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ABSTRACT 

This paper addresses algorithms for dynamically varying (scaling) 
CPU speed and voltage in order to save energy. Such scaling is use- 
fill and effective when it is immaterial when a task completes, as 
long as it meets some deadline. We show how to modify any scal- 
ing algorithm to keep performance the same but minimize expected 
energy consumption. We refer to our approach as PACE (Proces- 
sor Acceleration to Conserve Energy) since the resulting schedule 
increases speed as the task progresses. Since PACE depends on the 
probability distribution of the task's work requirement, we present 
methods for estimating this distribution and evaluate these methods 
on a variety of real workloads. We also show how to approximate 
the optimal schedule with one that changes speed a limited number 
of times. Using PACE causes very little additional overhead, and 
yields substantial reductions in CPU energy consumption. Simu- 
lations using real workloads show it reduces the CPU energy con- 
sumption of previously published algorithms by up to 49.5%, with 
an average of 20.6%, without any effect on performance. 

1. INTRODUCTION 
The growing popularity of mobile computing devices has made 

energy management important for modem systems, because users 
of these devices want long battery lifetimes. A relatively recent 
energy-saving technology is dynamic voltage scaling (DVS), which 
allows software to dynamically vary the voltage of the proeassor. 
Various chip makers, including Transmeta, AMD, and Intel, have 
recently announced and sold processors with this feature. 

Reducing CPU voltage can reduce CPU energy consumption 
substantially. Performance suffers, however: over the range of 
allowed voltages, the highest frequency at which the CPU will 
run correctly drops approximately proportionally to the voltage 
( f  c~ V). Since the main component of power consumption is 
proportional to V 2 f ,  and energy per cycle is power divided by fre- 
quency, energy consumption is proportional to frequency squared 
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(E c< f2). So a CPU can save substantial energy by running more 
slowly; e.g., it can run at half speed and thereby use 1/4 the energy 
to run for the same number of cycles. 

Two factors limit the utility of trading performance for energy 
savings. First, a user wants the performance for which he paid. 
Second, other components, such as the disk and backlight, also 
consume power [12]. If they stay on longer because the CPU runs 
more slowly, the overall effect can be worse performance and in- 
creased energy consumption. Thus, one should reduce the voltage 
only when it will not noticeably affect performance. 

A natural way to express this goal is to assign a soft deadline to 
each of the computer's tasks. (We call a deadline soft when a task 
should, but does not have to, complete by this time.) For example, 
user interface studies have shown that response times under 50-- 
100 ms do not affect user think time [21]; we can thus make 50 ms 
the deadline for handling a user interface event. Also, multimedia 
operations with limited buffering, e.g. on real-time streams, need to 
complete processing a frame in time equal to one over the display 
rate, and there is no need for any earlier completion. When goals 
can be codified this way, the job of a DVS algorithm is to run the 
CPU just fast enough to meet the deadline with high probability. 

Our soft deadline's key property is that if the task completes by 
then, its actual completion time does not matter. Thus, if we run the 
task more slowly, but it still completes by its deadline, performance 
is the same. Our primary goal is to improve DVS algorithms so that 
performance remains the same but energy consumption goes down. 

Current DVS algorithms incorrectly assume that a constant speed 
consumes minimal energy even when task work requirements are 
unknown. But, we will show that in this common case expected 
energy consumption is in fact minimized by increasing speed as 
the task progresses. We therefore call our approach for improving 
algorithms PACE: Processor Acceleration to Conserve Energy. 

We will give a formula for a speed schedule that minimizes ex- 
pected energy consumption without changing performance. But, 
there are two problems with using this formula in practice. First, 
it depends on the probability distribution of a task's work require- 
ment. Second, the schedule gives speed as a continuous function of 
time but real CPU's cannot change speed continuously. 

To solve the first problem, we must estimate the distribution of 
task work from the requirements of previous, similar tasks. We de- 
scribe and compare various methods for this and find some general 
and practical methods that work well on a variety of real work- 
loads. For the second problem, we present and test heuristics for 
approximating the schedule with a piecewise constant one. 

Using trace-driven simulations of real workloads, we show that 
our improvements significantly reduce the energy consumption 
of previously published algorithms without changing their perfor- 
mance. We also show that our approaeh is practical and efficient. 
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Note that PACE is not a complete DVS algorithm by itself; it is 
a method for improving such an algorithm. For example, it does 
not change characteristics of the algorithm that affect performance. 
So, we compare certain algorithms to show which ones work best 
when modified by PACE. For reasons we discuss, we do some such 
comparisons empirically rather than analytically. 

This paper is organized as follows. Section 2 discusses related 
work, including DVS algorithms others have proposed. Section 3 
presents our model of the DVS problem and introduces useful ter- 
minology. Section 4 describes how to improve algorithms with 
PACE. Section 5 discusses what algorithms work best when modi- 
fied by PACE. Section 6 describes the workloads we use for analyz- 
ing algorithms' energy consumption and performance. Section 7 
presents these analyses and discusses results. Section 8 suggests 
possibilities for future work. Finally, section 9 concludes. 

Although we explain terms when we first present them, the 
reader may find Table 1, which summarizes these terms, helpful. 

2. RELATED WORK 
Researchers have studied CPU scheduling for decades. One im- 

portant result is that if a set of tasks has feasible deadlines, schedul- 
ing them in increasing deadline order will always make all the dead- 
lines [11]. Another useful result, described by BhZewicz et al. [2, 
pp. 346-.350], is that when the rate of consumption of some re- 
source is a convex function of CPU speed, an ideal schedule will 
run each task at a constant speed. Yao et al. [24] observe that with 
DVS, power consumption is a convex function of CPU speed. They 
show how to compute an optimal speed-setting policy by construct- 
ing an earliest-deadline-first schedule, and then choosing the mini- 
mal possible speed for each task that will still make the deadlines. 

However, one can only compute such optimal schedules if the 
tasks' CPU requirements are known in advance, and task require- 
ments in most systems are unpredictable random variables; see, 
e.g., [20]. For this reason, most research on scheduling for DVS 
has focused on heuristics for estimating CPU requirements and at- 
tempting to keep CPU speed as constant as possible. 

Weiser et al. [23] recommended interval-based algorithms for 
DVS. These divide time into fixed-length intervals and set each in- 
terval's speed so that most work is completed by the interval's end. 
Chan et al. [4] refined these ideas by separating out an algorithm's 
two parts: prediction and speed-setting. When an interval begins, 
the prediction part predicts how busy the CPU will be during the 
interval (i.e., how much work there will be to do), and the speed- 
setting part uses this information to set the speed. They measure 
how busy the CPU is via the utilization, the fraction of the interval 
the CPU spends non-idle. 

Several authors, including Pering et al. [17] and Grunwald et 
al. [7], have shown that Weiser et al. and Chan et al.'s algorithms 
are impractical because they require knowledge of the future. How- 
ever, they have proposed practical versions of these algorithms. 
Prediction methods they suggest include: 

• Past. Predict the upcoming interval's utilization will be the 
same as the last interval's utilization. 

• Aged-a, Predict the upcoming utilization will be the aver- 
age of all past ones. More recent ones are more relevant, so 
weight the kth most recent by a k, where a < 1 is a constant. 

• LongShort. Predict the upcoming utilization will be the av- 
erage of the 12 most recent ones. Weight the three most re- 
cent of these three times more than the other nine. 

• Flat-u, Always predict the upcoming utilization will be u, 
where u < 1 is a constant. 

Speed-setting methods they suggest include: 

• Weiser-style. If the utilization prediction x is high (> 70%), 
increase the speed by 20% of the maximum speed. If the 
utilization prediction is low (< 50%), decrease the speed by 
60 - x% of the maximum speed. 

• Peg. If the utilization prediction is high (> 98%), set the 
speed to its maximum. If the utilization prediction is low 
(< 93%), decrease the speed to its minimum positive value. 

• Chan-style. Set the speed for the upcoming interval just high 
enough to complete the predicted work. In other words, mul- 
tiply the maximum speed by the utilization to get the speed. 

We refer to previously published algorithms by concatenating 
the names of their methods. For example, the Flat/Chan-style al- 
gorithm uses the Flat prediction method and the Chan-style speed- 
setting method. 

Note that dividing time into intervals and using those boundaries 
as deadlines is somewhat arbitrary. For example, if a task arrives 
near the end of an interval, it does not really have to complete by 
the end of that interval. Furthermore, without deadlines, there is no 
particular reason to complete any given task by a certain time; it is 
best to simply measure the average number of non-idle cycles per 
second and mn the CPU at that speed. (Transmeta's LongRun TM 

system does something like this [10].) Pering et al., recognizing 
this, suggested considering deadlines when evaluating DVS algo- 
rithms [17]. To do so, they suggest considering a task that com- 
pletes before its deadline to effectively complete at its deadline. 

Grunwald et al. [7] considered deadlines when they compared 
several of the algorithms described above (as well as others not 
listed here) by implementing them on a real system. They decided 
that although none of them are very good, Past/Peg is the best: it 
never misses any deadlines for the workload they considered, yet 
still saves a small but significant amount of energy. 

3. MODEL 
In our model of the CPU, voltage can change continuously over 

some range. Over this range, CPU speed increases continuously 
between some minimum and maximum speeds. We assume CPU 
energy consumption per cycle is proportional to the speed squared. 

A DVS algorithm is one that decides how quickly to run a task 
as that task progresses. This task has some work requirement (W), 
the number of CPU cycles it takes to complete. We will sometimes 
refer to this simply as the task's work. The task has some deadline 
(D): the number of seconds in which the algorithm should try to 
complete the task. The number of seconds the task actually takes, 
given the algorithm's CPU speed choices, is its completion time. 
Its effective completion time is the maximum of its completion time 
and its deadline; this reflects the fact that if a task completes by its 
deadline, it may as well have completed at its deadline. Its delay is 
the number of seconds it takes beyond its deadline, i.e., its effective 
completion time minus its deadline. Its excess is the number of 
cycles it still has left to do after reaching its deadline. 

When a task arrives, an algorithm must decide on the CPU speed 
to use in completing it. In general, the algorithm may choose to 
vary the CPU speed as the task progresses; for instance, it might 
choose to use 300 MHz for the first 10 ms then 400 MHz for any 
remaining time. Thus, the algorithm is actually choosing the speed 
as a function of time. We call this function the speed schedule, and 
denote it by f :  f(t) is the speed, in cycles per second, that the 
algorithm will run the CPU after the task has run for t seconds. 

We can think of a speed schedule as consisting of two parts, the 
pre-deadline part and the post-deadline part. The former is the 
part of f that describes what happens before the task reaches its 
deadline (when t < D), and the latter describes what happens after 
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Term (and abbreviation) 
Work requirement / work (W) 
Completion time 
Deadline (D) 

Effective completion time 

Delay 
Excess 

Cumulative distribution func- 
tion (CDF or F) 
Tail distribution function (.F c) 
Megacycle (Me) 
Speedscbedule(f ors) 

, Transition point 
Ire-deadline cycles ( P D C )  

,, Performance equivalent 
Parametric iiivihod 

Nonparametric method 
Kernel density estimation 

b~itTl[l~' 

The number of seconds a task takes to con dote. 
The number of seeonds a task has to complete. Generally, a deadline will be soft, meaning some tasks may miss their deadlines. The key 
property of a deadline is that as long as a task completes by its deadline, its actual completion time does not matter. 
The completion time of a task, or its deadline, whichever is greater. This measure reflects the fact that as long as a task completes by its 
deadline, its actual completion time does not matter. 
The number of seconds a task takes beyond its deadline. 
The number of cycles of work a task still has left to do after its deadline has passed. 
A function describing the probability a task will require various amounts of work. F(w) is the probability that the task will require no more 
than w cycles. 
One minus the cumulative distribution function. F ¢ (w) is the probability that the task will require more than w cycles. 
1,000,000 CPU cycles. 
A function that describes how CPU speed will vary as a task runs. f( t)  is the speed after the task has run for t seconds, s(w) is the speed after 
the task has completed w cycles of work. 
A point at which a practical speed schedule changes from one speed to another. 
The number of cycles the CPU can complete by the deadline according to some speed schedule. For example, if the speed schedule calls for 
the speed to always be 300 MHz, and the deadline is 50 ms, then PDC = 15 Me. Note: even if the task only requires 8 Me of work, PDC is 
still 15 Me, since the schedule could have completed 15 Me by the deadline. 
Guaranteed to yield the same effective completion time, no matter what the task's work requirement. 
A way to estimate a probability distribution from a sample by assuming the distribution belongs to some family of distributions (e.g., normal) 
and estimating the parameters of that distribution (e.g., the mean). 
A way to estimate a probability distribution from a sample without assuminl~ any distribution ty ~e. It thus lets the data "speak for themselves." 
A nonparumetric method that builds up a probability distribution by adding up little distribution each centered on one of the sample points. 
The width of each little distribution in kernel density estimation. 

Table 1: Terms used in this paper, along with their abbreviations and definitions 

. . . . . . .  ~ Schedu le  1 
Schedu le  2 

m I , I , I , I , 

0 2 0  4 0  60  80  1 O0 

Cycles passed 

Figure 1: This graph shows two performance equivalent speed 
schedules with deadline 50 ms. Their pre-deadline cycles are 
equal (15 Me) and their post-deadline parts are identical. 

the task misses its deadline (when t > D). A speed schedule has a 

certain number ofpre-deadline cycles (PDC), the number of cycles 

it can perform before the deadline. Note that PDC = fo ° f(t) dt. 

We say that two speed schedules are performance equivalent if, 

no matter what a task's work requirement, it will have the same 
effective completion time under both schedules. We call two al- 

gorithms performance equivalent if  they always have performance 

equivalent speed schedules. We make the following important ob- 

servation: I f  two speed schedules have equal pre-deadllne cy- 

cles and identical post.deadline parts, then they are performance 

equivalent. Figure 1 illustrates two such schedules. 

The above observation is true for the following reasons. First, 

if a task's work is no greater than the PDC the schedules share, 

then both schedules complete the task by the deadline, and both 

yield an effective completion time of D.  Second, i f  a task's work is 

greater than the PDC, then both schedules leave the task the same 

excess to do after the deadline: W - PDC. Since the schedules 

have identical post-deadline parts, and both have the same excess 

to do in that part, both will complete the task at the same time. 

This is the key to the PACE approach. PACE modifies algorithms 
without changing their pro-deadline cycles or their post-deadline 

parts, so it keeps performance the same. However, by strategically 
choosing the speed schedule for the pro-deadline part, it can make 

the expected energy consumption lower than the original algorithm. 

It is often useful to consider the speed schedule to be a function 

of work completed instead of a function of time. So, we will some- 

times describe the schedule with a function s, where s(w)  is the 

speed to use after the task has completed w cycles of work. f and s 

are just  different expressions of the same function; it is straightfor- 

ward to convert a schedule from one functional form to the other. 

4. IMPROVING DVS ALGORITHMS 

4.1 Theoretical optimal formula 
In this section, we present a formula for the optimal (energy min- 

imizing) speed schedule that is performance equivalent to that of a 
previously known algorithm. 

As previously noted, when we know the task's work requirement, 

the optimal algorithm uses a constant speed. When we know only 

the distribution of this work, however, the optimal schedule uses a 

variable speed, An intuitive explanation is that if  the task work is 

unknown, it may be high or low. It is best to run slowly at first, be- 

cause the task may require little work and thus end before we must 

increase the speed and thus the power consumption. For example, 

suppose a task with a deadline of 50 ms needs 5 megacycles (Me) 

75% of the time and 10 Me 25% of the time, Suppose further that 
CPU power is 50 nW • z 3 when the speed is x MHz. The ideal 

constant speed is 200 MHz, the slowest that will always meet the 

deadline; this consumes 12.5 mJ on average, t An alternate, variable 

speed schedule is 163 MHz for the first 30.675 ms, then 259 MHz 

for any remaining time; this consumes 10.84 mJ on average, 2 an 
energy savings of 13.3%. 

We thus see that the optimal speed schedule depends on the prob- 

ability distribution of the task's work requirement. We denote the 

cumulative distribution function (CDF) of  this work by F :  F ( w )  

is the probability the task requires no more than w cycles of work. 
The tail distribution function is denoted FC: FC(w) = 1 - F ( w ) .  

We are trying to minimize the expected energy consumption 

of the pro-deadline part of the algorithm, 3 subject to the con- 

2(25ms)(200)a(50nW) + (25%)(25ms)(200)a(50nW) = 12.5mJ. 
(30.675ms) (163) 3 (50nW) + (25%) (19.325ms) (259) 3 (50nW) ..~ 10.84mJ. 

3The expeetud energy consumption is k fo POe F¢(w)[s(w)] 2 dw, where k is the 
constant of proportionality between energy and speed squared, by the following rea- 
soning. Consider the dw eyeles of work after the first w; if dw is small, the speed 
over this period is approximately constant at s(w). The energy consumption per 
cycle is k[s(w)] ~, and the number of cycles is dw, so the energy consumption is 
k[s(w)] 2 dw. The probability that this work actually ever gets done is F c (w). 
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straint that the pre-deadiine cycles must be the same as the PDC 
of the original algorithm. In other words, we want to minimize 

. PDC f:oc FC(w)[s(w)]2 dw subject to the constraint fg 7 ~  dw = 
D. Algebraically, this is equivalent to minimizing 

dO 1 - - 2  

subject to 

) [~°(~,)-~/3/s(~o) • [F°(~o)] 1/3 d~o = D. 
. t 0  

In other words, we are given the weighted sum of the values 
[FC(w)]-x/a/s(w) and we want to minimize the weighted sum 
of their -2nd powers. By Jensen's inequality, since the -2nd power 
function is concave up, this minimization occurs when all the val- 
ues are the same. In other words, we want [F~(w)]-l/3/s(w) to 
be as constant as possible. We achieve this by making s(w) be 

the valid speed closest to C[F~(w)] -1/z, where C is a constant 
chosen to satisfy the deadline constraint. For a full proof that this 
works, see [14]. Since F~(w) decreases as w increases, this sched- 
ule speeds up the CPU as the task progresses, as noted earlier. 

Given any scheduling algorithm, it is worthwhile to replace its 
pre-deadline part with this optimal formula. In this way, we reduce 
the expected energy consumption without affecting performance. 
We call this the PACE approach. 

4.2 Piecewise-constant speed schedules 
The optimal schedule is a continuous function, which is imprac- 

tical to implement precisely since software must issue a command 
each time it wants to change the speed. In practice, we want a 
schedule with a limited number of transition points, points where 
the speed may change. We specify transition points by values of w 
where s(w) changes, not points in time where f(t) changes. The 
latter is more natural, but the former makes optimization easier, 

Given fixed transition points, we can construct a speed schedule 
that minimizes expected energy consumption, as follows. In the 
interval between any two transition points, we use the valid speed 
closest to C(F~g) -1/z, where F~, s is the average value of F c over 
that interval. As before, C is constant over the entire schedule; we 
choose a value for it that meets the deadline constraint. The ratio- 
nale is similar to that for the continuous optimal speed schedule; 
for a full proof that this works, see [14]. 

We also need to choose a "good" sequence of N transition 
points. We want the optimal schedule to vary little between any 
two consecutive transition points, so that keeping the speed con- 
stant between those points approximates the optimal schedule. We 
proceed as follows. For each integer j ,  define q~ = 1 - c - s j  for 
some constant e. Then, FF ~ at the qjth quantile of F equals c -zj. 
If we use these quantiles as transition points, then [F~(w)] -x/3, 
and thus the optimal speed, never varies by more than a factor of c 
between any two consecutive transition points. 

A problem with this is that as the sequence {qs} increases, the 
qj values get close together, and this may result in an excessive 
number of speed changes. Thus, we terminate this sequence near 
q~ = 0.95 and pick further values of q~ so that they uniformly 
partition the remaining range. More precisely, we pick some J 
near N and some Q near 0.95. (We will address later what actual 
values work well.) We set qj  = Q, then compute c by solving the 
equation Q = 1 - e  - s J .  Foreach I < j < J ,  wesetq~ = 1 -c -aS ;  
for each j > J ,  we set qj = Q + (j  - J)  o,~.~-~q. 

To implement a piecewise-constant speed schedule, software 
must interrupt the task at predetermined intervals to change the 
CPU speed. A CPU cycle counter or clock timer could generate 

such interrupts. Alternately, software could use soft timers, an op- 
erating system facility suggested by Aron et al. [1] that lets one 
schedule events for the next time one can be performed cheaply, 
such as when a system call begins or a hardware interrupt occurs. 
This could only work if these events occur sufficiently frequently. 
A better way to implement speed schedules would be to implement 
them in hardware. For instance, the CPU could accept commands 
not just to change speed immediately but also to establish a speed 
schedule for the next few milliseconds. Alternately, the CPU itself 
could implement the DVS algorithm, so software would not have 
to spend time communicating schedule information to hardware. 

4.3 Sampling methods 
To implement PACE, we must estimate the probability distribu- 

tion of the current task's work requirement. It is rare to have this in- 
formation a priori; usually, we must estimate the distribution from 
a sample of work requirements of similar recent tasks. We consider 
the following sampling methods. 

• Future. Use as the sample the entire set of tasks in the work- 
load, including future ones. Naturally, this method is imprac- 
tical, as it uses future information. 

• All. Use as the sample all past tasks. 

• Recent-k. Use as the sample the k most recent tasks. 

• LongShort-k. Use as the sample the k most recent tasks, 
with the most recent k/4 of them weighted three times more 
than the others. This method is inspired by Chart et al. [4]. 

• Aged-a. Use as the sample all past tasks, with the kth most 
recent having weight a k, where a _< 1 is some constant. 

Each of these methods produces a weighted sample that we use 
to estimate the distribution. (The first three methods produce sam- 
ples in which all weights are 1.) We denote the values in this sample 
by X1, X 2 , . . . ,  X~, and denote their weights by wl, w 2 , . . . ,  wn. 
Define w = ~ i=1  w/. Then, the sample mean and variance are 

- toiXi and 52 n wiXi2 _ #2 

Fortunately, all we need to compute these two numbers are n, w, 
the weighted sum, and the weighted sum of squares. For each of 
our sampling methods, there exists a simple algorithm to update 
these four quantities, and thus the sample mean and variance, in 
O(1) time whenever a new sample value arrives. 

If tasks can be classified into types in such a way that tasks of 
the same type have similar work requirements, then we can keep 
separate samples for each type. When a task arrives, we can better 
estimate its distribution by using only the sample of tasks of the 
same type. One way to classify tasks into types is by what applica- 
tion they belong to and by what user interface event triggered them. 
For instance, we can keep one sample of Microsoft Word tasks trig- 
gered by letter keypresses, another sample of Microsoft Excel tasks 
triggered by releasing the left mouse button, etc. 

4.4 Distribution estimation methods 
The next step in implementing PACE is to derive the task work 

distribution from a sample. We may express this distribution as a 
CDF or as a set of quantiles. There are two general ways to estimate 
a distribution from a sample: parametric and nonparametric. Para- 
metric methods assume the distribution belongs to a given family of 
distributions (e.g., normal distributions) and estimates the parame- 
ters that fully specify a member of that family (e.g., the mean and 
standard deviation of a normal distribution). Nonparametric meth- 
ods make no such assumption, letting the sample "speak for itself" 
in describing the entire distribution. 
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Note that the criterion for the desirability of an estimation 
method is not the goodness of fit, but rather the extent to which 
the use of that method leads to lower energy consumption. In par- 
ticular, task run times are well known to be highly skewed, but we 
are more interested in modeling the portion of the task run time 
prior to the deadline than the portion after it. 

Gamma. The first method we consider is the parametric method 
assuming a gamma distribution. This distribution is commonly 
used to model service times [8, p. 490], and we will show later 
that it works well. The gamma distribution has range x > 0. It has 
two parameters: the shape c~ and the scale ft. The probability den- 
sity function isp(x)  = x~-le -~1/3 / f laF(a) ,  Reasonable estima- 

tors for the model parameters are & = f~2/52 and/3 = &2/f~ [8]. 
Maximum likelihood estimators also exist, but we do not use them, 
since (a) we cannot compute them precisely or easily, and (b) we 
have found that they generally do not work as well for our purposes. 

We can approximate quantiles of the gamma distribution 
using the Wilson-Hilferty approximation, described by John- 
son and Kotz [9, p. 176]. It estimates a quantile using 

aft (a--~ + 1  - ~ - )3  where Uq is the relevant qnantile of the nor- 

mal distribution. When needed, we can compute CDF values using 
methods in [18], but we avoid those methods when possible since 
they are computationally expensive. 

Normal. The second method we consider is the parametric 
method assuming a normal distribution. This assumption may seem 
unwarranted, especially since work cannot be negative but the nor- 
mal distribution can. However, for our limited purposes, the nor- 
mal distribution may be a reasonable approximation, since normal 
distributions are shaped similarly to gamma distributions in some 
cases and are far easier to model. The normal distribution has only 
two parameters: the mean # and the standard deviation a, whose 
unbiased estimators are ~ and 3". (The maximum likelihood esti- 
mator for 3" leaves out the n/(n - 1), but we have found it does 
slightly worse for our purposes.) Furthermore, since the normal 
distribution N(# ,  a) is a simple linear transformation of the unit 
normal distribution N(0, 1), one can easily compute quantiles and 
CDF values using lookup tables. 

Pareto. A method we considered and rejected is the parametric 
method assuming a Pareto distribution. This model is appealing be- 
cause it is heavy-tailed and other researchers have found task times 
to be heavy-tailed (highly skewed); see, e.g., [20]. However, we 
found this model to fit our distributions very poorly, so we consider 
it no further in this paper. In any event, modeling tails accurately is 
not a high priority, since the tail of the distribution only affects the 
speed used near or after the deadline, and most tasks will complete 
before then. 

Kernel density estimation. The nonparametric method we 
consider is kernel density estimation, a popular nonparametric 
method [22]. This method builds up a distribution by adding up 
several little distributions, each centered on one of the sample 
points. The kernel function, K, determines the shape of these lit- 
tle distributions. The bandwidth, h, determines the width of each 
little distribution. The result is to estimate the probability den- 
sity function (PDF) at x to be/~(x) = 1 n E,: i  K 
Silverman [22, pp. 42---4.3] points out that most kernels perform 
comparably, so one should choose a kernel based primarily on its 
ease of implementation. We have thus chosen the triangular kernel: 
K(t) = max{1 - It[, 0}, which is simpler to implement than most. 

We can compute the theoretical optimal bandwidth from p", 
the second derivative of the true probability density, using 

( f  tzK(t) dr) -~ ( f K ( t )  2 dr) ~ ( f p " ( x )  z dx)-~ n-~. For 

the triangular kernel, f t2K(t) dt = ~ and f K(t) 2 dt = 2 
3" 

However, fp"(x) 2 dx is impossible to compute since the true 
probability density is obviously unknown. Fortunately, our esti- 
mate of it does not have to be exact, since it will only influence the 
degree of smoothing in the distribution. Assuming a normal distri- 

s ~-5  bution with parameters f~ and 3. makes the estimate ~ . As- 

suming a gamma distribution makes the estimation far more com- 
plex, and we have found this complexity not to be worthwhile. 

Note that the range of the kernel density estimate may extend be- 
low 0. We use reflection [22, pp. 29-31] to avoid this. This method 
adds to the sample the set of values { - X i } ,  each weighted wl, 
making the sample size 2nn. It then computes the probability den- 
sity/~adj (x) using this adjusted sample, and sets 16(x) = 2/~ad j (x) 

for x > 0, i~(x) = 0 otherwise. 

5. CHOOSING A BASE ALGORITHM 
When PACE modifies an algorithm, it leaves two aspects of that 

base algorithm intact: what PDC it uses for each task, and what 
post-deadline schedule it uses for each task. Thus, different base 
algorithms will still have different performance even after both are 
improved with PACE. In this section, we discuss how to choose 
among base algorithms. 

5.1 Choosing a post-deadline part 
First we consider what the base algorithm for post-deadline 

scheduling should be. To compare such algorithms, we need a 
performance metric that takes into account the user's "impatience 
function", i.e., how undesirable he finds missing the deadline by 
various amounts. We choose to use Pering et al.'s suggested metric, 
the clipped delay, which is the sum of all tasks' effective comple- 
tion times [17]. Our goal is to find an algorithm that consumes the 
least possible energy for a given clipped delay. 

Let TotalExcess be the total excess (the amount of task work 
left after the deadline) of all tasks in the workload. Note that the 
pre-deadline part determines this; we cannot change it in the post- 
deadline part. A clipped delay value corresponds to some total 
amount of delay T past all deadlines, so to achieve a given clipped 
delay all we must do is perform the total excess in some given time 
T. The minimal-energy solution to this single constraint is to use 
the constant speed TotalExcess/T. Another way to look at this is 
that if we use a fixed, constant speed after the deadline, we assure 
that the energy consumption we achieve is the minimum possible 
for the clipped delay we achieve. Therefore, we propose picking 
a fixed speed to use for all post-deadline parts. Many previously 
published algorithms already do this, either because they always 
use a fixed speed or because they increase speed as average recent 
utilization increases and thus achieve the maximum CPU speed by 
the time a task reaches its deadline. 

We must now determine what fixed speed to use after the dead- 
line. Usually, other components like the backlight will be running 
and consuming power, and delay past the deadline can cause these 
components to consume more energy. Using a CPU frequency .f 
makes CPU energy consumption proportional to f2 but makes en- 
ergy consumption of those other components proportional to 1/f 
as they may stay on longer. We therefore choose to always use the 
maximum speed once a task misses its deadline, as many previ- 
ously published algorithms generally do anyway. This minimizes 
delay, generally at some energy cost, but not necessarily at sub- 
stantial energy cost considering that other components' power con- 
sumption would mitigate the effect of lower speeds. 

Another approach is to choose a target average delay, predict the 
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average excess, and use the ratio of these as the speed. However, we 
have found this to be impractical, since two factors make predicting 
average excess difficult. First, excess is nonzero only rarely, since 
most tasks meet their deadlines. Therefore, samples of excess will 
tend to be small until many tasks have occurred, and even then most 
sample values will be quite old. Second, the distribution of excess 
depends strongly on the tail of the task work distribution, and such 

tails tend to be hard to model. 

5.2 Choosing Po¢ for each task 
We have shown how to improve a DVS algorithm by changing 

its pre-deadline and post-deadline parts. Thus, the only remain- 
ing influence the base DVS algorithm has on the final schedule is 
its choice of pre-deadline cycles (PDC). We now consider how to 
choose PDC for each task in order to minimize energy consump- 
tion for a given fraction of deadlines made. This constraint is in- 
teresting because it is only one constraint on all tasks rather than 
one constraint per task. That is, we need to meet a given fraction of 
all deadlines, but not necessarily meet each deadline with the same 
probability. Thus, even if the task work distribution were known 

and stationary, the optimal solution might not be to use the same 
PDC for all tasks. (This is a property of the Flat/Chan-style algo- 
rithm, which uses a fixed speed and thus has the same PDC for all 

tasks: the speed times the deadline.) 
Unfortunately, we cannot solve this optimization problem for 

two reasons. First, the complex dependence of the speed sched- 
ule on the PDC we choose makes choosing an optimal set of PDC 
values intractable. Second, even if there were an analytical solu- 
tion, it would depend on all of the work distributions. Therefore, 
we would need a model of the distribution of distributions, and we 

know no reasonable way to model this. 
Depending on the distribution of distributions, different ap- 

proaches to choosing PDC will work better or worse than others. 

Therefore we must rely on empirical rather than analytic methods 
to decide which algorithms work best when modified by PACE. We 

present such results in §7.7. 
One interesting distinction between base DVS algorithms is that 

for some, such as LongShort/Chan-style, PDC is dependent on the 

current task work distribution, while for others, such as Flat/Chan- 
style, it is not. (LongShort/Chan-style uses a speed proportional 
to recent utilization, so its PDC is higher when recent tasks have 
been long; Flat/Chan-style has a constant PDC for all tasks.) The 
former type will tend to miss the deadlines of tasks whose work 
requirements are local maxima, so we call these local algorithms. 
The latter type will tend to miss the deadlines of the longest tasks 
in the whole workload, so we call them global. When the distribu- 
tion is nonstationary, as is usual, local approaches will tend to miss 
a different set of tasks' deadlines than global ones. We cannot an- 
alytically determine whether local approaches have lower energy 
consumption for a given fraction of deadlines made than global 

ones, or even whether one local approach is better than another. 
Therefore, we rely on empirical data to compare them. 

6. WORKLOADS 
We evaluate these algorithms using six workloads. We derived 

most workloads from traces of users performing their normal busi- 
ness on desktop machines running Windows NT or Windows 2000. 
VTrace, a tracer described in [13], generated these traces. The 
traces contain timestamped records describing events related to 
processes, threads, messages, disk operations, network operations, 
the keyboard, and the mouse. We deduce what work is done due 
to a user interface event as follows: we assume that a thread is 
working on such an event from the time it receives the message 

describing that event until the time it either performs a wait for a 
new event or requests and receives a message describing a different 
event. Furthermore, if the thread sends a message or signal to an- 
other thread while working on such an event, we assume that work 
done due to that message or signal is done due to the original event. 

To reduce the amount of data VTrace collects, it only collects 
the full set of events it can for sessions lasting 90 minutes at a time, 

after which it pauses for two hours. In our analyses here, any trace 

longer than 90 minutes only represents the 40% of the time VTrace 
actually traced its full set of events. 

We define each workload by a class of events, such as letter key- 
presses in Microsoft Word. The workload consists of the set of 
tasks triggered by all such events. In other words, each task of each 
workload is roughly of the same type; by separating different task 
types into different workloads, we model the effect of keeping sep- 
arate samples for different task types, as described in section 4.3. 
A full machine workload would consist of many of these kinds of 
workloads, interleaved. Since our approach operates independently 
on each different task type, we can correctly simulate it by consid- 

ering each task type in isolation. 
We discard any task that blocked on any I/O, e.g., to a disk or 

network device. We do this because when a task blocks for I/O, it 
should use a different algorithm that takes I/O time into account, 
and such algorithms are beyond the scope of this paper. Section 8.2 
discusses this avenue for future work. Furthermore, I/O generally 
occurs in only a small fraction of the tasks, so leaving them out 
should not significantly influence the results. 

For our simulations, we assume the minimum speed is 100 MHz, 
the maximum speed is 500 MHz, and the peak CPU power con- 
sumption is 3 W. Most currently shipping machines are faster, but 
500 MHz is representative of the traced machines. 

6.1 Word processor typing 
One of the most common activities for laptop users is typing in a 

word processor, and Microsoft Word is the most common word pro- 
cessor. Therefore our first workload uses simple letter keystrokes 
in Microsoft Word as its class of events. We derived this workload 
from 3.4 months of traces VTrace collected on a 450 MHz Pen- 
tium III computer with 128 MB of memory running Windows NT 
4.0. The first author, a computer science graduate student, used this 
computer. This workload is interactive, so we use a 50 ms deadline 
for each task. 

6.2 Groupware 
Software that enables and enhances communication with others, 

i.e,, groupware, is important on the desktop, and will be more im- 
portant in portable computers as they become more connected. So 
we include a workload using a common groupware product, Nov- 
ell's GroupWise. This workload uses left mouse button releases as 
its class of events. We derived this workload from 6.5 months of 
traces VTrace collected on a 350 MHz Pentium II computer with 
64 MB of memory running Windows NT 4.0. A crime labora- 

tory director in the Michigan State Police used this computer. This 
workload is interactive, so we use a 50 ms deadline for each task. 

6.3 Spreadsheet 
Spreadsheets are also common on portable computers, so our 

next workload uses a common spreadsheet application, Microsoft 
Excel. The workload uses releases of the left mouse button as its 
class of events. We derived this workload from 3 months of traces 
VTrace collected on a 500 MHz Pentium III computer with 96 MB 
of memory running Windows NT 4.0. The chief technical officer of 
a computing-related company used this computer. This workload 
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Title Description Frames. 

Genoa Demo of Genoa products 2,592 
Jet Flying in varying terrain 1,085 
Earth Rotating Earth model 720 
Red's Nightmare Bicycle's nightmare 1,210 
DOnne Gitter Illustrations of integration 2,753 
IICM Flying in Mandelbrot set 810 
Gromit Gromit wakes up 331 

Table 2: Animations used in the MPEG workloads 

is interactive, so we use a 50 ms deadline for each task. 

6 . 4  V i d e o  p l a y b a c k  

Multimedia applications are becoming more common on 
portable computers [6]. Therefore, we include a movie player as 
one of our workloads. We use the MPEG player included with the 
Berkeley MPEG Tools developed by the Berkeley Multimedia Re- 
search Center (BMRC) [16]. Since they provide full source code 
for their tool, we were easily able to instrument it to measure and 
output the CPU time taken for each frame. Thus, each task of the 
workload represents the processing of one frame. 

We obtained animations to use from the same BMRC PTP site as 
the MPEG decoder. Table 2 gives names and descriptions for these 
videos. One workload, which we call MPEG-One, consists only 
of the Red's Nightmare animation. The other workload, which we 
call MPEG-Many, consists of all seven video clips, one played after 
the other. We made the measurements of CPU time on a 450 MHz 
Pentium III computer with 128 MB of memory running RedHat 
Linux 6.1. Assuming a typical rate of 25 frames per second, we 
assign a deadline of 40 ms to each frame. 

6.5 Low-level workload 
Some system designers may want to implement a scheduling al- 

gorithm without instrumenting the operating system, relying only 
on information hardware can observe. One of our workloads repre- 
sents such a scenario. 

We derive this workload from VTrace traces as follows. A task 
begins when the keyboard device generates a keypress signal, and 
ends the next time either the CPU becomes idle or there is another 
keypress. To determine when the CPU is idle, we use the time that 
the idle thread is running. (In battery-powered systems, the idle 
thread typically halts the CPU, so hardware can deduce when this 
thread is running.) If a disk operation is ongoing when the CPU 
goes idle, we throw out any keypress being worked on, for two 
reasons. First, we cannot know if the I/O is part of this task, so 
we cannot know whether the task is over or simply waiting for I/O. 
Second, as stated before, we are ignoring tasks that perform I/O 
since we are only considering algorithms for tasks with no I/O. 

The workload comes from a trace of one 90-minute session, cho- 
sen because it had many keystrokes with reasonably high average 
processing time. VTrace collected this trace on a 400 MHz Pen- 
tium II computer with 128 MB of memory running Windows NT 
4.0. A Michigan State Police captain used this computer primar- 
ily for groupware and office suite applications. This workload is 
interactive, so we use a 50 ms deadline for each task. 

7. RESULTS 

7 ,1  M o d e l i n g  t a s k  w o r k  d i s t r i b u t i o n s  

In this section, we determine how best to practically estimate the 
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Figure 3: A comparison of the effect of various sample sizes 
k on energy consumption when PACE uses the LongShort-k 
sampling method 

probability distribution of tasks' work requirements. We want to 
know which methods are general enough to work well for a vari- 
ety of workloads, so we evaluate them all using simulations with 
our six different workloads. To determine how effective a method 
is at describing the distribution of tasks' work requirements, we 
use a pragmatic approach: we use the method to implement PACE 
and simulate how much energy consumption results. We consider 
a method better if it produces lower pre-deadline energy consump- 
tion. No other metric is relevant, since PACE by definition cannot 
change performance. 

Throughout this section, for our simulations, we assume the 
PDC is fixed at the value that ensures at least 98% of tasks that 
can make their deadlines do so. (For the Low-Level workload, we 
use 99%, because 98% of the tasks are so short that we can achieve 
their deadlines with just the minimum speed.) 

7 , 2  W h i c h  s a m p l i n g  m e t h o d  t o  u s e  

We now compare the sampling methods to determine the best 
ones to use with PACE. For these comparisons, we assume that we 
estimate distributions using kernel density estimation. 

First, we consider what sample size to use for the sampling meth- 
ods that use only recent data, Recent-k and LongShort-k. Figures 2 
and 3 show the outcome of using different sample sizes for differ- 
ent workloads. It is difficult to pick an ideal sample size, because 
some workloads do best with high sample sizes, while others do 
best with low sample sizes. Presumably, the ones that do better 
with high sample sizes are the ones with more stationary distribu- 
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Figure 4: A comparison of the effect of various aging factors a 
on energy consumption when PACE uses the Aged-a sampling 

method 

tions, i.e., the ones whose distributions change the least with time. 
Since higher sample sizes require more memory and, for some dis- 
tribution estimation methods, more processing time, we feel that 
a reasonable compromise is a sample size of 28. For all work- 
loads except Excel, this sample size produces energy consumption 
within 0.8% of the ideal for Recent-k and within 1.6% of the ideal 
for LongShort-k. Excel, presumably because it is very stationary, 
can take advantage of higher sample sizes, but these sample sizes 
produce worse results in most of the other, less stationary work- 

loads. 
We now consider what aging factor a to use for the Aged-a sam- 

piing method. Figure 4. shows the outcome of using different ag- 
ing factors for different workloads. Just as with sample sizes, some 
workloads do best with high aging factors while others do best with 
low aging factors. Not surprisingly, the workloads that do best with 
high aging factors are the same ones that do best with high sample 
sizes. This is expected, because a high aging factor makes sam- 
ple values age more slowly, so that PACE effectively uses more 
old values. Based on the graphs, we feel a reasonable aging factor 
is 0.95. With this value, each workload besides Excel has energy 
within 1.3% of what it would be using the best aging factor for that 
workload, and Excel has energy within 2.8% of the best possible. 

Next, we determine which sampling method works best. Fig- 
ure 5 compares the Future, Recent-28, LongShort-28, and Aged- 
0.95 sampling methods for the six workloads. We do not evalu- 
ate the All sampling method, since it is equivalent to Recent-ca, 
and we have already shown that the Recent method works quite 
badly for some workloads with large sample sizes. The first thing 
we observe is that the Future method sometimes uses less energy 
than the other methods, but sometimes uses much more. This in- 
dicates that even if complete information about the full distribution 
of task work is available, it is often better to use recent information 
to predict the distribution of the next task work. Presumably, this 
is because these distributions are nonstationary, so recent informa- 
tion is a better predictor than global information. The next thing to 
observe is that the remaining three methods have virtually identi- 
cal energy consumption. In general, Recent-28 consumes the most, 
LongShort-28 the next most, and Aged-0.95 the least; however, the 
difference between any two is never more than 2.2%. We conclude 
that Aged-0.95 generally produces the best results, but other meth- 
ods work reasonably and may be good choices if they are easier to 
implement. 

7.3 Which distribution estimator to use 
The kernel density estimation method can model any kind of dis- 
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Figure 5: A comparison of the effect of various PACE sampling 
methods on energy consumption 

tribution, but it is complex to implement. So, we now investigate 
how effectively we can model task work distribution with simpler 
parametric models, the normal and the gamma distribution. 

To test whether a model truly fits a set of data, one can use that 
model to estimate the CDF at each data point, and test whether the 
set of CDF's is distributed uniformly over the interval (0, 1). For 
this uniformity test, Rayner and Best [19] recommend Neyman's 
~ test. Applying this test to any of our workloads, using any of our 
sampling methods, the test reveals an extremely small probability 
that the data fit either the normal or gamma model. Fortunately, the 
key issue is not the accuracy with which we can approximate the 
distribution of the task work. The key issue is the extent to which 
a statistically unacceptable model of this distribution produces a 
suboptimal solution to the energy minimization problem. 

Therefore, the more important question to ask is how effectively 
PACE can use each model (kernel density, normal, or gamma) to 
approximate the optimal schedule. We thus simulate using each 
model along with the Aged-0.95 sampling method for each work- 
load. We use the same PDC values that we did in the last sec- 
tion. Figure 6 shows the results of these simulations. For almost 
all workloads, the kernel density model is best, followed by the 
gamma model, followed by the normal model. In all cases, the 
gamma model consumes no more than 2.3% more energy than the 
kernel density model. We conclude that, all things being equal, 
one should use the kernel density estimation method. However, if 
this method is too complex to implement, the gamma model can 
achieve reasonably close results. 

7.4 Choosing transition points 
In section 4.2, we discussed how PACE can approximate the op- 

timal, continuous schedule using a piecewise-constant schedule. In 
this section, we determine empirically the best ways to choose the 
speed transition points for the schedule. 

Figure 7 shows the effect of using different numbers of tran- 
sitions. We see that the principle of diminishing returns applies; 
increasing the number of transitions becomes less and less worth- 
while as the number of transitions increases. Using 10 transitions 
yields energy consumption always within 1.2% of the minimum. 
Using 20 transitions reduces the maximum penalty to 0.27%, and 
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using 30 transitions reduces it to 0.1%. All the results in this paper 
use a maximum number of transitions of 30. However, even if a 
practical implementation requires no more than 10 transitions be 
used for each task, this should not be a problem for PACE; such a 
practical consideration would increase energy consumption by no 

more than 1.2%. 
We also discussed how to choose N transition points. The first 

step is to choose some d near N and some Q near 0.95. Simula- 
tions show that energy consumption is generally insensitive to the 
choices of d and Q. As long as one picks reasonably, i.e., as long 
as Q is somewhere between 0.85 and 0.99 and as long as N - d 
is between 3 and 9, the difference between the best and worst out- 
comes for any workload is always less than 0.6%. For this paper, 
we always use d = N - 3 and Q = 0.95. 

7.5 Effect of approximations 
To evaluate the effect of our approximations to the theoretically 

optimal formula for PACE, we must know what that optimal for- 
mula is. For real workloads, this is impossible, since we cannot 
know the underlying distribution of each task's work. (We can 
know the overall distribution of task work, but as workloads can 
be nonstationary we cannot know the distribution for any given 
task.) Thus, in this section, we use a synthetic workload gener- 
ated from a known probability distribution, the gamma distribution 

with a = 25 and fl = 0.2 Me. 
For the optimal realizable algorithm, the average task pre- 

deadline energy is 2.1016 m J. When the algorithm must produce a 
piecewise-constant speed schedule with only 30 transitions, energy 
goes up 0.025% to 2.1022 mJ. When the algorithm does not know 
the model parameters a priori and must infer them from past tasks, 
energy goes up 0.026% to 2.1027 mJ. When the algorithm must 
infer model parameters mainly from recent tasks, using the Aged- 
0.95 sampling method, energy goes up another 0.72% to 2.1179 mJ. 
Altogether, the practical requirements of using piecewise-constant 
speed schedules and inferring distributions from limited recent in- 
formation raises energy consumption by just 0.77%. 

7.6 Improving algorithms with PACE 
In section 4, we described how PACE can replace the pre- 

deadline part of a standard scheduling algorithm with a schedule 
that has lower expected energy consumption. Here, we simulate 
this as follows. First, we simulate a previously published algo- 
rithm. Then, we modify the algorithm so that it uses PACE to re- 
compute the pre-deadline part of its schedule. Since the two al- 
gorithms are performance equivalent, we compare them solely on 
the basis of pre-deadline energy consumption; all other metrics are 
always identical. 

For these simulations, we use four previously published interval- 
based algorithms, each with an interval length of 10 ms. The four 
methods we use are: 

• Past/Weiser-style. This is a practical version of Weiser et 
al.'s algorithm [23]. 

• LongShorl/Chan-style. This is a practical version of one of 
the best algorithms Chan et al. proposed [4]. 

• Flat/Chau-style. This is a practical version of another of 
the best algorithms Chan et al. proposed [4]. It uses a fixed 
speed, so it is similar to Transmeta's LongRun TM in steady 
state [10]. We choose the speed so that at least 98% (99% 
for the Low-Level workload) of all tasks that can make their 
deadlines do so. 

• Past/Peg. Grnnwald et al. [7] favored this algorithm. 

Figure 8 shows the effect of using PACE to modify these algo- 
rithms. We evaluate the effect of two versions of PACE, both us- 
ing the Aged-0.95 sampling method: one uses the gamma model, 
which is easier to implement, and one uses the kernel density es- 
timation method, which produces better results. Both versions of 
PACE reduce the CPU energy consumption of every workload and 
every algorithm. PACE using a gamma model reduces the CPU en- 
ergy consumption of algorithms by 2.4-49.0%; the average reduc- 
tion over all workloads and all algorithms is 20.3%. PACE using 
the kernel density estimation method reduces the CPU energy con- 
sumption of algorithms by 1.4-49.5% with an average reduction of 
20.6%. The 1.4% value is lower than the 2.4% value because Excel, 
the workload that gains the least benefit from PACE, happens also 
to be the only workload for which the gamma model sometimes 
outperforms the kernel density estimation method. Excel gains less 
benefit from PACE than other workloads because it consumes a lot 
of post-deadline energy, and PACE has no effect on post-deadline 
schedules. Interestingly, the algorithm most improved with PACE 
is Past/Peg, the one favored by the most recent comparison of DVS 
algorithms [7]. Past/Peg was favored in that work because it misses 
fewer deadlines than other algorithms; unfortunately, this requires 
higher energy consumption, as Figure 8 shows. 

Another way to examine the results is to consider them rela- 
tive to how much energy would be consumed in the absence of 
DVS. Without PACE, previously published algorithms use DVS to 
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Figure 8: These graphs show the effect of modifying algorithms with PACE to get performance equivalent, but lower-energy, al- 
gorithms. Horizontal lines show the post-deadline energy, which none of our modifications change. The lookahead optimal results 
use knowledge of the current task's work requirement and thus cannot be practically implemented; however, they serve as a lower 

bound on what can be attained by a performance equivalent algorithm. 

reduce CPU energy consumption by 10.7-94.1% with an average 
of 54.3%. With PACE using a gamma model, the CPU energy sav- 
ings increase to 35.9-95.5% with an average of 65.2%. With PACE 
using the kernel density method, the CPU energy savings increase 
to 35.6---95.5% with an average of 65.4%. Thus, on average, if a 
CPU consumes 100 J without DVS, previously published DVS al- 
gorithms allow it to consume only 46 J; PACE reduces that figure 
even further to 35 J. Given these figures, if the CPU accounted for 
33% of total energy consumption in a portable computer without 
DVS [12], previously published DVS algorithms would increase 
its battery lifetime by about 22%; with PACE, the battery lifetime 
improvement would be about 28%. 

In conclusion, PACE is not just theoretically useful, but is a prac- 
tical means to achieve substantial energy savings without affecting 
performance. It works on a variety of workloads, and can improve 
a variety of algorithms. The high energy savings is especially ex- 
citing because PACE by definition has no effect on performance. 

7.7 Which base algorithm to use 
As discussed in section 5.2, different algorithms compute PDC 

in different ways, so they still differ even when modified by PACE. 
Lacking a model of this effect, we must rely on empirical results 
to find which algorithm performs best when we modify its pre- 
deadline part with PACE and its post-deadline part to always use 
the maximum speed. For space reasons, we leave out plots show- 
ing the average task energy consumption as a function of fraction 
of possible deadlines made for each of the workloads and each of 
the base algorithms; interested readers can find these plots in [14]. 
They show that Flat/Chan-style, the only global algorithm we con- 
sidered, most often gives the lowest energy consumption for a given 
number of deadlines made. This suggests that global algorithms 
tend to do better than local ones. Among the local algorithms, 
LongShort/Chan-style does best, achieving reasonable energy sav- 
ings for a given number of deadlines made. 

7.8 Overhead analysis 
Although PACE reduces an algorithm's energy consumption, it 

Workload 

Word 31 #s 
Excel 27 #s 
GroupWise 30 izs 
Low-Level 35 #s 
MPEG-Many 29 #s 
MPEG-One 28 #s 

Aged-0.95/Gamma Recent-28/Kernei 

(0.05%) 
(0.08%) 
(0.10%) 
(0.25%) 
(0.06%) 
(0.04%) 

68 #s (0.11%) 
70 #s (0.20%) 
77 #s (0.25%) 
73 #s (0.51%) 
63 #s (0.14%) 
62 #s (0.08%) 

Table 3: This table shows the average time per task for a 
450 MHz Pentium IlI to execute variants of the PACE algo- 
rithm. Energy overhead values are in parentheses; they show 
how much energy the simulated CPU would consume to com- 
pute the PACE speed schedules, as a percentage of the energy 
it would consume just to execute the workload tasks. 

also increases its complexity. Thus, it makes the CPU spend more 
time, and thus more energy, computing speed schedules. We can 
evaluate this overhead by simulating how much time and energy 
PACE-modified algorithms would consume to compute schedules. 

The two PACE methods we simulate this way are Aged- 
0.95/Gamma and Recent-28/Kernel. The former pairs the com- 
putationaUy efficient gamma model with the preferred Aged-0.95 
sampling method. The latter uses the more effective but less com- 
putationally efficient kernel density estimation method. To mitigate 
the computational complexity, we use it with the Recent-28 sam- 
pling method, which produces unweighted samples. We use a fixed 
PDC of 0.6MD, as would Flat.0.6/Chan-style. We coded these 
algorithms in C in a couple of hours, making use of some obvious 
optimizations but by no means using every optimization possible. 
We use a maximum of 20 transitions per schedule. 

Table 3 shows, for each workload and each algorithm, the aver- 
age time per task to compute a speed schedule on a 450 MHz Pen- 
tium III with 128 MB of memory running RedHat Linux 6.2. The 
table also shows the energy the simulated CPU would consume to 
perform this computation, as a percentage of the energy consumed 
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to perform the tasks of the workload. We see that we can implement 
these algorithms with minimal overhead. The Aged-0.95/Gamma 
algorithm is more efficient than the Recent-28/Kemel algorithm, 
but even the Recent-28/Kernel algorithm imposes overhead of at 
most 77/zs per task and at most 0.51% energy consumption. The 
time overhead is small compared to the deadline in all cases, and 
considering that the computation can be done at the end of each task 
in anticipation of the next task, it should only delay the completion 
of a task when there is no idle time before the next task starts. 

8. FUTURE WORK 

8.1 Nonlinear speed-voltage relationship 
We stated earlier that the maximum speed permissible at a certain 

voltage is roughly proportional to that voltage ( scx  V). A more 
accurate formula is s = k (V  - ~ h ) 2 / V  where k is some constant 
of proportionality and Vth is the threshold voltage [5]. So, instead 
of .E c< f2, as we were assuming in our proof of optimality, we 

This formula is complicated, but we can generally approximate 
it with a simpler one of the form .E = as 2 + b. In this case, the 
optimal solution is the same, since the extra b term does not affect 
it. However, often a formula of the form E = as + b is an even 
better approximation. Using this approximation changes the opti- 

mization problem: we must then minimize fffOC Fe(w)a(w) dw. 

This changes the optimal schedule in a simple way: it makes the 
power of FC(w) change from - 1 / 3  to - 1 / 2 .  In future work we 
plan to determine the effect of using this power when the energy vs. 
speed curve is better approximated by a linear curve. We believe 
that most of our results will still hold. 

Memory effects can also produce a nonlinear speed-voltage re- 
lationship, as observed by Martin et al. [15]. When memory speed 
does not scale precisely with CPU speed, the work completion rate 
may be nonlinearly related to voltage for some voltage ranges. In 
future work, we should explore the effect of this nonlinearity on 
solutions to the energy optimization problem. 

8.2 I/O 
If a task performs synchronous I/O, a speed scheduling algo- 

rithm must attempt to have the task complete its CPU work and its 
synchronous I/O within the deadline. One way to do this is to con- 
sider the deadline for the CPU part to be reduced by the time spent 
performing I/O while the CPU waits. In future work, we will test 
approaches that take such dynamic deadlines into account. Such 
approaches must anticipate and consider the probability that a task 
will perform I/O in the future and that the deadline will be reduced 
accordingly. It must also incorporate an algorithm for recomputing 
the schedule for a task whenever it completes a wait for I/O and 
thus has shortened its deadline. 

8.3 Overlapping tasks 
In future work, we should address scheduling multiple tasks at 

once. If only one of these tasks has a deadline, it may be reason- 
able to consider it the "main task" and to model all other tasks as 
contributing to its work requirement. In other words, we might 
consider all work done while the main task is active to be part of 
that task, even though some of this work is unrelated. This way, the 
main task work distribution will automatically take into account all 
work the CPU will do before the main task completes. 

If multiple tasks have deadlines, the optimal schedule depends 
on the joint probability function of the two tasks' work require- 
ments, which is likely too complicated to use in practice. We must 

therefore in future work develop heuristics for properly scheduling 
two or more tasks simultaneously. Note, however, that most mo- 
bile computers have limited resources and only one user, so we feel 
they will not often have two simultaneous tasks with deadlines. 

8.4 Limited set of valid speeds 
Some processors may offer only a fixed, limited set of valid 

speeds. Currently, we have no way to adjust the optimal formula to 
take such limitations into account. Intuitively, rounding to the near- 
est available speed should work reasonably well. However, it will 
not necessarily give the optimal solution. Investigating the effect 
of different rounding methods, and perhaps approaches other than 
rounding, is future work. 

8.5 Overhead of changing speed and voltage 
In this paper, we have assumed that CPU speed and voltage tran- 

sitions consume no time or energy. However, in reality, this is not 
the case. According to Burd et al. [3], changing between two lev- 
els takes time roughly proportional to the voltage differential and 
energy roughly proportional to the difference between the squares 
of the voltages. So, if a schedule only increases speed as time pro- 
gresses, the total transition time and energy depend only on the ini- 
tial and final voltages, and not on the number of transitions. How- 
ever, these are only approximations, and they do not completely 
account for per-transition costs. For example, there may be a de- 
lay every time the speed changes in order to stabilize the clock and 
synchronize the CPU and bus clocks. Such per-transition costs are 
especially noticeable on modern architectures, since DVS is a rel- 
atively young technology and designers have not spent great effort 
to keep such transition costs low. In future work, we will address 
the issue of how PACE should take into account such actual transi- 
tion costs. We expect that PACE wilt work well even under these 
conditions, especially for future architectures that will have very 
low transition time and energy. 

8.6 Task type groupings 
We mentioned the desirability of grouping tasks by type, and 

keeping separate samples for each type. This way, we only use a 
task's work requirement to model the work requirements of similar 
tasks. In future work, we plan to investigate what groupings work 
best, and how effective different grouping methods are. 

9. CONCLUSIONS 
The main focus of this paper has been PACE, an approach to 

reducing the energy consumption of DVS algorithms without af- 
fecting their performance. We showed that one can change how an 
algorithm schedules tasks so that performance stays the same but 
expected energy consumption decreases. Furthermore, we devel- 
oped an optimal formula for scheduling tasks with minimal energy 
consumption. Although one cannot implement this formula pre- 
cisely, we described various methods to approximate it effectively. 

An important prerequisite for using the formula is estimating the 
distribution of a task's work requirement from recent data on simi- 
lar tasks. We presented several methods that work well for a variety 
of workloads. The best we found is to use an aged sample as in- 
put to a nonparametric kernel distribution estimation method. Esti- 
mating the distribution with a gamma model works almost as well, 
and is probably easier and faster. Practically implementing PACE 
also involves choosing a limited number of speed transitions. We 
found heuristics for this that yield reasonable approximations and 
are practical and quick to implement. 

Simulations using real workloads showed that PACE can sub- 
stantially reduce CPU energy consumption without affecting per- 
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formance. Without PACE, previously published algorithms use 
DVS to reduce CPU energy consumption by 11-94% with an av- 
erage of 54.3%. With the best version of PACE, the savings in- 
crease to 36-96% with an average of 65.4%. The overall effect 
is that PACE reduces the CPU energy consumption of previously 
published algorithms by 1.4.-49.5% with an average of 20.6%. 

Besides PACE, we made other suggestions for changing DVS 
algorithms. We recommended using a constant speed, probably 
the maximum CPU speed possible, for all tasks that have missed 
their deadlines. Furthermore, among the algorithms we considered, 
we found that using Flat/Chan-style (i.e., using a fixed PDC for 
all tasks) with our recommended changes gave the lowest energy 
consumption for a given number of deadlines made. 

We therefore recommend constructing a DVS algorithm as fol- 
lows. For each task type, pick a reasonable deadline (e.g., 50 ms 
for interactive tasks), a reasonable number of cycles to always com- 
plete by the deadline (probably between 40--60% of the number that 
the maximum speed would accomplish), and a reasonable speed to 
always use after the deadline has passed (probably the maximum 
CPU speed). Whenever a task completes, determine how many cy- 
cles it used, add this value to the sample of similar tasks' work 
requirements, then estimate the distribution of the next similar task 
using the new sample. For the sample, either only use recent values, 
or weight values as they age. Estimate the distribution using the 
kernel density estimation method, or the gamma model if the ker- 
nel density estimation method is impractical. When a task arrives, 
run it according to a PACE schedule that reflects the probability 
distribution for that type of task. 
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