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Abstract—Currently, faults suffered by SRAM memory 

systems have increased due to the aggressive CMOS integration 
density. Thus, the probability of occurrence of Single Cell Upsets 
(SCUs) or Multiple Cell Upsets (MCUs) augments. One of the 
main causes of MCUs in space applications are cosmic radiation. 
A common solution is the use of Error Correction Codes (ECCs). 
Nevertheless, when using ECCs in space applications, they must 
achieve a good balance between error coverage and redundancy, 
and their encoding/decoding circuits must be efficient in terms of 
area, power and delay.  

Different codes have been proposed to tolerate MCUs. For 
instance, Matrix codes use Hamming codes and parity checks in a 
bi-dimensional layout to correct and detect some patterns of 
MCUs. Recently presented, Column-Line-Code (CLC) has been 
designed to tolerate MCUs in space applications. CLC is a 
modified Matrix code, based on extended Hamming codes and 
parity checks. Nevertheless, a common property of these codes is 
the high redundancy introduced. 

In this work, we present a series of new low-redundant ECCs 
able to correct MCUs with reduced area, power and delay 
overheads. Also, these new codes maintain, or even improve, 
memory error coverage with respect to Matrix and CLC codes.  
 

Index Terms—Error Correction Codes, Multiple Cell Upsets, 
Fault Tolerance, Reliability  
 

I. INTRODUCTION 
RESENTLY, the continued physical feature size 
downscaling of CMOS technology provides memory 

systems with a great storage capacity. Nevertheless, this size 
decreasing has also caused an augment in the memory fault 
rate [1][2]. With the present aggressive scaling, the memory 
cell critical charge and the energy needed to provoke a Single 
Event Upset (SEU) in storage have been reduced [3]. As 
shown by different experiments, in addition to traditional 
Single Cell Upsets (SCUs), this energy reduction can provoke 
Multiple Cell Upsets (MCUs), that is, simultaneous errors in 
more than one memory cell induced by a single particle hit 
[4][5][6][7][8].  

In the case of space applications, the MCU problem must be 
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taken into account for the design of the corresponding fault 
tolerance methods, as space is an aggressive environment 
subjected to the impact of high energy cosmic particles 
[4][7][9].  

Traditionally, Error Correction Codes (ECCs) have been 
used to protect memory systems. Common ECCs employed to 
protect standard memories are Single Error Correction (SEC) 
or Single Error Correction-Double Error Detection (SEC-
DED) codes [11][12][13]. SEC codes are able to correct an 
error in one single memory cell. SEC-DED codes can correct 
an error in one single memory cell, as well as they can detect 
two errors in two independent cells. 

In critical applications, like space applications, more 
complex and sophisticated codes are used 
[14][15][16][17][19][20][21]. For instance, Matrix code [17] 
is a well known code that combines Hamming codes with 
parity check in a matrix, allowing the correction of two bits in 
error. Recently presented, Column-Line-Code (CLC) [19] 
follows a similar approach, that is, it uses extended Hamming 
codes and parity bits to correct up to two adjacent bits in error. 

The main problem when memory systems employ an ECC 
is the redundancy required. The extra bits added are used to 
detect and/or correct the possible errors occurred. Also, 
redundant bits must be added for each data word stored in 
memory. In this way, the amount of storage occupied for 
redundant bits scales with the memory capacity. For example, 
if an ECC with 100% of redundancy is employed in a 2GB 
memory, only 1GB is available to store the payload (the 
“clean” data); the remaining 1GB is required for code bits. 

In addition, the usage of an ECC implies overheads in the 
area, power and delay employed by the encoder and decoder 
circuits. These overheads must be maintained as low as 
possible, especially in space applications. 

In this work, we present a series of ECCs that greatly 
reduces the redundancy introduced, while maintaining, or even 
improving, memory error coverage. In addition, area, power 
and delay overheads are also reduced. These new codes have 
been designed using the Flexible Unequal Error Control 
(FUEC) methodology, developed by the authors in [31], where 
an algorithm (and a tool) to design FUEC codes is introduced. 
FUEC codes are an improvement of the well known Unequal 
Error Control (UEC) codes [11]. Nevertheless, the FUEC 
methodology can also find other kinds of codes. In this paper, 
it is employed to find low redundancy codes. These novel 
codes are different than those presented in [31]. They only 
share the design methodology, but with different parameters. 
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In this way, by using the tool, we can generate the parity 
check matrix of an ECC in an automatic and efficient way, 
just defining its error detection and/or correction capabilities. 

This work is organized as follows. Section II introduces the 
design of ECCs. Section III summarizes the codes used in this 
work. Section IV describes the different results obtained 
during the evaluation of the ECCs. Finally, Section V 
concludes this paper. 

II. INTRODUCTION TO THE DESIGN OF ERROR CORRECTION 
CODES 

A. Background on Error Correction Codes for Space 
Applications 

Different ECCs have been traditionally applied to space 
missions [20]. For instance, Berger code [22] or the well 
known Parity code have been used for detection purposes. 

On the other hand, when error correction is needed, more 
complex codes can be used, such as Hamming [12][20], 
Hadamard [23], Repetition [24], Golay [25], BCH [24], Reed-
Solomon [24], Reed-Muller [21], multidimensional [26] or 
Matrix [17] codes. 

Hamming codes [12] can be easily built for any word 
length. Also, the encoding and decoding circuits are easy to 
implement. Their main drawback is that only one bit in error 
can be corrected. Nevertheless, for common data word lengths 
(8, 16, 32, 64), Hamming codes can detect some double error 
patterns, in addition to the single error correction. Exploiting 
this feature, it is possible to systematize the detection of 2-bit 
adjacent errors with the same redundancy, as presented in 
[27][28]. In these works, different ECCs based on Hamming 
codes are introduced. These ECCs allows the correction of 
single bit errors, or the detection of 2-bit adjacent errors with 
the same redundancy. 

The main problem of Hadamard and Repetition codes 
[23][24] is that they introduce a great redundancy for common 
data word lengths [20]. This great redundancy provokes the 
necessity of a great memory storage capacity, which is an 
inconvenient for space applications. 

Golay code [25] is able to correct up to 3-bit errors. 
Nevertheless, Golay code presents a redundancy of almost 
100%. Also, this code presents a high time and power 
consuming ratio, as it has to execute sequentially two 
complementary sequences.  

Although BCH and Reed-Solomon codes [24][38] can 
correct multiple errors, their main drawbacks are the great 
complexity and difficulty to implement them, as well as their 
great latency and speed. These weaknesses can be very 
problematic in space applications. 

Concerning Reed-Muller codes [21], although vastly used 
in critical applications, they present a great complexity. In this 
way, the overheads introduced are higher than the overheads 
introduced by Matrix or CLC codes, as shown in [17][19]. 

Multidimensional codes [26] are a class of matrix codes that 
uses parity bits to detect and correct errors. With a low 
redundancy, these codes present several drawbacks. When 
more than two errors must be corrected, the code design is 

very complicated. Also, it is very difficult to adapt these codes 
to standard data word sizes (i.e. 16, 32 or 64 bits). 

A better alternative are the Matrix codes based on Hamming 
codes [17][19]. These codes still present a great redundancy, 
but they are more cost effective than previous multiple-error 
correcting codes. 

In this work, we have designed several new ECCs using the 
FUEC methodology [31]. The main characteristic of these new 
codes is their low redundancy. In order to check the behavior 
of our codes, we have compared them with two types of codes. 
On the one hand, with matrix codes based on Hamming codes, 
as these last codes present a good relationship between 
redundancy and area, power and delay overheads. On the other 
hand, with Hamming-based codes due to the very low 
redundancy of these codes.  

B. Basics on Coding Theory 
An (n, k) binary ECC encodes a k-bit input word in an n-bit 

output word [29]. The input word u = (u0, u1, …, uk–1) is a k-bit 
vector which represents the original data. The codeword b = 
(b0, b1, …, bn–1) is a vector of n bits, where the (n – k) 
redundant bits added are called parity or code bits. b is 
transmitted across an unreliable channel which delivers the 
received word r = (r0, r1, …, rn–1). The error vector e = (e0, e1, 
…, en–1) models the error induced by the channel. If no error 
has occurred in the ith bit, ei=0; otherwise, ei=1. In this way, r 
can be interpreted as r = b ⊕ e. Fig. 1 synthesizes this 
encoding, channel crossing and decoding process. 
 

 
Fig. 1. Encoding, channel crossing and decoding process. 
 

The parity check matrix H(n – k)×n of a linear block code 
defines the code [11]. For the encoding process, b must 
accomplish the requirement H·bT=0. For syndrome decoding, 
the syndrome is defined as sT=H·rT, and it exclusively 
depends on e: 

sT = H·rT = H·(b ⊕ e)T = H·bT ⊕ H·eT = H·eT   (1) 

There must be a different s for each correctable e. If s=0, we 
can assume that e=0. Therefore, r is correct. Otherwise, an 
error has occurred. Syndrome decoding is performed by 
addressing a lookup table that relates each s with the decoded 
error vector 𝐞�. The decoded codeword 𝐛̂ is calculated as 
𝐛̂ = 𝐫 ⨁ 𝐞�. From 𝐛̂, it is easy to obtain 𝐮� just discarding the 
parity bits. If the fault hypothesis employed to design the ECC 
is consistent with the channel behavior, 𝐮� and u must be equal 
with a very high probability. 

C. Error models 
In coding theory [11], the term random error commonly 

refers to one or more bits in error, distributed randomly in the 
encoded word (data bits plus code bits generated by the ECC). 
Random errors can be single (only one bit affected) or 
multiple. Single errors are the simplest ones, as they only 

Encoder Lookup
Table
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affect a single memory cell. They are commonly produced by 
single event upsets (SEU, in random access memories) or 
single event transients (SET, in combinational logic) [32].  

As it was commented in the Introduction section, with the 
continuous increasing of the integration scale, multiple errors 
are becoming more frequent [4][5][6][7][8]. Multiple errors 
mainly manifest as bursts [34]. We can define a burst error as 
a multiple error that spans l bits in a word [11], i.e. a group of 
contiguous bits where, at least, the first and the last bits are in 
error. The separation l is known as burst length. Notice that 
adjacent errors are a particular type of burst errors where all 
the erroneous bits are contiguous. The main physical causes of 
a burst error in the context of RAM memories are diverse: 
high energy cosmic particles that hit some neighbor cells, 
crosstalk between adjacent cells, etc. [1][33]. 

D. Hamming codes 
Hamming codes [12] are able to correct single bit errors 

with the lowest redundancy. For example, the parity check 
matrix for the Hamming (7, 4), i.e. n = 7 and k = 4, is shown 
in (2). 

𝐇 = �
1010101
0110011
0001111

�          (2) 

From (2), it is easy to deduce the encoding and decoding 
operations. The encoding formulas are shown in TABLE I. 

TABLE I 
ENCODING FORMULAS FOR THE HAMMING (7, 4) CODE 

b0 b1 b2 b3 b4 b5 b6 Encoding formulas 
  u0  u1 u2 u3 

1 0 1 0 1 0 1 b0 = u0 ⊕ u1 ⊕ u3 
0 1 1 0 0 1 1 b1 = u0 ⊕ u2 ⊕ u3 
0 0 0 1 1 1 1 b3 = u1 ⊕ u2 ⊕ u3 

 
In the same way, it is also possible to obtain the syndrome 

decoding formulas from the parity check matrix (2). TABLE 
II shows the expressions obtained to calculate the syndrome 
bits for the Hamming (7, 4) code. 

TABLE II 
SYNDROME BITS FOR THE HAMMING (7, 4) CODE 

r0 r1 r2 r3 r4 r5 r6 Syndrome bits 
  u0  u1 u2 u3 

1 0 1 0 1 0 1 s0 = r0 ⊕ r2 ⊕ r4 ⊕ r6 
0 1 1 0 0 1 1 s1 = r1 ⊕ r2 ⊕ r5 ⊕ r6 
0 0 0 1 1 1 1 s2 = r3 ⊕ r4 ⊕ r5 ⊕ r6 

 
If an error occurs, the syndrome bits will locate the 

erroneous bit. A look-up table (implemented, for example, 
using a binary decoder) selects the erroneous bit. Applying the 
“exclusive-or” operation, the output of the look-up table 
correct the erroneous bit. 

For common word lengths, such as 8, 16, 32 and 64 bits, 
there exist (12, 8), (21, 16), (38, 32) and (71, 64) Hamming 
codes respectively. As it can be seen, redundancy decreases 
with longer data words. For instance, the (12, 8) Hamming 
code presents a 50% of redundancy, whereas the (71, 64) 
Hamming code introduces about 11% of redundancy.  

Hamming codes can be extended to correct single errors and 
detect double random errors. These codes are known as SEC-
DED (Single Error Correction-Double Error Detection) 
Extended Hamming codes [12]. These codes need an 
additional parity bit to achieve the double error detection. It is 
calculated as the even parity for the whole encoded word. In 
this way, and just adding an extra bit b7, the Hamming SEC 
code (7, 4) shown previously converts into an extended 
Hamming SEC-DED code (8, 4). b7 can be obtained as 
follows: 

                    b7 = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4 ⊕ b5 ⊕ b6 (3) 

The decoding process checks two conditions: i) the parity of 
the whole received word; and ii) the syndrome bits, which are 
calculated as in the Hamming code. TABLE III shows the 
possible results, the corresponding meaning and the actions to 
be taken. As it can be seen, single-bit errors can be corrected 
as in the Hamming code. In the case of a double-bit error, a 
non-recoverable error (NRE) is detected but it cannot be 
corrected. 

TABLE III 
EXTENDED HAMMING ERROR DETECTION/CORRECTION 

SYNDROME 
BITS 

PARITY 
(WHOLE 
WORD) 

EVENT ACTION 

Zero Even NO ERROR - 

Zero Odd SINGLE ERROR      
(in the parity bit) - 

Nonzero Even 
TWO-BIT ERROR 
(non-recoverable 

error) 

Disable correction 
logic 

Signal the error 

Nonzero Odd SINGLE ERROR      
(in bits 0 to 6) 

Enable correction 
logic 

 
There exist also (13, 8), (22, 16), (39, 32) and (72, 64) SEC-

DED extended Hamming codes. As in the SEC codes, 
redundancy decreases with higher data word lengths. 

E. Flexible Unequal Error Control methodology 
The methodology employed to design the error control 

codes introduced in this work can be found in [31]. This 
methodology was developed to obtain Flexible Unequal Error 
Control (FUEC) codes. However, it can be generalized to find 
any kind of codes. Although a detailed explanation is out of 
the scope of this paper, it is briefly summarized in the 
following. This methodology is based on formulating the 
problem as a Boolean Satisfiability problem. An algorithm 
developed by the authors is employed to solve it and to obtain 
a parity check matrix, which defines the code to be designed. 

After defining the values of n and k for the code, the first 
step is the selection of error patterns to be corrected and 
detected. For instance, single errors are represented with error 
vectors (…1…), and error vectors for double random errors 
show the pattern (…1…1…), where 1’s represent the bits in 
error, and the dots represent the correct bits. 

The next step is to find the parity check matrix H that 
satisfies the conditions (4) and (5), where 𝑬+ represents the set 
of error vectors to be corrected, and 𝑬∆ is the set of error 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4 

vectors to be detected. That is, each correctable error must 
generate a different syndrome (4). In addition, each detectable 
error must generate a syndrome which is different to all the 
syndromes generated by the correctable errors (5). However, 
several detectable errors may have the same syndrome. 

 

 jiji
T
j

T
i eeeeeHeH ≠∈∀⋅≠⋅ + |,; E  (4) 

 

 +∆ ∈∈∀⋅≠⋅ EE ji
T
j

T
i eeeHeH ,;  (5) 

 

To find the matrix, a recursive backtracking algorithm is 
used. It checks partial matrices and adds a new column only if 
the previous matrix satisfies the requirements. In this way, the 
algorithm starts with an empty partial_H matrix. New 
columns, with n–k rows, are added, and the new partial 
matrices are checked recursively. The added columns must be 
non-zero, so there are 2n–k – 1 combinations for each column.  

The complete execution of the algorithm is commonly 
unfeasible. Nevertheless, the first solutions are usually found 
quickly, if the code exists. Once selected the H matrix, it is 
easy to determine the logic equations to calculate each parity 
and syndrome bit, as well as the syndrome lookup table. They 
are required for the encoder and decoder implementation.  

In addition, we can apply two different optimization 
criteria. If we want to decrease the delay of the encoders and 
decoders, we have to reduce the number of 1’s in those rows 
with the highest number of 1’s of the parity check matrix. In 
the case of area reduction, the total number of 1’s in the parity 
check matrix must be reduced. 

A detailed explanation of this algorithm, as well as a code 
design example, can be found in [31]. 

III. ERROR CORRECTION CODES DESCRIPTION 

A. Previous proposals 
As commented previously, Matrix and CLC codes have 

been designed to tolerate MCUs [17][19], a critical concern in 
space applications. 

Combining Hamming codes and parity checks [17][18], 
Matrix codes form a two dimensional scheme for correcting 
and detecting some patterns of MCUs. For instance, in this 
paper, we have used the bit layout shown in Fig. 2 (extracted 
from [18]), where Xi are the data bits, Ci are the horizontal 
check bits (calculated as a Hamming code), and Pi are the 
column parity bits (even parity). 

 
X1 X2 X3 X4 C1 C2 C3 
X5 X6 X7 X8 C4 C5 C6 
X9 X10 X11 X12 C7 C8 C9 
X13 X14 X15 X16 C10 C11 C12 
P1 P2 P3 P4  

Fig. 2. Layout of a 16 data-bit word for the (32, 16) Matrix code [18]. 

The basic behavior of this Matrix code is as follows. The 
primary data input (Xi) is divided into groups of several bits. 
In this work, this division is in groups of 4 bits. Each group is 
codified by a (7, 4) Hamming code (Ci). Lastly, a set of 
vertical parity bits (Pi) completes the matrix. The Matrix code 
implemented in this work presents better correction and 

detection performance than an extended Hamming code, as it 
is able to correct all single errors and to correct or to detect all 
2-bit burst errors. Nevertheless, this Matrix code presents a 
higher redundancy than an extended Hamming code. In this 
way, memory required for code bits is increased, and also, 
area, energy and delay overheads.  

Recently presented, CLC code [19][30] is another matrix 
code proposed to be used in space applications. The layout we 
have employed for the implementation of this code is shown 
in Fig. 3 (extracted from [19]), where Xi is the primary data 
input, divided into groups of 4 bits. Each group is codified by 
a SEC-DED (8, 4) Extended Hamming code (Ci and Pai). 
Finally, a set of vertical parity bits (Pi) form the matrix. 

As just commented, and unlike the Matrix code, CLC uses 
an Extended Hamming code, allowing the correction of all 
single and 2-bit burst errors. Nevertheless, CLC introduces a 
higher number of redundant bits, provoking a greater area, 
power and delay overheads, and reducing the available 
memory for the payload. 

 
X1 X2 X3 X4 C1 C2 C3 Pa1 
X5 X6 X7 X8 C4 C5 C6 Pa2 
X9 X10 X11 X12 C7 C8 C9 Pa3 
X13 X14 X15 X16 C10 C11 C12 Pa4 
P1 P2 P3 P4 P5 P6 P7 P8 

Fig. 3. Layout of a 16 data-bit word for the (40, 16) CLC [19]. 

On the other hand, [27] introduces a SEC-DAED (Single 
Error Correction-Double Adjacent Error Detection) code with 
a very low redundancy. This code is able to correct all single 
errors, or to detect all double adjacent errors in a 16-bit data 
word with only 5 redundant bits. Fig. 4 shows the data word 
layout of this code, where Ci are the code bits, and Xi are the 
data bits.  

 
Fig. 4. Layout of a 16 data-bit word for the (21, 16) SEC-DAED [27]. 

On the contrary, [28] presents a different approach to 
generate Hamming based ECCs. In this case, we have selected 
a SEC-DAED code with the same coverage characteristics, as 
well as the same redundancy of the SEC-DAED code from 
[27]. The main difference is the code layout, shown in Fig. 5. 

To obtain the value of the different Ci bits, the parity check 
matrix of these two SEC-DAED codes can be seen in [27][28] 
respectively. 

 
Fig. 5. Layout of a 16 data-bit word for the (21, 16) SEC-DAED [28]. 

B. Our approach 
By using the FUEC methodology [31], we have been able to 

design several codes that improve the coverage and/or the 
redundancy of the different codes presented previously 
(Matrix, CLC and both SEC-DAED codes). The layout of our 
codes is presented in Fig. 6, where Ci are the code bits, and Xi 
are the data bits.  

C1 C2 C3 C4 C5 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

X1 X2 X3 X4 X5 X6 X7 X8 C1 X9 C2 C3 C4 X10 C5 X11 X12 X13 X14 X15 X16
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Fig. 6. Layout of a 16 data-bit word for the FUEC codes. 

Using our algorithm, we have found a code (we will call it 
FUEC-DAEC) that can correct an error in a single bit, or an 
error in 2 adjacent bits, or it can detect one 3-bit burst error or 
one 4-bit burst error.  

FUEC-DAEC needs only seven code bits for a 16-bit data 
word. Fig. 7 shows the parity check matrix H for this code, 
where Ci are the code bits and Xi are the primary data bits.  

      C0 ···················C6  X0 X1 ················································X15 

𝐇 =
�

�

1  0  0  0  0  0  0  1  0  0  0  1  0  0  1  1  0  0  1  1  1  0  0���������������������������������������������������������������������������
0  1  0  0  0  0  0  0  1  0  1  0  1  0  1  0  1  1  1  0  0  1  0
0  0  1  0  0  0  0  1  0  1  0  0  0  1  1  0  1  0  0  1  0  1  1
0  0  0  1  0  0  0  0  1  0  0  1  0  0  0  1  1  0  0  1  0  0  0
0  0  0  0  1  0  0  1  0  0  1  1  0  0  1  0  0  0  0  1  1  0  1
0  0  0  0  0  1  0  0  1  1  0  0  1  0  0  0  1  1  0  1  0  1  0
0  0  0  0  0  0  1  0  0  1  1  0  0  1  0  1  0  1  1  0  1  0  1

�

�
 

Fig. 7. Parity check matrix H for the (23, 16) FUEC-DAEC code. 

Once H has been obtained, it is very easy to design the 
encoder/decoder circuitry. For example, the formulas to 
calculate the code bits for the FUEC-DAEC code are: 

1513111086326

14121095215

15131274304

1298413

151412976202

141110975311

13121187400

XXXXXXXXC
XXXXXXXC
XXXXXXXC

XXXXXC
XXXXXXXXC

XXXXXXXXC
XXXXXXXC

⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕=

       (6) 

On the other hand, the syndrome formulas that can be 
obtained from H to check if an error has occurred are: 

15131110863266

141210952155

151312743044

12984133

1514129762022

1411109753111

131211874000

XXXXXXXXCS
XXXXXXXCS
XXXXXXXCS

XXXXXCS
XXXXXXXXCS

XXXXXXXXCS
XXXXXXXCS

⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕=
⊕⊕⊕⊕⊕⊕⊕=

     (7) 

Our second proposal, called FUEC-TAEC, is able to correct 
an error in a single bit, or an error in 2 adjacent bits (2-bit 
burst errors) or a 3-bit burst error, or it can detect a 4-bit burst 
error. This is possible by adding one more code bit. In this 
case, for a 16-bit data word, the FUEC-TAEC code needs 
eight code bits. The parity check matrix H for this code is 
presented in Fig. 8. As in the case of the FUEC-DAEC, Ci are 
the code bits and Xi are the primary data bits. Similarly, from 
H it is very easy to design the encoder/decoder circuitry. 

Finally, FUEC-QUAEC is the last code we have designed. 
This code is able to correct an error in a single bit, or an error 
in 2 adjacent bits (2-bit burst errors) or a 3-bit burst error or a 
4-bit burst error. This can be done by using only nine code 
bits. The parity check matrix H for this code is shown in Fig. 

9. As in the previous codes, Ci are the code bits and Xi are the 
primary data bits. 

         C0 ····················C7 X0 X1 ···········································X15 

𝐇 =

�

�

1  0  0  0  0  0  0  0  1  0  0  1  1  0  0  1  1  0  0  1  0  0  0  1�����������������������������������������������������������������������
0  1  0  0  0  0  0  0  0  1  0  0  1  1  0  0  1  1  0  0  1  1  0  0
0  0  1  0  0  0  0  0  0  0  1  0  0  1  0  0  0  1  1  0  1  0  0  0
0  0  0  1  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1  0  0  0  1  1
0  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  0  0  0  1  1  1
0  0  0  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  0  1  1  1  1  0
0  0  0  0  0  0  1  0  0  0  1  0  0  0  0  1  0  1  1  1  0  0  1  0
0  0  0  0  0  0  0  1  0  0  0  1  0  0  1  0  1  0  0  0  1  0  1  0

�

�

 

Fig. 8. Parity check matrix H for the (24, 16) FUEC-TAEC code. 

       C0 ·······················C8 X0 X1 ···········································X15 

𝐇 =

�

�

�

1  0  0  0  0  0  0  0  0  1  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0��������������������������������������������������������������������������
0  1  0  0  0  0  0  0  0  0  1  0  0  0  1  0  0  0  1  1  0  0  0  1  0
0  0  1  0  0  0  0  0  0  0  0  1  0  0  0  1  0  1  0  0  1  0  0  0  1
0  0  0  1  0  0  0  0  0  0  0  0  1  0  0  0  1  0  0  0  1  1  0  0  0
0  0  0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  1  0  1
0  0  0  0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  0  1  0  0  1  0  0
0  0  0  0  0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  1  1  0  0  0  1
0  0  0  0  0  0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  0  1  0  1  0
0  0  0  0  0  0  0  0  1  0  0  0  0  1  0  0  0  0  1  0  0  1  1  0  0

�

�

�

 

Fig. 9. Parity check matrix H for the (25, 16) FUEC-QUAEC code. 

We have to remark that we have generated a parity check 
matrix optimized to achieve the lowest delay for our three 
codes, that is, with a reduced number of 1’s in the rows with 
the highest number of 1’s. 

It is also remarkable that the names FUEC-*AEC only 
indicate that they have been designed using the FUEC 
methodology. The codes presented here must not been 
confused with the FUEC codes from [31], an improvement of 
UEC codes [11]. 

With respect to the code bits needed, our three codes 
present a very low redundancy with respect to the Matrix and 
CLC codes. Nevertheless, the lowest redundancy corresponds 
to both SEC-DAED codes, but this low redundancy only 
permits the correction of single errors, as it can be seen in 
TABLE IV. This table shows the number of code bits 
introduced by each ECC, as well as the redundancy introduced 
with respect to a 16-bit data word. Notice that although in this 
paper we have worked with 16-bit data word, FUEC 
methodology and algorithm can be applied to longer codeword 
sizes. Calculus of the redundancy has been done with: 

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = 𝑁𝑜.  𝑐𝑜𝑑𝑒 𝑏𝑖𝑡𝑠
𝑁𝑜.  𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠

× 100      (8) 

The importance of a low redundancy comes from the fact 
that these extra bits must be also stored in memory in order to 
check if an error has occurred. In this way, a higher 
redundancy means a lower storage available for data bits. As 
an example, if we use a 1GB memory chip, only 512MB are 
available to store data bits in the case of the Matrix code, 
requiring the remaining 512MB to store the code bits. In the 
case of the CLC code, only about 410MB are available to 
store data bits. On the other hand, in the case of the SEC-
DAED codes, the available memory for data is about 780MB. 

 
 

C0 .. .. Cn-1 X0 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X15
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TABLE IV 
NUMBER OF CODE BITS FOR A 16-BIT DATA WORD. 

CODE No. Code Bits % Redundancy Burst error detection & correction capabilities 

Matrix 16 100 % Correction: 100% of single bit errors  
Detection: 100% of 2-bit burst errors 

CLC 24 150 % Correction: 100% of single bit errors & 2-bit burst errors 
Detection: 100% of 2-bit burst errors 

SEC-DAED [27]  5 31.25 % Correction: 100% of single bit errors  
Detection: 100% of 2-bit burst errors 

SEC-DAED [28] 5 31.25 % Correction: 100% of single bit errors  
Detection: 100% of 2-bit burst errors 

FUEC-DAEC 7 43.75 % Correction: 100% of single bit errors & 2-bit burst errors 
Detection: 100% of 3- & 4-bit burst errors 

FUEC-TAEC 8 50 % Correction: 100% of single bit errors & 2- and 3-bit burst errors 
Detection: 100% of 4-bit burst errors 

FUEC-QUAEC 9 56.25 % Correction: 100% of single bit errors & 2-, 3- and 4-bit burst errors 
Detection: 100% of 4-bit burst errors 

 
Following with this example, our FUEC-DAEC code allows 

storing about 712MB of primary data. In contrast, our FUEC-
TAEC and FUEC-QUAEC codes allow storing 682MB and 
655MB respectively. As it can be seen, the increment in the 
storage available is very significant, taking into account the 
improvement in the coverage properties of our three codes.  

Last column of TABLE IV shows the burst error coverage 
of the different ECCs, a concern to have into account in space 
applications [9][10]. As shown in [9], MCUs mainly provoke 
2-bit adjacent errors in earth observation satellites; although a 
non negligible percentage of longer burst errors are also 
presented. In deep space exploration, a higher impact of longer 
MCUs is expected. 

IV. ERROR CORRECTION CODES EVALUATION 
In this section, we present the different results obtained 

during the evaluation of the ECCs presented in Section III. We 
have carried out two different processes. During the first one, 
we have injected faults in C models of the ECCs for error 
coverage evaluation. In a second step, we have implemented 
the different ECCs in VHDL and we have synthesized them, 
in order to estimate area, power and delay overheads. This 
section finishes with the analysis of the results obtained. 

A. Error coverage evaluation 
In order to study the error coverage of the different ECCs, 

we have developed a simulator that allows injecting different 
types of error. The basic scheme is shown in Fig. 10.  

 
Fig. 10. Block diagram of the fault injector simulator. 

This tool allows the injection of different types or error. By 
comparing the input and output words, the simulator can 

check if the error injected leads to a right or wrong decoding. 
Also, the decoder circuit can activate the NRE (Non 
Recoverable Error) signal when an error is detected but it 
cannot be corrected. Repeating the process for all errors of a 
given size and model (i.e. random or burst), it is possible to 
count the number of corrected and/or detected errors with 
respect to the total number of possible errors, that is, it is 
possible to calculate the coverage of each ECC. In this paper, 
we have injected single errors, as well as burst errors with a 
burst length varying from 2 to 8. This is a representative range 
in space applications [6][7]. Notice that burst errors can be 
adjacent or not, and affect to the layout of the rows. In the case 
of the Matrix code, we have considered that C3 is adjacent to 
X5, C6 to X9, etc. (see Fig. 2). In the same way, for the CLC 
code, Pa1 is adjacent to X5, Pa2 to X9, etc. (see Fig. 3). 

We have to remark that we have not injected errors 
according to their probability of occurrence, as our goal is to 
measure the correction and detection coverages, that represent 
percentages. Specifically, we have injected each type of error 
(single errors or burst errors of different lengths) in all bits of 
the codeword to verify the error correction/detection 
capabilities of the different ECCs. Obviously, burst errors of 
length 8 will be much less frequent than burst errors of length 
2, as bibliography shows [6][7].  

All blocks of the fault injection tool have been developed in 
C, using the bitwise logic operators for an accurate simulation 
of the hardware behavior. Encoder and decoder circuits can be 
easily obtained from the parity check matrix H, as stated in 
Section III. These circuits are implemented in C as encoding 
and decoding functions. Changing the simulator for a different 
ECC is as simple as adjusting the word lengths and replacing 
the encoding and decoding functions for the new ECC. 

Fig. 11 shows the results obtained for the correction 
coverage of each code. This coverage has been calculated as: 

𝐶𝑐𝑜𝑟𝑟𝑒𝑐 = 𝐸𝑟𝑟𝑜𝑟𝑠_𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐸𝑟𝑟𝑜𝑟𝑠_𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑

× 100                        (9) 

where 𝐸𝑟𝑟𝑜𝑟𝑠_𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 are the number of errors 
corrected by the ECC, and 𝐸𝑟𝑟𝑜𝑟𝑠_𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑 are the total 
amount of errors injected for a given burst length. 

As expected, FUEC-TAEC and FUEC-QUAEC codes 
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present better correction coverage than Matrix, CLC and both 
SEC-DAED codes, as they are able to correct up to 3- and 4-
bit burst errors respectively. On the other hand, our FUEC-
DAEC code can correct up to 2-bit burst errors, like CLC.  

Nevertheless, for longer burst errors (5 bits or more), the 
correction capabilities of our codes degrade more deeply than 
Matrix and CLC ones. This is provoked by the lower 
redundancy of our codes, which causes a lower number of 
available syndromes to be used to correct longer burst errors. 
In other words, our codes employ the available syndromes in a 
more efficient way inside the expected error rank, but 
degrading quickly outside this rank. This effect can be seen 
also in both SEC-DAED codes. In fact, these codes present the 
greatest degradation from multiple bit errors (2-bit burst errors 
or longer). As it happens with our codes, the very low 
redundancy of both SEC-DAED codes provokes this result. 
 

 
Fig. 11. Correction coverage for burst errors. 

Finally, Fig. 12 shows the detection coverage for all codes. 
This detection coverage is calculated as: 

𝐶𝑑𝑒𝑡𝑒𝑐 = 𝐸𝑟𝑟𝑜𝑟𝑠_𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑+𝐸𝑟𝑟𝑜𝑟𝑠_𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑
𝐸𝑟𝑟𝑜𝑟𝑠_𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑

× 100             (10) 

where 𝐸𝑟𝑟𝑜𝑟𝑠_𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 corresponds to the number of 
errors not corrected but detected by the ECCs.  

As it can be seen in Fig. 12, all our codes present a 100% 
detection of up to 4-bit burst errors, improving the behavior of 
Matrix, CLC and both SEC-DAED codes. 

As in the correction coverage, the percentage of detected 
errors in our FUEC-TAEC and FUEC-QUAEC codes 
degrades sharply for longer bursts. By contrast, FUEC-DAEC 
maintains a coverage over 60%, near the Matrix detection 
capability. 

In conclusion, our codes are very efficient to tolerate burst 
errors of from 2 to 4 bit length. Beyond 4-bit burst errors, the 
performance of our codes decreases notably due to their low 
redundancy. If these errors are expected to occur, more 
powerful codes (with a higher redundancy) must be employed. 
Nevertheless, the probability of occurrence of burst errors 
decreases significantly when increasing its length [6][7]. 

 

 
Fig. 12. Detection coverage for burst errors. 

B. Synthesis results 
We have shown in Section III that our three codes, FUEC-

DAEC, FUEC-TAEC and FUEC-QUAEC, present a lower 
redundancy with respect to Matrix and CLC codes. This lower 
redundancy provokes a lower storage requirement for code 
bits. 

Nevertheless, the question that arises now is that this lower 
redundancy would translate into an improvement on the area, 
power and delay overheads in the encoder and decoder circuits 
with respect to Matrix, CLC and both SEC-DAED codes. 
Although the area overhead of the encoders and decoders may 
be negligible in comparison with memory overhead, power 
and delay overheads can be important, especially in deep 
space systems. 

To solve this question, we have synthesized the encoder and 
decoder circuits for all ECCs. To do this, we have 
implemented them in VHDL, and using CADENCE software 
[35], we have carried out a logic synthesis for 45 nm 
technology by using the NanGate FreePDK45 Open Cell 
Library [36][37].  

TABLE V (and Fig. 13) shows the area occupied by the 
different circuits in nm2 (1nm = 10-9m). As it can be seen, our 
encoders present a slightly greater area than the encoders of 
both SEC-DAED codes. The worst area numbers for the 
encoders correspond to the CLC and Matrix codes. These 
results are provoked by their higher redundancy, which 
provokes complex encoders’ circuitry.  

TABLE V 
AREA OCCUPIED BY THE DIFFERENT ECCS (IN nm2) 

CODE ENCODER DECODER TOTAL 
Matrix 142 451 593 
CLC 214 482 696 

SEC-DAED [27] 87 242 329 
SEC-DAED [28] 93 246 339 

FUEC-DAEC 91 348 439 
FUEC-TAEC 92 563 655 

FUEC-QUAEC 95 790 885 
 

Regarding decoders’ area, the SEC-DAED ones present the 
lowest numbers. On the other hand, decoders for FUEC-
TAEC and FUEC-QUAEC codes present the biggest area 
overhead, as they are able to correct and/or detect more errors. 
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Fig. 13. Area occupied by the different ECCs (in nm2). 

In general, both SEC-DAED codes present the lowest area 
overhead. Nevertheless, their coverage capabilities are very 
simple with respect to the other codes. Comparing codes with 
similar coverage capabilities (i.e. correction of 2-bit burst 
errors done by Matrix, CLC and FUEC-DAEC codes), the 
FUEC-DAEC circuitry occupies the smallest area. In addition, 
its redundancy is much smaller (less than a half). This low 
redundancy reduces also the silicon area needed by the 
memory to store the code bits. 

With respect to the FUEC-QUAEC code, it presents higher 
error coverage, and therefore, it introduces a higher hardware 
cost and a larger area, mainly in the decoders. Nevertheless, as 
stated above, its low redundancy reduces the area needed by 
the memory. On the other hand, the area occupied by the 
FUEC-TAEC code is lower than the area overhead of CLC, 
with better error coverage. 

TABLE VI (and Fig. 14) shows the power (static and 
dynamic) consumption overhead of the different ECCs (in 
μW, 1μW = 10-6W). In global terms, both SEC-DAED codes 
present the lowest power consumption (encoder plus decoder). 
With respect to our three codes, our FUEC-DAEC code 
presents a slightly higher power consumption than both SEC-
DAED codes, and much better numbers than Matrix and CLC 
codes. The worst score corresponds to the FUEC-QUAEC 
code. It is noticeable the low power consumption of the 
FUEC-TAEC code with regard to its error coverage. 

Particularly, we can observe that power consumption of the 
encoders presents a similar trend with respect to area 
overhead, that is, CLC codes present the higher numbers, 
while the rest of codes show similar numbers. On the other 
hand, as our three codes present a better error coverage, the 
decoders power overhead also increase. 

It is also interesting to remember that power consumption of 
memory has not been taken into account in these results. As 
our codes present a very low redundancy, they need a lower 
storage capacity. In this way, our codes would imply an 
additional power reduction of the redundant memory. 

 
 
 

TABLE VI 
POWER CONSUMPTION (IN μW) 

CODE ENCODER DECODER TOTAL 
Matrix 191,31 492,76 684,07 
CLC 331,79 457,62 789,41 

SEC-DAED [27] 141,80 321,77 463,57 
SEC-DAED [28] 181,09 320,90 501,99 

FUEC-DAEC 156,91 396,19 553,10 
FUEC-TAEC 194,11 616,15 810,26 

FUEC-QUAEC 191,00 836,47 1027,47 
 

 
Fig. 14. Power consumption (in μW). 

Finally, TABLE VII (and Fig. 15) shows the delay 
introduced by the different codes (in ps, 1ps = 10-12s). We do 
not represent the total delay because encoders and decoders 
work in independent operations (writing and reading).  

With respect to the encoders delay, CLC presents the 
highest delay, while Matrix shows the lowest delay. With 
regard to our encoders, they present an intermediate delay, 
except the FUEC-DAEC encoder, that introduces a delay 
slightly lower than the CLC one. It is noticeable the low delay 
introduced by the encoder of the FUEC-QUAEC code. 
Although this code presents the highest redundancy of our 
three codes, its parity check matrix presents a more balanced 
number of 1’s in each row, reducing in this way the delay 
needed.  

In the case of the decoders, our FUEC-DAEC code presents 
the fastest correction, while FUEC-TAEC and FUEC-QUAEC 
codes present the highest delay, but also the highest error 
coverage. The rest of the codes show similar results.  

TABLE VII 
DELAY OVERHEAD FOR THE DIFFERENT ECCS (IN ps) 

CODE ENCODER DECODER 
Matrix 197 552 
CLC 290 543 

SEC-DAED [27] 274 501 
SEC-DAED [28] 274 576 

FUEC-DAEC 286 383 
FUEC-TAEC 245 780 

FUEC-QUAEC 219 772 
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Fig. 15. Delay overhead (in ps). 

C. Global evaluation of ECCs. M metric  
With the results obtained in previous sections, it is not easy 

to provide a global evaluation of the ECCs. To solve this 
question, several metrics has been proposed [17][18][19]. For 
instance, the TCC metric [19] can be used to tradeoff area, 
power, delay and error coverage. We have modified this 
metric to add the contribution of an important factor: the 
redundancy. We have included this parameter because the 
storage size for the different ECCs is reduced with a lower 
redundancy. Indirectly, area and power overheads can be 
affected. In this way, we have presented a generic metric with 
a very simple expression. Thus, if we want to enhance a 
parameter in a specific application, it is possible to weigh any 
of them with different weights; or we can include some 
limitations, such as reaching a certain correction or detection 
level. In this way, by including the redundancy, we can expect 
a metric more complete and accurate. The new metric, that we 
have called M, is presented in (11):  

𝑀 = 𝐶𝑐𝑜𝑟𝑟𝑒𝑐×𝐶𝑑𝑒𝑡𝑒𝑐
𝐴𝑟𝑒𝑎×𝑃𝑜𝑤𝑒𝑟×𝐷𝑒𝑙𝑎𝑦×𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦

      (11) 

With respect to the delay factor, we have analyzed the 
longest delay (the worst case), that corresponds to the decoder 
part. In the case of area and power, we have used the total 
values (encoder plus decoder). 

As it can be seen in Fig. 16, both SEC-DAED codes present 
the best M score for single errors. This is an expected result 
due to the simplicity of their encoders and decoders and their 
low redundancy. When multiple errors are present, the FUEC-
DAEC code presents the best M score for 2-, 3- and 4-bit burst 
error length. In this way, FUEC-DAEC code seems the most 
adequate for short burst errors, as it can correct all single and 
2-bit burst errors, as well as to detect all 3- and 4-bit burst 
errors. 

In any case, when multiple errors are present, our three 
codes present a best M score than Matrix and CLC codes. We 
can observe also that CLC performance is the worst from 
single errors up to 4-bit burst errors length. Due to its great 
redundancy, M metric for CLC is greatly penalized. 

To sum up, our three codes (FUEC-DAEC, FUEC-TAEC 
and FUEC-QUAEC) present the best M scores for 2-, 3- and 
4-bit burst errors. On the other hand, CLC code presents the 

worst M numbers for these burst lengths. In this way, our 
three codes seems a good choice when multiple errors are 
present, as it is expected in spatial applications. 
 

 
Fig. 16. Global evaluation applying M metric. 

V. CONCLUSION  
In this work, a series of new ECCs have been presented. 

These new ECCs improve the behavior of the well-known 
Matrix code, the recently introduced CLC code and different 
SEC-DAED codes.  

A characteristic of our codes is the low redundancy they 
introduce. This fact provokes a reduction in the storage needed 
for the code bits. In addition, the detection and correction 
capabilities are maintained, or even increased. 

The insertion of an ECC in memory also provokes the 
introduction of area, power and delay overheads. Relating to 
the area overhead, we have seen that FUEC-DAEC code 
introduces a much lower area overhead than the CLC and 
Matrix codes, while FUEC-TAEC code presents a similar area 
overhead than Matrix and CLC codes. As expected, FUEC-
QUAEC code exhibits the highest overhead, related to its high 
correction and detection capabilities. Also, we have to take 
into account the reduction of memory area overhead due to the 
low redundancy of our codes. 

Concerning the power overhead, the trend is similar to the 
area overhead. FUEC-DAEC code introduces a much lower 
power overhead than the CLC and Matrix codes. Even, the 
power overhead of the FUEC-DAEC code is similar to the 
SEC-DAED codes ones. FUEC-TAEC and FUEC-QUAEC 
codes present a power consumption similar or a little bigger 
than CLC code, but with much better error correction and 
detection capabilities. And also, we have to take into account 
the reduction of memory power consumption due to the low 
redundancy of our codes. 

With respect to the delay, FUEC-DAEC presents the fastest 
correction, even better than both SEC-DAED codes. On the 
contrary, FUEC-TAEC and FUEC-QUAEC codes introduce 
the highest correction delay, because they are designed to 
correct longer burst errors. In this way, decoder circuits are 
more complex. Nevertheless, encoder circuits are quite quick. 

In general, and according to the M metric, introduced to 
evaluate the overall features of the analyzed codes, our FUEC-
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DAEC code presents the best performance to correct single or 
2-bit burst errors, or to detect 3- or 4-bit burst errors. 
Additionally, FUEC-TAEC and FUEC-QUAEC have 
demonstrated good features to correct 3-bit and 4-bit burst 
errors respectively. Thus, our codes become an appropriate 
option for critical applications in embedded systems. Beyond 
4-bit burst errors, the performance of our codes decreases 
notably due to their low redundancy. If these errors are 
expected to occur, more powerful ECCs must be employed. 

In a future work, we want to continue developing ECCs, 
decreasing area, power and delay overhead while maintaining, 
or even increasing, the code coverage. We want focus on long 
burst errors, which are expected to have more and more 
impact in space systems. 
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