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Abstract. Evolutionary Algorithms (EAs) are common optimization
techniques based on the concept of Darwinian evolution. During the
search for the global optimum of a search space, a traditional EA will
often become trapped in a local optimum. The Scouting-Inspired Evolu-
tionary Algorithms (SEAs) are a recently–introduced family of EAs that
use a cross–generational memory mechanism to overcome this problem
and discover solutions of higher fitness. The merit of the SEAs has been
established in previous work with a number of two and three-dimensional
test cases and a variety of configurations. In this paper, we will present
two approaches to using SEAs to solve high–dimensional problems. The
first one involves the use of Locality Sensitive Hashing (LSH) for the
repository of individuals, whereas the second approach entails the use of
scouting–driven mutation at a certain rate, the Scouting Rate. We will
show that an SEA significantly improves the equivalent simple EA con-
figuration with higher–dimensional problems in an expeditious manner.

1 Introduction

1.1 Introduction to Evolutionary Algorithms

A simple Evolutionary Algorithm (EA) is an optimization technique that discov-
ers satisfactory solutions to a given problem by evolving populations of candidate
solutions over time. Natural evolution is simulated on this initial population by
(a) assigning a measure of merit (fitness value) to each individual solution via
a fitness function; (b) selecting a number of individuals for “parenthood” via
a selection scheme; and (c) using these selected “parents” to create the next
generation of solutions via a number of genetic operators, which usually include
crossover (exchange of genes) and/or mutation (variation of one or more genes).
This cycle of fitness assignment, selection and reproduction continues for a set
number of generations or until a certain threshold of fitness has been reached.



1.2 Scouting-Inspired Evolutionary Algorithm: Previous Work

The essence of scouting is a cross-generational mechanism that considers past
state space samples to optimize future sample generation for efficient state space
exploration. [4, 10, 11, 14, 15] Scouting does this by estimating a current sample
fitness, using a weighted-average of the k-Nearest Neighbors (k-NN) calculation
of previous samples, and computing the difference to the actual fitness. This
estimate-actual fitness difference is analogous to a ”surprise-level”, with a larger
surprise generating a smaller variance in the generation of the next sample. A
Scouting-Inspired Evolutionary Algorithm (SEA) relies on the repository of past
samples to also direct the search for fitter solutions towards areas that are more
“surprising,” or areas that have been insufficiently explored. [4, 15] Thus, this
behavior is an indirect solution to the problem of premature convergence, since
the technique will migrate to different regions of the search space once a peak is
effectively characterized in the past sample database.

SEA achieves this migration by slightly altering the original Scouting Al-
gorithm. Initally, the fitness estimated based on the existing knowledge of the
given search space. A number (k) of the geometrically nearest neighbors to the
current individual is calculated and the weighted average of their fitness value
is then the estimated fitness for the individual of interest, as outlined in (1):

fitestimate =

∑

i∈k
wi × fiti

∑

i∈k wi

, (1)

where wi = d2

i , di is the Euclidean distance between the query and individual
i, and fiti is the fitness of individual i. The selection of k is a design decision
and set to k = 8 in previous and original work presented in this paper. The
Euclidean distance is used because it is assumed the state space is not ill-scaled,
and the Mahalanobis distance could be used in these cases. This estimate is
then compared to the real fitness value of the individual of interest to decide
how “surprising” the area sampled by the individual is.

Definition 1 The surprise value of an individual sind is defined as the absolute
difference of the estimated and actual fitness values.

An SEA requires a mutation operator that introduces Gaussian variation
to an individuals genome. This operator has the effect of increasing standard
deviation when the surprise is low, and the inverse when surprise is high. In
previous work [4] it has been shown that a good mapping between surprise
(sind) and standard deviation (σ) is achieved by:

σ(sind) = σmax − (sind)
γ
× (σmax − σmin) , 0 < γ ≤ 1 . (2)

The boundaries of the standard deviation range, σmin and σmax, are a design
decision and depend on the problem and its dimensionality. After analysis of the
nature of the surprise values in [4], γ = 0.01305 was chosen for this parameter
and we shall also use it throughout this paper.



1.3 SEA and the “Curse of Dimensionality”

The current scouting database implementation stores the datapoints it experi-
ences in an unstructured manner and the k-Nearest Neighbor (k-NN) lookup
is performed by sorting all points by their distance from the query datapoint.
One simply has to consider an 100-dimensional problem with 100 individuals per
generation for 30, 000 generations; ignoring the space requirements, the current
k-NN lookup (1) for the fitness estimate used in the surprise calculation makes
the technique extremely slow —practically unusable.

The goal of the work presented here is to experiment with high–dimensional
problems and show that an SEA configuration is significantly improving the
performance of its equivalent EA. Taking advantage of recent work on k-NN op-
timization techniques, [7] we will present and use an alternative implementation
of the scouting database that is designed for storing a large number of high–
dimensional points and optimized for k-NN lookups. We will finally introduce
the concept of Scouting Rate and present a few examples of how it could be
useful to researchers who decide to use SEAs for their optimization problems,
especially high–dimensional ones.

2 Approaches to an SEA for Higher–Dimensional

Problems

The obvious approach to speeding up scouting–enhanced evolutionary algorithm
configurations without trading for performance is the reimplementation of the
SEA database. A number of alternative storing techniques were considered, but
we focused on the state-of-the-art data storage structures for solving the k-
Nearest Neighbor (k-NN) problem in high dimensions. [7] These were the Metric
Trees [17], which are similar to the older Ball Trees, [13] and the Locality Sen-
sitive Hashing (LSH). [3, 6, 9].

Another approach worth considering is using the scouting effect at a certain
rate, which we call Scouting Rate.

2.1 Solutions to the k–Nearest Neighbor problem

Ball Trees and Metric Trees A Ball Tree or a Metric Tree is a binary tree
where each node, a ball, represents a subspace of the n-dimensional Euclidean
space bound by a hyper-sphere. The radius of the hyper-sphere is as large as
required to contain the children nodes-balls. That means that the root node
contains the entirety of the space covered by the datapoints in the structure.
Sibling nodes are allowed to intersect and do not need to span the entire space.
Ball and Metric Trees make k-NN search particularly simple and fast, since the
datapoints are spatially organized and the search reduces to the problem of
looking up the neighbors of a given query. The search is a depth-first one and
significantly faster than the näıve linear search, like the one used by the current
SEA implementation. [7]



Locality Sensitive Hashing (LSH) Locality Sensitive Hashing (LSH) is not
a structure for solving the exact k-NN problem, but it is instead designed and
considered the best approach for queries that require the approximate near-
est neighbors within a neighborhood radius and a certain probability. [7] This
problem is referred to as the (R, 1-δ)-near neighbor problem, where R is the
neighborhood radius and δ the probability with which an actual neighbor is not
reported.

The way LSH achieves a fast solution to the (R, 1-δ)-near neighbor prob-
lem is by hashing geometrically-close datapoints to the same “bucket”. [6] The
“buckets” are aligned with a prespecified resolution along the axes. The method’s
speed has been proved both theoretically and in practice. [3, 9] The details of
this technique are complex and beyond the scope of this paper. The interested
readder is referred to the concise explanation in [2].

The LSH approach and the official implementation [2] allowed for results that
satisfy the goals of this research. Thus, the underlying structure provided by the
Metric and Ball Trees is not required for the current paper.

2.2 Scouting Rate

Definition 2 Scouting Rate, denoted as ps, is the probability with which the
standard deviation used during scouting-driven mutation is altered based on the
fitness of the nearest neighbors of the individual of interest.

The rationale behind using a scouting rate is that it is possible to avoid
entrapment in local optima by only using scouting-driven mutation on a small
portion of the population. Moreover, it is certain that using a scouting rate
significantly lowers the number of k-Nearest Neighbor calculations that have
to be performed during an experiment. These calculations, and not storing the
individuals themselves, is what makes all traditional k-NN techniques slower and
almost unusable in higher dimensions.

In this paper, we will show that a scouting rate as low as 0.5 still allows
an SEA to significantly improve the equivalent EA, while cutting the cost of
k-Nearest Neighbor lookups to half.

3 Implementation

3.1 Test Cases and the TCG-2 Package

As with previous work [4, 15], the Test–Case Generating Package TCG-2 [16] will
be used to create a variety of fitness landscapes in order to assess how effective
SEAs are in higher–dimensional domains. Previous work and especially [15] fully
outline the merits of TCG-2 and the reasons for using it when experimenting
with SEAs. In short, TCG-2 is a very configurable C++ package and can create
a vast array of non-linear programming (NLP) tasks with different levels of
complexity, modality and difficulty for an EA. In this paper we experiment with
test–cases of 10, 50 and 150 peaks, peak width of σpeak=0.1 and 0.2, and for



6, 8, 10 and 15 dimensions. The rest of the required parameters for TCG-2 are
fixed and shown in Table 1.

Table 1. TCG-2 parameters for the high-dimensional experiments.

Number of feasible components (m) : 5
Search space feasibility (ρ) : 0.5

Search space complexity (c) : 0
Active constraints at global optimum (a) : 0

Peak decay (α) : 0.1
Component minimum distance (d) : 0.01

Penalty (W) : 10

3.2 The Evolutionary Algorithm Framework

The Evolutionary Algorithm framework was implemented in C/C++ and follows
the guidelines provided in the first two papers on SEAs [4, 15], with the necessary
changes for the goals of this research. The EA/SEA configuration used here
is the EAC/SEAC, as defined in [4]. This configuration uses Roulette Wheel
selection, random deletion, single–point crossover at a rate of 0.5, and random
(EAC) or scouting–driven (SEAC) mutation at a rate of 0.5. Minimum standard
deviation for scouting–driven mutation σmin and the fixed standard deviation
for the EAC σEA are both set to σmin = σEA = 0.0107, whereas the maximum
one is σmax = 0.4 for fitness landscapes with narrow peaks (σpeak = 0.1), and
σmax = 0.9 for landscapes with wide peaks (σpeaks = 0.2).

The evolutionary process loops for a set number of generations—30,000 for
all experiments presented here, and the population size is 20 individuals. Finally,
all experiments were run 75 times, using 25 different seeds generated with dice
and three different random–number generators. The latter are provided by the
GNU Scientific Library [5] and are the “Mersenne Twister” [12] and the two
“ranlux” algorithms [8].

3.3 Locality Sensitive Hashing and the E2LSH Package

As explained earlier, the reimplementation of the scouting database is essential
to this work and preliminary investigation showed that the Locality Sensitive
Hashing (LSH) approach is the most suitable one for our needs. The official LSH
implementation is the E2LSH (Exact Euclidean LSH) 0.1 package by Alexandr
Andoni and Piotr Indyk. [2] It is a C/C++ package and was easily incorporated
into the existing SEA project.

Running experiments with E2LSH was much faster compared to the näıve
scouting database without affecting the performance of the SEA. Table 2 shows
the averages over 10 identical runs of each sample problem with the näıve scout-
ing implementation, and the ones with E2LSH. The E2LSH parameters used for



these timing experiments are the ones in the column titled “Higher-Dim. TCG-
2” in Table 3 and it is very likely that there exist other such parameters that
make the SEA perform even faster for the problems presented.

Table 2. Näıve vs. E2LSH implementation times. All experiments were run with a
population size of 10 individuals.

TCG-2 problem Näıve E2LSH

2D, 1000gens 5.8032sec ± 0.1085sec 19.3287sec ± 0.1067sec

3D, 1000gens 7.4905sec ± 0.63sec 8.0773sec ± 0.5396sec

3D, 5000gens 1min 39.4522sec ± 7.4372sec 43.5159sec ± 2.3219sec

10D, 1000gens 46.6837sec ± 7.6753sec 15.4688sec ± 1.2717sec

20D, 1000gens 61.8342sec ± 12.3005sec 17.4135sec ± 0.2978sec

40D, 1000gens Unable to cope (Seg. Fault) 25.1240sec ± 1.0382sec

100D, 1000gens Unable to cope (Seg. Fault) 54.3983sec ± 0.5909sec

300D, 1000gens Unable to cope (Seg. Fault) 51.0080sec ± 1.3616sec

Table 3. The E2LSH parameters used for the experiments presented in this paper.

Parameter Higher-Dim. TCG-2 15-Dim. TCG-2

k 20 6

m 35 7

L 595 21

w 4 4

The speed improvement of the scouting database with E2LSH was signifi-
cant when the problem dimensionality was higher than two. The time duration
for the three-dimensional example for 1000 generations was almost identical for
the two techniques, but it is obvious that E2LSH deals with an increasing num-
ber of points in a much more effective manner than the näıve implementation.
Moreover, the E2LSH implementation performed much better in the ten and
twenty-dimensional examples, cutting down the time to more than one third.
Finally and most importantly, the new database implementation performed bet-
ter in the 300-dimensional example than the näıve one performed in the twenty-
dimensional example.

It is important however to note that the times presented in Table 2 can be
affected by the local memory resources available, the parameters for the E2LSH
package, the way the search is performed —the maximum standard deviation
scouting mutation uses, for example— and even the task at hand.

The package includes a parameter calculator, but it requires a sample of dat-
apoints from the problem search space. The creators advised that the parameter
calculator should be invoked after a certain number of points has been expe-
rienced, at which point scouting could begin playing a role. [1] Our hope was



that we could avoid this step, given speed considerations, and we attempted to
use the parameter calculator for a number of point samples to get an empirical
understanding of the parameters and adapt them accordingly manually. Table 3
outlines the parameters used for the experiments presented in this paper.

4 Results and Discussion

Our goal in this paper is to show that an SEA configuration improves its equiva-
lent EA in higher–dimensional problem domains. We therefore ran the EAC and
the SEAC on TCG-2 test–cases of 6, 8, 10 and 15 dimensions. The latter were
varied in the number of peaks —10, 50, 100 and 150— and their width —0.1 and
0.2.— We ran these with ps=1 and with ps=0.5 to show that even a scouting
rate of 0.5 is enough to significantly improve the equivalent EA, by performing
only 50% of the k-NN queries.

During experimentation with these high–dimensional problems, it became
apparent that every problem has an optimal σmax. A higher σmax made the
SEAC perform worse when dealing with narrower peaks and higher dimensions.
The reason for that is the fact that changing all genes by the same amount
creates individuals at a lower resolution as the number of dimensions increase —
the created individuals have a larger distance among them by default. Assuming
the highest value in the range given by each σ and using the fact that the range is
sixfold the standard deviation (σ), the distance among individuals as a function
of σ and the problem dimensionality is given by the following:

d(σ, n) =

√

(

6 × σ

2

)2

× n (3)

This makes it harder to find only a few narrow peaks in a large zero–fitness
plateau when using a large σmax. We therefore picked to use σmax=0.4 for the
TCG-2 cases with σpeak=0.1 and σmax=0.9 for those with σpeak=0.2.

All the results obtained showed an improvement of performance when scouting–
driven mutation was in use. Figures 1, 2, 3 and 4 show the performance of the
SEAC with ps = 1 against the equivalent EAC for only the 15–dimensional cases,
due to lack of space. As one can clearly see, in every case the SEAC improves
significantly after a certain generation continuing to improve up to and beyond
the limit of 30, 000 generations, whereas the EAC reaches a plateau much earlier,
in the ca. 2,000th generation for most cases presented here.

In the cases of 10 and 50 peaks, the slope of the SEAC curve is steeper and
still increases rapidly at the end of the evolutionary process, whereas in the
cases of 100 and 150 peaks, the SEAC has already reached a plateau at the same
point. It is important to note that in the worst case the SEAC always performs
significantly better than the worst case of the EAC and sometimes better than
the average case of the latter. (see Fig. 3(b) for an example)

The results obtained also showed that only a small number of scouting–driven
mutations are enough to get a population out of local optima and improve the
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Fig. 1. Fitness level achieved per generation by EAC vs SEAC, for the 15–dimensional
test cases with σpeak = 0.1 for 10 and 50 peaks.
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Fig. 2. Fitness level achieved per generation by EAC vs SEAC, for the 15–dimensional
test cases with σpeak = 0.1 for 100 and 150 peaks.
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Fig. 3. Fitness level achieved per generation by EAC vs SEAC, for the 15–dimensional
test cases with σpeak = 0.2 for 10 and 50 peaks.
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Fig. 4. Fitness level achieved per generation by EAC vs SEAC, for the 15–dimensional
test cases with σpeak = 0.2 for 100 and 150 peaks.

relevant typical EA configuration, as shown in Figs. 5 and 6 for four of the
problems we experimented with. Experiments with even lower scouting rate —
ps=0.02 and 0.2— showed that even when scouting–driven mutation is applied
on only 2% of the population, the SEAC still exhibited a significant improvement
over the EAC in most cases. We would generally suggest the use of a low scouting
rate if speed is important, and a high rate if the highest possible fitness level is
crucial, or if fewer passes are required, due to the cost of the fitness function for
example.
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Fig. 5. Fitness level achieved per generation by EAC vs SEAC with ps = 0.5, for the
15–dimensional test cases of σpeak = 0.2 with 10 and 50 peaks.
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Fig. 6. Fitness level achieved per generation by EAC vs SEAC with ps = 0.5, for the
15–dimensional test cases of σpeak = 0.2 with 100 and 150 peaks.

5 Conclusion-Future Work

In conclusion, we have showed that an SEA performs better than the EA it
improves even in higher–dimensional cases, provided a good choice of σmax.
This has become possible with the implementation of a new scouting database,
based on the Locality Sensitive Hashing (LSH) and the use of the E2LSH pack-
age, which has accelerated the SEA by dramatically reducing the k-NN lookup
time. We have introduced the concept of a scouting rate and showed that using
scouting–driven mutation on only a small percentage of the individuals is suffi-
cient to push the entire population away from local optima and towards other,
fitter solutions.

The obvious next step in this research is the incorporation of the E2LSH
parameter calculator. One suggestion on how to achieve this efficiently is to
calculate the parameters only during the first pass of an SEA on a problem and
use them for the rest of the passes. It is also important for future work to include
experimentation with a variety of σmax and scouting rate values, in order to fully
understand the way these affect the performance of the technique. We speculate
that scouting rate could be smaller as the population size increases, and future
work could also experiment with higher population sizes and deduce accordingly.

An alternative avenue of exploration could include turning the scouting ef-
fect off for a number of generations, approximately the number of generations
required by the EAC to reach a plateau on average. During that time the SEAC
would operate with ps = 0 and σmin = σmax and attempt to populate the
experience database fast so that the SEAC would have more information and
therefore be more effective when scouting does gets enabled.
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