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Abstract 
The critical requirements for devices connected to the Internet of Things (IoT) are long battery life, 

long coverage range, and low deployment cost. In this work, we developed a machine learning based 

smart controller for the HVAC of commercial building using LoRa and compared it with short range 

RF communication in an indoor setting. The comparison was made in terms of battery life, coverage 

range and memory size. The effect of changing the transmission power of LoRa on battery 

consumption of the sensor node was also evaluated.  Results show that coverage range of LoRa was 

60.4% more than short range communication inside a building. The smart controller was capable of 

identifying when the room was unoccupied and turning off the HVAC which reduced the energy 

consumption up to 19.8%. 

Introduction 
According to Cisco [1], 50 billion devices will be connected to the internet by 2020. Different types of 

devices can be connected to the internet from small devices (RFIDs, Sensors) to large devices like 

TVs, Cameras etc., and mobile devices like vehicles. The Internet of Things (IoT) interconnects these 

devices and exchanges data between these devices. Therefore, Machine to Machine (M2M) 

communication is required for exchange of data between devices in IoT.  

Communication between devices in IoT has already been done by multi-hop short range 

communication (ZigBee, Bluetooth and RF communication) [2]-[4]. Short range communication 

(Zigbee, Bluetooth, RF communication) operates in unlicensed ISM bands centred at 2.4 GHz, 

868/915 MHz. 433 MHz and 169 MHz. The coverage of these short-range communication (uni-

directional or bi-directional) is usually in few meters but they can achieve high data rate. In 

applications where the distance between sensor nodes and base station is large, short range 

communication standards are not feasible.  

More recently industry has been developing in low power wide area networks (LPWAN). LPWAN is 

introduced as a promising alternative between multi-hop short range communication which operates 

in unlicensed frequency band and long range cellular communication which operates in licensed 

frequency band. Basic requirements for LPWAN are long coverage, less power consumption, low 

deployment cost, low device cost, support large number of devices and easily expandable [5].  Long 

range (LoRa) alliance [6], Sigfox [7], and Weightless [8] are examples of LPWAN.  

In our previous work [9], we implemented the smart controller for heating ventilation and cooling 

(HVAC) of commercial building. Random neural networks (RNN) were used for machine learning of 
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smart controller.  Multiple RNN models for estimating the occupancy, predicted mean vote (PMV) 

based setpoints for heating and cooling and HVAC control were integrated in the smart controller for 

embedding the intelligence. Communication between sensor nodes and base station was done by 

using fixed short range RF communication. Base station and sensor nodes communicated at 915 MHz 

by using RFM69HW Industry Scientific and Medical (ISM) transceiver [10]. In this work, we 

implemented the smart controller for Building energy management systems (BEMS) using LoRa 

transceiver (RFM95) [11] and compared the energy consumption of HVAC using a smart controller 

with simple thermostat. We have compared the power consumption of sensor nodes with LoRa 

transceiver and ISM transceiver, moreover we have also compared the coverage range and packet loss 

of LoRa transceiver with ISM transceiver inside the campus building.  

Long Range IoT Communication in Unlicensed Bands 
Long range LPWAN have coverage range comparable to cellular network. In rural areas, coverage of 

LPWAN is around 10-15 Km while in dense populated areas, coverage of LPWAN is around 2-5 Km.  

Unlike short range communication standards the data rate of LPWAN is low and LPWAN may not be 

feasible to use for data hungry applications. On the other hand, advantage of LPWAN is its long 

coverage range and therefore, sensor node can communicate with the base station without multi-hop 

link. LPWAN allows different devices to connect to the network and is feasible for applications like 

Smart Cities due to its long range.  In this work, we have tested LoRa technology for implementing 

the smart controller for commercial building. 

LoRa  
LoRa is a spread spectrum technique which has been designed by Semtech Corporation to work in 

433 MHz, 868 MHz and 915 MHz. Lora is a physical layer LPWAN solution which is derivative of 

Chirp Spread Spectrum (CSS) [12]. LoRa has shown resistant against Doppler effect and multipath 

fading.  

Random Neural Networks 
Gelenbe [13][14]  proposed a new class of Artificial Neural Network (ANN) as Random Neural 

Network (RNN) in which signals are either +1 or -1. RNN is a black box learning technique which is 

based on concepts of probability theory applied to Markovian Queuing Theory.  Applications of RNN 

were reported for modelling, optimization, pattern recognition and communication [15]. The details 

about RNN architecture and exchange of signals between the neurons are presented in [13][14]. 

In the RNN, signal travels in the form of impulses between the neurons. If the receiving signal has 

positive potential (+1) it represents excitation, and if the potential of the input signal is negative (-1) it 

represents inhibition to the receiving neuron. Each neuron i in the RNN has a state ki(t) which 

represents the potential at time t. This potential ki(t) is represented by a non-negative integer. If ki(t) 

>0 then neuron i is in excited state and if ki(t) = 0 then neuron i is in idle state.  

For a three layered network, the probability that neuron I is in excited state i.e., qi is calculated as: 

                                           (9) 

                (10) 

                         (11) 



Where I, H and O denote the sets of Input, Hidden and Output layers respectively, and 

 ri is the firing rate of neuron i, Ʌi is arrival rate of external positive signals, λi is 

arrival rate of external negative signals. 

Training Algorithm for RNN: Hybird Particle Swarm Optimization with 

Sequential Quadratic Programming 
Many researchers have used a Gradient Descent (GD) algorithm for learning the weights of an RNN 

model. The GD algorithm is relatively easy to implement but zigzag behaviour may cause it to be 

stuck near a local minimum for the problems with multiple local minima. The evolutionary algorithms 

are used for solving optimization problem. These techniques are better than gradient base techniques 

as as they do not get stuck in local minima. The Particle Swarm Optimization (PSO) algorithm 

performs well in finding the global minimum but it might be slow to converge to the global minimum 

while in the presence of multiple local minima, Sequential Quadratic Programming (SQP) 

optimization method usually converges to local minima. The problem of slow convergence of PSO 

and local minima problem of SQP optimization is addressed by the hybridization of PSO and SQP 

optimization algorithm [9]. 

Architecture of Cloud Enabled Smart Controller for HVAC 
The smart controller has modular architecture and is easily expandable. The basic modules for the 

smart controller are: base station, environment monitoring sensor node, HVAC duct sensor node, 

gateway, and cloud platform for data representation, storage and RNN model training. The 

architecture of the cloud enabled smart controller is shown in Fig. 1.  

Environment Monitoring Sensor Node 
An environment monitoring sensor node monitors light intensity, temperature, humidity and CO2 

inside the room. The Environment monitoring sensor was designed to transmit the sensor’s 

information to the base station after every 1 minute at 915 MHz using ISM transceiver and LoRa 

transceiver shown in Fig 2(a) and Fig 2(b).  

HVAC Duct Sensor Node 
An HVAC duct sensor node monitors inlet air of the HVAC coming from the HVAC duct. The sensor 

node monitors CO2, temperature and humidity of the inlet air coming from the HVAC duct. The 

implemented HVAC duct sensor node is shown in Fig 2(c).  

Base Station 
A base station receives information from an environment monitoring sensor node, HVAC duct sensor 

node and controls actuators of the HVAC. The base station uploads the data of sensor nodes to a web 

portal. RNN models were trained on cloud platform and weights of trained RNN models were 

transferred to the base station. The control algorithm was implemented with multiple RNN models 

integrated on the base stations i.e. RNN occupancy estimator, RNN PMV based setpoint Estimator, 

RNN HVAC control model.  

RNN Occupancy Estimator: 
The RNN model is used for estimating the number of occupants. The RNN Occupancy estimator 

calculates the number of occupants inside the room by using the CO2 and temperature values received 

from the environment monitoring sensor node and HVAC duct sensor node. The RNN model is 

trained with the dataset collected from the environment test chamber located in Glasgow Caledonian 



University. The RNN model has four neurons in the input layer, five neurons in the hidden layer and 

one neuron in the output layer. The inputs for the RNN model are: 1) CO2 concentration in the room, 

 

Fig. 1: Architecture of Smart Controller 

                
(a)                                              (b)                                                       (c) 

Fig 2: (a) Environment Monitoring Sensor Node with RFM 69W transceiver (b) Environment Monitoring Sensor Node with 
LoRa Transceiver, (c)  HVAC Duct Sensor Node with RFM 69W transceiver   

Webportal for Data 
Representation & 

feedback from User

Computation Unit, 
Training of RNN 

Models

D
a

ta
b

a
se

Gateway

Base Station
Trained RNN models for Occupancy 

Estimation, PMV setpoint
Estimator, and HVAC Control

Sensor Nodes 
Temperature, CO2 , Humidity 

measurement from 
Room and HVAC Duct

Actuation Devices: 
HVAC

Cloud



2) temperature of the room, 3) CO2 concentration in the HVAC duct, 4) temperature of the air coming 

from the HVAC duct and output of the RNN model is the number of occupants. The RNN model is 

trained with the hybrid PSO-SQP and MSE is 1.28 e-02.  

RNN PMV Setpoint Estimator 
Fanger developed seven points index of comfort/discomfort which is dependent on six variables [16]. 

In this work, training data set is generated by using Fanger equation for PMV. To reduce the human 

interference, we assumed the typical office environment. Therefore, clothing insulation of 0.8, 

metabolic rate of 1.1, and air velocity of 0.15 m/s are assumed to be constant. After generating a 

training dataset, RNN is trained with PMV and humidity as an input and temperature as an output. A 

2-4-1 RNN is trained with hybrid PSO-SQP training algorithm. In this work, PMV of -0.1,-0.3,-0.5 is 

tested for heating setpoint and PMV of 0.3, 0.5 and 0.7 is tested for cooling set point. The RNN PMV 

based setpoint estimator is implemented on the base station. The estimated setpoints from the RNN 

model were used by RNN HVAC control model for controlling the HVAC. In this work, when a PMV 

value of -0.5 was selected the estimated setpoints for temperature were varied between 22.34
o
C and 

22.47
o
C. 

Cloud Services 
The base station of the WSN was interfaced with the cloud platform. Training of RNN models was 

done on a cloud platform and trained weights of RNN were transferred to the base station. For each 

sensor node, the web portal (http://sensors.traceallglobal.com/) displayed Node ID, upload time in 

milli seconds (the time sensor node was powered), light intensity, CO2 concentrations, temperature, 

humidity, dewpoint temperature, data receiving time, motion sensor, heating setpoint, cooling 

setpoint, heating output for HVAC, cooling output for HVAC, ventilation output for HVAC, and 

number of occupants in the room. 

Results 
The smart controller maintained comfortable indoor environment in a building by maintaining PMV 

based setpoints for heating/cooling, by controlling ventilation and reduced energy consumption by 

estimating occupancy in a building. If room was unoccupied, the smart controller turned off the the 

HVAC thereby reducing energy consumption. The smart controller used RNN occupancy estimator 

for estimating number of occupants, RNN PMV based Setpoint Estimator for estimating PMV based 

setpoints for heating and cooling. The RNN HVAC control model was used for controlling the 

HVAC.  The performance of the LoRa transceiver was compared in term of energy consumption, 

memory consumption, packet loss and coverage. In this work, the performance of the smart controller 

was evaluated in an environment chamber located in Glasgow Caledonian University, UK. Details of 

the environment test chamber are shown in [9]. The training dataset for RNN models was collected 

from the environment test chamber controlled with a simple thermostat. 

Occupancy Estimation with RNN  
CO2 concentration increases in the environment chamber when the chamber is occupied but CO2 

concentration drops slowly when the occupant leaves the room. Due to this non-linear behaviour the 

occupancy estimation is a very challenging task. The occupancy estimation with RNN model was 

tested in an environment chamber for five days between 10:00 AM to 6:00 PM. The environment test 

chamber was occupied up to 3 persons during the test. The ground truth values for number of 

occupants were recorded manually to calculate the accuracy. The experiment results are shown in Fig. 

3. Accuracy of the occupancy estimation with RNN model was 78.5% (i.e. when occupancy 

estimation with RNN was equal to the actual occupancy inside the test chamber).  



 

Fig. 3: Occupancy Estimation by Smart Controller 

HVAC Control 
The smart controller can maintain the PMV based heating/cooling setpoints and user defined 

heating/cooling setpoints. The upper threshold for heating setpoint and lower threshold for heating 

setpoint were implemented. The HVAC turned on the heating to reach the upper threshold of the 

heating setpoint for test chamber and the heating remains turned off until reaching the lower threshold 

for the heating setpoint (i.e. heating setpoint -1
o
C). The performance of the smart controller was 

evaluated for maintaining the PMV based heating setpoints in an environment test chamber.  

Comparison of Energy Consumption 
The energy consumption of HVAC with RNN based smart controller was compared with the energy 

consumption a simple thermostat. The smart controller maintained the heating/cooling setpoint if 

smart controller detected the occupancy using RNN occupancy estimator. During the test the setpoint 

for heating was 23 
o
C and for cooling was 26 

o
C. The occupancy pattern was kept same both for both 

the smart controller and the simple thermostat. The indoor air temperature of the test chamber is 

shown in Fig 4. 

 

Fig. 4: Indoor air temperature of an environment chamber maintained by Smart Controller 



The energy consumption using the smart controller was 30.16 KWh, while the energy consumption 

using the simple thermostat was 36.12 KWh. Using the smart controller, HVAC consumed 19.76% 

less energy. The simple thermostat maintained the air temperature between the heating and cooling 

setpoint during 10:00 hrs to 18:00 hrs whereas due to occupancy estimation algorithm, the smart 

controller turned on the HVAC at 10:30 AM and switched off the HVAC at 16:00 hrs. 

Indoor Coverage Analysis of LoRa Transceiver 
Coverage analysis of LPWAN is crucial for estimating the number of gateways during deployment.  

Most of the work for coverage analysis of LoRa has been done in outdoor settings [17],[18]. In this 

work, we have conducted experimental tests inside a building to evaluate the coverage range of both 

LoRa and the RFM 69HW transceiver. Experiment results were collected in George Moore Building 

at Glasgow Caledonian University which is an eight-floor building.  A base station was placed in an 

office on fifth floor of George Moore Building. The coverage range of a LoRa transceiver was 

evaluated against different transmission powers (i.e., 13 dBM, 14dBM, 15dBM, 16 dBM and 17 

dBM).  Power consumption of the LoRa transceiver at different transmission power was also 

evaluated. The battery life of the sensor nodes of the smart controller with LoRa transceiver and ISM 

transceiver (RFM 69W) were compared. For comparison, the transmission period of packets was set 

to 1 minute.  Comparison of coverage range, transmission power, battery consumption and packet loss 

is shown in Table 1.  LoRa has low data transmission rate and for this work, transmission time of 

packet was 70 ms whereas for RFM 69HW transceiver, transmission time was 8 ms. Due to this, 

energy consumption of the LoRa transceiver was 5.87% more than RFM 69HW transceiver. Coverage 

analysis of LoRa transceiver was also done for checking the transmission range within different floors 

of building. It was found that sensor node with LoRa transceiver managed to transmit a packet from 

ground floor of the building to base station located on fifth floor of building at distance of 97 meters. 

Implementation of sensor node with LoRa transceiver consumed 30330 bytes of program memory and 

1616 bytes of RAM whereas, implementation of sensor node with RFM69HW transceiver consumed 

24028 bytes of program memory and 758 bytes of RAM. 

Table 1: Comparison of Battery Consumption, Coverage Range and Packet Loss of LoRa transceiver and RFM 69HW 
transceiver 

 Transmission 
Power 
(dBM) 

Transceiver 
Current 
 (mA) 

Coverage 
Range 
(m) 

Packet 
Loss (%) 

Battery 
Consumption -4 AA 
cells (hours)  

Sensor Node with 
LoRa transceiver 

13 98.69 90 16.67 1107 

Sensor Node with 
LoRa transceiver 

14 105.21 90 11.12 1105.5 

Sensor Node with 
LoRa transceiver 

15 109.56 90 6.67 1104.7 

Sensor Node with 
LoRa transceiver 

16 111.3 90 0 1104 

Sensor Node with 
LoRa transceiver 

17 111.3 90 0 1104 

Sensor Node with 
RFM 69HW 
transceiver 

20 119.5 56 66.67 1172 

 



Conclusion 
In this work, a smart controller for HVAC of a commercial building was developed with LoRa. The 

smart controller maintained comfortable indoor air environment by maintaining PMV based setpoints 

for heating/cooling and reduced energy consumption by switching off the HVAC when room was 

unoccupied.  Results showed that smart controller reduced the energy consumption of the building by 

19.8%. Communication between sensor nodes and base station was done using LoRa transceiver. 

Information from sensors, control variables for HVAC and number of occupants was uploaded on the 

web portal. Performance of LoRa was evaluated in George Moore building of Glasgow Caledonian 

University for coverage analysis, battery consumption, and packet loss. Performance of LoRa was 

also compared with RFM 69HW transceiver in terms of battery consumption, coverage range and 

packet loss. We found that the LoRa transceiver at transmission power of 17 dBM consumed 6.15% 

more battery than did the RFM 69HW transceiver but had zero packet errors and a coverage range 

that was 60.7% more than the RFM 69HW transceiver. Due to the increased coverage range within 

buildings, the cost of the smart controller is reduced as a LoRa based smart controller requires fewer 

base stations, as a result LoRa is preferred for implementing the smart controller for commercial 

buildings.  
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