

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/121357

Gracia-Morán, J.; Saiz-Adalid, L.; Gil Tomás, DA.; Gil, P. (2018). Improving Error Correction
Codes for Multiple-Cell Upsets in Space Applications. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems. 26(10):2132-2142.
https://doi.org/10.1109/TVLSI.2018.2837220

http://doi.org/10.1109/TVLSI.2018.2837220

Institute of Electrical and Electronics Engineers

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Currently, faults suffered by SRAM memory

systems have increased due to the aggressive CMOS integration
density. Thus, the probability of occurrence of Single Cell Upsets
(SCUs) or Multiple Cell Upsets (MCUs) augments. One of the
main causes of MCUs in space applications are cosmic radiation.
A common solution is the use of Error Correction Codes (ECCs).
Nevertheless, when using ECCs in space applications, they must
achieve a good balance between error coverage and redundancy,
and their encoding/decoding circuits must be efficient in terms of
area, power and delay.

Different codes have been proposed to tolerate MCUs. For
instance, Matrix codes use Hamming codes and parity checks in a
bi-dimensional layout to correct and detect some patterns of
MCUs. Recently presented, Column-Line-Code (CLC) has been
designed to tolerate MCUs in space applications. CLC is a
modified Matrix code, based on extended Hamming codes and
parity checks. Nevertheless, a common property of these codes is
the high redundancy introduced.

In this work, we present a series of new low-redundant ECCs
able to correct MCUs with reduced area, power and delay
overheads. Also, these new codes maintain, or even improve,
memory error coverage with respect to Matrix and CLC codes.

Index Terms—Error Correction Codes, Multiple Cell Upsets,
Fault Tolerance, Reliability

I. INTRODUCTION
RESENTLY, the continued physical feature size
downscaling of CMOS technology provides memory

systems with a great storage capacity. Nevertheless, this size
decreasing has also caused an augment in the memory fault
rate [1][2]. With the present aggressive scaling, the memory
cell critical charge and the energy needed to provoke a Single
Event Upset (SEU) in storage have been reduced [3]. As
shown by different experiments, in addition to traditional
Single Cell Upsets (SCUs), this energy reduction can provoke
Multiple Cell Upsets (MCUs), that is, simultaneous errors in
more than one memory cell induced by a single particle hit
[4][5][6][7][8].

In the case of space applications, the MCU problem must be

Manuscript received December 26, 2017. This work was supported in part

by the Spanish Government under the research project TIN2016-81075-R.
All authors are with Instituto ITACA, Universitat Politècnica de València,

Camino de Vera s/n, 46022 Valencia, Spain.
E-mail: { jgracia, ljsaiz, dgil, pgil }@itaca.upv.es
Mailing address: Escuela Técnica Superior de Ingeniería Informática,

Edificio 1G, Despacho 2S7, Universitat Politècnica de València, Camino de
Vera s/n, 46022 Valencia, Spain.

taken into account for the design of the corresponding fault
tolerance methods, as space is an aggressive environment
subjected to the impact of high energy cosmic particles
[4][7][9].

Traditionally, Error Correction Codes (ECCs) have been
used to protect memory systems. Common ECCs employed to
protect standard memories are Single Error Correction (SEC)
or Single Error Correction-Double Error Detection (SEC-
DED) codes [11][12][13]. SEC codes are able to correct an
error in one single memory cell. SEC-DED codes can correct
an error in one single memory cell, as well as they can detect
two errors in two independent cells.

In critical applications, like space applications, more
complex and sophisticated codes are used
[14][15][16][17][19][20][21]. For instance, Matrix code [17]
is a well known code that combines Hamming codes with
parity check in a matrix, allowing the correction of two bits in
error. Recently presented, Column-Line-Code (CLC) [19]
follows a similar approach, that is, it uses extended Hamming
codes and parity bits to correct up to two adjacent bits in error.

The main problem when memory systems employ an ECC
is the redundancy required. The extra bits added are used to
detect and/or correct the possible errors occurred. Also,
redundant bits must be added for each data word stored in
memory. In this way, the amount of storage occupied for
redundant bits scales with the memory capacity. For example,
if an ECC with 100% of redundancy is employed in a 2GB
memory, only 1GB is available to store the payload (the
“clean” data); the remaining 1GB is required for code bits.

In addition, the usage of an ECC implies overheads in the
area, power and delay employed by the encoder and decoder
circuits. These overheads must be maintained as low as
possible, especially in space applications.

In this work, we present a series of ECCs that greatly
reduces the redundancy introduced, while maintaining, or even
improving, memory error coverage. In addition, area, power
and delay overheads are also reduced. These new codes have
been designed using the Flexible Unequal Error Control
(FUEC) methodology, developed by the authors in [31], where
an algorithm (and a tool) to design FUEC codes is introduced.
FUEC codes are an improvement of the well known Unequal
Error Control (UEC) codes [11]. Nevertheless, the FUEC
methodology can also find other kinds of codes. In this paper,
it is employed to find low redundancy codes. These novel
codes are different than those presented in [31]. They only
share the design methodology, but with different parameters.

Improving Error Correction Codes for Multiple
Cell Upsets in Space Applications

J. Gracia-Morán, L.J. Saiz-Adalid, D. Gil-Tomás, P.J. Gil-Vicente, Member, IEEE

P

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

In this way, by using the tool, we can generate the parity
check matrix of an ECC in an automatic and efficient way,
just defining its error detection and/or correction capabilities.

This work is organized as follows. Section II introduces the
design of ECCs. Section III summarizes the codes used in this
work. Section IV describes the different results obtained
during the evaluation of the ECCs. Finally, Section V
concludes this paper.

II. INTRODUCTION TO THE DESIGN OF ERROR CORRECTION
CODES

A. Background on Error Correction Codes for Space
Applications

Different ECCs have been traditionally applied to space
missions [20]. For instance, Berger code [22] or the well
known Parity code have been used for detection purposes.

On the other hand, when error correction is needed, more
complex codes can be used, such as Hamming [12][20],
Hadamard [23], Repetition [24], Golay [25], BCH [24], Reed-
Solomon [24], Reed-Muller [21], multidimensional [26] or
Matrix [17] codes.

Hamming codes [12] can be easily built for any word
length. Also, the encoding and decoding circuits are easy to
implement. Their main drawback is that only one bit in error
can be corrected. Nevertheless, for common data word lengths
(8, 16, 32, 64), Hamming codes can detect some double error
patterns, in addition to the single error correction. Exploiting
this feature, it is possible to systematize the detection of 2-bit
adjacent errors with the same redundancy, as presented in
[27][28]. In these works, different ECCs based on Hamming
codes are introduced. These ECCs allows the correction of
single bit errors, or the detection of 2-bit adjacent errors with
the same redundancy.

The main problem of Hadamard and Repetition codes
[23][24] is that they introduce a great redundancy for common
data word lengths [20]. This great redundancy provokes the
necessity of a great memory storage capacity, which is an
inconvenient for space applications.

Golay code [25] is able to correct up to 3-bit errors.
Nevertheless, Golay code presents a redundancy of almost
100%. Also, this code presents a high time and power
consuming ratio, as it has to execute sequentially two
complementary sequences.

Although BCH and Reed-Solomon codes [24][38] can
correct multiple errors, their main drawbacks are the great
complexity and difficulty to implement them, as well as their
great latency and speed. These weaknesses can be very
problematic in space applications.

Concerning Reed-Muller codes [21], although vastly used
in critical applications, they present a great complexity. In this
way, the overheads introduced are higher than the overheads
introduced by Matrix or CLC codes, as shown in [17][19].

Multidimensional codes [26] are a class of matrix codes that
uses parity bits to detect and correct errors. With a low
redundancy, these codes present several drawbacks. When
more than two errors must be corrected, the code design is

very complicated. Also, it is very difficult to adapt these codes
to standard data word sizes (i.e. 16, 32 or 64 bits).

A better alternative are the Matrix codes based on Hamming
codes [17][19]. These codes still present a great redundancy,
but they are more cost effective than previous multiple-error
correcting codes.

In this work, we have designed several new ECCs using the
FUEC methodology [31]. The main characteristic of these new
codes is their low redundancy. In order to check the behavior
of our codes, we have compared them with two types of codes.
On the one hand, with matrix codes based on Hamming codes,
as these last codes present a good relationship between
redundancy and area, power and delay overheads. On the other
hand, with Hamming-based codes due to the very low
redundancy of these codes.

B. Basics on Coding Theory
An (n, k) binary ECC encodes a k-bit input word in an n-bit

output word [29]. The input word u = (u0, u1, …, uk–1) is a k-bit
vector which represents the original data. The codeword b =
(b0, b1, …, bn–1) is a vector of n bits, where the (n – k)
redundant bits added are called parity or code bits. b is
transmitted across an unreliable channel which delivers the
received word r = (r0, r1, …, rn–1). The error vector e = (e0, e1,
…, en–1) models the error induced by the channel. If no error
has occurred in the ith bit, ei=0; otherwise, ei=1. In this way, r
can be interpreted as r = b ⊕ e. Fig. 1 synthesizes this
encoding, channel crossing and decoding process.

Fig. 1. Encoding, channel crossing and decoding process.

The parity check matrix H(n – k)×n of a linear block code
defines the code [11]. For the encoding process, b must
accomplish the requirement H·bT=0. For syndrome decoding,
the syndrome is defined as sT=H·rT, and it exclusively
depends on e:

sT = H·rT = H·(b ⊕ e)T = H·bT ⊕ H·eT = H·eT (1)

There must be a different s for each correctable e. If s=0, we
can assume that e=0. Therefore, r is correct. Otherwise, an
error has occurred. Syndrome decoding is performed by
addressing a lookup table that relates each s with the decoded
error vector 𝐞�. The decoded codeword 𝐛̂ is calculated as
𝐛̂ = 𝐫 ⨁ 𝐞�. From 𝐛̂, it is easy to obtain 𝐮� just discarding the
parity bits. If the fault hypothesis employed to design the ECC
is consistent with the channel behavior, 𝐮� and u must be equal
with a very high probability.

C. Error models
In coding theory [11], the term random error commonly

refers to one or more bits in error, distributed randomly in the
encoded word (data bits plus code bits generated by the ECC).
Random errors can be single (only one bit affected) or
multiple. Single errors are the simplest ones, as they only

Encoder Lookup
Table

u +

e

b r s
+e b̂^Syndrome

Calculation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

affect a single memory cell. They are commonly produced by
single event upsets (SEU, in random access memories) or
single event transients (SET, in combinational logic) [32].

As it was commented in the Introduction section, with the
continuous increasing of the integration scale, multiple errors
are becoming more frequent [4][5][6][7][8]. Multiple errors
mainly manifest as bursts [34]. We can define a burst error as
a multiple error that spans l bits in a word [11], i.e. a group of
contiguous bits where, at least, the first and the last bits are in
error. The separation l is known as burst length. Notice that
adjacent errors are a particular type of burst errors where all
the erroneous bits are contiguous. The main physical causes of
a burst error in the context of RAM memories are diverse:
high energy cosmic particles that hit some neighbor cells,
crosstalk between adjacent cells, etc. [1][33].

D. Hamming codes
Hamming codes [12] are able to correct single bit errors

with the lowest redundancy. For example, the parity check
matrix for the Hamming (7, 4), i.e. n = 7 and k = 4, is shown
in (2).

𝐇 = �
1010101
0110011
0001111

� (2)

From (2), it is easy to deduce the encoding and decoding
operations. The encoding formulas are shown in TABLE I.

TABLE I
ENCODING FORMULAS FOR THE HAMMING (7, 4) CODE

b0 b1 b2 b3 b4 b5 b6 Encoding formulas
 u0 u1 u2 u3

1 0 1 0 1 0 1 b0 = u0 ⊕ u1 ⊕ u3
0 1 1 0 0 1 1 b1 = u0 ⊕ u2 ⊕ u3
0 0 0 1 1 1 1 b3 = u1 ⊕ u2 ⊕ u3

In the same way, it is also possible to obtain the syndrome

decoding formulas from the parity check matrix (2). TABLE
II shows the expressions obtained to calculate the syndrome
bits for the Hamming (7, 4) code.

TABLE II
SYNDROME BITS FOR THE HAMMING (7, 4) CODE

r0 r1 r2 r3 r4 r5 r6 Syndrome bits
 u0 u1 u2 u3

1 0 1 0 1 0 1 s0 = r0 ⊕ r2 ⊕ r4 ⊕ r6
0 1 1 0 0 1 1 s1 = r1 ⊕ r2 ⊕ r5 ⊕ r6
0 0 0 1 1 1 1 s2 = r3 ⊕ r4 ⊕ r5 ⊕ r6

If an error occurs, the syndrome bits will locate the

erroneous bit. A look-up table (implemented, for example,
using a binary decoder) selects the erroneous bit. Applying the
“exclusive-or” operation, the output of the look-up table
correct the erroneous bit.

For common word lengths, such as 8, 16, 32 and 64 bits,
there exist (12, 8), (21, 16), (38, 32) and (71, 64) Hamming
codes respectively. As it can be seen, redundancy decreases
with longer data words. For instance, the (12, 8) Hamming
code presents a 50% of redundancy, whereas the (71, 64)
Hamming code introduces about 11% of redundancy.

Hamming codes can be extended to correct single errors and
detect double random errors. These codes are known as SEC-
DED (Single Error Correction-Double Error Detection)
Extended Hamming codes [12]. These codes need an
additional parity bit to achieve the double error detection. It is
calculated as the even parity for the whole encoded word. In
this way, and just adding an extra bit b7, the Hamming SEC
code (7, 4) shown previously converts into an extended
Hamming SEC-DED code (8, 4). b7 can be obtained as
follows:

 b7 = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ b6 (3)

The decoding process checks two conditions: i) the parity of
the whole received word; and ii) the syndrome bits, which are
calculated as in the Hamming code. TABLE III shows the
possible results, the corresponding meaning and the actions to
be taken. As it can be seen, single-bit errors can be corrected
as in the Hamming code. In the case of a double-bit error, a
non-recoverable error (NRE) is detected but it cannot be
corrected.

TABLE III
EXTENDED HAMMING ERROR DETECTION/CORRECTION

SYNDROME
BITS

PARITY
(WHOLE
WORD)

EVENT ACTION

Zero Even NO ERROR -

Zero Odd SINGLE ERROR
(in the parity bit) -

Nonzero Even
TWO-BIT ERROR
(non-recoverable

error)

Disable correction
logic

Signal the error

Nonzero Odd SINGLE ERROR
(in bits 0 to 6)

Enable correction
logic

There exist also (13, 8), (22, 16), (39, 32) and (72, 64) SEC-

DED extended Hamming codes. As in the SEC codes,
redundancy decreases with higher data word lengths.

E. Flexible Unequal Error Control methodology
The methodology employed to design the error control

codes introduced in this work can be found in [31]. This
methodology was developed to obtain Flexible Unequal Error
Control (FUEC) codes. However, it can be generalized to find
any kind of codes. Although a detailed explanation is out of
the scope of this paper, it is briefly summarized in the
following. This methodology is based on formulating the
problem as a Boolean Satisfiability problem. An algorithm
developed by the authors is employed to solve it and to obtain
a parity check matrix, which defines the code to be designed.

After defining the values of n and k for the code, the first
step is the selection of error patterns to be corrected and
detected. For instance, single errors are represented with error
vectors (…1…), and error vectors for double random errors
show the pattern (…1…1…), where 1’s represent the bits in
error, and the dots represent the correct bits.

The next step is to find the parity check matrix H that
satisfies the conditions (4) and (5), where 𝑬+ represents the set
of error vectors to be corrected, and 𝑬∆ is the set of error

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

vectors to be detected. That is, each correctable error must
generate a different syndrome (4). In addition, each detectable
error must generate a syndrome which is different to all the
syndromes generated by the correctable errors (5). However,
several detectable errors may have the same syndrome.

 jiji
T
j

T
i eeeeeHeH ≠∈∀⋅≠⋅ + |,; E (4)

 +∆ ∈∈∀⋅≠⋅ EE ji
T
j

T
i eeeHeH ,; (5)

To find the matrix, a recursive backtracking algorithm is
used. It checks partial matrices and adds a new column only if
the previous matrix satisfies the requirements. In this way, the
algorithm starts with an empty partial_H matrix. New
columns, with n–k rows, are added, and the new partial
matrices are checked recursively. The added columns must be
non-zero, so there are 2n–k – 1 combinations for each column.

The complete execution of the algorithm is commonly
unfeasible. Nevertheless, the first solutions are usually found
quickly, if the code exists. Once selected the H matrix, it is
easy to determine the logic equations to calculate each parity
and syndrome bit, as well as the syndrome lookup table. They
are required for the encoder and decoder implementation.

In addition, we can apply two different optimization
criteria. If we want to decrease the delay of the encoders and
decoders, we have to reduce the number of 1’s in those rows
with the highest number of 1’s of the parity check matrix. In
the case of area reduction, the total number of 1’s in the parity
check matrix must be reduced.

A detailed explanation of this algorithm, as well as a code
design example, can be found in [31].

III. ERROR CORRECTION CODES DESCRIPTION

A. Previous proposals
As commented previously, Matrix and CLC codes have

been designed to tolerate MCUs [17][19], a critical concern in
space applications.

Combining Hamming codes and parity checks [17][18],
Matrix codes form a two dimensional scheme for correcting
and detecting some patterns of MCUs. For instance, in this
paper, we have used the bit layout shown in Fig. 2 (extracted
from [18]), where Xi are the data bits, Ci are the horizontal
check bits (calculated as a Hamming code), and Pi are the
column parity bits (even parity).

X1 X2 X3 X4 C1 C2 C3
X5 X6 X7 X8 C4 C5 C6
X9 X10 X11 X12 C7 C8 C9
X13 X14 X15 X16 C10 C11 C12
P1 P2 P3 P4

Fig. 2. Layout of a 16 data-bit word for the (32, 16) Matrix code [18].

The basic behavior of this Matrix code is as follows. The
primary data input (Xi) is divided into groups of several bits.
In this work, this division is in groups of 4 bits. Each group is
codified by a (7, 4) Hamming code (Ci). Lastly, a set of
vertical parity bits (Pi) completes the matrix. The Matrix code
implemented in this work presents better correction and

detection performance than an extended Hamming code, as it
is able to correct all single errors and to correct or to detect all
2-bit burst errors. Nevertheless, this Matrix code presents a
higher redundancy than an extended Hamming code. In this
way, memory required for code bits is increased, and also,
area, energy and delay overheads.

Recently presented, CLC code [19][30] is another matrix
code proposed to be used in space applications. The layout we
have employed for the implementation of this code is shown
in Fig. 3 (extracted from [19]), where Xi is the primary data
input, divided into groups of 4 bits. Each group is codified by
a SEC-DED (8, 4) Extended Hamming code (Ci and Pai).
Finally, a set of vertical parity bits (Pi) form the matrix.

As just commented, and unlike the Matrix code, CLC uses
an Extended Hamming code, allowing the correction of all
single and 2-bit burst errors. Nevertheless, CLC introduces a
higher number of redundant bits, provoking a greater area,
power and delay overheads, and reducing the available
memory for the payload.

X1 X2 X3 X4 C1 C2 C3 Pa1
X5 X6 X7 X8 C4 C5 C6 Pa2
X9 X10 X11 X12 C7 C8 C9 Pa3
X13 X14 X15 X16 C10 C11 C12 Pa4
P1 P2 P3 P4 P5 P6 P7 P8

Fig. 3. Layout of a 16 data-bit word for the (40, 16) CLC [19].

On the other hand, [27] introduces a SEC-DAED (Single
Error Correction-Double Adjacent Error Detection) code with
a very low redundancy. This code is able to correct all single
errors, or to detect all double adjacent errors in a 16-bit data
word with only 5 redundant bits. Fig. 4 shows the data word
layout of this code, where Ci are the code bits, and Xi are the
data bits.

Fig. 4. Layout of a 16 data-bit word for the (21, 16) SEC-DAED [27].

On the contrary, [28] presents a different approach to
generate Hamming based ECCs. In this case, we have selected
a SEC-DAED code with the same coverage characteristics, as
well as the same redundancy of the SEC-DAED code from
[27]. The main difference is the code layout, shown in Fig. 5.

To obtain the value of the different Ci bits, the parity check
matrix of these two SEC-DAED codes can be seen in [27][28]
respectively.

Fig. 5. Layout of a 16 data-bit word for the (21, 16) SEC-DAED [28].

B. Our approach
By using the FUEC methodology [31], we have been able to

design several codes that improve the coverage and/or the
redundancy of the different codes presented previously
(Matrix, CLC and both SEC-DAED codes). The layout of our
codes is presented in Fig. 6, where Ci are the code bits, and Xi
are the data bits.

C1 C2 C3 C4 C5 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 X2 X3 X4 X5 X6 X7 X8 C1 X9 C2 C3 C4 X10 C5 X11 X12 X13 X14 X15 X16

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Fig. 6. Layout of a 16 data-bit word for the FUEC codes.

Using our algorithm, we have found a code (we will call it
FUEC-DAEC) that can correct an error in a single bit, or an
error in 2 adjacent bits, or it can detect one 3-bit burst error or
one 4-bit burst error.

FUEC-DAEC needs only seven code bits for a 16-bit data
word. Fig. 7 shows the parity check matrix H for this code,
where Ci are the code bits and Xi are the primary data bits.

 C0 ···················C6 X0 X1 ··X15

𝐇 =
�

�

1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0���
0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1
0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1

�

�

Fig. 7. Parity check matrix H for the (23, 16) FUEC-DAEC code.

Once H has been obtained, it is very easy to design the
encoder/decoder circuitry. For example, the formulas to
calculate the code bits for the FUEC-DAEC code are:

1513111086326

14121095215

15131274304

1298413

151412976202

141110975311

13121187400

XXXXXXXXC
XXXXXXXC
XXXXXXXC

XXXXXC
XXXXXXXXC

XXXXXXXXC
XXXXXXXC

⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

 (6)

On the other hand, the syndrome formulas that can be
obtained from H to check if an error has occurred are:

15131110863266

141210952155

151312743044

12984133

1514129762022

1411109753111

131211874000

XXXXXXXXCS
XXXXXXXCS
XXXXXXXCS

XXXXXCS
XXXXXXXXCS

XXXXXXXXCS
XXXXXXXCS

⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕=

 (7)

Our second proposal, called FUEC-TAEC, is able to correct
an error in a single bit, or an error in 2 adjacent bits (2-bit
burst errors) or a 3-bit burst error, or it can detect a 4-bit burst
error. This is possible by adding one more code bit. In this
case, for a 16-bit data word, the FUEC-TAEC code needs
eight code bits. The parity check matrix H for this code is
presented in Fig. 8. As in the case of the FUEC-DAEC, Ci are
the code bits and Xi are the primary data bits. Similarly, from
H it is very easy to design the encoder/decoder circuitry.

Finally, FUEC-QUAEC is the last code we have designed.
This code is able to correct an error in a single bit, or an error
in 2 adjacent bits (2-bit burst errors) or a 3-bit burst error or a
4-bit burst error. This can be done by using only nine code
bits. The parity check matrix H for this code is shown in Fig.

9. As in the previous codes, Ci are the code bits and Xi are the
primary data bits.

 C0 ····················C7 X0 X1 ···X15

𝐇 =

�

�

1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1���
0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0

�

�

Fig. 8. Parity check matrix H for the (24, 16) FUEC-TAEC code.

 C0 ·······················C8 X0 X1 ···X15

𝐇 =

�

�

�

1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0��
0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0

�

�

�

Fig. 9. Parity check matrix H for the (25, 16) FUEC-QUAEC code.

We have to remark that we have generated a parity check
matrix optimized to achieve the lowest delay for our three
codes, that is, with a reduced number of 1’s in the rows with
the highest number of 1’s.

It is also remarkable that the names FUEC-*AEC only
indicate that they have been designed using the FUEC
methodology. The codes presented here must not been
confused with the FUEC codes from [31], an improvement of
UEC codes [11].

With respect to the code bits needed, our three codes
present a very low redundancy with respect to the Matrix and
CLC codes. Nevertheless, the lowest redundancy corresponds
to both SEC-DAED codes, but this low redundancy only
permits the correction of single errors, as it can be seen in
TABLE IV. This table shows the number of code bits
introduced by each ECC, as well as the redundancy introduced
with respect to a 16-bit data word. Notice that although in this
paper we have worked with 16-bit data word, FUEC
methodology and algorithm can be applied to longer codeword
sizes. Calculus of the redundancy has been done with:

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = 𝑁𝑜. 𝑐𝑜𝑑𝑒 𝑏𝑖𝑡𝑠
𝑁𝑜. 𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠

× 100 (8)

The importance of a low redundancy comes from the fact
that these extra bits must be also stored in memory in order to
check if an error has occurred. In this way, a higher
redundancy means a lower storage available for data bits. As
an example, if we use a 1GB memory chip, only 512MB are
available to store data bits in the case of the Matrix code,
requiring the remaining 512MB to store the code bits. In the
case of the CLC code, only about 410MB are available to
store data bits. On the other hand, in the case of the SEC-
DAED codes, the available memory for data is about 780MB.

C0 Cn-1 X0 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X15

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

TABLE IV
NUMBER OF CODE BITS FOR A 16-BIT DATA WORD.

CODE No. Code Bits % Redundancy Burst error detection & correction capabilities

Matrix 16 100 % Correction: 100% of single bit errors
Detection: 100% of 2-bit burst errors

CLC 24 150 % Correction: 100% of single bit errors & 2-bit burst errors
Detection: 100% of 2-bit burst errors

SEC-DAED [27] 5 31.25 % Correction: 100% of single bit errors
Detection: 100% of 2-bit burst errors

SEC-DAED [28] 5 31.25 % Correction: 100% of single bit errors
Detection: 100% of 2-bit burst errors

FUEC-DAEC 7 43.75 % Correction: 100% of single bit errors & 2-bit burst errors
Detection: 100% of 3- & 4-bit burst errors

FUEC-TAEC 8 50 % Correction: 100% of single bit errors & 2- and 3-bit burst errors
Detection: 100% of 4-bit burst errors

FUEC-QUAEC 9 56.25 % Correction: 100% of single bit errors & 2-, 3- and 4-bit burst errors
Detection: 100% of 4-bit burst errors

Following with this example, our FUEC-DAEC code allows

storing about 712MB of primary data. In contrast, our FUEC-
TAEC and FUEC-QUAEC codes allow storing 682MB and
655MB respectively. As it can be seen, the increment in the
storage available is very significant, taking into account the
improvement in the coverage properties of our three codes.

Last column of TABLE IV shows the burst error coverage
of the different ECCs, a concern to have into account in space
applications [9][10]. As shown in [9], MCUs mainly provoke
2-bit adjacent errors in earth observation satellites; although a
non negligible percentage of longer burst errors are also
presented. In deep space exploration, a higher impact of longer
MCUs is expected.

IV. ERROR CORRECTION CODES EVALUATION
In this section, we present the different results obtained

during the evaluation of the ECCs presented in Section III. We
have carried out two different processes. During the first one,
we have injected faults in C models of the ECCs for error
coverage evaluation. In a second step, we have implemented
the different ECCs in VHDL and we have synthesized them,
in order to estimate area, power and delay overheads. This
section finishes with the analysis of the results obtained.

A. Error coverage evaluation
In order to study the error coverage of the different ECCs,

we have developed a simulator that allows injecting different
types of error. The basic scheme is shown in Fig. 10.

Fig. 10. Block diagram of the fault injector simulator.

This tool allows the injection of different types or error. By
comparing the input and output words, the simulator can

check if the error injected leads to a right or wrong decoding.
Also, the decoder circuit can activate the NRE (Non
Recoverable Error) signal when an error is detected but it
cannot be corrected. Repeating the process for all errors of a
given size and model (i.e. random or burst), it is possible to
count the number of corrected and/or detected errors with
respect to the total number of possible errors, that is, it is
possible to calculate the coverage of each ECC. In this paper,
we have injected single errors, as well as burst errors with a
burst length varying from 2 to 8. This is a representative range
in space applications [6][7]. Notice that burst errors can be
adjacent or not, and affect to the layout of the rows. In the case
of the Matrix code, we have considered that C3 is adjacent to
X5, C6 to X9, etc. (see Fig. 2). In the same way, for the CLC
code, Pa1 is adjacent to X5, Pa2 to X9, etc. (see Fig. 3).

We have to remark that we have not injected errors
according to their probability of occurrence, as our goal is to
measure the correction and detection coverages, that represent
percentages. Specifically, we have injected each type of error
(single errors or burst errors of different lengths) in all bits of
the codeword to verify the error correction/detection
capabilities of the different ECCs. Obviously, burst errors of
length 8 will be much less frequent than burst errors of length
2, as bibliography shows [6][7].

All blocks of the fault injection tool have been developed in
C, using the bitwise logic operators for an accurate simulation
of the hardware behavior. Encoder and decoder circuits can be
easily obtained from the parity check matrix H, as stated in
Section III. These circuits are implemented in C as encoding
and decoding functions. Changing the simulator for a different
ECC is as simple as adjusting the word lengths and replacing
the encoding and decoding functions for the new ECC.

Fig. 11 shows the results obtained for the correction
coverage of each code. This coverage has been calculated as:

𝐶𝑐𝑜𝑟𝑟𝑒𝑐 = 𝐸𝑟𝑟𝑜𝑟𝑠_𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐸𝑟𝑟𝑜𝑟𝑠_𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑

× 100 (9)

where 𝐸𝑟𝑟𝑜𝑟𝑠_𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 are the number of errors
corrected by the ECC, and 𝐸𝑟𝑟𝑜𝑟𝑠_𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 are the total
amount of errors injected for a given burst length.

As expected, FUEC-TAEC and FUEC-QUAEC codes

ENCODER
CIRCUIT

DECODER
CIRCUIT

COMPARATOR

n kk

n

n
u b r û

e

Right/wrong decoding
Non recoverable
error

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

present better correction coverage than Matrix, CLC and both
SEC-DAED codes, as they are able to correct up to 3- and 4-
bit burst errors respectively. On the other hand, our FUEC-
DAEC code can correct up to 2-bit burst errors, like CLC.

Nevertheless, for longer burst errors (5 bits or more), the
correction capabilities of our codes degrade more deeply than
Matrix and CLC ones. This is provoked by the lower
redundancy of our codes, which causes a lower number of
available syndromes to be used to correct longer burst errors.
In other words, our codes employ the available syndromes in a
more efficient way inside the expected error rank, but
degrading quickly outside this rank. This effect can be seen
also in both SEC-DAED codes. In fact, these codes present the
greatest degradation from multiple bit errors (2-bit burst errors
or longer). As it happens with our codes, the very low
redundancy of both SEC-DAED codes provokes this result.

Fig. 11. Correction coverage for burst errors.

Finally, Fig. 12 shows the detection coverage for all codes.
This detection coverage is calculated as:

𝐶𝑑𝑒𝑡𝑒𝑐 = 𝐸𝑟𝑟𝑜𝑟𝑠_𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑+𝐸𝑟𝑟𝑜𝑟𝑠_𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝐸𝑟𝑟𝑜𝑟𝑠_𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑

× 100 (10)

where 𝐸𝑟𝑟𝑜𝑟𝑠_𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 corresponds to the number of
errors not corrected but detected by the ECCs.

As it can be seen in Fig. 12, all our codes present a 100%
detection of up to 4-bit burst errors, improving the behavior of
Matrix, CLC and both SEC-DAED codes.

As in the correction coverage, the percentage of detected
errors in our FUEC-TAEC and FUEC-QUAEC codes
degrades sharply for longer bursts. By contrast, FUEC-DAEC
maintains a coverage over 60%, near the Matrix detection
capability.

In conclusion, our codes are very efficient to tolerate burst
errors of from 2 to 4 bit length. Beyond 4-bit burst errors, the
performance of our codes decreases notably due to their low
redundancy. If these errors are expected to occur, more
powerful codes (with a higher redundancy) must be employed.
Nevertheless, the probability of occurrence of burst errors
decreases significantly when increasing its length [6][7].

Fig. 12. Detection coverage for burst errors.

B. Synthesis results
We have shown in Section III that our three codes, FUEC-

DAEC, FUEC-TAEC and FUEC-QUAEC, present a lower
redundancy with respect to Matrix and CLC codes. This lower
redundancy provokes a lower storage requirement for code
bits.

Nevertheless, the question that arises now is that this lower
redundancy would translate into an improvement on the area,
power and delay overheads in the encoder and decoder circuits
with respect to Matrix, CLC and both SEC-DAED codes.
Although the area overhead of the encoders and decoders may
be negligible in comparison with memory overhead, power
and delay overheads can be important, especially in deep
space systems.

To solve this question, we have synthesized the encoder and
decoder circuits for all ECCs. To do this, we have
implemented them in VHDL, and using CADENCE software
[35], we have carried out a logic synthesis for 45 nm
technology by using the NanGate FreePDK45 Open Cell
Library [36][37].

TABLE V (and Fig. 13) shows the area occupied by the
different circuits in nm2 (1nm = 10-9m). As it can be seen, our
encoders present a slightly greater area than the encoders of
both SEC-DAED codes. The worst area numbers for the
encoders correspond to the CLC and Matrix codes. These
results are provoked by their higher redundancy, which
provokes complex encoders’ circuitry.

TABLE V
AREA OCCUPIED BY THE DIFFERENT ECCS (IN nm2)

CODE ENCODER DECODER TOTAL
Matrix 142 451 593
CLC 214 482 696

SEC-DAED [27] 87 242 329
SEC-DAED [28] 93 246 339

FUEC-DAEC 91 348 439
FUEC-TAEC 92 563 655

FUEC-QUAEC 95 790 885

Regarding decoders’ area, the SEC-DAED ones present the
lowest numbers. On the other hand, decoders for FUEC-
TAEC and FUEC-QUAEC codes present the biggest area
overhead, as they are able to correct and/or detect more errors.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 o

f c
or

re
ct

ed
 e

rr
or

s

Burst Length

Correction coverage

Matrix CLC SEC-DAED [27] SEC-DAED [28] FUEC-DAEC FUEC-TAEC FUEC-QUAEC

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8

Pe
rc

en
at

ge
 o

f d
et

ec
te

d
er

ro
rs

Burst Length

Detection coverage

Matrix CLC SEC-DAED [27] SEC-DAED [28] FUEC-DAEC FUEC-TAEC FUEC-QUAEC

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Fig. 13. Area occupied by the different ECCs (in nm2).

In general, both SEC-DAED codes present the lowest area
overhead. Nevertheless, their coverage capabilities are very
simple with respect to the other codes. Comparing codes with
similar coverage capabilities (i.e. correction of 2-bit burst
errors done by Matrix, CLC and FUEC-DAEC codes), the
FUEC-DAEC circuitry occupies the smallest area. In addition,
its redundancy is much smaller (less than a half). This low
redundancy reduces also the silicon area needed by the
memory to store the code bits.

With respect to the FUEC-QUAEC code, it presents higher
error coverage, and therefore, it introduces a higher hardware
cost and a larger area, mainly in the decoders. Nevertheless, as
stated above, its low redundancy reduces the area needed by
the memory. On the other hand, the area occupied by the
FUEC-TAEC code is lower than the area overhead of CLC,
with better error coverage.

TABLE VI (and Fig. 14) shows the power (static and
dynamic) consumption overhead of the different ECCs (in
μW, 1μW = 10-6W). In global terms, both SEC-DAED codes
present the lowest power consumption (encoder plus decoder).
With respect to our three codes, our FUEC-DAEC code
presents a slightly higher power consumption than both SEC-
DAED codes, and much better numbers than Matrix and CLC
codes. The worst score corresponds to the FUEC-QUAEC
code. It is noticeable the low power consumption of the
FUEC-TAEC code with regard to its error coverage.

Particularly, we can observe that power consumption of the
encoders presents a similar trend with respect to area
overhead, that is, CLC codes present the higher numbers,
while the rest of codes show similar numbers. On the other
hand, as our three codes present a better error coverage, the
decoders power overhead also increase.

It is also interesting to remember that power consumption of
memory has not been taken into account in these results. As
our codes present a very low redundancy, they need a lower
storage capacity. In this way, our codes would imply an
additional power reduction of the redundant memory.

TABLE VI
POWER CONSUMPTION (IN μW)

CODE ENCODER DECODER TOTAL
Matrix 191,31 492,76 684,07
CLC 331,79 457,62 789,41

SEC-DAED [27] 141,80 321,77 463,57
SEC-DAED [28] 181,09 320,90 501,99

FUEC-DAEC 156,91 396,19 553,10
FUEC-TAEC 194,11 616,15 810,26

FUEC-QUAEC 191,00 836,47 1027,47

Fig. 14. Power consumption (in μW).

Finally, TABLE VII (and Fig. 15) shows the delay
introduced by the different codes (in ps, 1ps = 10-12s). We do
not represent the total delay because encoders and decoders
work in independent operations (writing and reading).

With respect to the encoders delay, CLC presents the
highest delay, while Matrix shows the lowest delay. With
regard to our encoders, they present an intermediate delay,
except the FUEC-DAEC encoder, that introduces a delay
slightly lower than the CLC one. It is noticeable the low delay
introduced by the encoder of the FUEC-QUAEC code.
Although this code presents the highest redundancy of our
three codes, its parity check matrix presents a more balanced
number of 1’s in each row, reducing in this way the delay
needed.

In the case of the decoders, our FUEC-DAEC code presents
the fastest correction, while FUEC-TAEC and FUEC-QUAEC
codes present the highest delay, but also the highest error
coverage. The rest of the codes show similar results.

TABLE VII
DELAY OVERHEAD FOR THE DIFFERENT ECCS (IN ps)

CODE ENCODER DECODER
Matrix 197 552
CLC 290 543

SEC-DAED [27] 274 501
SEC-DAED [28] 274 576

FUEC-DAEC 286 383
FUEC-TAEC 245 780

FUEC-QUAEC 219 772

0

100

200

300

400

500

600

700

800

900

1000

Matrix CLC SEC-DAED
[27]

SEC-DAED
[28]

FUEC-DAEC FUEC-TAEC FUEC-QUAEC

Ar
ea

 (n
m

2)

Type of Code

AREA (nm2)

ENCODER DECODER TOTAL

0

200

400

600

800

1000

1200

Matrix CLC SEC-DAED
[27]

SEC-DAED
[28]

FUEC-DAEC FUEC-TAEC FUEC-QUAEC

Po
w

er
 (μ

W
)

Type of Code

POWER (μW)

ENCODER DECODER TOTAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Fig. 15. Delay overhead (in ps).

C. Global evaluation of ECCs. M metric
With the results obtained in previous sections, it is not easy

to provide a global evaluation of the ECCs. To solve this
question, several metrics has been proposed [17][18][19]. For
instance, the TCC metric [19] can be used to tradeoff area,
power, delay and error coverage. We have modified this
metric to add the contribution of an important factor: the
redundancy. We have included this parameter because the
storage size for the different ECCs is reduced with a lower
redundancy. Indirectly, area and power overheads can be
affected. In this way, we have presented a generic metric with
a very simple expression. Thus, if we want to enhance a
parameter in a specific application, it is possible to weigh any
of them with different weights; or we can include some
limitations, such as reaching a certain correction or detection
level. In this way, by including the redundancy, we can expect
a metric more complete and accurate. The new metric, that we
have called M, is presented in (11):

𝑀 = 𝐶𝑐𝑜𝑟𝑟𝑒𝑐×𝐶𝑑𝑒𝑡𝑒𝑐
𝐴𝑟𝑒𝑎×𝑃𝑜𝑤𝑒𝑟×𝐷𝑒𝑙𝑎𝑦×𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

 (11)

With respect to the delay factor, we have analyzed the
longest delay (the worst case), that corresponds to the decoder
part. In the case of area and power, we have used the total
values (encoder plus decoder).

As it can be seen in Fig. 16, both SEC-DAED codes present
the best M score for single errors. This is an expected result
due to the simplicity of their encoders and decoders and their
low redundancy. When multiple errors are present, the FUEC-
DAEC code presents the best M score for 2-, 3- and 4-bit burst
error length. In this way, FUEC-DAEC code seems the most
adequate for short burst errors, as it can correct all single and
2-bit burst errors, as well as to detect all 3- and 4-bit burst
errors.

In any case, when multiple errors are present, our three
codes present a best M score than Matrix and CLC codes. We
can observe also that CLC performance is the worst from
single errors up to 4-bit burst errors length. Due to its great
redundancy, M metric for CLC is greatly penalized.

To sum up, our three codes (FUEC-DAEC, FUEC-TAEC
and FUEC-QUAEC) present the best M scores for 2-, 3- and
4-bit burst errors. On the other hand, CLC code presents the

worst M numbers for these burst lengths. In this way, our
three codes seems a good choice when multiple errors are
present, as it is expected in spatial applications.

Fig. 16. Global evaluation applying M metric.

V. CONCLUSION
In this work, a series of new ECCs have been presented.

These new ECCs improve the behavior of the well-known
Matrix code, the recently introduced CLC code and different
SEC-DAED codes.

A characteristic of our codes is the low redundancy they
introduce. This fact provokes a reduction in the storage needed
for the code bits. In addition, the detection and correction
capabilities are maintained, or even increased.

The insertion of an ECC in memory also provokes the
introduction of area, power and delay overheads. Relating to
the area overhead, we have seen that FUEC-DAEC code
introduces a much lower area overhead than the CLC and
Matrix codes, while FUEC-TAEC code presents a similar area
overhead than Matrix and CLC codes. As expected, FUEC-
QUAEC code exhibits the highest overhead, related to its high
correction and detection capabilities. Also, we have to take
into account the reduction of memory area overhead due to the
low redundancy of our codes.

Concerning the power overhead, the trend is similar to the
area overhead. FUEC-DAEC code introduces a much lower
power overhead than the CLC and Matrix codes. Even, the
power overhead of the FUEC-DAEC code is similar to the
SEC-DAED codes ones. FUEC-TAEC and FUEC-QUAEC
codes present a power consumption similar or a little bigger
than CLC code, but with much better error correction and
detection capabilities. And also, we have to take into account
the reduction of memory power consumption due to the low
redundancy of our codes.

With respect to the delay, FUEC-DAEC presents the fastest
correction, even better than both SEC-DAED codes. On the
contrary, FUEC-TAEC and FUEC-QUAEC codes introduce
the highest correction delay, because they are designed to
correct longer burst errors. In this way, decoder circuits are
more complex. Nevertheless, encoder circuits are quite quick.

In general, and according to the M metric, introduced to
evaluate the overall features of the analyzed codes, our FUEC-

0

100

200

300

400

500

600

700

800

900

Matrix CLC SEC-DAED
[27]

SEC-DAED
[28]

FUEC-DAEC FUEC-TAEC FUEC-QUAEC

De
la

y
(p

s)

Type of Code

DELAY (ps)

ENCODER DECODER

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

M
 m

et
ric

Burst Length

M Metric

Matrix CLC SEC-DAED [27] SEC-DAED [28]

FUEC-DAEC FUEC-TAEC FUEC-QUAEC

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

DAEC code presents the best performance to correct single or
2-bit burst errors, or to detect 3- or 4-bit burst errors.
Additionally, FUEC-TAEC and FUEC-QUAEC have
demonstrated good features to correct 3-bit and 4-bit burst
errors respectively. Thus, our codes become an appropriate
option for critical applications in embedded systems. Beyond
4-bit burst errors, the performance of our codes decreases
notably due to their low redundancy. If these errors are
expected to occur, more powerful ECCs must be employed.

In a future work, we want to continue developing ECCs,
decreasing area, power and delay overhead while maintaining,
or even increasing, the code coverage. We want focus on long
burst errors, which are expected to have more and more
impact in space systems.

REFERENCES
[1] The International Technology Roadmap for Semiconductors 2013.

[Online]. Available at: http://www.itrs2.net/2013-itrs.html
[2] S.K. Kurinec and K. Iniewsky. Nanoscale Semiconductor Memories:

Technology and Application, CRC Press, Taylor & Francis Group, 2014.
[3] J. Barak, M. Murat, and A. Akkerman, “SEU due to electrons in silicon

devices with nanometric sensitive volumes and small critical charge”,
Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, vol. 287, pp. 113–119,
September 2012.

[4] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of
scaling on neutron-induced soft error in SRAMs from a 250 nm to a 22
nm design rule”, IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1527–
1538, July 2010.

[5] G. Tsiligiannis et. al., “Multiple Cell Upset Classification in Commercial
SRAMs”, IEEE Transactions on Nuclear Science, vol. 61, no. 4, August
2014.

[6] G.I. Zebrev, “Multiple Cell Upset Cross-Section Uncertainty in
Nanoscale Memories: Microdosimetric Approach”, 15th European
Conference on Radiation and its Effects on Components and Systems
(RADECS 2015), September 2015.

[7] N.G. Chechenin and M. Sajid, “Multiple cell upsets rate estimation for
65 nm SRAM bit-cell in space radiation environment”, 3rd International
Conference and Exhibition on Satellite & Space Missions, May 2017.

[8] N.N. Mahatme, B.L. Bhuva, Y.P. Fang, and A.S. Oates, “Impact of
strained-Si PMOS transistors on SRAM soft error rates”, IEEE Trans. on
Nuclear Science, vol. 59, no. 4, pp. 845–850, August 2012.

[9] Y. Bentoutou, “Program memories error detection and correction on-
board earth observation satellites”, International Journal of electrical and
Computer Engineering, vol. 4, nº 6, pp. 933-936, 2010.

[10] M.J. Gadlage et al., “Multiple-Cell Upsets Induced by Single High-
Energy Electrons”, IEEE Transactions on Nuclear Science, DOI:
10.1109/TNS.2017.2756441, September 2017.

[11] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical
Application, Ed. Wiley-Interscience, 2006.

[12] R. W. Hamming, “Error detecting and error correcting codes,” Bell
System Technical Journal, vol. 29, pp. 147–160, 1950.

[13] C.L. Chen and M.Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: a state-of-the-art review”, IBM Journal of
Research and Development, vol. 58, no. 2, pp. 124–134, March 1984.

[14] G.C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and A. Salsano, “Fault
Tolerant Solid State Mass Memory for Space Applications”, IEEE
Trans. on Aerospace and Electronic Systems, vol. 41, no. 4, pp. 1353–
1372, October 2005.

[15] S. Pontarelli, G.C. Cardarilli, M. Re and A. Salsano, “Error correction
codes for SEU and SEFI tolerant memory systems”, 24th IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT 2009), pp. 425-430, 2009.

[16] A. Sánchez-Macián, P. Reviriego, J. Tabero, A. Regadío, and J.A.
Maestro, “SEFI protection for Nanosat 16-bit Chip On-Board Computer
Memories”, IEEE Transactions on Device and Materials Reliability,
DOI 10.1109/TDMR.2017.2750718, 2017.

[17] C. Argyrides, D.K. Pradhan, and T. Kocak, “Matrix codes for reliable
and cost efficient memory chips”, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 19, nº 3, pp.420–428, March
2011.

[18] C. Argyrides, H.R. Zarandi and D.K. Pradhan, “Matrix Codes: Multiple
Bit Upsets Tolerant Method for SRAM Memories”, 22nd IEEE
International Symposium on Defect and Fault Tolerance in VLSI
Systems, 2007.

[19] H.S. de Castro, et al. “A correction code for multiple cells upsets in
memory devices for space applications”, 2016 14th IEEE International
New Circuits and Systems Conference (NEWCAS 2016), pp.1–4, June
2016.

[20] S. Ahmad, M. Zahra. S.Z. Farooq, and A. Zafar, “Comparison of EDAC
schemes for DDR memory in space applications”, 2013 International
Conference on Aerospace Science & Engineering (ICASE 2013),
August 2013.

[21] D.E. Muller, “Application of boolean algebra to switching circuit design
and to error detection”, IRE Transactions on Electronic Computers, vol.
3, pp. 6–12, 1954.

[22] J. M. Berger, “A note on an error detection code for asymmetric
channels”, Information and Control, vol. 4, pp. 68–73, March 1961.

[23] O. Goldreich and L. Levin, “A hard-core predicate for all one-way
functions”, 21st ACM Symposium on Theory of Computing, pp. 25–32,
1989.

[24] M. Bossert, Channel Coding for Telecommunications. Wiley. 1999.
[25] M.J.E. Golay, “Notes on Digital Coding”, Proc. IRE, vol. 57, p. 657,

1949.
[26] N.B. Anne, U. Thirunavukkarasu, S. Latifi, “Three and Four-

dimensional Parity-check Codes for Correction and Detection of
Multiple Errors”, International Conference on Information Technology:
Coding and Computing (ITCC 2004), April 2004.

[27] L. J. Saiz-Adalid et al., “Modified Hamming codes to enhance short
burst error detection in semiconductor memories”, IEEE European
Dependable Computing Conference (EDCC), pp. 62-65, Newcastle, UK,
May 13-16, 2014.

[28] A. Sanchez-Macian, P. Reviriego, and J. A. Maestro, “Hamming SEC-
DAED and extended hamming SEC-DED-TAED codes through
selective shortening and bit placement,” IEEE Transactions on Device
and Materials Reliability (TDMR), vol. 14, no. 1, pp. 574-576, 2014.

[29] A. Neubauer, J. Freudenberger, and V. Kühn, Coding Theory:
Algorithms, Architectures and Applications. John Wiley & Sons, 2007.

[30] H.S. de Castro, et al. “Evaluation of multiple bit upset tolerant codes for
NoCs buffering”, 2017 IEEE 8th Latin American Symposium on
Circuits & Systems (LASCAS), February 2017.

[31] L.J. Saiz-Adalid et al., “Flexible Unequal Error Control Codes with
Selectable Error Detection and Correction Levels”, 32th International
Conference on Computer Safety, Reliability and Security (SAFECOMP
2013), pp. 178-189, September 2013.

[32] K.A. LaBel, “Proton single event effects (SEE) guideline” submitted for
publication on the NASA Electronic Parts and Packaging (NEPP)
Program web site, August 2009. Available online at
https://nepp.nasa.gov/files/18365/Proton_RHAGuide_NASAAug09.pdf

[33] M. Greenberg, "Reliability, availability, and serviceability (ras) for ddr
dram interfaces," in memcon.com. Available at:
http://www.memcon.com/pdfs/proceedings2014/NET105.pdf, 2014.

[34] S. Shamshiri and K.T. Cheng, “Error-Locality-Aware Linear Coding to
Correct Multi-bit Upsets in SRAMs,” IEEE International Test
Conference (ITC 2010), pp. 1-10, November 2010

[35] https://www.cadence.com/
[36] J.E Stine et al., “FreePDK: An Open-Source Variation-Aware Design

Kit”, IEEE International Conference on Microelectronic Systems
Education (MSE'07), June 2007.

[37] http://www.nangate.com/?page_id=2325
[38] A. Mukati, “Review: A survey of memory error correcting techniques

for improved reliability”, Journal of Network and Computer
Applications, vol. 34, no. 2, pp. 517-522, March 2011.

http://www.itrs2.net/2013-itrs.html
https://nepp.nasa.gov/files/18365/Proton_RHAGuide_NASAAug09.pdf
http://www.memcon.com/pdfs/proceedings2014/NET105.pdf
https://www.cadence.com/
http://www.nangate.com/?page_id=2325

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Joaquín Gracia-Morán is B.Sc.
(1995), M.Sc. (1997) and Ph.D.
(2004) in Computer Engineering
from the Universitat Politècnica de
València (UPV). He is currently an
associate professor at the UPV,
Spain, where he teaches in the
Department of Computer Engineering
(DISCA). He is member with the

Fault-Tolerant Systems (STF) research line within the Instituto
ITACA. His research interests include design and
implementation of digital systems, design and validation of
Fault-Tolerant Systems and VHDL-based Fault Injection

Luis J. Saiz-Adalid is M.Sc. (1995)
and Ph.D (2015) in Computer
Engineering from the Universitat
Politècnica de València (UPV). After
15 years in the industry (IBM, 1995-
Celestica, 1998), he is currently an
associate professor at the UPV,
Spain, where he teaches in the
Department of Computer Engineering

(DISCA). He is also a member with the STF-ITACA. His
research interests include design and implementation of digital
systems, design and validation of Fault-Tolerant Systems and
design of Error Correction Codes.

Daniel Gil-Tomás is an associate
professor at the Universitat
Politècnica de València, Spain, in the
DISCA. He received his B.Sc. degree
in Electrical and Electronic Physics
from the Universitat de València in
1985. He obtained his Ph.D. degree
on Computer Engineering from the
UPV in 1999. He is currently an
associate professor at the UPV, Spain,

where he teaches in the Department of Computer Engineering
(DISCA). He is a member with the STF-ITACA. His research
interests include design and validation of Fault-Tolerant
Systems, Reliability Physics and Reliability of Emerging
Nanotechnologies.

Pedro J. Gil-Vicente is professor at
the Universitat Politècnica de València
(UPV), where he has been head of the
Department of Computer Engineering
(DISCA). Professor Gil has taught
courses on Computer Technology,
Digital Design, Computer Networks
and Fault Tolerant Systems. He is the
head of the Fault-Tolerant Systems

(STF) research line, within ITACA. His research focuses on
the design and validation of real-time fault-tolerant distributed
systems, the dependability validation using fault injection, the
design and verification of embedded systems, and the
dependability and security benchmarking. He has authored
more than 100 research papers on these subjects. He has also
served as Program Committee member in the IEEE
International Conference on Dependable Systems and
Networks (DSN), the European Dependable Computing
Conference (EDCC) and the Latin American Symposium on
Dependable Computing (LADC), and as reviewer in
international magazines and congresses related to
dependability and security. He was general chair of the
EDCC-8 conference, held in Valencia on April 2010.

