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To overcome the individual differences, an accurate electroencephalogram (EEG)-based

emotion-classification system requires a considerable amount of ecological calibration

data for each individual, which is labor-intensive and time-consuming. Transfer learning

(TL) has drawn increasing attention in the field of EEG signal mining in recent years.

The TL leverages existing data collected from other people to build a model for a

new individual with little calibration data. However, brute-force transfer to an individual

(i.e., blindly leveraged the labeled data from others) may lead to a negative transfer

that degrades performance rather than improving it. This study thus proposed a

conditional TL (cTL) framework to facilitate a positive transfer (improving subject-

specific performance without increasing the labeled data) for each individual. The cTL

first assesses an individual’s transferability for positive transfer and then selectively

leverages the data from others with comparable feature spaces. The empirical results

showed that among 26 individuals, the proposed cTL framework identified 16 and

14 transferable individuals who could benefit from the data from others for emotion

valence and arousal classification, respectively. These transferable individuals could

then leverage the data from 18 and 12 individuals who had similar EEG signatures

to attain maximal TL improvements in valence- and arousal-classification accuracy.

The cTL improved the overall classification performance of 26 individuals by ∼15%

for valence categorization and ∼12% for arousal counterpart, as compared to their

default performance based solely on the subject-specific data. This study evidently

demonstrated the feasibility of the proposed cTL framework for improving an individual’s

default emotion-classification performance given a data repository. The cTL framework

may shed light on the development of a robust emotion-classification model using fewer

labeled subject-specific data toward a real-life affective brain-computer interface (ABCI).
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INTRODUCTION

Electroencephalogram (EEG)-based emotion classification has led to an emerging and challenging
track in affective brain-computer interface (ABCI) domain (Mühl et al., 2014; Lin et al., 2015b).
Referring to the prior studies (Chanel et al., 2009; Frantzidis et al., 2010; Lin et al., 2010b,
2014, 2015a; Petrantonakis and Hadjileontiadis, 2010; Koelstra et al., 2012; Soleymani et al.,
2012; Hadjidimitriou and Hadjileontiadis, 2013; Koelstra and Patras, 2013; Jenke et al., 2014),
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a potential bottleneck of developing a practicable emotion-
classification model for an individual could be the lack
of using sufficient ecologically-valid data, especially for the
works (Koelstra et al., 2012; Soleymani et al., 2012; Koelstra
and Patras, 2013; Lin et al., 2015a) using long-duration
emotion elicitation, such as movie watching and music
listening. Specifically, the reported classification accuracies
generally varied between 55% and 72% (Koelstra et al., 2012;
Koelstra and Patras, 2013; Lin et al., 2015a) for a binary
classification task and between 52% and 57% for a three-class
task (Soleymani et al., 2012). The limited EEG trials pose
a significant barrier to encompass the EEG tempo-spectral
dynamics associated with implicit emotional responses for an
individual.

A straightforward scenario is to develop a subject-
independent classification model based on the data from
a subject population instead of to construct a subject-
dependent model for each individual. This method works
well under a common assumption that class distributions
between individuals are similar to some extent. However,
this may not be the case in real life, especially referring
to the domains of cognitive and affective processing.
Individuals may have different behavioral and/or (neuro)
physiological responses to the same stimuli, which
poses a significant challenge on developing an accurate
generalized classifier that will fit all individuals. Such
individual differences may explain a subject-independent
classification model typically leading to marginal improvement
or even considerable deterioration in performance as
compared to a subject-dependent counterpart (Soleymani
et al., 2012; Lin et al., 2014). In fact, the resultant
emotion-related EEG features varied distinctly across
individuals (Lin et al., 2010a, 2014; Zhu et al., 2015).
Thus, the inter-subject approach needs to effectively
cope with the individual difference to ensure the desired
improvement.

Alternative to derive a general model, an emerging technology
of transfer learning (TL; Pan and Yang, 2010) allows an
individual to adapt his/her model to the data or information
from other subjects selectively, so that the impact of the
individual difference can be somehow alleviated. Recently, the
TL has been successfully demonstrated in some BCI studies.
Tu and Sun (2012) proposed a subject TL framework that
employed an ensemble classification strategy that generated
the final decision upon weighting to the model outputs of
all subjects. Atyabi et al. (2013) specifically addressed the
question of how to optimize the information from other
subjects to the current subject played an important role in
enhancing subject transfer. Kang et al. (2009) attempted to
apply the subject transfer to a subject with fewer training
samples to generate a better set of subject-specific features.
The authors emphasized that the data of other subjects
having data distributions similar to each other alleviated the
individual difference. Wu et al. (2013) analogously reported
that the subject who has small training samples could
benefit from the data of other subjects having similar
data distributions. Zheng et al. (2015) recently proposed a

subject transfer framework to seek a set of low dimensional
transfer components having much similar data distributions
between subjects using transfer component analysis (TCA)
and kernel principle component analysis (KPCA). The authors
later (Zheng and Lu, 2016) further adopted transductive
parameter transfer (TPT) proposed by Sangineto et al. (2014)
to learn a subject-specific model without labeled data from
other subjects. The TPT was found to outperform TCA and
KPCA.

Based on the aforementioned evidence, the inter-subject
TL featuring an effective selection on the subjects’ data and
information should benefit the practicality of the EEG-based
emotion classification. This study thus attempted to assess the
efficacy of applying the inter-subject TL method to enhance
the subject-specific emotion-classification model by reducing
the amount of labeled data required for each individual. This
study posed and empirically validated two hypotheses. First, it is
reasonable to assume that some subjects might have difficulty in
naturally engaging in an emotion-elicitation experiment within
an unfamiliar laboratory setting. The recorded EEG dynamics of
those subjects are less likely to be representative and informative
about their emotional responses. This study thus hypothesized
that the TL framework can considerably improve the classifiers
of those poorly engaged subjects. This study named such a
scenario as conditional TL (cTL). Second, although there are
substantial individual differences in EEG signals (Lin et al.,
2010a; Soleymani et al., 2012; Zhu et al., 2015), people may
exhibit some common EEG signatures of the same emotions.
This study thus further hypothesized that the improvement of
classification performance obtained by the TL should positively
correlate with the extent of the similarity of the subjects being
included in TL. It is noted that even though recent works
(Zheng et al., 2015; Zheng and Lu, 2016) studied the inter-
subject TL framework in the EEG-based emotion classification,
they did not address the subject transferability for transferring
a new subject with respect to prior subjects, which could be a
critical issue in real applications having a progressively growing
subject repository. Once the two hypotheses of this study are
validated, the proposed cTL could first identify the transferability
of each individual who could benefit from the data from others
for emotion classification and then selectively leverage the data
from individuals having comparable EEG correlates of emotional
responses for a positive transfer. The proposed cTL framework
may not only shed light on the development of a more robust
emotion-classification model using fewer labeled data, but may
also facilitate the individualized calibration processing toward a
real-life ABCI scenario.

MATERIALS AND METHODS

EEG Dataset
This study adopted the Oscar soundtrack EEG dataset collected
in Lin et al. (2010b) to test the proposed hypotheses and
examine the efficacy of the cTL. The dataset consisted of
30-channel EEG signals collected from 26 healthy subjects
while they were undergoing a music-listening and emotion
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label-tagging protocol. The experiment settings are briefly
described as follows. The music protocol used 16 30-s music
excerpts and intended to induce four emotion classes following
the two-dimensional valence-arousal emotion model (Russell,
1980), including joy (positive valence and high arousal), anger
(negative valence and high arousal), sadness (negative valence
and low arousal) and pleasure (positive valence and low
arousal). The experiment for each subject randomly separated
the 16 excerpts (starting with 15-s silent rest) into four four-trial
blocks with self-paced inter-block rest. Please refer to Lin
et al. (2010b) for more details. Notably, since the four-class
emotion samples were found highly imbalanced, this study
opted to perform two-class valence (positive, i.e., joy and
pleasure, vs. negative, i.e., anger and sadness) and arousal
(high, i.e., joy and anger, vs. low, i.e., sadness and pleasure)
classification tasks after regrouping the labels. Each of 26 subjects
in the Oscar EEG dataset had 16 data pairs of 30-s EEG
trials and two-class self-reported valence and arousal labels for
analysis.

EEG Feature Extraction, Selection and
Classification
The raw 30-s 30-channel EEG signals of each trial were
first transformed to the frequency domain using short-time
Fourier transform with 50%-overlapping 1-s Hamming window.
After applying a band-pass filter with a frequency range of
1–50 Hz, the estimated spectral time series of each channel
was then grouped into five stereotyped frequency bands,
including δ(1–3 Hz), θ(4–7 Hz), α(8–13 Hz), β(14–30 Hz)
and γ(31–50 Hz). This study then adopted a feature type of
differential laterality (DLAT; Lin et al., 2014) to reflect EEG
spectral dynamics of emotional responses in a representation of
hemispheric spectral asymmetry. Given 12 left-right symmetric
channels (available in a 30-channel montage) and five frequency
bands, DLAT generated a feature dimension of 60. Each
spectral time series of DLAT was further divided by the mean
power of its first 5 s for each trial followed by the gain
model-based calibration method (Grandchamp and Delorme,
2011). Afterwards, the DLAT features were z-transformed
across 16 trials to zero mean and unit variance for each
subject.

Rather than utilizing the entire DLAT space, this study
adopted a well-known feature selection method namely ReliefF
(Robnik-Šikonja and Kononenko, 2003) to exploit a minimal
yet optimal set of most informative features for each subject,
which has been demonstrated effective in Jenke et al. (2014).
The number of features with high ReliefF weight was
determined based on the best training accuracy (described
later). Lastly, this proof-of-concept study simply adopted a
classifier of Gaussian Naïve Bayes (GNB) to model the data
distributions belonging to positive vs. negative valence or
high vs. low arousal classes. This study employed a Matlab
(MathWorks, Inc., Natick, MA, USA) function called fitcnb()
to use GNB modeling with default settings, which fitted
the predictor distribution of each class with a Gaussian
setting.

Transfer Learning
TL is a machine-learning method with a perspective of
providing a faster and better solution with less effort to
recollect the needed training data and rebuild the model
(Pan and Yang, 2010). In addition to its great progress in
domains of document, speech, and image classification (Dai
et al., 2007; Quattoni et al., 2008; Deng et al., 2013),
recent neurophysiological studies (Kang et al., 2009; Tu
and Sun, 2012; Atyabi et al., 2013; Wu et al., 2013) have
also demonstrated the efficacy of the TL for improving
the classification performance through using/learning the
data/information from other individuals. Prior to depicting the
proposed cTL framework in this study, the basic notations and
definitions of TL are briefed as follows upon a TL review (Pan
and Yang, 2010).

Notation. A domain D consists of two components: a feature
space X and a marginal probability distribution P(X), in which
X = {x1, . . . , xn} ∈ X. Given a specific domain D = {X, P(X)},
a task consists of two components: a label space Y and an
objective predictive function f(•), denoted by T={Y, f(•)},
which can be learned from the training data pairs {xi, yi},
where xi ∈ X and yi ∈ Y. The f(•) can be used to predict
the label of a new instance x, which can be rewritten by
the probabilistic form of conditional probability distribution
P(Y|X). A task can then be defined as T={Y,P(Y|X)}. With
the notations of domain and task, the TL is defined as
following:

Definition. Given a source domain DS and learning task TS,
and a target domain DT and learning task TT , TL aims to
help improve the learning of the target predictive function f(•)
in DT using the knowledge in DS and TS, where DS 6= DT , or
TS 6= TT .

In the above definition, the condition DS 6= DT

refers to either XS 6= XT or PS(X) 6= PT(X), i.e., the
source and target domains have different feature
spaces or marginal probability distributions, whereas
the condition TS 6= TT means either YS 6= YT or
P(YS|XS) 6= P(YT |XT), i.e., the source and target domains
have different label spaces or conditional probability
distributions. Note that when the target and source
domains are the same, i.e., DS = DT , and their learning
tasks are the same, i.e., TS = TT , the learning problem
becomes a traditional machine-learning problem. If the
TL improves the performance upon using solely DT

and TT , the outcome is referred to a positive transfer.
Otherwise, the TL deterioration leads to a negative
transfer.

Referring to the targeted two-class valence and arousal
emotion classification tasks using the EEG signals in this
study, the domain refers to the EEG signals, whereas
the task means the valence and arousal classification. As
considering the transferring learning between subjects,
the classification performance of a subject to be improved
here is referred to the target subject (TS) from the target
domain DT , whereas other existing subjects to be learned
and transferred are called source subjects (SSs) from the
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source domain DS. In addition, due to individual differences
in emotion perception and experience, subjects responded
to the same emotion-induction materials may not only
assign different emotion labels Y , but also may exhibit
diverse spatio-spectral EEG dynamics X. The conditional
probability distributions, i.e., P(YS|XS) 6= P(YT |XT), between
the TSs and SSs are thus different. On the other hand,
the emotion-informative features are prone to vary from
subject to subject (Lin et al., 2010b, 2014). This implies
the existence of different feature spaces and corresponding
marginal probability distributions of the TSs and SSs,
i.e., XS 6= XT and PS(X) 6= PT(X). The aforementioned
criteria accordingly explain the addressed EEG-based emotion
classification task complied with the TL definition DS 6= DT and
TS 6= TT .

Conditional Transfer Learning
The inherent individual differences in emotion experience
might lead to two following outcomes to a group of
subjects after undergoing the same emotion experiment.
On one hand, some subjects who might be less emotionally
engaged in the experiment than others. Their data
thus contained much less representative EEG correlates
of emotional responses. On the other hand, despite
the salient individual differences, neurophysiological
responses for some subjects may exhibit some common
EEG signatures about emotional responses. Such a
group of similar subjects are presumably able to
share the training data with each other for affective
computation, as opposed to a group of dissimilar subjects.
Accordingly, the present study posed two hypotheses

FIGURE 1 | An overview of the proposed conditional transfer learning (cTL) framework with the emphasis on how to account for the two posed hypotheses

regarding the individual differences in emotion perception (in italic fonts), including: (1) TL improvement majorly happens to target subjects (TSs) associated with

worse default models; and (2) the extent of TL improvement positively correlates with the similarity of the TS and source subjects (SSs) being grouped, and how to

address three leading issues to the success of positive TL (in red bold fonts), including: (1) when to transfer; (2) how to transfer; and 3) what to transfer. Note that n is

the number of subjects treated as SSs (n = 25 in this study), whereas O is the number of similar subjects being selected from n SSs.
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for the inter-subject TL: (1) TL framework will benefit
the classification models i.e., positive transfer, for the
TSs whose models did not perform well based solely
on their own data; and (2) the extent of the positive
transfer tends to positively correlate with how similar
the SSs being included to the training data for the
TS. Figure 1 gives an overview of the proposed cTL
framework regarding how to deal with the issues to the
success of positive TL (Pan and Yang, 2010), including:
(1) when to transfer; (2) how to transfer; and (3) what to
transfer.

1. When to transfer
Brute-force transfer, i.e., blindly applying TL, sometimes
may cause a negative transfer as the target and source
domains apparently differ (Pan and Yang, 2010). Defining
the transferability from the source to target domain of
interest is thus imperative. As mentioned previously, due
to the individual differences, subject-specific emotion-
classification performance may vary widely from subject
to subject (Lin et al., 2014). Some of them were marginally
above or even below chance level, i.e., random guessing.
This also in part explains the previously reported
classification performance of a subject population was not
satisfactorily high against chance level (Koelstra et al., 2012;
Soleymani et al., 2012; Lin et al., 2014). This outcome
suggested us to treat the chance level as a benchmark
inferring the TL transferability to a given TS. In this regard,
this study hypothesized that the TL method will benefit the
TSs whose default classification models, i.e., trained by their
own data, merely achieve a below-chance-level accuracy
(i.e., 50% in a two-class classification problem). On the
contrary, brute-force transfer for the good subjects (default
accuracy >50%) will likely cause a negative transfer. Such a
hypothesis-orientated TL scenario was named cTL as opposed
to the standard TL that applies transferring to all subjects.

2. How to transfer
Most machine-learning methods can work well under the
assumption that the training and test data are drawn from the
same distribution and feature space. It presumably also applies
to the TL framework. As such, sharing the data or information
between subjects who have comparable neurophysiological
patterns theoretically results in prominent improvement as
opposed to that between dissimilar subjects. To this end,
this study characterized the inter-subject similarity based
on their ReliefF-sorted emotion-relevant feature spaces. The
similarity was defined be the value of the Pearson’s correlation
coefficient. That is, the larger the correlation coefficient value
is, the more similar the subjects are. Lastly, the TL framework
included a group of most similar SSs as the training data to
develop a new emotion-classification model for the given TS.

3. What to transfer
A natural next question is which part of knowledge from
the selected SSs can be extracted to transfer for the TS. This
study concatenated the labeled data of the selected SSs and TS
together to develop a more generalized yet informative feature
space. The augmented training data and refined feature space

was then used to re-build the emotion-classification model
for the TS.

Validation of the Proposed Conditional
Transfer Learning Framework
Each of the included 26 subjects was in turn treated as a
TS to test the proposed cTL framework with the remaining
25 subjects regarded as SSs. Furthermore, the leave-trial-
out (LTO) validation method was applied to the TS’s data
trials to yield the subject-dependent classification accuracy.
In this way, the TS’s default performance refers to the
LTO accuracy solely based on their own data, i.e., without
TL, whereas the TL-improved performance refers to the
result obtained by leveraging the TS’s 15 out of 16 trials
with all of the trials from the selected SSs to train the
model and test it against the left-out trial from the TS in
each LTO repetition. The information of a test trial of a
given TS was entirely disjointed from the optimization of a
classification model as well as the selection of transferrable
SSs, which complied with a realistic BCI validation regime.
The TL steps in each LTO repetition are described as
follows:

1. Calculate the similarity between the TS and SSs.
Using 15 training trials to form the TS’s feature space using
ReliefF and calculating correlation coefficient values between
this space to the space of each of n SSs (n = 25 in this study).

2. Transfer the data of the most similar SS(s) to the TS.
Merging the 15 training trials of the TS with the data trials
of the O most similar SS(s), where O is the number of
subjects being selected, and then using the augmented dataset
(15 + O ×16 trials) to re-form the TS’s feature space using
ReliefF.

3. Optimize the feature space of the TS.
In order to discard the impact of the class imbalance problem
during classifier modeling, this step randomly selected class-
balanced samples on the augmented training trials with
500 repetitions in an attempt to yield an optimal yet
fair training model. Each repetition applied 5-fold cross-
validation and add-one-feature-in, i.e., adding one feature
with a high ReliefF score at a time, methods to exploit an
optimal feature subspace with the maximal training accuracy.

4. Train and test the TL-refined model of the TS.
The GNB model was re-trained with the augmented and
feature space-optimized data trials and was tested against the
disjointed left-out trial of the TS.

To demonstrate the validity of the posed cTL scenario, this
study also employed another two TL scenarios, namely routine
TL (rTL) and optimal TL (oTL), as comparative benchmarks.
The rTL is the conventional framework that equally applies TL
to each TS without evaluating their transferability, whereas the
oTL enforces a TS’s default model adapting to the TL-refined
counterpart as long as a positive transfer occurs. The oTL is
a heuristic-optimization procedure that allows every TS have a
chance to improve their default model and thereby led to the best
performance.
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RESULTS

Figure 2 portrays the subject-specific two-class valence and
arousal classification performance solely using the data from
each TS. As can be seen, 16 of 26 TSs had accuracy
below 50% (red downward-pointing triangles) in the valence
classification, whereas the arousal classification returned slightly
fewer poor TSs of 14. Particularly, eight TSs (e.g., 3, 10,
12, 13, 18, 19, 20 and 26) failed to provide above-chance
accuracy in both emotion categories. On average, the 26 TSs
obtained the accuracies of 48.58 ± 16.44% but varied widely
(max: 85.43%, min: 21.79%) and 52.14 ± 16.48% (max:
78.68%, min: 35.06%) in valence and arousal classification,
respectively.

Figure 3 presents the accuracy variability obtained by TL
to the TSs that incorporated different numbers of similar
or dissimilar SSs from 1 to 25 with respect to their default
performance. For both valence and arousal classifications,
only the poor TS group (red solid profile) returned salient
improvements after TL, whereas the good TS group (blue
dash-dot profile) conversely led to deteriorated performance.
The All TS group (gray dotted profile) that did not separate
TSs by their default performance returned minor improvement
in valence but not in arousal category. Furthermore, the
TL based on similar and dissimilar SSs resulted in distinct
outcomes. For the valence classification, the use of a group of
18 similar or dissimilar SSs resulted in maximal improvements
(similar: 24.87% vs. dissimilar: 20.43%). Nevertheless, the
poor TS group distinctly benefitted from TL in the arousal
classification. Using only 12 similar SSs promptly resulted
in a maximal improvement of 22.50%, which was almost
double to that using the group of 12 dissimilar SSs (12.95%).
The scenario of using dissimilar SSs in arousal state instead
returned a slow increment to the maximum of 17.98% as
all 25 SSs were included. Lastly, for both emotion categories,
TL based on data from all 25 SSs was not necessarily
leading to a maximal improvement for most comparative
conditions.

Figure 4 further shows the relationship between accuracy
improvement by TL and inter-subject similarity for each
TS based on the resultant optimal TL parameters of
18 and 12 similar SSs for valence and arousal categories
(i.e., could lead to maximum TL improvement as shown
in Figure 3). Several results are worth mentioning here.
First, pooling similar SSs as opposed to dissimilar SSs for
a given TS typically resulted in smaller TS-SS dissimilarity
(red triangles and crosses vs. blue circles and crosses). The
TS-SS dissimilarity in the valence plots tended to vary
within a narrower range of 0.045–0.065 (Figure 4A) than
a range of 0.053–0.081 in the arousal plots (Figure 4B).
Second, the TL consistently resulted in positive transfer
(triangles and circles) for the poor TSs, but generally
led to a negative transfer (crosses) for the good TSs for
both emotion categories. By leveraging similar SSs, 15 of
16 and 13 of 14 defined poor TSs obtained improvements
in valence and arousal classification, respectively. Lastly,
further comparing the inclusions of similar vs. dissimilar SSs,

TL revealed a salient negative correlation between accuracy
improvement and TS-SS dissimilarity in arousal classification
(r = −0.5, p < 0.01), but not in the valence classification
(r = −0.03, p = 0.89).

Figure 5 compares the classification performance using
different scenarios, including default learning (without TL),
a routine transfer learning (rTL), the proposed cTL, and
an optimal TL model (oTL). The rTL was the conventional
framework routinely applying TL to each TS regardless of
their default performance, whereas the oTL enforced the
TS’s default model adapting to the TL-refined counterpart
as long as positive transfer occurred, which allowed every
TS have a chance to improve their default model and
thereby led to the best performance. As can be seen,
the rTL resulted in a performance improvement of ∼11%
(p < 0.05) for valence and 4% for arousal classification
upon the default performance. The proposed cTL made the
improvement much salient, which were almost up to 15%
and 12% for valence and arousal categories (p < 0.01).
In other words, the cTL outperformed the rTL by ∼4%
and ∼8% (p < 0.05) for valence and arousal classifications,
respectively. Most importantly, for both emotion categories the
cTL was comparable (p > 0.05) to the oTL that alternatively
adopted the TL-refined model if a positive transfer was
desirable.

DISCUSSION

Defining Subject Transferability for
Positive Transfer
For the interpretation of when to transfer the following
results can be considered. Without using TL, the average
classification accuracies of valence (48.58 ± 16.44%) and
arousal (52.14 ± 16.48%) for the 26 subjects in this study
(see Figure 5) were found to be near the chance level (50%).
In fact, as shown in Figure 2, the classification accuracy
in some subjects exceeded 70%, but in some subjects had
the sub-30% accuracy. This result might be attributed to
inevitable individual differences (as is evident from a high
standard deviation∼16%). We speculated that some participants
may have difficulty in emotionally engaging in the designed
experiment within an unfamiliar laboratory setting, especially
wearing an awkward EEG headset. This study was thusmotivated
to propose the conditional TL under the assumption that
the TL would profit subjects with low default performance
rather than those with relatively good performance. This study
intuitively adopted the criterion of the default performance
above or below chance level, i.e., 50%, to infer the TL
transferability of a given TS. As shown in Figures 3, 4, brute-
force transfer to the good TS group typically resulted in a
negative transfer. Thus, when the proposed conditional TL was
used on the poor TS group only, the obtained improvement
in performance was better than that using the routine TL (see
Figure 5). The study results not only empirically proved the
feasibility of using a simple criterion based on the default-
model performance, but also supported that exploring ‘‘when
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FIGURE 2 | The two-class classification accuracy of (A) valence and (B) arousal emotions for each of 26 TSs sorted by their performance. The blue upward-pointing

triangles represent the good TS group with the above-chance level accuracy, whereas the red downward-pointing triangles indicate the poor TS group

corresponding to the accuracy near or below chance level. The gray circles show the chance level of 50% for two classes. The numbers above/under the triangles

indicate the TS label.

FIGURE 3 | The accuracy variability obtained by TL to the TSs that incorporated different numbers of similar or dissimilar SSs with reference to their default

classification accuracy of (A) valence and (B) arousal emotions. The results were categorized into three TS groups according to their default performance, including

Good (default accuracy (ACC) > 50%, with blue dash-dot line), Poor (default accuracy ≤ 50%, with red solid line), and All (both Good and Poor TSs, with gray

dashed line). The colored, shaded areas along the profile show the standard deviation of the classification performance. The upward-pointing and downward-pointing

triangles represent the accuracy improvement and deterioration significantly varied from zero using a one-sample t-test with p < 0.01, respectively. The maximal

improvement was marked by the black cross. The number of SS in x-axis refers to the number of SSs being selected for TL to the TS, whereas the accuracy

variability in y-axis indicates the improvement or deterioration in classification accuracy after TL was applied with respect to the default performance of the TS.

to transfer’’ is an imperative step (Pan and Yang, 2010) to the
success of a positive transfer. In the future, the generalizability
of the inclusion criterion based on the chance level of the

number of tasks to be classified can be further tested on
other emotion datasets (Koelstra et al., 2012; Lin et al.,
2015a).
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FIGURE 4 | The relationship between accuracy variability by TL and inter-subject similarity for (A) valence and (B) arousal emotions for each TS, which was

assessed based on the resultant optimal TL scenarios for valence (using 18 similar SSs, SSs) and arousal (using 12 similar SSs) categories (see Figure 3). The

triangles and circles represent the positive transfer, i.e., improved performance, whereas the crosses represent the negative transfer, i.e., deteriorated performance.

The symbols in red and blue indicate the inclusions of similar and dissimilar SSs, respectively. The gray lines depict the linear relationship between the accuracy

improvements over TS-SS dissimilarity assessed by linear regression analysis. The TS-SS dissimilarity in x-axis shows the standard deviation of the absolute

correlation coefficients of the available TS-SS pairs (the larger the value was, the more the dissimilar subjects were being included for TL), whereas the accuracy

variability in y-axis indicates the improvement or deterioration in classification accuracy after TL was applied with respect to the default performance of the TS.

Furthermore, as inspecting the cTL-oTL comparison
(see Figure 5), one might argue that the oTL scenario,
which adapted the default model to the TL-augmented
counterpart as long as the positive transfer occurred,
could be an alternative remedy without considering the
issue of subject transferability and the risk of a negative
transfer. However, the oTL scenario is a heuristic approach
and only feasible for a small subject repository. Once
the size of the repository increases, applying brute-force
transfer for each subject inevitably makes a heavy burden
on the limited computation resources and unnecessary
computations since the negative transfer may occur

frequently. Thus, this study instead proposed the cTL
to address the issue ‘‘when to transfer’’ for avoiding
negative transfer as well as to reduce computational
complexity.

Grouping Similar vs. Dissimilar Source
Subjects for Positive Transfer
This study evidently validated the posed hypothesis that pooling
a group of similar SSs may lead to a noticeable augmentation as
opposed to a group of dissimilar SSs. First, the TS’s emotion-
classification model obtained an immediate improvement by
leveraging 5∼10 similar SSs and afterwards reached to a
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FIGURE 5 | The two-class classification accuracy of (A) valence and (B) arousal emotions using different scenarios, including default, a routine TL (rTL), the

proposed cTL and an optimal TL model (oTL). The rTL was the conventional framework routinely applying TL to each TS regardless of their default performance,

whereas the oTL enforced each TS’s default model adapting to the TL-refined one as long as a positive transfer occurred. The statistical significance of differences in

performance between two scenarios was assessed by paired two-sample t-tests (∗p < 0.05, ∗∗p < 0.01).

maximal improvement by recruiting more similar SSs involved
(valence: 18 SSs, arousal: 12 SSs, see Figure 3). This trend
did not exactly replicate in the case of recruiting the same
number of dissimilar SSs. Especially, the arousal category
showed that the TL augmentation for the poor TS group
significantly correlated with the similarity of the SSs to be
transferred (see Figure 4). Regarding the less distinguishable
contributions made by using similar and dissimilar SSs in
the valence category, the reason was very likely attributed to
that the included 26 subjects possessed a relatively similar
DLAT feature space in valence compared to in arousal, so that
pooling either similar or dissimilar SSs for valence transferring
resulted in a narrower TS-SS dissimilarity range (0.045–0.065,
see Figure 4). This indicated that the differences between
similar and dissimilar subjects in the valence category were
insignificant. As such, pooling data from other subjects (either
similar or dissimilar SSs) would result in a positive transfer
for the valence classification. Previous BCI studies analogously
reported the efficacy of adopting similar subjects for leveraging
the information between subjects in an attempt to boost the task
performance (Kang et al., 2009; Samek et al., 2013; Wu et al.,
2013).

Second, aggregating all available subjects together did not
absolutely guarantee a maximal enhancement in performance
either for the case of using similar or dissimilar SSs. Due to
the individual differences, aggregating all available SSs may
make the class distributions much overlapped or even conflicted.
This may partially support the finding in an earlier subject-
independent emotion classification study (Soleymani et al., 2012;
Lin et al., 2014) and a study comparing subject-dependent
vs. subject-independent manner using other biopsychological
signals (Böck et al., 2012).

The objective of this study was to assess the feasibility
of the TL in the EEG-based emotion-classification. This
proof-of-concept study has not fully explored an optimal
threshold for the inter-subject similarity, i.e., TS-SS dissimilarity
value, for choosing the number of similar SSs to be grouped and
transferred to each TS. This study leaves this issue to a separate
study with a larger subject population in the future. Another

tentative direction is to incorporate other EEG emotion datasets
having distinct groups of subjects, such as an open-access
dataset of DEAP (Koelstra et al., 2012) or the dataset collected
in Lin et al. (2015a), which can save considerable time and
labor efforts for increasing the subject population in a single
experiment. However, it might introduce a new challenge in how
to reasonably cope with (but may not limit to) different settings
of electrode montages that used in data recordings, and different
materials for emotion elicitation in each dataset.

Comparing the Obtained Classification
Results with Previous Works
This study next compared the obtained two-class emotion-
classification performance without and with TL methodology
to the recent works that also addressed two-class valence and
arousal classification tasks using limited data trials (Koelstra
et al., 2012; Koelstra and Patras, 2013; Lin et al., 2014).
Without using TL, the default valence and arousal of this
study (see Figure 5) were found to be lower than the reported
results of 57.6% for valence and 62% for arousal (see their
EEG modality in Table 7 Koelstra et al. (2012)). Once the
default model augmented by the proposed cTL framework, the
classification performance reached ∼64% for both categories.
However, such TL-based augmentation remained worse than
the reported results in (Koelstra and Patras, 2013; valence:
70%, arousal: 67.5%, see their EEG modality and RFE feature
type in Table 3) and the results of ∼70% for valence and
arousal classifications (Lin et al., 2014; see their DLAT feature
type in Figure 2). It is worth noting that using different
machine learning frameworks (feature extraction, selection and
classification), applying different validation methods (offline
or online), and/or conducting different emotion datasets all
potentially lead to variations in default performance of each
individual. Instead of comparing with the default performance
of previous works, this study stressed out that the proposed cTL
led to a prominent improvement by selectively leveraging data
from other subjects, i.e., without increasing the labeled training
data from each individual, which is expected more prominent in
an ever-growing data repository in real-life applications.
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CONCLUSION

This study proposed a scenario namely conditional TL
to first assess a subject’s transferability for improving
classification performance and then leverage the data from
other subjects having informative yet comparable feature
spaces. Upon the validation on a 26-subject EEG dataset,
the study results empirically showed that the proposed cTL
framework led to a maximal improvement of ∼15% and
∼12% by recruiting data from 18 and 12 subjects who had
similar EEG signatures for two-class valence and arousal
classification, respectively, with reference to the default
performance solely using the subject-specific data. The
cTL-augmented performance also distinctly outperformed
that using the conventional TL (blindly applying TL to
each subject without considering the risk of deterioration
in performance) by ∼4% and ∼8% for valence and arousal
categories.
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