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Abstract—Cardiovascular disease is a large worldwide 
healthcare issue; symptoms often present suddenly with 
minimal warning. The electrocardiogram (ECG) is a fast, simple 
and reliable method of evaluating the health of the heart, by 
measuring electrical activity recorded through electrodes placed 
on the skin. ECGs often need to be analyzed by a cardiologist, 
taking time which could be spent on improving patient care and 
outcomes. 

Because of this, automatic ECG classification systems using 
machine learning have been proposed, which can learn complex 
interactions between ECG features and use this to detect 
abnormalities. However, algorithms built for this purpose often 
fail to generalize well to unseen data, reporting initially 
impressive results which drop dramatically when applied to new 
environments. Additionally, machine learning algorithms suffer 
a ‘black-box’ issue, in which it is difficult to determine how a 
decision has been made. This is vital for applications in 
healthcare, as clinicians need to be able to verify the process of 
evaluation in order to trust the algorithm. 

This paper proposes a method for visualizing model 
decisions across each class in the MIT-BIH arrhythmia dataset, 
using adapted saliency maps averaged across complete classes 
to determine what patterns are being learned. We do this by 
building two algorithms based on state-of-the-art models. This 
paper highlights how these maps can be used to find problems 
in the model which could be affecting generalizability and model 
performance. Comparing saliency maps across complete classes 
gives an overall impression of confounding variables or other 
biases in the model, unlike what would be highlighted when 
comparing saliency maps on an ECG-by-ECG basis. 

Keywords—machine learning, ECG, classification, model 
interpretation, saliency maps, cardiovascular disease, MIT-BIH 

I. INTRODUCTION 

In 2016, approximately 1 in 3 deaths in the US were from 
cardiovascular disease, with heart disease being the number 
one cause of death today [1]. The electrocardiogram (ECG) 
is still the most accessible and inexpensive tool for 
diagnosing these conditions [2]. Despite its frequent use, the 
rates of misdiagnosis from ECGs are still high. A study in 
2001 found that 33% of the 300 million ECGs performed 
annually had some interpretation discrepancy, with 
approximately 11% of these discrepancies resulting in a 
change in patient care [3] [4]. While this study is not recent, 
it does highlight the impact ECG misinterpretation can have, 
and the number of ECGs being recorded annually. ECG 
interpretation algorithms therefore need to be accessible, 
accurate, and understandable so errors can be quickly found 
and addressed before they impact patient care. 

In light of this, ECG classification is commonly addressed in 
machine learning. However, models created often fail to 
identify and handle clinical concerns which limit the uptake 
of these models in patient-facing applications. Models often 
have high accuracy, sensitivity and specificity, but fail to 
generalize well to unseen data, for example new patients or 
new environments. They also do not address the 

interpretability gap which limit the use of these algorithms in 
patient-facing healthcare, due to the ‘black-box’ nature of 
ML in which clinicians do not trust a model which cannot 
explain its decisions, especially when these decisions can 
affect patient  care and outcomes. 

In this paper, we aim to address some common concerns, by 
building two model architectures based on state-of-the-art 
work in this area, namely a convolutional neural network 
(CNN) and a long short-term memory network (LSTM). 

We train these models using the MIT-BIH arrhythmia dataset 
[5] split into single beats, where each beat is classified into 
one of eight beat classifications. The results of these models 
are compared, and we address the ‘black-box’ interpretability 
issue, in which models offer little insight into how a decision 
has been made. This is done by analyzing class-by-class 
results and highlighting common mistakes using saliency 
maps. We also analyse what the model is focusing on for each 
ECG when deciding on a classification. This is done by 
segmenting saliency maps, repeated for each ECG in our 
dataset. 

Our method allows us to quantitatively compare what 
features of the ECG are being focused on by the machine 
learning model for each of the classes. It gives us an 
impression of what patterns are being learned, highlighting 
confounding variables or biases affecting the model across 
complete classes, which could be affecting generalizability 
and overall performance. 

II. BACKGROUND 

A. ECG Morphology 

The electrocardiogram (ECG) is a non-invasive method of 
analyzing the heart, measuring electrical activity from 
multiple angles by placing electrodes at different points on 
the skin. The key features are the P-wave, QRS complex and 
T-wave, each representing a different stage of the heartbeat, 
and which can be used to help detect abnormalities by relating 
them with the underlying phase of the cardiac cycle. ECGs 
are highly susceptible to noise, both high and low frequency, 
often attributable to improper electrode placement, baseline 
wander, and muscle movement [6]. These effects often 
obscure key features necessary to determine the health of the 
heart, which can make these ECGs difficult to classify. 

B. Comparison with other models 

In 2019, Hannun et al [8] published a paper classifying 
single-lead ECGs from 53,549 patients with the Zio monitor 
from iRhythm technologies. Their network consisted of 16 
residual blocks with two convolution layers per block, and 
utilized shortcut connections, batch normalization, and 
dropout with a final fully-connected softmax layer classifying 
each sample into one of 12 classes, including normal sinus 
rhythm and noise. They trained and tested their model using 
ECGs from the Zio monitor, but also tested their model on 



the 2017 PhysioNet Challenge dataset to demonstrate its 
generalizability, with impressive results. 

Following on from this work, Ribeiro et al [9] recently built 
a dataset of ECGs from 1,676,384 patients, training a model 
to detect six abnormalities. They employed the same model 
structure as [8], but found best results when using a simplified 
network with roughly a quarter of the layers. They use four 
residual blocks, each block consists of convolution layers, 
dropout, batch normalization and shortcut connections. 

Pandey et al in 2019 [10] used an 11-layer CNN to classify 
beats in the MIT-BIH arrhythmia dataset into five classes, 
using Synthetic Minority Oversampling TEchnique 
(SMOTE) to handle the dataset imbalance shown in Figure 1. 
Their network included four convolution and max pooling 
blocks, followed by two fully connected ReLU layers and a 
final fully connected softmax layer to classify beats into the 
five classes. The model was tested using the hold-out method, 
by randomly splitting their beats into training and testing 
datasets. 

Focal loss is an extension of the cross-entropy loss function 
originally proposed by [11] which makes the model focus on 
difficult to classify samples, thereby attempting to address the 
class imbalance issue commonly found in healthcare datasets. 
Studies do show it causes modest improvement compared to 
the traditional cross-entropy loss function, and compared to 
using cross-entropy with resampling to account for 
imbalanced datasets [12]. In 2019, Gao et al [13] proposed 
the use of an LSTM to classify beats in the MIT-BIH 
arrhythmia dataset using this loss function. They used a 64-
node LSTM layer followed by two fully-connected layers to 
classify beats into one of eight classes and trained their model 
for 350 epochs. They tested their model using the hold-out 
method, in which 90% of their data was used for training and 
10% for testing. The authors found using the focal-loss as 
opposed to cross entropy loss function improved results and 
found improvement when first denoising their ECGs using 
the Daubechies 6 (db6) discrete wavelet transform. 

C. Machine Learning in Clinical Practice 

Despite the promising results of these and similar models, 
there is still a very small number of ML algorithms being 
used in healthcare. Healthcare is a challenging environment 
to model, due to intrinsic difficulties unique to this domain. 
One such issue is that patient population characteristics are 
diverse and evolving, and can vary widely between different 
patient groups [14]. Healthcare datasets often also include 
confounding variables which are difficult to spot without 
extensive examination of the data [15]. In addition, healthcare 
datasets are often very imbalanced, due to the influence of 
rare conditions and the fact that people are generally more 
likely to be healthy than sick. 

Ahmad et al. in [16] highlight the need for interpretable 
models. When applying ML to healthcare, life-or-death 
decisions could be being made, and therefore the ‘black-box’ 
nature of ML needs to be addressed. This will allow clinicians 
to understand and verify why a decision has been made in 
order to address intrinsic biases or effects due to confounding 
variables ML is often affected by. 

Several techniques have been proposed as a solution [17], 
especially for convolutional neural networks, including 
occlusion, filter visualization, and class activation mapping 
[18]. Saliency maps are one such technique, producing a 

heatmap of how different areas of an image affect the final 
classification [19].  

The idea of saliency maps is very simple, take an example 
ECG, feed it through the model to update the model gradients, 
then go back to the input layer to calculate the derivative of 
the output layer with respect to each pixel in the input image. 

Strodthoff and Strodthoff in [20] apply DeepExplain [21] to 
models trained using the PTB diagnostic ECG database, 
comparing results to clinical interpretation of these ECGs. 
Vijayarangan et al. [22] use saliency maps and class-
activation mappings to visualize both LSTM and CNN 
models using the MIT-BIH arrhythmia dataset. Both papers 
work towards uncovering underlying decisions made by these 
models, attempting to explain what motivates particular 
decisions. However, both works address interpretation on an 
ECG-by-ECG basis, failing to capture the overall rules or 
features a model has picked up across the entire dataset under 
test. This is a subtle but important difference, while 
interpreting each ECG individually is useful, it is difficult to 
uncover systematic biases or confounding variables when 
models are investigated with individual ECGs. A way of 
capturing overarching rules and patterns is needed to fully 
investigate model behavior across multiple ECGs, which can 
then be used to explain or predict any issues in model 
generalizability to unseen data.  

III. METHODS 

For this study, we used supervised learning to investigate two 
model architectures, a convolutional neural network (CNN), 
and a long short-term memory network (LSTM). We based 
our CNN on the architecture proposed by Ribeiro et al in [9], 
and our LSTM on work done by Gao et al in [13] in order to 
compare our results to existing work, and tuned 
hyperparameters to optimize results.  

We trained and tested these models using the MIT-BIH 
arrhythmia dataset, a database of 30-minute recordings of 
two-channel ambulatory ECGs, in which each beat is 
annotated by a cardiologist. This dataset is a standard dataset 
used for ECG classification tasks, and so provides a 
benchmark to which we can compare models. We performed 
beat extraction to segment the recordings into beats, each 
labelled with a particular class. The MIT-BIH arrhythmia 
dataset includes the location of the R-peaks with the 
annotations, therefore we define a single beat as an ECG 
segment centered around one single R-peak, zero-padded to 
match the length of the longest sample in our dataset. The 
goal of our models was to correctly classify each beat into its 
beat classification. 

After separating by beat, we trained and tested each of these 
models in two different ways. Firstly, we use a traditional 
hold-out method, where 65% of the beats in the dataset were 
used for training, 10% for validation, and 25% for testing. 
Since patient characteristics can influence ECG morphology, 
a normal beat from a patient will likely look very similar to 
another normal beat from the same patient, which means 
testing in this way without separating by patients first could 
result in data leakage. Data leakage is a common machine 
learning mistake in which the model reports erroneously high 
results due to the model being tested on data it has already 
seen [23], i.e. when data from the same patient is used in both 
the training and testing dataset. We attempt to address this 
using the second method, by using different patients for the 
training and testing datasets. 43 of the 48 recordings are as 



the training and validation dataset, and the remaining five 
patients as testing.  

A. MIT-BIH Dataset 

The MIT-BIH arrhythmia dataset was selected for this study 

as it is a large open-source dataset which has been used to 

train many models for ECG classification, allowing us to 

compare our results with previous work. The structure of this 

dataset has been well documented in previous studies and 

contains 48 30-minute recordings of two-channel ambulatory 

ECGs from 47 patients sampled at 360 Hz, recorded between 

1975 and 1979. Each beat in the dataset has been annotated 

by a cardiologist and labelled as one of 19 classes as 

documented on the PhysioNet website [24]. Since each beat 

is labelled at the R-peak, we used this to extract our beats, a 

method that has been shown to be 99% accurate [13]. Beat 

extraction is performed by halving the distance between beats 

on either side of each R-peak shown in Figure 2. 

After removing non-beat annotations, the class distribution 
for this dataset is given in Figure 1. We excluded classes S 
and J due to lack of samples, to create 8 different beat 
classifications.  

 

Figure 1: MIT-BIH Arrhythmia Dataset Class Distribution 

 
Figure 2: Beat Extraction 

 

B. Dataset Creation 

For simplicity, we trained models which rely on consistent 
input length for each beat. To do this, we planned to zero-pad 
each beat to the length of the longest beat. However, since the 
longest beat was over 1200 samples long, and only 2% of 
beats were longer than 430 samples, we decided to exclude 
this top 2% from our study in order to reduce training time 
due to overly long beats filled with mostly redundant 
information. 

After building some initial models, we found that including 
both leads in model training improved performance. For the 
final dataset, we therefore zero-padded each lead to 430 
samples, appending the second lead to the first to create one 
860-length beat, as shown in Figure 3 . 

This created a total dataset of 107 209 beats in 8 different 
classes for model training, validation and testing. 

Since the class distribution is so uneven (Figure 1), and 
normal beats include at least 8 times more samples than each 
of the other classes, we downsampled the number of beats in 
the normal class to match the second-largest class, 
upsampling the rest of the classes to create an even 
distribution of beats across all eight classes. Downsampling 
was performed by randomly selecting samples to delete from 
the majority class, using sklearn’s resample method, and 
upsample was performed by randomly selecting a population 
of unique samples to be duplicated, and duplicating these 
until the desired class size is reached. 

Finally, we normalized each ECG to between zero and one 
before training, validation and testing. 

C. Testing 

For the traditional hold-out method, we randomly selected 
25% of beats to become the testing dataset. For testing using 
unseen patients, we followed the same pre-processing 
method described above, but first separating the beats by 
patient. When removing patients from the training dataset we 
run the risk of removing too many samples from one or two 
classes for training, and as a result create a training dataset 
which cannot recognize these classes due to insufficient 
samples. In order to combat this, we experimented with 
randomly removing patients from the testing dataset, to 
ensure each class had enough samples while not introducing 
bias by having the testing dataset comprised only of classes 
we know to be easy to distinguish. 

Using this process, we found that using patients 104, 113, 
119, 208 and 210 from the MIT-BIH arrhythmia dataset gave 
us a wide enough array of classes to test, while not impacting 
the class distribution of the training dataset too greatly. The 
class distributions of the training and testing sets for both 
methods are shown in Figure 1. 

D. Saliency Map Visualisation 

An ECG can be thought of as a 1D image, and therefore this 
saliency maps can be used to visualize what areas of an ECG 

 
Figure 3: Complete Beat Example 



influence model classification. To inspect our models using 
this method, we took the model state at the final epoch of the 
trained model and found the saliency map of an input ECG 
using keras’ visualize_saliency function. This function is 
used to visualize the CNN trained in this study and is pointed 
at the final convolutional layer of the model to get a map of 
the areas of the ECG which influence the filter, plotted along 
the input ECG to highlight each area. 

From discussion with clinicians, we would expect to see the 
model highlighting key morphological features of the ECG, 
such as the P-wave (or area where the P-wave should be if 
there is no P-wave present), QRS complex, and T-wave. It 
could also highlight areas we do not expect which could be 
investigated further, from the ability of these techniques to 
pick up complex features and interactions between pixels in 
an input image. 

We can also use this method to investigate if the model is 
picking up areas we do not want, for example noise. In a 
dataset such as this where a lot of data is taken from few 
patients, it is very possible that confounding factors such as 
lead placement or fast heart rate could influence 
classification. This would hopefully be reveled through 
further investigation of the saliency maps. 

E. Saliency Map Segment Analysis 

After having generated the saliency plots using the method 
described above, we split each ECG into 0.1 second 
segments, starting at the R-interval in each lead and working 
outwards. We then took the mean saliency value for each of 
these blocks, in order to get a single saliency value per 
segment for each ECG. 

Performing this saliency-segmentation for each ECG within 
each class allows us to find the ‘median’ saliency-
segmentation plot for each class. This allows us to 
quantitatively compare where the model is looking within 
each class and allows us to make inferences about what the 
model is looking for. It also allows us to easily find an 
investigate outliers, samples which are likely to be 
misclassified by the model.  

IV. RESULTS 

We trained all models on a laptop with a dual core i7 
processor with an NVIDIA GeForce 940MX graphics card. 
We used Python version 3.7.3, TensorFlow version 2.1.0, and 
Keras version 2.2.4-tf to train and test our models. All code 
can be found at the GitHub link 
https://github.com/jonesy30/ECGClassification. 

After some preliminary analysis, we found that denoising did 
not improve results by any large margin and so did not 
include this step in data pre-processing. 

The original paper proposed by [13] used 350 epochs, 
however we found that our model converged quickly and so 
stopped training after 40 epochs. We use the Nadam 
optimizer with an initial learning rate of 0.001 as in the 
original paper. For our CNN, we used the Adam optimizer 
with an initial learning rate of 0.001, decreasing the learning 
rate by a factor of 10 when results plateau as in the model 
proposed by Ribeiro et al. in [9]. We use a batch size of 128 
for both models.  

Complete results for the accuracy, F1 score (macro), 
precision, recall and specificity for each model with each 
testing method can be seen in Table 1. The CNN seems to 

outperform the LSTM, with a dramatic drop in results in the 
leave-patients-out testing method compared to the hold-out 
method, highlighting that the models are likely struggling to 
generalize to unseen patients. 

The confusion matrix for each model is shown in Figure 4. In 
the confusion matrix, the y-axis shows the true labels, the x-
axis shows classes predicted by the model, where each row 
gives the proportion of items in the true class that were 
predicted as being in each class. 

For example, in the top row of the CNN hold-out confusion 
matrix, 97% of APB samples were predicted by the model as 
being APB, 3% of APB samples were predicted as normal. A 
nan value means there are no samples in that class to be 
tested. 

While testing using the hold-out method is the simplest of 
techniques, it can result in some severe flaws in reported 
results due to data leakage. The MIT-BIH dataset consists of 
30-minute samples from 47 patients. Splitting these 
recordings by beats and randomly selecting a subset of these 
beats for testing means that in almost all cases, patients will 
have beats in both the training and testing dataset. Since 
patients will have similar characteristics (electrode 
placement, distance between heart and electrode, 
comorbidities, medications, etc.), there is likely to be 
common morphology between beats, a normal beat taken 
from a patient will likely look similar to a normal beat taken 
from the same patient. This introduces data bleeding between 
the training and dataset, raising questions into the apparent 
success of models tested in this way. 

Using the hold-out method, as with the original papers, our 

models are comparable to state-of-the-art (shown in Table 2 

and  

Table 3), with most metrics within 5% of state-of-the-art, 

although further work needs done to match these models in 

all metrics. However, the models do not perform well when 

trained and tested using unseen patients, dropping between 

40 – 60% for precision, recall and macro F1 compared to the 

same model trained with the hold-out method. This could be 

the result of class imbalance, if leaving a patient out of 

training causes few samples of a particular class to be present 

in the training set. However, it is more likely an issue of 

generalizability, the models do not perform well on unseen 

data. 

We include a per-class breakdown for each of the four models 
in Figure 6. The patients who were included in the leave-
patients-out testing set had no beats in the LBBB, RBBB, 
ventricular escape or junctional escape beat classes, so these 
are more challenging to comment on. 

However, it is clear for all tests that the CNN model tested 
using the hold-out method performs well with normal, paced, 
and premature ventricular contraction beats. Atrial premature 
beats perform well using the hold-out method but poorly 
when testing with unseen patients, despite the class 
distribution being maintained between the hold-out and 
leave-patients-out testing method. LBBB and RBBB seem to 
perform well, with junctional and ventricular escape beats 
performing poorly, although we cannot comment on their 
generalizability to unseen data. 

Paced beats consistently perform well in all models, even on 
unseen data. This makes sense, as paced beats look very 



different compared to other types of beats. Usually, the 
original impulse which starts the heartbeat comes from a part 
of the heart called the sinoatrial node, providing an electrical 
impulse to initiate the heartbeat. Paced beats are beats which 
are initiated by a pacemaker, a foreign device implanted into 
the heart to regulate rhythm. Since the heartbeat is initiated 
by a foreign device as opposed to a natural part of the heart, 
paced beats have a different morphology in the QRS complex 
compared to other heartbeats, making them very easy to spot. 
This unique morphology is likely to have been recognized by 
the model, hence its generalizability to unseen patients.  

In contrast, junctional escape beats consistently perform the 
worst in all models. An explanation for this could be the lack 
of samples in the training set, although interestingly it is not 
the smallest category. Ventricular escape beats consistently 
perform much better, despite having 93 less samples. 

A. Saliency Maps 

Figure 5 gives an example of a raw saliency map which are 
used to visualize the final convolutional layer of our CNN 
model in order to determine where the model is looking when 
it makes its classification. The plots show the raw saliency 
value (the plot colors) on top of the ECG, so we can see 
exactly what areas of the ECG are being highlighted by the 
model. Saliency color values are shown in the color bar on 
the right of the plots, with purple representing areas which are 
mostly ignored by the model, and green and yellow 
representing areas which largely contribute to the final 
classification. 

We use the raw plots of the beats in our dataset to generate 
our saliency-segment values for each class in Figure 7. The 
plots in this figure represent the median saliency map across 
samples for each class in the CNN hold-out model, with each 
block representing the median saliency value for every 0.1 
second segment. The same scale has been used for these plots 
as with the raw plots (Figure 5), and so larger numbers 
(tending towards 1) are dampened by taking the median of 
these segments. Therefore, shown in Figure 7, yellow and 
green represent blocks that contribute more to the final 
classification decided by the model, and red indicating blocks 
that are mostly ignored. 

As can be seen, the models tend to pay most attention to the 
QRS complex in the first lead, although by how much does 
depend on the class. Surprisingly, the QRS complex for the 
ventricular escape beat is ignored in the first lead, but 
highlighted heavily in the second beat, which could be an 
indication of noise as a confounding factor. Most samples in 
this class come from the same patient in the MIT-BIH dataset, 
which could support this claim. In both the normal and atrial 
premature beats, the saliency-by-segment plot is very similar. 
In these classes, the T-wave in both leads is ignored, only 
highlighting the QRS complex in the first lead and the end of 
the second lead (possibly to determine the length of the 
heartbeat). This similarity of saliency plots, specifically 
ignoring key features, could explain the poor performance 
when testing using unseen patients. 

In contrast, investigating the results from our saliency-
segment plots (Figure 7) in a class that performs consistently 
well, i.e. paced beats, we can see that the model is focusing 
most of its attention on the R-peaks in both leads. This 
suggests that it has picked up the unique morphology of the 
QRS complex when looking at paced beats. 

 
 

 
TABLE 1: MODEL RESULTS PER METRIC 

Testing Method 
Model 

CNN LSTM 

Hold-out 

Accuracy 0.9710 0.9674 

F1 Score 0.8510 0.8422 

Precision 0.7924 0.7865 

Recall 0.9753 0.9478 

Specificity 0.9955 0.9951 

Leave-

Patients-

Out 

Accuracy 0.9094 0.9491 

F1 Score 0.3593 0.3856 

Precision 0.3805 0.3843 

Recall 0.3661 0.4089 

Specificity 0.9872 0.9923 

 

TABLE 2: CNN COMPARISON TO STATE-OF-THE-ART 

Metric 
CNN Model 

Our Model Pandey et al [10] (using 
30% hold-out) 

Accuracy 0.971 0.983 

F1 0.851 0.899 

Precision 0.792 0.861 

Recall 0.975 0.955 

 

TABLE 3: LSTM COMPARISON TO STATE-OF-THE-ART 

Metric 
LSTM Model 

Our Model Gao et al [13] 
Accuracy 0.967 0.992 

F1 0.842 0.993 

Precision 0.787 0.993 

Recall 0.948 0.993 

Specificity 0.995 0.991 

 

 

 
Figure 4: Confusion Matrix for Each Class per Model per Testing Method 

 

 
Figure 5: Raw Saliency Map Example 

 



 

B. Saliency-Map Differences Between Correctly Classified 
and Incorrectly Classfied Samples 

Using the per-segment plot for each class, we can find and 
investigate outliers, beats which are likely to be misclassified 
by the model. In the following discussion, we compare the 
median saliency value in each segment for incorrectly 
classified vs correctly classified beats in classes with the 
poorest performance, namely atrial premature beats, 
ventricular escape beats and junctional escape beats. 

Figure 8 shows the results of these plots and are explained in 
more depth in the following section. Each plot is split into 
two leads, lead 1 on the left and lead 2 on the right. Each lead 

includes the R peak in the middle, labelled on the x-axis, with 
each point in the plot representing a 0.1 second segment 
block, moving outwards from the R-peak. The solid lines give 
the median values, and the shaded region gives the 
interquartile range for each of the points. 

Each figure is broken into two, the top plot compares the 
correctly identified classes to the incorrectly identified 
classes, which is compared to the saliency-segment plots for 
all samples in that class (training and testing set combined). 
The second plot in each figure compares the incorrectly 
identified class to the class it was misclassified as. 

1) Atrial Premature Beats 

Figure 8 compares the saliency map plots from correctly 
classified beats with incorrectly classified beats and the total 
average for all beats in this class. 

As can be seen, the incorrectly classified beats do differ from 
the correctly classified beats, the correct beats follow a much 
similar curve to the total. The second plot in the atrial 
premature beat plot of Figure 8 shows the incorrectly 
classified beats compared to the saliency-map segmentation 
plots of normal beats, which seem to fit the plot much better. 
When atrial premature beats are misclassified, they are often 
misclassified as normal, shown in Figure 4, which can be seen 
by the way the model interprets each ECG through the 
saliency maps. 

2) Junctional Escape Beats 

Unfortunately, due to the small number of junctional escape 
beat samples in the validation set, a small number of 
incorrectly classified samples results in a large error margin. 
In this group, 24 of the 25 samples were classified correctly, 
the 4% misclassification resulting from one incorrectly 
classified sample. 

However, we can still compare the incorrectly classified ECG 
to the correct and total classifications, shown in Figure 8. As 
can be seen, the incorrectly classified beat doesn’t match the 
typical saliency map for this class at all. The second plot in 
this figure compares the saliency-segment plot to the normal 
segment block. These plots are slightly more similar, and 
could explain this ECG being classified as normal, although 
doesn’t match perfectly. It is likely that the model simply 
didn’t know what class this ECG belonged to, and therefore 
categorized it as normal. 

3) Ventricular Escape Beats 

Likewise, with junctional escape beats, only one ECG was 
misclassified in this class, but this caused a larger error due 
to the small occurrence of samples of this class in the 
validation set. Also similar to junctional escape beat, this 
incorrectly classified beat seems to be being analyzed 
differently compared to the rest of the beats in this class. 
However, unlike the junctional escape beat, the incorrect and 
normal plots match each other very closely, giving an 
indication of why this beat was incorrectly classified as 
normal. 

C. Limitations 

The MIT-BIH arrhythmia dataset does have some severe 
class imbalance, and therefore some classes have very few 
samples with which models can properly learn differences in 
morphology, shown in Figure 1. The data also comes from 
very few patients, and therefore does not integrate a diverse 

 
Figure 6: Per-Class Breakdown of Model Results 
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Figure 7: Per-Segment Saliency Maps 



set of patient characteristics like the datasets used by Hannun 
et al. and Ribeiro et al. in [8] and [9], which are shown to be 
very generalizable due to the large datasets used to train these 
models. 

Secondly, this data was recorded between 1975 and 1979. 
While the morphology of an ECG taken from a human heart 
is unlikely to have changed since then, software capabilities  
(specifically methods to prevent noise) will likely have 
improved the quality of ECGs being recorded in modern 
machines. 

While our method could be used to highlight some of these 
issues, for example allowing us to speculate a particular 
segment is being highlighted due to confounding factors, a 
larger, more recent dataset of ECGs taken from patients with 
a diverse set of characteristics is needed. 

V. CONCLUSION 

In this study, we have proposed a tool for addressing the 
interpretability issue of ML ECG classification. We first 
build two models based on state-of-the-art architectures, a 

CNN and an LSTM. The MIT-BIH arrhythmia dataset is then 
split into beats classified into eight classifications. Saliency 
maps are used to visualize what areas of each beat are 
important to the final classification decision made by the 
model. Finally, we segment each saliency map into blocks, 
repeated for each beat every class, in order to quantitatively 
compare what areas the model is looking at for each class, 
and investigate any differences. 

Model interpretability is necessary when applying these 
models to clinical applications. Our method provides a 
technique for quantitatively comparing which section of an 
ECG a model is highlighting for each class. Unlike 
comparing per-ECG saliency maps, this allows us to 
determine the patterns which are being picked up by the 
model for each class as a whole, allowing us to compare this 
to clinical understanding and investigate any outliers. The 
process allows us to determine where confounding variables 
such as noise or patient characteristics are being picked up 
inappropriately, and where the model is picking up new and 
unexpected features which could offer new insights to 
prediction models in the future. 

Atrial Premature Beat 

 
Junctional Escape Beats 

 
Ventricular Escape Beats 

 
Figure 8: Saliency Segment Analysis of Incorrectly Identified Beats 
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