abbreviations and definitions

. ~ Schedu le 1
Schedu le 2

m I , I , I , I ,

0 2 0 4 0 60 80 1 O0

Cycles passed

Figure 1: This graph shows two performance equivalent speed
schedules with deadline 50 ms. Their pre-deadline cycles are
equal (15 Me) and their post-deadline parts are identical.

the task misses its deadline (when t > D). A speed schedule has a

certain number ofpre-deadline cycles (PDC), the number of cycles

it can perform before the deadline. Note that PDC = fo ° f(t) dt.

We say that two speed schedules are performance equivalent if,

no matter what a task's work requirement, it will have the same
effective completion time under both schedules. We call two al-

gorithms performance equivalent if they always have performance

equivalent speed schedules. We make the following important ob-

servation: I f two speed schedules have equal pre-deadllne cy-

cles and identical post.deadline parts, then they are performance

equivalent. Figure 1 illustrates two such schedules.

The above observation is true for the following reasons. First,

if a task's work is no greater than the PDC the schedules share,

then both schedules complete the task by the deadline, and both

yield an effective completion time of D. Second, i f a task's work is

greater than the PDC, then both schedules leave the task the same

excess to do after the deadline: W - PDC. Since the schedules

have identical post-deadline parts, and both have the same excess

to do in that part, both will complete the task at the same time.

This is the key to the PACE approach. PACE modifies algorithms
without changing their pro-deadline cycles or their post-deadline

parts, so it keeps performance the same. However, by strategically
choosing the speed schedule for the pro-deadline part, it can make

the expected energy consumption lower than the original algorithm.

It is often useful to consider the speed schedule to be a function

of work completed instead of a function of time. So, we will some-

times describe the schedule with a function s, where s(w) is the

speed to use after the task has completed w cycles of work. f and s

are just different expressions of the same function; it is straightfor-

ward to convert a schedule from one functional form to the other.

4. IMPROVING DVS ALGORITHMS

4.1 Theoretical optimal formula
In this section, we present a formula for the optimal (energy min-

imizing) speed schedule that is performance equivalent to that of a
previously known algorithm.

As previously noted, when we know the task's work requirement,

the optimal algorithm uses a constant speed. When we know only

the distribution of this work, however, the optimal schedule uses a

variable speed, An intuitive explanation is that if the task work is

unknown, it may be high or low. It is best to run slowly at first, be-

cause the task may require little work and thus end before we must

increase the speed and thus the power consumption. For example,

suppose a task with a deadline of 50 ms needs 5 megacycles (Me)

75% of the time and 10 Me 25% of the time, Suppose further that
CPU power is 50 nW • z 3 when the speed is x MHz. The ideal

constant speed is 200 MHz, the slowest that will always meet the

deadline; this consumes 12.5 mJ on average, t An alternate, variable

speed schedule is 163 MHz for the first 30.675 ms, then 259 MHz

for any remaining time; this consumes 10.84 mJ on average, 2 an
energy savings of 13.3%.

We thus see that the optimal speed schedule depends on the prob-

ability distribution of the task's work requirement. We denote the

cumulative distribution function (CDF) of this work by F : F (w)

is the probability the task requires no more than w cycles of work.
The tail distribution function is denoted FC: FC(w) = 1 - F (w) .

We are trying to minimize the expected energy consumption

of the pro-deadline part of the algorithm, 3 subject to the con-

2(25ms)(200)a(50nW) + (25%)(25ms)(200)a(50nW) = 12.5mJ.
(30.675ms) (163) 3 (50nW) + (25%) (19.325ms) (259) 3 (50nW) ..~ 10.84mJ.

3The expeetud energy consumption is k fo POe F¢(w)[s(w)] 2 dw, where k is the
constant of proportionality between energy and speed squared, by the following rea-
soning. Consider the dw eyeles of work after the first w; if dw is small, the speed
over this period is approximately constant at s(w). The energy consumption per
cycle is k[s(w)] ~, and the number of cycles is dw, so the energy consumption is
k[s(w)] 2 dw. The probability that this work actually ever gets done is F c (w).

52

straint that the pre-deadiine cycles must be the same as the PDC
of the original algorithm. In other words, we want to minimize

. PDC f:oc FC(w)[s(w)]2 dw subject to the constraint fg 7 ~ dw =
D. Algebraically, this is equivalent to minimizing

dO 1 - - 2

subject to

) [~°(~,)-~/3/s(~o) • [F°(~o)] 1/3 d~o = D.
. t 0

In other words, we are given the weighted sum of the values
[FC(w)]-x/a/s(w) and we want to minimize the weighted sum
of their -2nd powers. By Jensen's inequality, since the -2nd power
function is concave up, this minimization occurs when all the val-
ues are the same. In other words, we want [F~(w)]-l/3/s(w) to
be as constant as possible. We achieve this by making s(w) be

the valid speed closest to C[F~(w)] -1/z, where C is a constant
chosen to satisfy the deadline constraint. For a full proof that this
works, see [14]. Since F~(w) decreases as w increases, this sched-
ule speeds up the CPU as the task progresses, as noted earlier.

Given any scheduling algorithm, it is worthwhile to replace its
pre-deadline part with this optimal formula. In this way, we reduce
the expected energy consumption without affecting performance.
We call this the PACE approach.

4.2 Piecewise-constant speed schedules
The optimal schedule is a continuous function, which is imprac-

tical to implement precisely since software must issue a command
each time it wants to change the speed. In practice, we want a
schedule with a limited number of transition points, points where
the speed may change. We specify transition points by values of w
where s(w) changes, not points in time where f(t) changes. The
latter is more natural, but the former makes optimization easier,

Given fixed transition points, we can construct a speed schedule
that minimizes expected energy consumption, as follows. In the
interval between any two transition points, we use the valid speed
closest to C(F~g) -1/z, where F~, s is the average value of F c over
that interval. As before, C is constant over the entire schedule; we
choose a value for it that meets the deadline constraint. The ratio-
nale is similar to that for the continuous optimal speed schedule;
for a full proof that this works, see [14].

We also need to choose a "good" sequence of N transition
points. We want the optimal schedule to vary little between any
two consecutive transition points, so that keeping the speed con-
stant between those points approximates the optimal schedule. We
proceed as follows. For each integer j , define q~ = 1 - c - s j for
some constant e. Then, FF ~ at the qjth quantile of F equals c -zj.
If we use these quantiles as transition points, then [F~(w)] -x/3,
and thus the optimal speed, never varies by more than a factor of c
between any two consecutive transition points.

A problem with this is that as the sequence {qs} increases, the
qj values get close together, and this may result in an excessive
number of speed changes. Thus, we terminate this sequence near
q~ = 0.95 and pick further values of q~ so that they uniformly
partition the remaining range. More precisely, we pick some J
near N and some Q near 0.95. (We will address later what actual
values work well.) We set qj = Q, then compute c by solving the
equation Q = 1 - e - s J . Foreach I < j < J , wesetq~ = 1 -c -aS ;
for each j > J , we set qj = Q + (j - J) o,~.~-~q.

To implement a piecewise-constant speed schedule, software
must interrupt the task at predetermined intervals to change the
CPU speed. A CPU cycle counter or clock timer could generate

such interrupts. Alternately, software could use soft timers, an op-
erating system facility suggested by Aron et al. [1] that lets one
schedule events for the next time one can be performed cheaply,
such as when a system call begins or a hardware interrupt occurs.
This could only work if these events occur sufficiently frequently.
A better way to implement speed schedules would be to implement
them in hardware. For instance, the CPU could accept commands
not just to change speed immediately but also to establish a speed
schedule for the next few milliseconds. Alternately, the CPU itself
could implement the DVS algorithm, so software would not have
to spend time communicating schedule information to hardware.

4.3 Sampling methods
To implement PACE, we must estimate the probability distribu-

tion of the current task's work requirement. It is rare to have this in-
formation a priori; usually, we must estimate the distribution from
a sample of work requirements of similar recent tasks. We consider
the following sampling methods.

• Future. Use as the sample the entire set of tasks in the work-
load, including future ones. Naturally, this method is imprac-
tical, as it uses future information.

• All. Use as the sample all past tasks.

• Recent-k. Use as the sample the k most recent tasks.

• LongShort-k. Use as the sample the k most recent tasks,
with the most recent k/4 of them weighted three times more
than the others. This method is inspired by Chart et al. [4].

• Aged-a. Use as the sample all past tasks, with the kth most
recent having weight a k, where a _< 1 is some constant.

Each of these methods produces a weighted sample that we use
to estimate the distribution. (The first three methods produce sam-
ples in which all weights are 1.) We denote the values in this sample
by X1, X 2 , . . . , X~, and denote their weights by wl, w 2 , . . . , wn.
Define w = ~ i=1 w/. Then, the sample mean and variance are

- toiXi and 52 n wiXi2 _ #2

Fortunately, all we need to compute these two numbers are n, w,
the weighted sum, and the weighted sum of squares. For each of
our sampling methods, there exists a simple algorithm to update
these four quantities, and thus the sample mean and variance, in
O(1) time whenever a new sample value arrives.

If tasks can be classified into types in such a way that tasks of
the same type have similar work requirements, then we can keep
separate samples for each type. When a task arrives, we can better
estimate its distribution by using only the sample of tasks of the
same type. One way to classify tasks into types is by what applica-
tion they belong to and by what user interface event triggered them.
For instance, we can keep one sample of Microsoft Word tasks trig-
gered by letter keypresses, another sample of Microsoft Excel tasks
triggered by releasing the left mouse button, etc.

4.4 Distribution estimation methods
The next step in implementing PACE is to derive the task work

distribution from a sample. We may express this distribution as a
CDF or as a set of quantiles. There are two general ways to estimate
a distribution from a sample: parametric and nonparametric. Para-
metric methods assume the distribution belongs to a given family of
distributions (e.g., normal distributions) and estimates the parame-
ters that fully specify a member of that family (e.g., the mean and
standard deviation of a normal distribution). Nonparametric meth-
ods make no such assumption, letting the sample "speak for itself"
in describing the entire distribution.

53

Note that the criterion for the desirability of an estimation
method is not the goodness of fit, but rather the extent to which
the use of that method leads to lower energy consumption. In par-
ticular, task run times are well known to be highly skewed, but we
are more interested in modeling the portion of the task run time
prior to the deadline than the portion after it.

Gamma. The first method we consider is the parametric method
assuming a gamma distribution. This distribution is commonly
used to model service times [8, p. 490], and we will show later
that it works well. The gamma distribution has range x > 0. It has
two parameters: the shape c~ and the scale ft. The probability den-
sity function isp(x) = x~-le -~1/3 / f laF(a) , Reasonable estima-

tors for the model parameters are & = f~2/52 and/3 = &2/f~ [8].
Maximum likelihood estimators also exist, but we do not use them,
since (a) we cannot compute them precisely or easily, and (b) we
have found that they generally do not work as well for our purposes.

We can approximate quantiles of the gamma distribution
using the Wilson-Hilferty approximation, described by John-
son and Kotz [9, p. 176]. It estimates a quantile using

aft (a--~ + 1 - ~ -)3 where Uq is the relevant qnantile of the nor-

mal distribution. When needed, we can compute CDF values using
methods in [18], but we avoid those methods when possible since
they are computationally expensive.

Normal. The second method we consider is the parametric
method assuming a normal distribution. This assumption may seem
unwarranted, especially since work cannot be negative but the nor-
mal distribution can. However, for our limited purposes, the nor-
mal distribution may be a reasonable approximation, since normal
distributions are shaped similarly to gamma distributions in some
cases and are far easier to model. The normal distribution has only
two parameters: the mean # and the standard deviation a, whose
unbiased estimators are ~ and 3". (The maximum likelihood esti-
mator for 3" leaves out the n/(n - 1), but we have found it does
slightly worse for our purposes.) Furthermore, since the normal
distribution N(# , a) is a simple linear transformation of the unit
normal distribution N(0, 1), one can easily compute quantiles and
CDF values using lookup tables.

Pareto. A method we considered and rejected is the parametric
method assuming a Pareto distribution. This model is appealing be-
cause it is heavy-tailed and other researchers have found task times
to be heavy-tailed (highly skewed); see, e.g., [20]. However, we
found this model to fit our distributions very poorly, so we consider
it no further in this paper. In any event, modeling tails accurately is
not a high priority, since the tail of the distribution only affects the
speed used near or after the deadline, and most tasks will complete
before then.

Kernel density estimation. The nonparametric method we
consider is kernel density estimation, a popular nonparametric
method [22]. This method builds up a distribution by adding up
several little distributions, each centered on one of the sample
points. The kernel function, K, determines the shape of these lit-
tle distributions. The bandwidth, h, determines the width of each
little distribution. The result is to estimate the probability den-
sity function (PDF) at x to be/~(x) = 1 n E,: i K
Silverman [22, pp. 42---4.3] points out that most kernels perform
comparably, so one should choose a kernel based primarily on its
ease of implementation. We have thus chosen the triangular kernel:
K(t) = max{1 - It[, 0}, which is simpler to implement than most.

We can compute the theoretical optimal bandwidth from p",
the second derivative of the true probability density, using

(f tzK(t) dr) -~ (f K (t) 2 dr) ~ (f p " (x) z dx)-~ n-~. For

the triangular kernel, f t2K(t) dt = ~ and f K(t) 2 dt = 2
3"

However, fp"(x) 2 dx is impossible to compute since the true
probability density is obviously unknown. Fortunately, our esti-
mate of it does not have to be exact, since it will only influence the
degree of smoothing in the distribution. Assuming a normal distri-

s ~-5 bution with parameters f~ and 3. makes the estimate ~ . As-

suming a gamma distribution makes the estimation far more com-
plex, and we have found this complexity not to be worthwhile.

Note that the range of the kernel density estimate may extend be-
low 0. We use reflection [22, pp. 29-31] to avoid this. This method
adds to the sample the set of values { - X i } , each weighted wl,
making the sample size 2nn. It then computes the probability den-
sity/~adj (x) using this adjusted sample, and sets 16(x) = 2/~ad j (x)

for x > 0, i~(x) = 0 otherwise.

5. CHOOSING A BASE ALGORITHM
When PACE modifies an algorithm, it leaves two aspects of that

base algorithm intact: what PDC it uses for each task, and what
post-deadline schedule it uses for each task. Thus, different base
algorithms will still have different performance even after both are
improved with PACE. In this section, we discuss how to choose
among base algorithms.

5.1 Choosing a post-deadline part
First we consider what the base algorithm for post-deadline

scheduling should be. To compare such algorithms, we need a
performance metric that takes into account the user's "impatience
function", i.e., how undesirable he finds missing the deadline by
various amounts. We choose to use Pering et al.'s suggested metric,
the clipped delay, which is the sum of all tasks' effective comple-
tion times [17]. Our goal is to find an algorithm that consumes the
least possible energy for a given clipped delay.

Let TotalExcess be the total excess (the amount of task work
left after the deadline) of all tasks in the workload. Note that the
pre-deadline part determines this; we cannot change it in the post-
deadline part. A clipped delay value corresponds to some total
amount of delay T past all deadlines, so to achieve a given clipped
delay all we must do is perform the total excess in some given time
T. The minimal-energy solution to this single constraint is to use
the constant speed TotalExcess/T. Another way to look at this is
that if we use a fixed, constant speed after the deadline, we assure
that the energy consumption we achieve is the minimum possible
for the clipped delay we achieve. Therefore, we propose picking
a fixed speed to use for all post-deadline parts. Many previously
published algorithms already do this, either because they always
use a fixed speed or because they increase speed as average recent
utilization increases and thus achieve the maximum CPU speed by
the time a task reaches its deadline.

We must now determine what fixed speed to use after the dead-
line. Usually, other components like the backlight will be running
and consuming power, and delay past the deadline can cause these
components to consume more energy. Using a CPU frequency .f
makes CPU energy consumption proportional to f2 but makes en-
ergy consumption of those other components proportional to 1/f
as they may stay on longer. We therefore choose to always use the
maximum speed once a task misses its deadline, as many previ-
ously published algorithms generally do anyway. This minimizes
delay, generally at some energy cost, but not necessarily at sub-
stantial energy cost considering that other components' power con-
sumption would mitigate the effect of lower speeds.

Another approach is to choose a target average delay, predict the

54

average excess, and use the ratio of these as the speed. However, we
have found this to be impractical, since two factors make predicting
average excess difficult. First, excess is nonzero only rarely, since
most tasks meet their deadlines. Therefore, samples of excess will
tend to be small until many tasks have occurred, and even then most
sample values will be quite old. Second, the distribution of excess
depends strongly on the tail of the task work distribution, and such

tails tend to be hard to model.

5.2 Choosing Po¢ for each task
We have shown how to improve a DVS algorithm by changing

its pre-deadline and post-deadline parts. Thus, the only remain-
ing influence the base DVS algorithm has on the final schedule is
its choice of pre-deadline cycles (PDC). We now consider how to
choose PDC for each task in order to minimize energy consump-
tion for a given fraction of deadlines made. This constraint is in-
teresting because it is only one constraint on all tasks rather than
one constraint per task. That is, we need to meet a given fraction of
all deadlines, but not necessarily meet each deadline with the same
probability. Thus, even if the task work distribution were known

and stationary, the optimal solution might not be to use the same
PDC for all tasks. (This is a property of the Flat/Chan-style algo-
rithm, which uses a fixed speed and thus has the same PDC for all

tasks: the speed times the deadline.)
Unfortunately, we cannot solve this optimization problem for

two reasons. First, the complex dependence of the speed sched-
ule on the PDC we choose makes choosing an optimal set of PDC
values intractable. Second, even if there were an analytical solu-
tion, it would depend on all of the work distributions. Therefore,
we would need a model of the distribution of distributions, and we

know no reasonable way to model this.
Depending on the distribution of distributions, different ap-

proaches to choosing PDC will work better or worse than others.

Therefore we must rely on empirical rather than analytic methods
to decide which algorithms work best when modified by PACE. We

present such results in §7.7.
One interesting distinction between base DVS algorithms is that

for some, such as LongShort/Chan-style, PDC is dependent on the

current task work distribution, while for others, such as Flat/Chan-
style, it is not. (LongShort/Chan-style uses a speed proportional
to recent utilization, so its PDC is higher when recent tasks have
been long; Flat/Chan-style has a constant PDC for all tasks.) The
former type will tend to miss the deadlines of tasks whose work
requirements are local maxima, so we call these local algorithms.
The latter type will tend to miss the deadlines of the longest tasks
in the whole workload, so we call them global. When the distribu-
tion is nonstationary, as is usual, local approaches will tend to miss
a different set of tasks' deadlines than global ones. We cannot an-
alytically determine whether local approaches have lower energy
consumption for a given fraction of deadlines made than global

ones, or even whether one local approach is better than another.
Therefore, we rely on empirical data to compare them.

6. WORKLOADS
We evaluate these algorithms using six workloads. We derived

most workloads from traces of users performing their normal busi-
ness on desktop machines running Windows NT or Windows 2000.
VTrace, a tracer described in [13], generated these traces. The
traces contain timestamped records describing events related to
processes, threads, messages, disk operations, network operations,
the keyboard, and the mouse. We deduce what work is done due
to a user interface event as follows: we assume that a thread is
working on such an event from the time it receives the message

describing that event until the time it either performs a wait for a
new event or requests and receives a message describing a different
event. Furthermore, if the thread sends a message or signal to an-
other thread while working on such an event, we assume that work
done due to that message or signal is done due to the original event.

To reduce the amount of data VTrace collects, it only collects
the full set of events it can for sessions lasting 90 minutes at a time,

after which it pauses for two hours. In our analyses here, any trace

longer than 90 minutes only represents the 40% of the time VTrace
actually traced its full set of events.

We define each workload by a class of events, such as letter key-
presses in Microsoft Word. The workload consists of the set of
tasks triggered by all such events. In other words, each task of each
workload is roughly of the same type; by separating different task
types into different workloads, we model the effect of keeping sep-
arate samples for different task types, as described in section 4.3.
A full machine workload would consist of many of these kinds of
workloads, interleaved. Since our approach operates independently
on each different task type, we can correctly simulate it by consid-

ering each task type in isolation.
We discard any task that blocked on any I/O, e.g., to a disk or

network device. We do this because when a task blocks for I/O, it
should use a different algorithm that takes I/O time into account,
and such algorithms are beyond the scope of this paper. Section 8.2
discusses this avenue for future work. Furthermore, I/O generally
occurs in only a small fraction of the tasks, so leaving them out
should not significantly influence the results.

For our simulations, we assume the minimum speed is 100 MHz,
the maximum speed is 500 MHz, and the peak CPU power con-
sumption is 3 W. Most currently shipping machines are faster, but
500 MHz is representative of the traced machines.

6.1 Word processor typing
One of the most common activities for laptop users is typing in a

word processor, and Microsoft Word is the most common word pro-
cessor. Therefore our first workload uses simple letter keystrokes
in Microsoft Word as its class of events. We derived this workload
from 3.4 months of traces VTrace collected on a 450 MHz Pen-
tium III computer with 128 MB of memory running Windows NT
4.0. The first author, a computer science graduate student, used this
computer. This workload is interactive, so we use a 50 ms deadline
for each task.

6.2 Groupware
Software that enables and enhances communication with others,

i.e,, groupware, is important on the desktop, and will be more im-
portant in portable computers as they become more connected. So
we include a workload using a common groupware product, Nov-
ell's GroupWise. This workload uses left mouse button releases as
its class of events. We derived this workload from 6.5 months of
traces VTrace collected on a 350 MHz Pentium II computer with
64 MB of memory running Windows NT 4.0. A crime labora-

tory director in the Michigan State Police used this computer. This
workload is interactive, so we use a 50 ms deadline for each task.

6.3 Spreadsheet
Spreadsheets are also common on portable computers, so our

next workload uses a common spreadsheet application, Microsoft
Excel. The workload uses releases of the left mouse button as its
class of events. We derived this workload from 3 months of traces
VTrace collected on a 500 MHz Pentium III computer with 96 MB
of memory running Windows NT 4.0. The chief technical officer of
a computing-related company used this computer. This workload

55

Title Description Frames.

Genoa Demo of Genoa products 2,592
Jet Flying in varying terrain 1,085
Earth Rotating Earth model 720
Red's Nightmare Bicycle's nightmare 1,210
DOnne Gitter Illustrations of integration 2,753
IICM Flying in Mandelbrot set 810
Gromit Gromit wakes up 331

Table 2: Animations used in the MPEG workloads

is interactive, so we use a 50 ms deadline for each task.

6 . 4 V i d e o p l a y b a c k

Multimedia applications are becoming more common on
portable computers [6]. Therefore, we include a movie player as
one of our workloads. We use the MPEG player included with the
Berkeley MPEG Tools developed by the Berkeley Multimedia Re-
search Center (BMRC) [16]. Since they provide full source code
for their tool, we were easily able to instrument it to measure and
output the CPU time taken for each frame. Thus, each task of the
workload represents the processing of one frame.

We obtained animations to use from the same BMRC PTP site as
the MPEG decoder. Table 2 gives names and descriptions for these
videos. One workload, which we call MPEG-One, consists only
of the Red's Nightmare animation. The other workload, which we
call MPEG-Many, consists of all seven video clips, one played after
the other. We made the measurements of CPU time on a 450 MHz
Pentium III computer with 128 MB of memory running RedHat
Linux 6.1. Assuming a typical rate of 25 frames per second, we
assign a deadline of 40 ms to each frame.

6.5 Low-level workload
Some system designers may want to implement a scheduling al-

gorithm without instrumenting the operating system, relying only
on information hardware can observe. One of our workloads repre-
sents such a scenario.

We derive this workload from VTrace traces as follows. A task
begins when the keyboard device generates a keypress signal, and
ends the next time either the CPU becomes idle or there is another
keypress. To determine when the CPU is idle, we use the time that
the idle thread is running. (In battery-powered systems, the idle
thread typically halts the CPU, so hardware can deduce when this
thread is running.) If a disk operation is ongoing when the CPU
goes idle, we throw out any keypress being worked on, for two
reasons. First, we cannot know if the I/O is part of this task, so
we cannot know whether the task is over or simply waiting for I/O.
Second, as stated before, we are ignoring tasks that perform I/O
since we are only considering algorithms for tasks with no I/O.

The workload comes from a trace of one 90-minute session, cho-
sen because it had many keystrokes with reasonably high average
processing time. VTrace collected this trace on a 400 MHz Pen-
tium II computer with 128 MB of memory running Windows NT
4.0. A Michigan State Police captain used this computer primar-
ily for groupware and office suite applications. This workload is
interactive, so we use a 50 ms deadline for each task.

7. RESULTS

7 ,1 M o d e l i n g t a s k w o r k d i s t r i b u t i o n s

In this section, we determine how best to practically estimate the

1.18

~.~ 1.18

1.12

1.08
g = 1.o8

1.04

o. 1

" ' ~ " I " Word ' ' ~ " l ' " "
Excel - - 4 - -

~ Groupwlse - - ~ - -
~ Low-Level~

MPEG-Many-.-m-. =
\ MPEG-One - .e . - ,
\ \ Average "" ~-" /

• ,,, X . , , ~ ,

" ' ~ . . , ~ . ~ , .
• ~.~ ~ I R

.

10 100 1000

Sample size

Figure 2: A comparison of the effect of various sample sizes
k on energy consumption when PACE uses the Recent-k sam-
pling method

1.12

8.~ 1.1

~--~ 1.08

~ i 1.06

1.04

i
.! 1.o2

'E 1
f t . I I

\ Word =
Excel - - 4 - -

\ Groupwlse -- ~ --
\ Low-LevelB-... o '°

, , 'x -A ~/~PEG-Many -.-I !-- ~(
',, '~MPEG-One -. e - - /

~Average -- - A /

'"~" ~ ~'A

I , . l = , ! = i • = | l = , | I =

10 100
Sample size

I I l l U W $

, i | l ,

ooo

Figure 3: A comparison of the effect of various sample sizes
k on energy consumption when PACE uses the LongShort-k
sampling method

probability distribution of tasks' work requirements. We want to
know which methods are general enough to work well for a vari-
ety of workloads, so we evaluate them all using simulations with
our six different workloads. To determine how effective a method
is at describing the distribution of tasks' work requirements, we
use a pragmatic approach: we use the method to implement PACE
and simulate how much energy consumption results. We consider
a method better if it produces lower pre-deadline energy consump-
tion. No other metric is relevant, since PACE by definition cannot
change performance.

Throughout this section, for our simulations, we assume the
PDC is fixed at the value that ensures at least 98% of tasks that
can make their deadlines do so. (For the Low-Level workload, we
use 99%, because 98% of the tasks are so short that we can achieve
their deadlines with just the minimum speed.)

7 , 2 W h i c h s a m p l i n g m e t h o d t o u s e

We now compare the sampling methods to determine the best
ones to use with PACE. For these comparisons, we assume that we
estimate distributions using kernel density estimation.

First, we consider what sample size to use for the sampling meth-
ods that use only recent data, Recent-k and LongShort-k. Figures 2
and 3 show the outcome of using different sample sizes for differ-
ent workloads. It is difficult to pick an ideal sample size, because
some workloads do best with high sample sizes, while others do
best with low sample sizes. Presumably, the ones that do better
with high sample sizes are the ones with more stationary distribu-

56

,~ 1.2 t i I , i i . !
1 18 L. ',, w o r e -- 4 - -

' / ' , Excel ---&--.
~°'~ 1.16 ~ " ~ Groupwlse - - ~ - -
~ . . . I .. Low-Level .."~

1.14 T"-- " ' - , MPEG-Many - - o - -
1 12 I - ~, ""MPEG-Ono - ' o . - .

! " / ~ ', Average

1.08 I-" ~ ' ' ' - . "~' ,

1 .06 I _ "'. ~ . ~ ~. ,t-

to41- ",K.,~ "A ; - i '~ ~ ",~,£,~,,
1 021P- - . _ ~-'~L.~.,,~. , , ~ .4 ~$

~r "':=IIIF ' '~:~: - 11 ~ .'-=-'=,~.,~ et. =..~ = m ~.m,. =.. ,~w2.-Ibl ,

0.4 0.5 0.6 0.7 0.8 0.9

Aging factor

Figure 4: A comparison of the effect of various aging factors a
on energy consumption when PACE uses the Aged-a sampling

method

tions, i.e., the ones whose distributions change the least with time.
Since higher sample sizes require more memory and, for some dis-
tribution estimation methods, more processing time, we feel that
a reasonable compromise is a sample size of 28. For all work-
loads except Excel, this sample size produces energy consumption
within 0.8% of the ideal for Recent-k and within 1.6% of the ideal
for LongShort-k. Excel, presumably because it is very stationary,
can take advantage of higher sample sizes, but these sample sizes
produce worse results in most of the other, less stationary work-

loads.
We now consider what aging factor a to use for the Aged-a sam-

piing method. Figure 4. shows the outcome of using different ag-
ing factors for different workloads. Just as with sample sizes, some
workloads do best with high aging factors while others do best with
low aging factors. Not surprisingly, the workloads that do best with
high aging factors are the same ones that do best with high sample
sizes. This is expected, because a high aging factor makes sam-
ple values age more slowly, so that PACE effectively uses more
old values. Based on the graphs, we feel a reasonable aging factor
is 0.95. With this value, each workload besides Excel has energy
within 1.3% of what it would be using the best aging factor for that
workload, and Excel has energy within 2.8% of the best possible.

Next, we determine which sampling method works best. Fig-
ure 5 compares the Future, Recent-28, LongShort-28, and Aged-
0.95 sampling methods for the six workloads. We do not evalu-
ate the All sampling method, since it is equivalent to Recent-ca,
and we have already shown that the Recent method works quite
badly for some workloads with large sample sizes. The first thing
we observe is that the Future method sometimes uses less energy
than the other methods, but sometimes uses much more. This in-
dicates that even if complete information about the full distribution
of task work is available, it is often better to use recent information
to predict the distribution of the next task work. Presumably, this
is because these distributions are nonstationary, so recent informa-
tion is a better predictor than global information. The next thing to
observe is that the remaining three methods have virtually identi-
cal energy consumption. In general, Recent-28 consumes the most,
LongShort-28 the next most, and Aged-0.95 the least; however, the
difference between any two is never more than 2.2%. We conclude
that Aged-0.95 generally produces the best results, but other meth-
ods work reasonably and may be good choices if they are easier to
implement.

7.3 Which distribution estimator to use
The kernel density estimation method can model any kind of dis-

20

18

16
?
v

>, 14
2~

12
==

8
O .

~ 6

4

Future 1
Recent -28 ~

LongSho~-28
Aged-0.95 ~zzzzz

Word Excel GroupWIse Low-LevelMPEG-Man

Workload

t MPEG-One

Figure 5: A comparison of the effect of various PACE sampling
methods on energy consumption

tribution, but it is complex to implement. So, we now investigate
how effectively we can model task work distribution with simpler
parametric models, the normal and the gamma distribution.

To test whether a model truly fits a set of data, one can use that
model to estimate the CDF at each data point, and test whether the
set of CDF's is distributed uniformly over the interval (0, 1). For
this uniformity test, Rayner and Best [19] recommend Neyman's
~ test. Applying this test to any of our workloads, using any of our
sampling methods, the test reveals an extremely small probability
that the data fit either the normal or gamma model. Fortunately, the
key issue is not the accuracy with which we can approximate the
distribution of the task work. The key issue is the extent to which
a statistically unacceptable model of this distribution produces a
suboptimal solution to the energy minimization problem.

Therefore, the more important question to ask is how effectively
PACE can use each model (kernel density, normal, or gamma) to
approximate the optimal schedule. We thus simulate using each
model along with the Aged-0.95 sampling method for each work-
load. We use the same PDC values that we did in the last sec-
tion. Figure 6 shows the results of these simulations. For almost
all workloads, the kernel density model is best, followed by the
gamma model, followed by the normal model. In all cases, the
gamma model consumes no more than 2.3% more energy than the
kernel density model. We conclude that, all things being equal,
one should use the kernel density estimation method. However, if
this method is too complex to implement, the gamma model can
achieve reasonably close results.

7.4 Choosing transition points
In section 4.2, we discussed how PACE can approximate the op-

timal, continuous schedule using a piecewise-constant schedule. In
this section, we determine empirically the best ways to choose the
speed transition points for the schedule.

Figure 7 shows the effect of using different numbers of tran-
sitions. We see that the principle of diminishing returns applies;
increasing the number of transitions becomes less and less worth-
while as the number of transitions increases. Using 10 transitions
yields energy consumption always within 1.2% of the minimum.
Using 20 transitions reduces the maximum penalty to 0.27%, and

57

l Kernel

18 Gamma
Normal

A 16

®

i ,° 8

4

2

o
Word Excel GroupWise Low-Level MPEG-Many MPEG-One

Workload

20

Figure 6: A comparison of the effect of various PACE distribu-
tion estimation methods on energy consumption

++
1.07

1.06

1.05

1.04

1.03

1.02

t .01

1

0,99

. . . . W ' " ' wo~i " ~ ' " ' 1
I t Exoel --w.- "1
i~ OroupWIse -- ~-- J
|~ Low-Level "..~'"" 1

MPEG.One -. e -

l i i i I

10 100 10~O

Max number of speed transitions per (ask

Figure 7: A comparison of the effect on energy consumption
of using different numbers of speed transitions to approximate
the continuous schedule

using 30 transitions reduces it to 0.1%. All the results in this paper
use a maximum number of transitions of 30. However, even if a
practical implementation requires no more than 10 transitions be
used for each task, this should not be a problem for PACE; such a
practical consideration would increase energy consumption by no

more than 1.2%.
We also discussed how to choose N transition points. The first

step is to choose some d near N and some Q near 0.95. Simula-
tions show that energy consumption is generally insensitive to the
choices of d and Q. As long as one picks reasonably, i.e., as long
as Q is somewhere between 0.85 and 0.99 and as long as N - d
is between 3 and 9, the difference between the best and worst out-
comes for any workload is always less than 0.6%. For this paper,
we always use d = N - 3 and Q = 0.95.

7.5 Effect of approximations
To evaluate the effect of our approximations to the theoretically

optimal formula for PACE, we must know what that optimal for-
mula is. For real workloads, this is impossible, since we cannot
know the underlying distribution of each task's work. (We can
know the overall distribution of task work, but as workloads can
be nonstationary we cannot know the distribution for any given
task.) Thus, in this section, we use a synthetic workload gener-
ated from a known probability distribution, the gamma distribution

with a = 25 and fl = 0.2 Me.
For the optimal realizable algorithm, the average task pre-

deadline energy is 2.1016 m J. When the algorithm must produce a
piecewise-constant speed schedule with only 30 transitions, energy
goes up 0.025% to 2.1022 mJ. When the algorithm does not know
the model parameters a priori and must infer them from past tasks,
energy goes up 0.026% to 2.1027 mJ. When the algorithm must
infer model parameters mainly from recent tasks, using the Aged-
0.95 sampling method, energy goes up another 0.72% to 2.1179 mJ.
Altogether, the practical requirements of using piecewise-constant
speed schedules and inferring distributions from limited recent in-
formation raises energy consumption by just 0.77%.

7.6 Improving algorithms with PACE
In section 4, we described how PACE can replace the pre-

deadline part of a standard scheduling algorithm with a schedule
that has lower expected energy consumption. Here, we simulate
this as follows. First, we simulate a previously published algo-
rithm. Then, we modify the algorithm so that it uses PACE to re-
compute the pre-deadline part of its schedule. Since the two al-
gorithms are performance equivalent, we compare them solely on
the basis of pre-deadline energy consumption; all other metrics are
always identical.

For these simulations, we use four previously published interval-
based algorithms, each with an interval length of 10 ms. The four
methods we use are:

• Past/Weiser-style. This is a practical version of Weiser et
al.'s algorithm [23].

• LongShorl/Chan-style. This is a practical version of one of
the best algorithms Chan et al. proposed [4].

• Flat/Chau-style. This is a practical version of another of
the best algorithms Chan et al. proposed [4]. It uses a fixed
speed, so it is similar to Transmeta's LongRun TM in steady
state [10]. We choose the speed so that at least 98% (99%
for the Low-Level workload) of all tasks that can make their
deadlines do so.

• Past/Peg. Grnnwald et al. [7] favored this algorithm.

Figure 8 shows the effect of using PACE to modify these algo-
rithms. We evaluate the effect of two versions of PACE, both us-
ing the Aged-0.95 sampling method: one uses the gamma model,
which is easier to implement, and one uses the kernel density es-
timation method, which produces better results. Both versions of
PACE reduce the CPU energy consumption of every workload and
every algorithm. PACE using a gamma model reduces the CPU en-
ergy consumption of algorithms by 2.4-49.0%; the average reduc-
tion over all workloads and all algorithms is 20.3%. PACE using
the kernel density estimation method reduces the CPU energy con-
sumption of algorithms by 1.4-49.5% with an average reduction of
20.6%. The 1.4% value is lower than the 2.4% value because Excel,
the workload that gains the least benefit from PACE, happens also
to be the only workload for which the gamma model sometimes
outperforms the kernel density estimation method. Excel gains less
benefit from PACE than other workloads because it consumes a lot
of post-deadline energy, and PACE has no effect on post-deadline
schedules. Interestingly, the algorithm most improved with PACE
is Past/Peg, the one favored by the most recent comparison of DVS
algorithms [7]. Past/Peg was favored in that work because it misses
fewer deadlines than other algorithms; unfortunately, this requires
higher energy consumption, as Figure 8 shows.

Another way to examine the results is to consider them rela-
tive to how much energy would be consumed in the absence of
DVS. Without PACE, previously published algorithms use DVS to

58

~ 2 g

~°
~1o

Y

~g

i 5
4

i 2 1

o

Word

Without modlflaatlon 1
Using PACE(Aged-O,Bg/Oamma) I

Uerng PACE(Aged.o.gg/Kemel) t::::;I
Using Iookahead optimal

Font-deadline energy
Without DVS: 33.62 rnJ

tt J

Past/Welser LongShort/Chsn Flat/Chan Pasl/Pe{
Base algorithm

Low-Level

Without modfflcahon 1 ~
Using PACE(Ag~.0,gg/Gamma) 1 1

Using PACE (Aged-O,Eg/Kemel) ~ I
Using Iooitaitead optimal i l I

Poet-deed{Ills energy
Without DVB: 11.25 mJ

Past/Welsar Long8hort/Chan Flat/Chan Past/Peg

Base algorithm

12

0

Excel

Without modlhostion I I I I
U¢llg PACE(Aged.O,95/Gamma) aBE i

Uefllg PACE (Ag~.O.gS/Kernel) C::::::I I , , , ,
Using Ioo~hsad optimal i a

, Post-de|dllne energy

Past~/aleer LongShod/Chan Flat /Chart Past/Peg

Base algorithm

MPEG-Many

Wahoutmoditlcatlon 1 . o
Using PACE (Agad-O.gg/Gamma) I 1

Using PACE (Aged~.95/Kernel) ~ I
Using fookahead optimal BUt I

Post.deadline allergy I
Without OVB: 38.72 nlJ

17 :~ 1 i i t7

Pasl/Weleer LongBholl/Chan Flat/Chart PaeVPe

Base algorithm

GroupWise

Without modit~utlon l 1
UslI~ PACE(Aged.O,gg/Gsmma) 1 i

Using PACE Aged,,O,gg/Kernel| 1:::::::3 i
Uslnglook~hendopthoal ~ 1 , u =

Poet.deadline energy
7 Wrlho~ DVS: 12.87 mJ

Past/Welser LongBhort/Chan Flat/Chart Paet/Pe

Base algorithm

MPEG-One

Witl~ul moditleaEon a m " ' i
Using PACE(Aged-O,ggleamma) l i

Using PACE (Aged.O.O~/Kernel) 1:2::::::1 i
Using Iookahead optimal l i n t i

,L, Post-deadline energy i
" a *=~ * Without DVS: 53,26 mJ 17 s=

Pesl/Welser LongShoWChar, Flat/Chan Past/Peg

Ease algorithm

Figure 8: These graphs show the effect of modifying algorithms with PACE to get performance equivalent, but lower-energy, al-
gorithms. Horizontal lines show the post-deadline energy, which none of our modifications change. The lookahead optimal results
use knowledge of the current task's work requirement and thus cannot be practically implemented; however, they serve as a lower

bound on what can be attained by a performance equivalent algorithm.

reduce CPU energy consumption by 10.7-94.1% with an average
of 54.3%. With PACE using a gamma model, the CPU energy sav-
ings increase to 35.9-95.5% with an average of 65.2%. With PACE
using the kernel density method, the CPU energy savings increase
to 35.6---95.5% with an average of 65.4%. Thus, on average, if a
CPU consumes 100 J without DVS, previously published DVS al-
gorithms allow it to consume only 46 J; PACE reduces that figure
even further to 35 J. Given these figures, if the CPU accounted for
33% of total energy consumption in a portable computer without
DVS [12], previously published DVS algorithms would increase
its battery lifetime by about 22%; with PACE, the battery lifetime
improvement would be about 28%.

In conclusion, PACE is not just theoretically useful, but is a prac-
tical means to achieve substantial energy savings without affecting
performance. It works on a variety of workloads, and can improve
a variety of algorithms. The high energy savings is especially ex-
citing because PACE by definition has no effect on performance.

7.7 Which base algorithm to use
As discussed in section 5.2, different algorithms compute PDC

in different ways, so they still differ even when modified by PACE.
Lacking a model of this effect, we must rely on empirical results
to find which algorithm performs best when we modify its pre-
deadline part with PACE and its post-deadline part to always use
the maximum speed. For space reasons, we leave out plots show-
ing the average task energy consumption as a function of fraction
of possible deadlines made for each of the workloads and each of
the base algorithms; interested readers can find these plots in [14].
They show that Flat/Chan-style, the only global algorithm we con-
sidered, most often gives the lowest energy consumption for a given
number of deadlines made. This suggests that global algorithms
tend to do better than local ones. Among the local algorithms,
LongShort/Chan-style does best, achieving reasonable energy sav-
ings for a given number of deadlines made.

7.8 Overhead analysis
Although PACE reduces an algorithm's energy consumption, it

Workload

Word 31 #s
Excel 27 #s
GroupWise 30 izs
Low-Level 35 #s
MPEG-Many 29 #s
MPEG-One 28 #s

Aged-0.95/Gamma Recent-28/Kernei

(0.05%)
(0.08%)
(0.10%)
(0.25%)
(0.06%)
(0.04%)

68 #s (0.11%)
70 #s (0.20%)
77 #s (0.25%)
73 #s (0.51%)
63 #s (0.14%)
62 #s (0.08%)

Table 3: This table shows the average time per task for a
450 MHz Pentium IlI to execute variants of the PACE algo-
rithm. Energy overhead values are in parentheses; they show
how much energy the simulated CPU would consume to com-
pute the PACE speed schedules, as a percentage of the energy
it would consume just to execute the workload tasks.

also increases its complexity. Thus, it makes the CPU spend more
time, and thus more energy, computing speed schedules. We can
evaluate this overhead by simulating how much time and energy
PACE-modified algorithms would consume to compute schedules.

The two PACE methods we simulate this way are Aged-
0.95/Gamma and Recent-28/Kernel. The former pairs the com-
putationaUy efficient gamma model with the preferred Aged-0.95
sampling method. The latter uses the more effective but less com-
putationally efficient kernel density estimation method. To mitigate
the computational complexity, we use it with the Recent-28 sam-
pling method, which produces unweighted samples. We use a fixed
PDC of 0.6MD, as would Flat.0.6/Chan-style. We coded these
algorithms in C in a couple of hours, making use of some obvious
optimizations but by no means using every optimization possible.
We use a maximum of 20 transitions per schedule.

Table 3 shows, for each workload and each algorithm, the aver-
age time per task to compute a speed schedule on a 450 MHz Pen-
tium III with 128 MB of memory running RedHat Linux 6.2. The
table also shows the energy the simulated CPU would consume to
perform this computation, as a percentage of the energy consumed

59

to perform the tasks of the workload. We see that we can implement
these algorithms with minimal overhead. The Aged-0.95/Gamma
algorithm is more efficient than the Recent-28/Kemel algorithm,
but even the Recent-28/Kernel algorithm imposes overhead of at
most 77/zs per task and at most 0.51% energy consumption. The
time overhead is small compared to the deadline in all cases, and
considering that the computation can be done at the end of each task
in anticipation of the next task, it should only delay the completion
of a task when there is no idle time before the next task starts.

8. FUTURE WORK

8.1 Nonlinear speed-voltage relationship
We stated earlier that the maximum speed permissible at a certain

voltage is roughly proportional to that voltage (scx V). A more
accurate formula is s = k (V - ~ h) 2 / V where k is some constant
of proportionality and Vth is the threshold voltage [5]. So, instead
of .E c< f2, as we were assuming in our proof of optimality, we

This formula is complicated, but we can generally approximate
it with a simpler one of the form .E = as 2 + b. In this case, the
optimal solution is the same, since the extra b term does not affect
it. However, often a formula of the form E = as + b is an even
better approximation. Using this approximation changes the opti-

mization problem: we must then minimize fffOC Fe(w)a(w) dw.

This changes the optimal schedule in a simple way: it makes the
power of FC(w) change from - 1 / 3 to - 1 / 2 . In future work we
plan to determine the effect of using this power when the energy vs.
speed curve is better approximated by a linear curve. We believe
that most of our results will still hold.

Memory effects can also produce a nonlinear speed-voltage re-
lationship, as observed by Martin et al. [15]. When memory speed
does not scale precisely with CPU speed, the work completion rate
may be nonlinearly related to voltage for some voltage ranges. In
future work, we should explore the effect of this nonlinearity on
solutions to the energy optimization problem.

8.2 I/O
If a task performs synchronous I/O, a speed scheduling algo-

rithm must attempt to have the task complete its CPU work and its
synchronous I/O within the deadline. One way to do this is to con-
sider the deadline for the CPU part to be reduced by the time spent
performing I/O while the CPU waits. In future work, we will test
approaches that take such dynamic deadlines into account. Such
approaches must anticipate and consider the probability that a task
will perform I/O in the future and that the deadline will be reduced
accordingly. It must also incorporate an algorithm for recomputing
the schedule for a task whenever it completes a wait for I/O and
thus has shortened its deadline.

8.3 Overlapping tasks
In future work, we should address scheduling multiple tasks at

once. If only one of these tasks has a deadline, it may be reason-
able to consider it the "main task" and to model all other tasks as
contributing to its work requirement. In other words, we might
consider all work done while the main task is active to be part of
that task, even though some of this work is unrelated. This way, the
main task work distribution will automatically take into account all
work the CPU will do before the main task completes.

If multiple tasks have deadlines, the optimal schedule depends
on the joint probability function of the two tasks' work require-
ments, which is likely too complicated to use in practice. We must

therefore in future work develop heuristics for properly scheduling
two or more tasks simultaneously. Note, however, that most mo-
bile computers have limited resources and only one user, so we feel
they will not often have two simultaneous tasks with deadlines.

8.4 Limited set of valid speeds
Some processors may offer only a fixed, limited set of valid

speeds. Currently, we have no way to adjust the optimal formula to
take such limitations into account. Intuitively, rounding to the near-
est available speed should work reasonably well. However, it will
not necessarily give the optimal solution. Investigating the effect
of different rounding methods, and perhaps approaches other than
rounding, is future work.

8.5 Overhead of changing speed and voltage
In this paper, we have assumed that CPU speed and voltage tran-

sitions consume no time or energy. However, in reality, this is not
the case. According to Burd et al. [3], changing between two lev-
els takes time roughly proportional to the voltage differential and
energy roughly proportional to the difference between the squares
of the voltages. So, if a schedule only increases speed as time pro-
gresses, the total transition time and energy depend only on the ini-
tial and final voltages, and not on the number of transitions. How-
ever, these are only approximations, and they do not completely
account for per-transition costs. For example, there may be a de-
lay every time the speed changes in order to stabilize the clock and
synchronize the CPU and bus clocks. Such per-transition costs are
especially noticeable on modern architectures, since DVS is a rel-
atively young technology and designers have not spent great effort
to keep such transition costs low. In future work, we will address
the issue of how PACE should take into account such actual transi-
tion costs. We expect that PACE wilt work well even under these
conditions, especially for future architectures that will have very
low transition time and energy.

8.6 Task type groupings
We mentioned the desirability of grouping tasks by type, and

keeping separate samples for each type. This way, we only use a
task's work requirement to model the work requirements of similar
tasks. In future work, we plan to investigate what groupings work
best, and how effective different grouping methods are.

9. CONCLUSIONS
The main focus of this paper has been PACE, an approach to

reducing the energy consumption of DVS algorithms without af-
fecting their performance. We showed that one can change how an
algorithm schedules tasks so that performance stays the same but
expected energy consumption decreases. Furthermore, we devel-
oped an optimal formula for scheduling tasks with minimal energy
consumption. Although one cannot implement this formula pre-
cisely, we described various methods to approximate it effectively.

An important prerequisite for using the formula is estimating the
distribution of a task's work requirement from recent data on simi-
lar tasks. We presented several methods that work well for a variety
of workloads. The best we found is to use an aged sample as in-
put to a nonparametric kernel distribution estimation method. Esti-
mating the distribution with a gamma model works almost as well,
and is probably easier and faster. Practically implementing PACE
also involves choosing a limited number of speed transitions. We
found heuristics for this that yield reasonable approximations and
are practical and quick to implement.

Simulations using real workloads showed that PACE can sub-
stantially reduce CPU energy consumption without affecting per-

60

formance. Without PACE, previously published algorithms use
DVS to reduce CPU energy consumption by 11-94% with an av-
erage of 54.3%. With the best version of PACE, the savings in-
crease to 36-96% with an average of 65.4%. The overall effect
is that PACE reduces the CPU energy consumption of previously
published algorithms by 1.4.-49.5% with an average of 20.6%.

Besides PACE, we made other suggestions for changing DVS
algorithms. We recommended using a constant speed, probably
the maximum CPU speed possible, for all tasks that have missed
their deadlines. Furthermore, among the algorithms we considered,
we found that using Flat/Chan-style (i.e., using a fixed PDC for
all tasks) with our recommended changes gave the lowest energy
consumption for a given number of deadlines made.

We therefore recommend constructing a DVS algorithm as fol-
lows. For each task type, pick a reasonable deadline (e.g., 50 ms
for interactive tasks), a reasonable number of cycles to always com-
plete by the deadline (probably between 40--60% of the number that
the maximum speed would accomplish), and a reasonable speed to
always use after the deadline has passed (probably the maximum
CPU speed). Whenever a task completes, determine how many cy-
cles it used, add this value to the sample of similar tasks' work
requirements, then estimate the distribution of the next similar task
using the new sample. For the sample, either only use recent values,
or weight values as they age. Estimate the distribution using the
kernel density estimation method, or the gamma model if the ker-
nel density estimation method is impractical. When a task arrives,
run it according to a PACE schedule that reflects the probability
distribution for that type of task.

10. ACKNOWLEDGMENTS
We thank Michael Jordan for his extremely helpful suggestions

about statistical methods, including the use of the gamma model
and kernel density estimation, We also thank Ronald Wolff for his
suggestions. Finally, we offer great thanks to the many VTrace
users whose traces yielded the workloads for this paper.

11. REFERENCES
[1] M. Aron and P. Dmschel. Soft timers: efficient microsecond

software timer support for network processing. In
Proceedings of the 17th ACM Symposium on Operating
Systems Principles (SOSP), pages 232-246, December 1999.

[2] J. Bla2ewicz, K. H. Ecker, E. Pesch, G. Schmidt, and
J. W~glarz. Scheduling Computer and Manufacturing
Processes. Springer-Verlag, Berlin, Germany, 1996.

[3] T. Burd and R. W. Brodersen. Design issues for dynamic
voltage scaling. In Proceedings of the 2000 International
Symposium on Low Power Electronics and Design, pages
9-14, July 2000.

[4] E. Chan, K. Govil, and H. Wasserman. Comparing
algorithms for dynamic speed-setting of a low-power CPU.
In Proceedings of the First ACM International Conference
on Mobile Computing and Networking (MOBICOM 95),
pages 13-25, November 1995.

[5] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen.
Low-power CMOS digital design. IEEE Journal of
Solid-State Circuits, 27(4):473.--484, April 1992.

[6] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for
mobile applications. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (SOSP), pages
48-63, December 1999.

[7] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey III, and
M. Neufeld. Policies for dynamic clock scheduling. In

Proceedings of the 4th Symposium on Operating Systems

Design and Implementation, October 2000.

[8] R. Jain. The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement,
Simulation, and Modeling. John Wiley & Sons, Inc., New
York, NY, 1991.

[9] N.L. Johnson and S. Kotz. Continuous Univariate
Distributions - I: Distributions in Statistics. John Wiley &
Sons, Inc., New York, NY, 1970.

[10] A. Klaiber. The technology behind Crusoe TM processors.
White paper, Transmeta Corporation, January 2000.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the Association for Computing Machinery, 20(1):46--61,
January 1973.

[12] J.R. Lorch and A. J. Smith. Energy consumption of Apple
Macintosh computers. IEEE Micro, 18(6):54-63,
November/December 1998.

[13] J.R. Lorch and A. J. Smith. The VTrace tool: building a
system tracer for Windows NT and Windows 2000. MSDN
Magazine, 15(10):86--102, October 2000.

[14] J.R. Lorch and A. J. Smith. PACE: a new approach to
dynamic voltage scaling. Technical Report
UCB/CSD-01-1136, Computer Science Division, EECS,
University of California at Berkeley, March 2001.

[15] T. L. Martin and D. P. Siewiorek. The impact of battery
capacity and memory bandwidth on CPU speed-setting: a
case study. In Proceedings of the 1999 International

Symposium on Low Power Electronics and Design, pages
200-205, August 1999.

[16] K. Patel, B. Smith, and L. Rowe. Performance of a software
MPEG video decoder. In Proceedings of the First ACM

International Conference on Multimedia, pages 75-82,
August 1993.

[17] T. Pering, T. Burd, and R. W. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In
Proceedings of the 1998 International Symposium on Low
Power Electronics and Design, pages 76-81, August 1998.

[18] W. H. Press. Numerical Recipes in C: the Art of Scientific
Computing. Cambridge University Press, Cambridge, MA,
1992.

[19] J.C.W. Rayner and D. J. Best. Smooth Tests of Goodness of
Fit. Oxford University Press, New York, NY, 1989.

[20] S. Sherman, E Baskett III, and J. C. Browne. Trace-driven
modeling and analysis of CPU scheduling in a
multiprogramming system. Communications of the ACM,
15(12):1063-1069, December 1972.

[21] B. Shneiderman. Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Addison-Wesley,
Reading, MA, 1998.

[22] B. W. Silverman. Density Estimation for Statistics and Data
Analysis. Chapman and Hall, London, England, 1986.

[23] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Proceedings of the
1st Symposium on Operating Systems Design and
Implementation, pages 13-23, November 1994.

[24] E Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. In Proceedings of the IEEE 36th
Annual Symposium on Foundations of Computer Science,
pages 374-382, October 1995.

61

