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Several age predictors based on DNA methylation, dubbed epigenetic clocks, have been created in recent

years. Their accuracy and potential for generalization vary widely based on the training data. Here, we gathered

143 publicly available data sets from several human tissues to develop AltumAge, a highly accurate and precise

age predictor based on deep learning. Compared to Horvath’s 2013 model, AltumAge performs better across

both normal and malignant tissues and is more generalizable to new data sets. Interestingly, it can predict

gestational week from placental tissue with low error. Lastly, we used deep learning interpretation methods

to learn which methylation sites contributed to the final model predictions. We observed that while most

important CpG sites are linearly related to age, some highly-interacting CpG sites can influence the relevance

of such relationships. We studied the associated genes of these CpG sites and found literary evidence of their

involvement in age-related gene regulation. Using chromatin annotations, we observed that the CpG sites with

the highest contribution to the model predictions were related to heterochromatin and gene regulatory regions

in the genome. We also found age-related KEGG pathways for genes containing these CpG sites. In general,

neural networks are better predictors due to their ability to capture complex feature interactions compared to

the typically used regularized linear regression. Altogether, our neural network approach provides significant

improvement and flexibility to current epigenetic clocks without sacrificing model interpretability.
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One of the leading challenges in the field of aging research is measuring age accurately. Accompanying1

healthy individuals for decades to assess whether an intervention affects the aging process is prohibitive in2

terms of time and funding. The creation of the ‘epigenetic clocks’, age predictors that use DNA methylation3

data, has given researchers a tool to quantitatively measure the aging process. Moreover, recent works [1]4

have demonstrated precise epigenetic editing based on CRISPR with targeted DNA methylation or demethy-5

lation. Consequently, epigenetic clocks have the potential of not only measuring aging but guiding epigenetic6

interventions.7

Notably, two of the most well-known predictors are the ones developed by Hannum et al. [2] and Horvath8

[3] in 2013. Hannum et al. [2] developed a blood-based epigenetic clock using 71 CpG sites. Then Horvath9

[3] showed epigenetic clocks could also accurately predict age across tissues, developing a predictor with 35310

CpG sites. Both of these works used simple regularized linear regression (ElasticNet) for feature selection and11

prediction [4]. More recent epigenetic clocks that predict mortality also use a linear combination of features12

[5, 6]. ElasticNet has been widely used to develop epigenetic clocks [2, 3, 5–9]. Nevertheless, simple linear13

regression typically displays high bias and fails to capture non-linear feature-feature interactions in the data.14

Interactions among variables can be taken into account by expanding the feature space with feature multi-15

plication. However, incorporating pairwise CpG site interactions is unfeasible given the high dimensionality of16

DNA methylation data. For his model, Horvath [3] selected 353 CpG sites out of 21,368; to account for all17

pairwise interactions. If such a model used the entire data, then it would have over 228 million features. The18

large feature space is especially challenging given the relatively low number of publicly available DNA methyla-19

tion samples. Given the complexity of the epigenetic regulatory network, it is likely that important interactions20

among CpG sites are not captured in the current epigenetic clocks developed thus far.21

Recently, Galkin et al. [10] showed that a deep neural network model, DeepMAge, was slightly superior22

to Horvath’s model in blood samples. However, the authors compared Horvath’s pan-tissue predictor to a23

model trained only in blood DNA methylation data. Moreover, there was no in-depth exploration of why their24

deep learning model outperformed the ElasticNet model. Similarly, Levy et al. [11] developed a deep learning25

framework to work with DNA methylation data that encodes the CpG sites into latent features for downstream26

analysis. They showed encouraging results for age prediction using a multi-layer perceptron; however, they27

investigated only one data set obtained from white blood cells. Therefore, currently, our understanding of the28

advantages of neural networks for this task in a pan-tissue setting is limited.29

We introduce AltumAge, a deep neural network that uses beta values from 21368 CpG sites for pan-tissue30

age prediction (summarized in Figure 1 (a)). We hypothesized that a neural network using all available CpG sites31

1
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would be better suited to predict pan-tissue age using DNA methylation data due to their ability to (1) capture32

higher-order feature interactions and (2) leverage important information contained in the thousands of CpG33

sites not selected by ElasticNet models. AltumAge uses multi-layer perceptron layers (similar to [5, 10]) that34

account for non-linear interactions by combining multiple features into each node of the network. We trained35

AltumAge on samples from 143 different experiments, which, to our knowledge, is the largest compilation of36

DNA methylation data sets for human age prediction. The publicly available data were obtained from multiple37

studies that used Illumina 27k and Illumina 450k arrays.38

We show that AltumAge has a far lower error and can better generalize to new data sets than ElasticNet39

models. It also performs substantially better than Horvath’s model for age prediction across different normal40

and cancer tissues. AltumAge is particularly accurate early in life when it can even measure gestational week41

with a low error. Finally, we apply Shapley-value based interpretation method, called SHAP [12], on AltumAge42

to determine the contributions of different features towards age prediction (summarized in Figure 1 (b)). We43

confirm that the most important CpG sites have complex interactions involved when predicting age.44

Results45

Given that neural networks can capture complex variable interactions, model different data structures, and46

generally perform better than other machine learning models, we hypothesized that the same would be true47

for age prediction with DNA methylation data. For model selection, several machine learning models were48

trained and validated. The hyperparameters of the neural networks were tuned, and the best performer based49

on both the median absolute error (MAE) and mean squared error (MSE) was dubbed AltumAge. We ran some50

traditional machine learning methods, including random forest and support vector regression with different51

hyperparameters. The best performing models were chosen for comparison with AltumAge (see Methods and52

Supplementary Table S1).53

Performance54

AltumAge is a better age predictor than linear models55

Differences in performance among epigenetic clocks can generally be explained by the data, the model, and the56

input CpG sites. We used the same training and test sets for each model to control for the data, as our large and57

diverse DNA methylation data might improve performance compared to other epigenetic clocks. Therefore, we58

compared the impact of the model and the number of CpG sites used for the input. We trained AltumAge and59

2
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Figure 1: AltumAge model and interpretation. (a) DNA methylation data from Illumina 27k and 450k arrays are
normalized with BMIQ and centered at mean zero and variance one. Then 21368 CpG sites are selected as the
input of the model. The information is processed through a first hidden layer with 256 nodes and the remaining
seven with 64 nodes. The values of the last hidden layer nodes are combined into a single node as the age output
in years. (b) For interpretation, a Shapley-values-based method, called SHAP [12], is used to determine how
the methylation status of a specific CpG site affects the age output of AltumAge. Relevant CpG sites generally
present a primarily linear relationship (left) with the predicted age. However, interacting CpG sites can change
such relationships. In some instances, we find that when a secondary CpG site is hypermethylated (middle), the
methylation status of the first CpG is irrelevant for age prediction; when it is hypomethylated (right), then the
methylation status becomes essential.

a linear model using three different sets of CpG sites - (1) 353 Horvath’s CpG sites, (2) 799 ElasticNet-selected60

CpG sites, and (3) All the 21,368 CpG sites. The results are summarized in Table 1.61

Using the same set of CpG sites as features makes it easier to compare the performance of the two models62

3
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Table 1: Evaluation metrics of AltumAge and different linear models in the test set. The median absolute error
(MAE) and the median error are in units of year, while the mean squared error (MSE) is in units of year-squared.

Model CpGs MAE MSE R Median Error

AltumAge 21368 1.926 29.614 0.980 -0.024
AltumAge with ElasticNet CpGs 799 2.194 33.638 0.977 -0.031
AltumAge with Horvath’s CpGs 353 2.638 39.724 0.973 0.011

ElasticNet 799 2.911 44.211 0.970 0.033
Linear Regression with Horvath’s CpGs 353 3.230 52.680 0.964 0.026

directly. AltumAge outperformed the respective linear model with Horvath’s CpG sites (MAE = 2.638 vs.63

3.230, MSE = 39.724 vs. 52.680), ElasticNet-selected CpG sites (MAE = 2.194 vs. 2.911, MSE = 33.63864

vs. 44.211), and all 21,368 CpG sites (MAE = 1.926 vs. 87.000, MSE = 29.614 vs.1.639e+20). Overall, the65

neural network approach outperformed the linear models in all instances. Moreover, for AltumAge, we observed66

that incorporating more CpG sites reduced the error. This result suggests that the expanded feature set helped67

improve the performance because relevant information in the epigenome is likely not considered in the couple68

hundred CpG sites selected by an ElasticNet model. Lastly, it is possible to compare the impact of using larger,69

more varied training data on the performance of an epigenetic clock. A linear regression using Horvath’s 35370

CpG sites trained in our data from 143 datasets outperformed Horvath’s model trained on 39 datasets (MAE71

= 3.230 vs. 3.672; MSE = 52.680 vs. 76.023). These results suggest that even though more data lowers the72

prediction error, AltumAge’s performance improvement is far superior to that effect.73

AltumAge is a better age predictor than state-of-the-art epigenetic clocks74

Horvath’s model has been widely used as it is seen as the state-of-the-art pan-tissue epigenetic clock for humans75

[13–16]. Therefore, it is essential to contrast it with AltumAge. We applied AltumAge and Horvath’s model76

to our data set obtained from 143 experminet. As shown in Figure 2a, AltumAge performs considerably better77

overall, with a 47.4% lower MAE and 60.6% lower MSE (MAE = 1.926 vs. 3.672, MSE = 29.614 vs. 76.023).78

AltumAge is also more robust than Horvath’s model across tissue types, with fewer tissues having high79

MAE. In his 2013 paper, Horvath noticed poor calibration of his model in breast, uterine endometrium, dermal80

fibroblasts, skeletal muscle, and heart [3]. In our test data, a similarly poor predictive power was found for81

these tissue types with Horvath’s model (breast MAE = 9.462; uterus MAE = 5.804; fibroblast MAE = 10.804;82

muscle MAE = 9.470; heart not included). AltumAge, on the other hand, had much lower errors (MAE =83

4.014, 2.887, 4.621, 2.480 respectively). Furthermore, Horvath’s model had an MAE of over 10 years in 4584

tissue types in the test data. AltumAge, on the other hand, had MAE > 10 in only three tissue types. AltumAge85

4
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Figure 2: Plots showing the improved performance of AltumAge in comparison to Horvath’s model and Elastic-
Net. Top left (A): scatter plot of the absolute error per test sample with AltumAge and Horvath’s model. The
black line separates the region in the graph in which AltumAge performs better (bottom right) versus where
Horvath is superior (top left). The red line is a 100-sample rolling average. AltumAge outperforms Horvath’s
model, particularly in difficult-to-predict data. Top right (B): scatter plot of the predicted age of each model
versus the real age for data sets that had a gestational week available. Zero age is equivalent to gestational
week 40. The black line represents the location where the predicted age equals the real age. As shown, Al-
tumAge’s predictions are considerably closer to the black line. Bottom (C): point plot showing the LOOCV
median absolute error in each of the 143 data sets with AltumAge and an ElasticNet model. Bars represent the
standard deviation of the absolute error. A dot below a bar represents data sets in which AltumAge had a lower
error than the linear model. For 61.5% of data sets, AltumAge is the better performer.

is also a better age predictor in cancer samples (Supplementary Table S2). Even though the MAE is only slightly86

improved (MAE = 6.574 vs. 7.429), the MSE is much lower (MSE = 162.961 vs. 289.819).87

Supplementary Figure S1 in particular shows how AltumAge, in contrast to Horvath’s model, performs well88

in older ages. Better performance in older age is fundamental in defining biomarkers of age-related diseases89

of which age is the biggest risk factor. Horvath’s model systematically underestimates such population, partly90

5
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Table 2: Evaluation metrics for blood-based data sets in DeepMAge and AltumAge, including the sample size
(N) used in each test set for each model. The numbers for DeepMAge are reported from the paper [10]. The
median absolute error (MAE) and the median error are in units of year, while the mean squared error (MSE) is
in units of year-squared.

Data set DeepMAge N AltumAge N DeepMAge MAE AltumAge MAE DeepMAge R AltumAge R

GSE34639 48 20 1.92 0.08 0.89 0.986

GSE99624 16 19 2.72 2.134 0.93 0.901
GSE99624 99 40 3.74 3.084 0.81 0.681
All test blood 1293 2805 2.77 2.283 0.97 0.975

due to CpG saturation (beta value approaching 0 or 1 in certain genomic loci) [17]. Another reason might91

be the paper’s assumption that age-related CpG changes are linearly correlated with age after 20 years of92

age. AltumAge resolves these two problems by incorporating an expanded feature set and not using any age93

transformation function that creates a bias in the data processing.94

Interestingly, AltumAge is also accurate in predicting age in early life (Figure 2b, Supplementary Table S3).95

The MAE of 0.058 years, or 21.2 days, was achievable through a fine-grained encoding of age based on the96

gestational week in the 12 data sets where it was available. In the US in 2013, the average birth occurred at97

an estimated 38.5 weeks [18]. This number has changed slightly over time, and since preterm deliveries skew98

the average more than late-term births, we considered gestational week 40 as age 0 in such data sets. The99

resultant error is markedly lower than the 0.302 year MAE of Horvath’s model. Overall, AltumAge outperforms100

Horvath’s Model for young and old ages, for which the study of age-related factors can be beneficial.101

Additionally, we report AltumAge results in comparison to DeepMAge, as it is a recent deep-learning model102

with an architecture similar to AltumAge [10]. The model code for DeepMAge is not publicly available, nor103

the description reproducible. Therefore, we were only able to contrast the reported results in the paper for104

our overlapping test data sets (Table 2), as DeepMAge is a blood-based epigenetic clock. We observe that105

AltumAge gives lower MAE for all the selected datasets and higher correlation for two out of four datasets.106

Note that the performance is not directly comparable due to different training and test sizes. However, we107

hypothesize that this improvement is likely due to the pan-tissue training data.108

AltumAge is more generalizable than ElasticNet models109

Leave-one-data-set-out cross-validation (LOOCV) provides a way to understand the generalization of a model110

to new data sets. In this case, one out of the 143 data sets in the training set was left out of model fitting to111

predict the age for the test set of left out data set. To find the performance of a specific model type across112

all data sets, 143 different models were consequently fitted for each model type (Figure 2c, Table 3). LOOCV113

6
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Table 3: Leave-one-data-set-out cross validation evaluation metrics for AltumAge (with different number of
CpG sites), ElasticNet, and the average of AltumAge and ElasticNet. The median absolute error (MAE) and
the median error are in units of year, while the mean squared error (MSE) is in units of year-squared.

Model MAE MSE R Median Error

AltumAge and ElasticNet Mean 3.336 66.949 0.955 0.060
AltumAge 3.620 76.364 0.948 0.016

AltumAge with ElasticNet CpG sites 3.856 78.524 0.946 -0.054
ElasticNet 3.878 77.339 0.947 0.162

tests how the model performs for unseen data sets.114

Since AltumAge uses 21368 CpG sites, it is expected to be more prone to noise and overfitting than a model115

with low variances, such as ElasticNet regression, with only a subset of CpG sites. Nevertheless, its MSE is116

almost identical (MSE = 76.364 vs. 77.339), with AltumAge slightly outperforming its MAE (MAE = 3.620117

vs. 3.878).118

Given similar results, AltumAge may be simply learning the information contained in the ElasticNet model.119

One way to determine how similar the predictions of both models are is to look at their correlation of predic-120

tions. However, as both AltumAge and ElasticNet are correlated with age, they are inevitably highly correlated121

(Pearson’s correlation coefficient (r) = 0.999). The residuals of each model, in contrast, are not correlated122

with age by definition. Analyzing the correlation between the residuals of each model can show how similar123

the predictions are. The residuals of each model are only moderately correlated (r = 0.739). AltumAge, when124

trained with only the selected features from the ElasticNet regression, performed similarly (MAE = 3.856, MSE125

= 78.524), and the residuals were more correlated with the ElasticNet residuals (r = 0.806). Interestingly, by126

averaging the ElasticNet and AltumAge predictions, the performance is further improved, with MAE and MSE127

14.0% and 13.4% lower (MAE = 3.336, MSE = 66.949).128

As the results of the LOOCV weigh more heavily larger data sets, which are typically blood samples, it is129

also worth looking at the median of the evaluation metrics for the 143 data sets. A model might be performing130

extremely well in those large data sets but might have a high error for smaller data sets, skewing the overall131

MAE and MSE. The median data set MAE (MMAE) and median data set MSE (MMSE) are useful metrics132

for this evaluation. MMAE and MMSE can be more informative in regards to generalization to new data sets.133

AltumAge with the whole set of CpGs or only a subset performed similarly (MMAE = 4.216 vs. 4.187), while134

the ElasticNet had the highest (MMAE = 4.484). AltumAge had a lower MAE in 61.5% of data sets. A135

similar result is observed with MMSE, with AltumAge outperforming the ElasticNet model (MMSE = 40.367136

vs. 58.904).137

7
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There does not seem to be specific tissue types in which AltumAge, because of the high number of param-138

eters, performs notably worse than the ElasticNet model (Supplementary Figure S9). AltumAge had at least139

a 50% worse MAE than ElasticNet in data sets spanning 14 tissue types, while ElasticNet had at least a 50%140

worse MAE in 46. The overlap consisted of 7 tissue types. These results suggest that AltumAge can better141

generalize to new tissue types and data sets than ElasticNet models.142

Inference143

Neural networks, particularly in the context of deep learning, used to be seen as “black-box” methods, as their144

interpretability was difficult. On the other hand, regardless of the predictive power of ElasticNet models, they145

are easily understandable. Recently, various methods have been proposed to extract the contribution of features146

towards a prediction in neural networks. They include interpretation based on model gradients [19–21], attention147

[22], among others. One such inference method is SHAP [12], which uses a game-theoretic approach to aid148

in the explanation of machine learning methods. It can measure how one feature contributes to the output of149

deep neural networks. For our case, the SHAP value can be conceived as how much the value of one CpG site150

affects the age output of the model in years. Through the architecture of neural networks, it can also determine151

which CpG sites most highly interact with each other.152

To support the results obtained by SHAP, we also applied another method of determining feature importance153

called DeepPINK [23]. It works by comparing the original features with fake features. The knockoff features can154

be generated in many different ways, as long as they simulate the original data structure but are not related to the155

output. DeepPINK contrasts the relevance of the fake features against the regular input features to determine156

which ones are truly related to the output. It can also be used for feature selection with a controllable false157

discovery rate (FDR). It is worth highlighting the difficulty in feature selection in DNA methylation data. Most158

experiments have a couple dozen or a couple hundred samples. Depending on the type of platform used, the159

number of beta values for the CpG sites analyzed can vary from around 27 thousand to around 850 thousand.160

DeepPINK, even with a high FDR of 0.5, only selects 78 features. The fact that other sets of CpG sites unrelated161

to Horvath’s 353 also perform similarly well emphasizes the difficulty in finding the “true” age-related CpG sites.162

We present results for model inference using SHAP that assist with understanding AltumAge. These results163

are supported by the importance scores obtained from DeepPINK.164
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AltumAge captures important CpG-CpG interactions165

As epigenetic modifications can significantly influence gene expression, they can also impact genes that affect166

other epigenetic changes. Some CpG sites interact with others through the gene expression network and can167

work in tandem. AltumAge, through SHAP, can measure how hyper- or hypomethylation of secondary CpG168

sites affect the relationship of a CpG of interest and age.169

Figure 3 shows scatter plots of the nine most important CpG sites based on SHAP-based importance170

values. These nine CpG sites are representative of other similarly important sites and account for 0.60% of the171

total model importance according to SHAP (or 9.78% for DeepPINK, see Supplementary Figure S2). These172

dependence plots show both the relationship of a CpG site with the predicted age and how that relationship can173

be affected by the value of a second CpG site for a DNA methylation sample. This secondary CpG site has the174

highest interaction with the first CpG site, as determined by SHAP. As observed, most of the CpG sites have175

a mostly linear relationship to the output. This observation explains how ElasticNet, even typically displaying176

high bias, can perform well in age prediction with DNA methylation data. However, some relationships are not177

completely linear. For instance, the first and fourth most important CpG sites (cg22736354 and cg06493994,178

Figures 3a and 3b) have a slight curvature for the lower standardized beta values, even though the plot is179

mostly linear. Moreover, some of the CpG sites are interacting with others to determine how relevant they are180

for age. For example, in the third and sixth most important CpG sites (cg10523019 and cg13460409, Figures181

3c and 3f), the value of another CpG site (cg26394940) determines how important they are for age prediction.182

The standardized beta value for cg26394940 affects the final output by changing the slope of the relationship,183

with a higher value of cg26394940 decreasing the influence of cg10523019 and cg13460409 on the age output.184

Overall, SHAP shows that the non-linear interaction between CpG sites may partly explain the improvement in185

the performance of neural networks compared to linear models.186

Note that despite their important effects on the predicted age, some of the CpG sites that interact with187

the most important CpG sites are themselves not particularly relevant for the output. For instance, the188

cg26394940 mentioned above ranks 385 and 1113 according to SHAP and DeepPINK, respectively, out of189

21368. cg01464985, the CpG site with the highest interaction with three out of the top nine CpGs, ranks 2741190

and 11582 according to SHAP and DeepPINK. Therefore, an ElasticNet model would likely not select CpG sites191

whose beta values themselves are not directly relevant but are critical in their influence on other important CpG192

sites. Supplementary Figure S3 displays their dependence plots, showing how little their SHAP values directly193

affect age. These results suggest that DNA loci that regulate other loci in aging are relevant for age prediction194

and may be missed by linear models.195
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Lastly, it is possible to understand better the function of particular genes based on their SHAP relations.196

The aforementioned cg01464985 is located in the gene ZNF512, a zinc finger nuclease that likely regulates197

gene transcription. Consequently, the methylation status of ZNF512, while not directly important to age, may198

regulate how crucial other genes are to aging. An even clearer picture can be deduced from the cg26394940199

located inside the genes PRR34/PRR34-AS1, which code for long noncoding RNAs (lncRNAs). From the200

SHAP dependence plots only, it is possible to hypothesize that PRR34/PRR34-AS1 regulates the genes in201

which cg10523019 (Figure 3(c)) and cg13460409 (Figure 3(f)) are located (RHBDD1 and RIPPLY3), and when202

PRR34/PRR34-AS1 is hypermethylated, its expression is lowered, and the methylation status of cg10523019203

and cg13460409 is not that relevant anymore for aging. While not much is known about PRR34/PRR34-AS1,204

PRR34-AS1 seems to increase expression of the longevity-related transcription factor FOXO3 through inhibition205

of miR-498 [24]. Furthermore, RHBDD1 is a direct target of FOXO3 in humans [25]. This fact may explain why206

when cg26394940 (PRR34-AS1) is hypermethylated, the methylation status of cg10523019 (RHBDD1) does207

not contribute as much to age, likely due to downregulation of FOXO3. In any case, laboratory experiments208

would have to be performed to more thoroughly characterize these relationships; however, it is possible to obtain209

data-driven hypotheses from these dependence plots.210

Characterization of CpG sites by model interpretation211

CCCTC-Binding factor (CTCF) is a transcription factor involved in the negative regulation of several cellular212

processes. It also contributes to long-range DNA interactions by affecting chromatin architecture. Important213

CpG sites are overwhelmingly closer to CTCF binding sites (Supplementary Figure S4). This suggests that214

epigenetic alterations proximal to such loci may alter chromatin packing by affecting CTCF binding, as chromatin215

structure modifications have been associated with aging [26].216

Because of the close relationship between chromatin and aging, we hypothesized that different chromatin217

states would influence the importance of each CpG site. ChromHMM is a Hidden Markov Model used for the218

characterization of chromatin states [27]. Annotations for several cell lines and tissue types are widely available219

online. Since AltumAge is a pan-tissue epigenetic clock, we used the mode of the 18-state annotation from 41220

different tissues obtained from ENCODE for each CpG location [28] (Supplementary Figure S5, Supplementary221

Table S4). The Kruskal-Wallis H-test (see Methods) confirms our hypothesis with both SHAP and DeepPINK222

importance values (H = 406.0, p = 9.91e-76; H = 52.9, p = 1.49e-5). The chromatin state with the highest223

DeepPINK normalized median importance was heterochromatin (DeepPINK importance = 2.04e-14%, top 64th224

percentile of all CpG sites). DeepPINK, because of the L1 regularization in the algorithm, tends to reduce non-225
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Figure 3: Dependence plots of the nine most important CpG sites (a-i) in AltumAge based on SHAP values.
They are ordered from top left to bottom right in terms of importance. The x-axis shows the standardized beta
values for each specific CpG site; the y-axis, its SHAP value, and the coloring scheme, the standardized beta
values for the CpG site with the highest interaction. The effect of a specific CpG site on the predict age can
vary drastically based on a second CpG site.

relevant feature importance towards zero, and there were only 29 CpG sites characterized as heterochromatic.226

Despite these limitations, this result emphasizes the importance of chromatin packing with aging, as it is227

related to genome stability and maintenance. The chromatin state with the highest SHAP normalized median228

importance was the 5’ flanking region (SHAP importance = 4.58e-3%, top 62nd percentile of all CpG sites).229

This region contains promoters and sometimes enhancers and is, thus, typically involved in gene regulation.230

The importance of each CpG site to age prediction does not seem related to chromosome number for both231

SHAP and DeepPINK importance values according to the Kruskal-Wallis H-test (H = 23.2, p = 0.33; H =232

25.2, p = 0.24).233

Importance values were also divided by gene type as some genes, e.g. transposable elements, are associated234

with aging (Supplementary Figure S6, Supplementary Table S5). Several categories, such as scaRNA, have very235
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few instances since only a couple of the 21368 CpG sites analyzed were contained within scaRNA genes, making236

the results difficult to interpret. Nevertheless, some observations should be noted. The gene types with the237

highest DeepPINK normalized mean importance with over 100 CpG sites are protein-coding genes, lncRNAs,238

unprocessed and processed transcribed pseudogenes. It is expected that protein-coding genes would constitute239

the bulk of important age-related CpG sites, but it is interesting that lncRNAs, many known to be implicated240

in the aging process, are also highly important [29].241

Aging-related pathways242

One of the main interpretation advantages of AltumAge, compared to other ElasticNet models, is that it uses243

21368 CpG sites. CpG sites in aging-related genes are often not selected within the couple dozen or couple244

hundred features of an ElasticNet model, thus making analyses of these CpG sites of interest impossible.245

AltumAge allows a closer look at the relationship of CpG sites in aging-related pathways even when these CpG246

sites are not particularly important for the final age prediction.247

SIRT, mTOR, and AMPK are some of the most well-known pathways that affect aging [30–32]. Out of248

Horvath’s 353 CpG sites, only one from these pathways was selected (cg11299964, located in MAPKAP1).249

Nevertheless, it is worth analyzing the relative importance of the other CpG sites in the aging-related pathway.250

Unexpectedly, all of the CpG sites in SIRT genes do not appear very relevant, at least directly, for age251

prediction using AltumAge. Located in SIRT2, cg27442349, accounting for 0.01302% of the total SHAP252

importance and ranked 954, has the highest SIRT SHAP importance value (Supplementary Figure S7). Located253

in SIRT7, cg21770145, accounting for 7.89e-12% of total DeepPINK importance and ranked 1426, has the254

highest SIRT DeepPINK importance value (Supplementary Figure S7).255

Out of the 67 proteins participating in the mTOR signaling pathway according to the PID Pathways data256

set [33], cg11299964, located in MAPKAP1, has the highest SHAP importance of 0.023%, ranking 149. It was257

the only CpG site from the three main age-related pathways used in Horvath’s model. cg05546044, located258

in MAPK1, has the highest DeepPINK importance of 0.029%, ranking 233. Surprisingly, mTOR was not259

particularly relevant, with its most important CpG site being cg07029998 (SHAP importance = 0.00811%, rank260

3149; DeepPINK importance = 1.12e-12%, rank 2610) (Supplementary Figure S7).261

In terms of the AMPK pathway, out of the proteins that directly activate or inhibit AMPK from the KEGG262

database [34], cg22461835, located in ADRA1A, has the highest SHAP importance of 0.019%, ranking 257.263

All AMPK-related CpG sites had low (less than 10e-13%) DeepPINK importance values.264

Overall, out of all the CpG sites located in SIRT genes, none was significant. In the mTOR and AMPK265
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pathways, some genes were relatively important, ranking in the top 300. We performed KEGG pathway analysis266

on the genes related to the top-ranking nine CpG sites using KEGGMapper [35]. We found the following genes267

associated with three of them - NHLRC1 involved in proteolysis; NDUFS5, involved in metabolic pathways,268

including oxidative phosphorylation and thermogenesis; and FZD9, involved in a range of age-related diseases,269

including cancer and neurodegeneration. Note that DNA methylation affects gene expression depending on its270

position. A methylated CpG site in an enhancer, promoter, or gene body may impact gene regulation differently.271

These findings may shine a light on how methylation in specific loci in aging-related pathways can contribute272

to age prediction, an insight that is not possible to obtain using regular ElasticNet models.273

Discussion274

The creation of new quantitative aging measurements has been rapidly expanding with the burgeoning field of275

the biology of aging. Epigenetic clocks are a tool that can aid researchers to understand better and to measure276

the aging process. In 2013, Horvath showed it was possible to use just a couple of CpG sites to predict a person’s277

age based on DNA methylation accurately. It was a giant leap in the field. However, his 2013 ElasticNet model278

or other versions that rely on linear models are still widespread despite recent advances in machine learning. The279

accuracy of such linear models was so good that it was difficult to imagine a model significantly outperforming280

it [36]. Other deep learning methods, which slightly outperform ElasticNet models, have focused thus far only281

in a single tissue type [10] [11].282

We show that AltumAge is overall a better age predictor than the original 2103 pan-tissue epigenetic clock.283

There are several reasons, including (1) the more comprehensive and larger data for training the model; (2)284

the capability of neural networks to detect complex CpG-CpG interactions; and (3) the expanded feature set285

with 21368 CpG sites instead of 353. The improved performance of AltumAge LOOCV against an ElasticNet286

model was not as substantial as in the test set. This is likely because of the difficulty in generalizing to new287

datasets. There are several data preprocessing and experimental effects that differentiate the DNA methylation288

among studies. ElasticNet models, which have low variance, are better able to accommodate such differences.289

Nevertheless, many studies, especially for specific species, create entirely new epigenetic clocks. In those cases,290

neural networks are vastly superior to simple linear models.291

Deep learning models have shown promise in several biological tasks, given their good performance on292

unstructured data. They have been for many years seen as “black-box” models, but new tools have made it293

possible to get insights as profound, if not more detailed, than simple ElasticNet models. AltumAge provides294

a detailed relationship between each one of 21368 CpG sites and age, showing that while most CpG sites are295
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mostly linearly related with age, some important ones are not. Given recent advances in epigenetic editing [1],296

finding the sweet spot for DNA methylation to delay or reverse aging may be necessary for future interventions297

to tackle the disease. AltumAge allied with other deep learning inference methods can provide information on298

highly interacting CpG sites. The primary locus of an epigenetic editing intervention, given its place in the299

genome, may be difficult to target because of the chromatin structure. Consequently, knowing secondary CpG300

sites that affect how the CpG of interest interacts with age can also guide such interventions. We show that301

one can obtain biological hypotheses for the same from the data using AltumAge. For example, we observe302

that cg26394940 located inside the genes PRR34/PRR34-AS1 could regulate genes with sites cg10523019303

(RHBDD1) cg13460409 (RIPPLY3). Analysis of ChromHMM annotations shows that the top-ranking CpG304

sites are associated with heterochromatin and gene regulatory regions. Finally, we also highlight the age-related305

KEGG pathways obtained for genes with these CpG sites, indicating that the model is learning valuable biological306

information from the data.307

In future work, it would be interesting to create a deep learning model with Illumina’s EPIC array with the308

roughly 850 thousand CpG sites to understand more deeply how genomic location can affect influence in aging.309

By having several CpG sites in a single gene, it is also possible to better understand how methylation in different310

positions may affect the contribution of a particular gene to the aging process. Currently, however, there are311

only a few EPIC array publicly available data sets.312

Overall, we have shown that deep learning represents an improvement in performance over current approaches313

for epigenetic clocks while at the same time providing new, relevant biological insights about the aging process.314

Methods315

DNA methylation data sets316

In total, we gathered 143 publicly available data sets from the Gene Expression Omnibus, Array Express, and The Cancer Genome317

Atlas, totaling 15090 normal and 1057 cancer samples. DNA methylation data from the Illumina Infinium HumanMethylation27318

BeadChip and the Illumina Infinium HumanMethylation450 BeadChip platforms were used. 21368 CpG sites from both platforms319

were selected from each array, similarly to Horvath’s 2013 paper [3]. The data was normalized using the beta mixture quantile320

normalization (BMIQ) with the optimized code from Horvath, called BMIQCalibration [3, 37]. Then, each data set was split 60%321

for training (n = 8999), of which one third was used for model validation, and 40% for testing (n = 6091). To validate and train322

the final neural networks, the beta value of each CpG site was scaled so that the mean would equal zero and variance, one. The full323

list of data sets used is available in the paper’s GitHub repository (https://github.com/rsinghlab/AltumAge).324

For twelve data sets in which gestational week was available, the encoding for age is the following:325

y = 7 ∗
w − 40

365
(1)
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where w is the gestational week, and y is the age in years. A gestational week below 40 would have negative age; for instance, 30326

weeks would be encoded as 7 ∗ (30− 40)/365 = −0.192.327

CpG site annotation328

For the annotation of CpG sites, GENCODE and Zhou et al’s annotations were used [38, 39]. 41 data sets from ENCODE with the 18-329

state ChromHMM information were gathered [28]. Since AltumAge is a pan-tissue clock, the mode of each state was chosen for each330

CpG site. This is the list of accession codes: ENCFF717HFZ, ENCFF718AGZ, ENCFF371WNR, ENCFF318XQO, ENCFF340OUL,331

ENCFF893CAJ, ENCFF151PZS, ENCFF098CED, ENCFF273PJW, ENCFF377YFI, ENCFF773VYR, ENCFF928QES, ENCFF786HDE,332

ENCFF827FZN, ENCFF364PIY, ENCFF802QCI, ENCFF021NNN, ENCFF510ZEI, ENCFF175NGE, ENCFF670DBL, ENCFF825ZCZ,333

ENCFF912ILE, ENCFF725WBV, ENCFF829SZB, ENCFF483NRC, ENCFF717RYX, ENCFF249ZBG, ENCFF205OTD, ENCFF765OKG,334

ENCFF820YPQ, ENCFF685BMF, ENCFF545ZMG, ENCFF294UQS, ENCFF104ZSA, ENCFF370EGY, ENCFF860FWW, ENCFF177TTP,335

ENCFF151ZGD, ENCFF743GHZ, ENCFF990YHL, and ENCFF036WIO.336

Model selection337

Since virtually only papers using ElasticNet for epigenetic clocks have been published, multiple different machine learning models338

were tested in the validation set. The evaluation metrics were median absolute error (MAE), mean squared error (MSE), Pearson’s339

correlation coefficient (R), and median error.340

To select the best performing model, we tried some traditional machine learning methods, including random forest and support341

vector regression, alongside neural networks with different hyperparameters. All code was written in Python 3.8.6 with packages342

numpy version 1.20.3 and pandas version 1.2.4 and ran with the arm64 Mac M1 processor.343

The non-neural network models were trained with package scikit-learn version 0.24.1. They were: support vector regression344

with all features; random forest with all features; ElasticNet with hyperparameter λ selected with cross validation with 20 values;345

ElasticNet with λ so that the number of features selected was 353; linear regression with Horvath’s 353 CpG sites.346

All the neural networks were trained with tensorflow version 2.4.0. They were trained using the Adam optimizer (learning347

rate = 0.0001) for 1000 epochs, with an early stopping if the validation loss did not improve after 400 epochs.348

Holding constant the learning rate, the maximum number of epochs, and the activation function (ReLU), the number of fully-349

connected hidden layers was varied from two to eleven and the number of nodes per layer from 64 to 512. The neural networks350

converged at around 400 epochs and did not overfit if trained for longer. The performance of the best architectures was similar, so351

the one with 256 nodes for the first hidden layer and 64 nodes for the other seven hidden layers was chosen to balance performance352

and ease of training. Then, the ReLU activation function was compared with SeLU, with the latter improving all evaluation metrics.353

Finally, as batch normalization typically assists with training for deep neural network, we tried to add it between hidden layers.354

However, the performance decreased. Therefore, we dubbed the deep neural network with 256 nodes for the first hidden layer and355

64 nodes for the following seven layers with SeLU activation as AltumAge.356

Another handful of models were also validated: AltumAge using only Horvath’s 353 CpG sites; AltumAge using only the selected357

CpG sites from the cross-validated ElasticNet; and AltumAge using the 78 CpG sites selected by DeepPINK with a false discovery358

rate (FDR) of 0.5. Lastly, Horvath’s model was validated based on the instructions from Horvath’s paper [3].359

The validation metrics with the full list of models is in Supplementary Table S1. Support vector regression was by far the worst360

performer (MAE = 7.07, MSE = 186.631), being the only model with Pearson’s correlation coefficient below 0.9. Random forest361
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and Horvath’s model were the next poorest predictors (MAE = 4.366, MSE = 78.494 vs MAE = 3.637, MSE = 74.581). Next,362

AltumAge with 78 CpG sites selected by DeepPINK was a slight improvement over Horvath’s model, even using 78% fewer features.363

The worst performing neural network with only two hidden layers and 64 nodes in each had an MSE less than half of Horvath’s364

model (MSE = 33.648 vs MSE = 74.581), and a much lower MAE (MAE = 2.279 vs MAE = 3.637). The model with both the365

lowest MAE and MSE was AltumAge using all 21368 CpG sites (MAE = 2.071, MSE = 30.075). Based on these results from the366

validation set, AltumAge with all features performed the best.367

The final models used in the test set from Table 1 were identically as in model validation, with the exception that the neural368

networks did not have early stopping.369

SHAP and DeepPINK370

To obtain the SHAP values for AltumAge, the python package shap version 0.35.0 was used. With the entire training data set, the371

function GradientExplainer resulted in all SHAP values. For the DeepPINK importance values and feature selection, the standard372

architecture and number of epochs was used [23]. To create the knockoff features for DeepPINK, the function knockoff.filter373

from the R 4.0.2 package knockoff version 0.3.3 was used with the importance statistic based on the square-root lasso.374

Both SHAP and DeepPINK importance values were normalized so that their sum would equal to 100. Therefore, each importance375

value represents a percent contribution of a certain feature.376

Equations377

ElasticNet models are trained by minimizing the following loss function:378

L(β̂) =

∑n

i=1
(yi − β̂T

xi)
2

2n
+ λ

(

1− α

2

m
∑

j=1

β̂2

j + α

m
∑

j=1

|β̂j |

)

, (2)

where n is the number of samples, m is the number of independent variables (CpG sites), y is the dependent variable (age), x is379

the vector of independent variables (beta values for each CpG site), β̂ is the vector of estimated coefficients in the linear regression,380

α is a parameter for the proportion of L1 to L2 penalty, and λ is a hyperparameter. As observed in the left side of Equation 2, only381

the linear combination of the model coefficients with the CpG sites, β̂T
x, is minimized, without considering feature interactions.382

The number of combinations can be calculated as:383

(

m

k

)

=
m!

k!(m− k)!
, (3)

where m is the number of features and k = 2 for pairwise interactions only.384

Shannon’s information entropy has the formula:385

S = −
∑

i

(β ∗ log(β)) (4)

where S is the entropy, β is each CpG beta value, and i = 21368.386
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Statistical Analysis387

Given that the importance values grouped by ChromHMM state and chromosome do not fulfill the assumption of homoscedasticity,388

we used the Kruskal-Wallis H-test, which is a non-parametric version of ANOVA, for such tests. The Kruskal-Wallis H-test is more389

flexible despite having lower statistical power. The H statistic and p-value were computed using the function kruskal with standard390

parameters from python package scipy version 1.6.2.391

To assess the performance of the models, we used median absolute error (MAE), mean squared error (MSE), median error, and392

Pearson’s correlation coefficient (R). For the LOOCV, we also used two other statistics to compare the models, namely the median393

data set MAE (MMAE) and the median data set MSE (MMSE), which can inform on the expected performance of the model in a394

new data set.395

Data and Code Availability396

The list of all the data sets used, a summary of the results per data set, and detailed instructions to run AltumAge can be found397

in the paper’s GitHub repository (https://github.com/rsinghlab/AltumAge). The GitHub also links to a Google Drive where our398

gathered DNA methylation data is publicly available.399
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Supplementary Information507

Entropy508

It has been shown that the DNA methylation entropy is correlated with aging rate in blood tissue [2]. Entropy509

sits at the corner of the Information Loss Theory of Aging [40], which purports that the aging process is caused510

by loss of epigenetic information.511

Here, it is possible to determine the relationship between the entropy of the DNA methylation beta values512

of the 21368 CpG sites and age through SHAP. AltumAge was fitted again with all CpG sites plus Shannon’s513

information entropy (Equation 4), and SHAP values were obtained. The dependence plot is shown in Figure S8.514

It has a similar profile as the ones for the other features, being mostly linear with the slope being determined515

by other CpGs. The top three interacting CpG sites are cg14244577, cg01511567, and cg26394940, located in516

DDX19A, SSRP1, and MIRLET7BHG and PRR34. The first is an RNA helicase. The second makes part of517

FACT, a chromatin transcriptional elongation factor. It interacts with histones H2A/H2B to effect nucleosome518

disassembly and transcription elongation. MIRLET7BHG and PRR34 are genes that code for long non coding519

RNAs. Surprisingly, the entropy of the 21368 CpG sites, according to SHAP values, appears to be generally520

negatively correlated with age. This goes contrary to Hannum et al.’s results [2]. Moreover, when cg14244577521

is highly methylated, entropy had almost no relationship to AltumAge’s output. These differences might arise522

for some reasons. Hannum et al. only used blood DNA methylation from the Illumina 450k array, whereas I523

used DNA methylation data from multiple tissues. Another reason is the difference in Hannum et al.’s direct524

correlation between age and entropy, as opposed to understanding how entropy interacts with CpG sites to525

determine a person’s age. In AltumAge specifically, it appears that a higher entropy is negatively related with526

age.527

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.06.01.446559doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446559
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1: Evaluation metrics for all models in the validation set. The median absolute error (MAE) and the
median error are in units of year, while the mean squared error (MSE) is in units of year-squared.

Model CpGs MAE MSE R Median Error

AltumAge 21368 2.071 30.075 0.98 0.012
512-512-512-512 21368 2.08 30.906 0.979 0.021
256-64-64-64-64-64-64-64-64-64-64-64 21368 2.111 30.917 0.979 0.022
256-256-256-256 21368 2.113 31.261 0.979 0.007
256-64-64-64-64-64-64-64-64-64 21368 2.118 30.922 0.979 -0.016
256-256-256 21368 2.129 31.069 0.979 0.029
512-512 21368 2.135 31.471 0.979 -0.01
256-64-64-64-64-64-64-64 21368 2.145 31.492 0.979 -0.007
AltumAge with BatchNorm 21368 2.145 30.249 0.98 -0.536
512-512-512 21368 2.147 30.822 0.979 -0.009
128-128-128 21368 2.152 31.595 0.979 0.107
256-64-64-64 21368 2.155 32.033 0.978 -0.016
256-64-64-64-64-64 21368 2.167 31.6 0.979 -0.028
256-256 21368 2.181 31.472 0.979 0.128
64-64-64-64 21368 2.19 31.562 0.979 -0.035
64-64-64 21368 2.199 32.052 0.978 -0.1
128-128-128-128 21368 2.206 31.0 0.979 -0.065
AltumAge with ElasticNet CpGs 1504 2.227 30.899 0.979 -0.012
128-128 21368 2.228 32.341 0.978 0.04
64-64 21368 2.279 33.648 0.977 0.084
AltumAge with Horvath’s CpGs 21368 2.705 41.144 0.972 -0.027
ElasticNet 1504 2.768 40.422 0.972 0.041
ElasticNet with 353 CpGs 353 3.031 59.034 0.96 0.037
Linear Regression with Horvat’s CpGs 353 3.33 54.359 0.963 0.099
AltumAge with DeepPINK CpGs 78 3.422 61.028 0.959 -0.003

Horvath’s 2013 Model [3] 353 3.637 74.581 0.949 -0.135
Random Forest 21368 4.366 78.494 0.947 -0.142
Support Vector Regression 21368 7.07 186.631 0.877 -0.209

Table S2: Evaluation metrics for AltumAge and Horvath’s model in the cancer data sets. The median absolute
error (MAE) and the median error are in units of year, while the mean squared error (MSE) is in units of
year-squared.

Model MAE MSE R Median Error

AltumAge 6.574 162.961 0.620 -0.454
Horvath’s 2013 Model [3] 7.429 289.819 0.522 0.389

Table S3: Evaluation metrics for AltumAge and Horvath’s model in the test data with labeled gestational week.
The median absolute error (MAE) and the median error are in units of year, while the mean squared error (MSE)
is in units of year-squared. One outlier, with MAE > 40 years for both models, was removed to avoid skewing
the statistics.

Model MAE MSE R Median Error

AltumAge 0.058 0.634 0.302 -0.049

Horvath’s 2013 Model [3] 0.302 6.754 0.206 -0.262
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Figure S1: Scatter plot showing the improved performance of AltumAge in comparison to Horvath’s 2013 model
for older ages. The black line represents the location where the predicted age equals the real age. AltumAge’s
predictions are generally closer to the black line. Horvath’s predictions tends to give lower performance in higher
ages.
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Figure S2: Histograms of the normalized importance values of all AltumAge CpG sites according to SHAP
and DeepPINK. The red line represents the threshold for the top nine CpG sites. These have a much higher
importance than most other CpG sites.
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Figure S3: Dependence plots of two CpG sites that interact highly with some of the most important CpGs in
AltumAge based on SHAP values. The x-axis shows the standardized beta values for each specific CpG site; the
y-axis, its SHAP value, and the coloring scheme, the standardized beta values for the CpG site with the highest
interaction. cg26394940, left, has the highest interaction with two of the top nine most important CpG sites;
cg01464985, with three. Their overall SHAP values are low, generally less than 0.2 in magnitude.
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Figure S4: Scatter plots of the normalized importance values of the top 1000 most important CpG sites according
to SHAP and DeepPINK by distance to CTCF binding site in basepairs. The importance of each CpG site tends
to decline the farther away it is from the closest CTCF binding site.
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Figure S5: Box plots of SHAP and DeepPINK normalized importance values by ChromHMM state. Outliers
were removed for better figure visualization. No specific ChromHMM state stands out in importance.
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Table S4: List of ChromHMM states by ChromHMM state ID.

ChromHMM state ID ChromHMM state

1 Active TSS
2 Flanking TSS
3 Flanking TSS Upstream
4 Flanking TSS Downstream
5 Strong transcription
6 Weak transcription
7 Genic enhancer1
8 Genic enhancer2
9 Active Enhancer 1
10 Active Enhancer 2
11 Weak Enhancer
12 ZNF genes and repeats
13 Heterochromatin
14 Bivalent/Poised TSS
15 Bivalent Enhancer
16 Repressed PolyComb
17 Weak Repressed PolyComb
18 Quiescent/Low
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Figure S6: Box plots of SHAP and DeepPINK normalized importance values by GENCODE gene type. It is
difficult to visualize any effect since very few CpG sites were located in genes of certain types, leading to high
error bars.
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Table S5: List of GENCODE gene types by gene ID index.

Gene type ID Gene type

1 IG C gene
2 IG C pseudogene
3 IG V gene
4 IG V pseudogene
5 TEC
6 TR C gene
7 TR V gene
8 TR V pseudogene
9 lncRNA
10 miRNA
11 miscRNA
12 polymorphic pseudogene
13 processed pseudogene
14 protein coding
15 pseudogene
16 rRNA pseudogene
17 scaRNA
18 snRNA
19 snoRNA
20 transcribed processed pseudogene
21 transcribed unitary pseudogene
22 transcribed unprocessed pseudogene
23 translated unprocessed pseudogene
24 unitary pseudogene
25 unprocessed pseudogene
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Figure S7: SHAP dependence plots of three CpG sites in SIRT2, SIRT7, and MTOR. The x-axis shows the
standardized beta values for each specific CpG site; the y-axis, its SHAP value, and the coloring scheme, the
standardized beta values for the CpG site with the highest interaction. These are the most important CpG sites
according to SHAP for AltumAge in the SIRT and MTOR pathways.
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Figure S8: Dependence plot of the SHAP values for Shannon’s entropy (standardized). Its impact on the final
model output, regardless of the value, is minimal, below 0.03 years in magnitude.
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Figure S9: Box-and-whisker diagram showing the LOOCV absolute error per tissue type with AltumAge and an
ElasticNet model. The box shows the top quartile, median, and bottom quartile, while the whiskers encompass
a maximum of 1.5 times the inter-quartile range. For ease of visualization, outliers outside of the whiskers range
were removed. A dot below a bar represents data sets in which AltumAge had a lower error than the linear
model. For 53 out of 78 tissue types (67.9%), AltumAge performed better.
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