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ABSTRACT
Algorithmic fairness is an essential requirement as AI becomes
integrated in society. In the case of social applications where AI
distributes resources, algorithms often must make decisions that
will benefit a subset of users, sometimes repeatedly or exclusively,
while attempting to maximize specific outcomes. How should we
design such systems to serve users more fairly? This paper explores
this question in the case where a group of users works toward a
shared goal in a social exergame called Step Heroes. We identify
adverse outcomes in traditional multi-armed bandits (MABs) and
formalize the Greedy Bandit Problem. We then propose a solution
based on a new type of fairness-aware multi-armed bandit, Shapley
Bandits. It uses the Shapley Value for increasing overall player par-
ticipation and intervention adherence rather than the maximization
of total group output, which is traditionally achieved by favoring
only high-performing participants. We evaluate our approach via
a user study (n=46). Our results indicate that our Shapley Bandits
effectively mediates the Greedy Bandit Problem and achieves better
user retention and motivation across the participants.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); • Social and professional topics → Computing /
technology policy; • Computing methodologies→ Artificial
intelligence.
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1 INTRODUCTION
Many organizations are deploying AI systems to manage and allo-
cate resources, such as assigning work tasks and distributing work
schedules to personnel to improve productivity in dynamic environ-
ments [53, 73, 76]. However, these opportunities have also raised
new challenges, most notably the potential for AI systems to un-
fairly allocate opportunities and resources among a group of users.
In the case of social applications where users work together toward
a shared goal, this challenge is particularly difficult; individual user
contributions to the group may vary, and the AI may place a subset
of users above others to maximize outcomes without considering
user contributions. Hence, fairness has become an emerging and
important research area within the AI and machine learning com-
munities [13, 16]. Work in this area identified fairness problems in a
wide range of AI techniques such as classification [48, 105], regres-
sion [15], online learning [54, 63], or reinforcement learning [52].
Despite a growing body of work, we do not yet have good solutions
for fairness-aware AI systems that need to distribute resources in
social applications where groups of users work together towards a
joint goal [109, 110], such as social exergames.

In this paper, based on prior work in an AI-based adaptive social
fitness application [83, 103, 106], we found that commonly used
metrics to capture individual users’ contributions to the group were
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insufficient due to fairness issues. We noticed an AI tasked with
adapting the experience to maximize users’ physical activity (PA)
repeatedly placed some users’ preferences above others, leading to
non-adherence by marginalized users. Rather than focusing purely
on the amount of PA (e.g., daily steps) achieved by the group, this
paper examines the potential benefits of a fairness-aware approach
targeting player adherence to the group activity as an alternative
metric for the AI to maximize. Specifically, we present a new type
of fairness-aware multi-armed bandit approach that we call the
Shapley Bandit, as it uses the Shapley Value [92] to enforce fair-
ness constraints. With this approach, we explore how to design
AI for social applications that can serve a group of users while
ensuring fundamental expectations of “distributive fairness” are
maintained [5, 30]. Compared to prior work in fairness in online
learning and, in particular, multi-armed bandit problems [54, 60, 63],
which assume that the choices made by the AI only affect one of the
individuals, our work studies the setting where the choices made
by the AI can affect more than one individual.

We conducted a mix-methods user study to evaluate the effective-
ness and tradeoffs of our Shapley Bandits compared to traditional
bandits in the social exergame Step Heroes. Our user study results
(n=46) show that our Shapley Bandits achieve higher motivation
scores for physical activity than a control group, whereas a tradi-
tional bandit approach did not. Additionally, it is better at retaining
users, where users are more likely to maintain adherence to the
intervention. Based on our findings, we propose implications for
behavioral fairness in AI-driven social applications in terms of con-
sidering users’ contributions to the group as a factor for fairness.

Our primary contribution is a notion of fairness integrated into
an AI strategy that makes its selections based on the disparity
between a user’s exerted effort within a team endeavor and the
degree of favorable treatment they receive from the AI in a mul-
tiplayer environment. Specifically, this work brings the following
contributions:

• To the best of our knowledge, this is the first attempt in the
game AI research community to model group preferences
and the related fairness issues.

• We present a new fairness-aware multi-armed bandit strat-
egy, the Shapley Bandit, that uses the Shapley Value to esti-
mate a notion of disparity and then aims to reduce it while
at the same time maximizing expected reward.

• We present empirical evidence of the effectiveness of our
approach in the context of exergames via a user study (n=46).

Our research indicates the importance of integrating fairness
concerns in multi-armed bandits literature, especially in the con-
text of adaptive social exergames that serve multiple players. Our
empirical results show that if the AI only focuses on total group
output (e.g., a group’s total daily steps), it risks consistently favor-
ing only high-performing participants while ignoring the needs of
marginalized users. Over time, this traditional approach may lead
to the latter dropping out, thus raising concerns about the ethics as
well as the effectiveness of the intervention. We observed that even
though introducing fairness considerations does not directly lead
to higher PA levels, it contributes to user retention and adherence,
which is critical to lasting behavior change. Therefore, holistic and

ethical considerations of the AI’s utility function are key design
issues in such applications and need further research.

2 RELATEDWORK
2.1 Fairness in AI
With the rapid adaptation of AI systems in domains such as finan-
cial lending, sentencing, and healthcare, there have been growing
concerns about societal aspects such as bias and transparency when
deploying these systems. These concerns have led to an emerging
research area within the AI and machine learning communities
known as algorithmic fairness (see [13, 16] for recent surveys).
The research in this field typically considers well-studied learning
settings such as classification [48, 105], regression [15], online learn-
ing [54, 63], or reinforcement learning [52]. This research examines
how bias or discrimination can happen in these settings, proposes
formal definitions for what bias or unfairness means mathemati-
cally, and designs provably fair algorithmic frameworks. The main
focus of the field has been on group fairness, where individuals are
divided into groups using a combination of sensitive attributes such
as race or gender and where fairness guarantees are designed to
apply at the group level [15, 31, 48, 105]. However, group fairness
does not provide any meaningful guarantee at the individual level,
still allowing unfair treatment of individuals. Several works have
studied individual fairness [36, 54], and it is known that individual
fairness is often hard to enforce in practice [36].

Additionally, past research has shown that there is a disconnect
between the needs and realities of high-stake applications (like
algorithmically informed public decision-making in taxation, jus-
tice, or child protection) and tools and research in algorithmic fair-
ness [98]. This remains true, despite recent efforts in this direction.
For example, Richardson et al. studied the gap between the needs
of practitioners and the tools offered by fairness research [86], and
Nakao et al. studied how to directly engage end-users in identifying
and addressing fairness issues in AI applications [75].

Our work studies individual fairness in online learning and, in
particular, multi-armed bandit problems. Prior work [54, 60, 63]
assumes that the choice of action in each round only affects one
of the individuals favorably. Our work differs from prior work in
that the choice of action can affect more than one individual either
favorably or unfavorably.

2.2 Group Fairness in Resource Allocation
In applications where an AI adapts an experience for a group of
human users, a body of work has been developed on using AI tech-
niques to improve productivity through managing and allocating
resources [11, 29, 43, 88, 93, 95]. In particular, an important research
area is developing AI systems to mediate resources among a group
of people, such as assigning workers to tasks [10, 76], allocating
work schedules [35, 53, 73], and matching project requirements
with employees’ skill sets [76]. These decisions are usually affected
by a set of externally defined objectives and constraints, such as
meeting deadlines and maximizing resource utilization [10], hours
an operator can work [29], and human factors, such as expertise
and skill level [76].
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Recently, researchers have discussed fairness-related harms that
can occur, such as people’s individual experiences with AI sys-
tems [88] or how AI systems represent individuals in groups [4].
Of note, fairness in group AI (i.e., AI managing groups of people
by distributing resources) is a particularly difficult challenge, as
AI systems can unfairly allocate opportunities, resources, or infor-
mation [17]. For example, an automated scheduling system may
inadvertently withhold jobs from a particular individual due to how
they are labeled or represented in the system.

Researchers have focused on fairness by mitigating disparities
in the treatment of individuals based on categories such as racial,
gender, or age groups [27, 40, 50]. In the case of this research, in
which we provide a game intervention toward motivating people
to walk more in their daily lives, targeting fairness based on such
categories lies outside the scope of our domain and the visibility of
our AI. Instead, we aim to address the fundamental issue of “distri-
bution fairness” [5, 30], which considers users’ utility to the group
as a factor for fairness. We address distribution fairness through the
lens of Organizational Justice Theory [46, 47, 88] extending from J.S.
Adams’ equity theory [1, 2]. The primary assertion of these theories
is that there exists an implied contract that individuals participating
in a group should receive a distribution of reward commensurate
with their personal investment toward the goals of that group, with
an emphasis on the negative responses of individuals that are likely
to result from a failure to uphold this tenet.

2.3 Fairness in Group Recommender Systems
A closely related area to our research is group recommender sys-
tems. A group recommender system makes a decision, often by
suggesting items to a group of people engaged in a group activ-
ity [57], such as watching a movie together. They have been used
to recommend music [26, 33, 69], movies and TV [78, 104], and
restaurant and travel [68, 90] to a group of users collectively. In
order to capture the preference of the group as a whole, group
recommender systems use group aggregation models to integrate
the preferences of individual members [34]. Fairness is an essen-
tial consideration of group recommender systems because not all
recommended items satisfy the group members equally. In other
words, a group aggregation model decides whose preferences or
needs should be given more weight at a given time.

Group aggregation models can be divided into three main strate-
gies: 1) majority-based, 2) consensus-based, and 3) borderline strate-
gies [56, 66, 91]. Generally speaking, majority-based strategies se-
lect the item preferred by most group members. Consensus-based
strategies aggregate the preferences of all members somehow and
then select items based on the common opinion of the group.Widely
used models in this type include the average strategy, least mis-
ery strategy, Borda count, most pleasure strategy, average without
misery strategy, and fairness strategy. Borderline strategies are in-
between the previous two types. An example is the “dictatorship”
strategy, where items are selected based on one selected member’s
preferences.

Most of the above approaches assume that user preferences do
not interact with each other. For example, at a party where people
listen to the same music, what a person would like to hear next can
be influenced by the songs recommended earlier. In this paper, we

explore a different way of aggregating user preferences or needs
by minimizing the disparity between how much an individual con-
tributes to the group (estimated via the Shapley Value) and the
degree to which the AI caters to that player with its recommenda-
tions.

2.4 Personalized Digital Interventions for PA
and Social Comparison

There is a broad base of existing literature on personalized inter-
ventions to promote physical activity (PA), especially to adapt PA
goals for improving goal adherence [7, 18, 20, 81, 84]. Among ex-
isting work on PA personalization, an emergent approach is to
use AI techniques to personalize digital interventions automati-
cally [39, 80, 103]. A benefit of AI-based interventions is the ability
to provide real-time tailoring of feedback and adaptation of goals
based on continuous data monitoring on an individual basis.

Most notably, personalized digital interventions have shown to
be more beneficial for behavior change over generic automated
systems [83], such as helping individuals develop attainable step
goals through more personalized recommendations [83, 103, 106].
However, relatively little work has leveraged AI systems to enhance
PA for groups as a whole. Instead, personalization has prioritized
the content and timing of individual activity recommendations
using demographic information [21], behavioral patterns [62], time
and location [21, 96], and personality [9].

Social comparison describes the process by which individuals
evaluate themselves or their behavior relative to others [38]. In
digital group interventions, applications typically use social fea-
tures such as ranked leaderboards and competitive challenges to
engage social comparison processes [102]. While these interven-
tions have motivated health behavior change in weight control and
PA promotion [59, 77], not all users may be equally motivated by
these features. Research has shown that individuals prefer different
people to compare with [14], and these preferences may vary over
short periods [7]. Comparisons to others who seem “better off”
than the comparer in a given domain are upward comparisons, and
comparisons to others who seem “worse off” are downward compar-
isons [22]. Unfortunately, most personalized group interventions
do not account for individual differences and provide all users with
the same kind of generic exposure to social comparison targets [7],
which can negate any need for behavior change efforts [8, 71, 100].

An alternative approach is to motivate PA through social gami-
fied fitness applications or “social exergames” using similar group
features described above. This active research area integrates phys-
ical exertion with digital games [65] to transform physical exercise
in an engaging game environment and leverage social interactions
through facilitating cooperative and competitive game settings to
increase and sustain players’ motivation for PA [25, 28, 61]. Social
interaction through the lens of cooperation and competition has
been a clear motivator for PA activities in these games and has
been shown to encourage comparisons between players [3, 28, 61].
However, social features such as ranked leaderboards and competi-
tive challenges [7, 28] have been shown to also risk demotivating
people due to how they compare themselves to others. This paper
extends the literature on personalization in digital interventions
for PA, especially social exergames, by developing an AI approach

324



IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Gray et al.

Figure 1: Left: Screenshot of the study profile selection screen in our preliminary study. Right: Illustration of the decision the
AI agent makes. The MAB-based AI determines the placement of the third teammate’s steps among three options (A, B, or C) to
cater to the users’ social comparison orientation (SCO) and increase user motivation.

that automatically models the social comparison preferences of the
group and provides appropriate social comparison opportunities.

3 RESEARCH PLATFORM
The following introduces our preliminary research platform (Sec-
tion 3.1) that helped us identify the fairness issues that arise when
optimizing for group performance (Section 3.2). We then introduce
the research platform for our primary user study (Section 3.3) and
the AI approach we designed to address fairness (Section 4).

3.1 Preliminary Design: Web-Based App with
Standard MAB

Since research has established that social elements are a crucial
motivating factor for PA [24, 37, 61, 67, 108], our preliminary work
aims to promote PA using adaptive personalized AI inspired by so-
cial comparison theory (see Section 2.4). We designed a web-based
app in which a group of users can compare their daily steps with
other users’ PA-related profiles (e.g., daily steps, favorite types of
exercises, and other PA-related interests) [107]. Users’ steps were
captured by Fitbit and synced automatically with our platform. Ev-
ery day, the user selects one out of two other users that the MAB
recommends to them as (social) comparison targets (Figure 1 left).
Each group consists of two randomly paired human users and one
artificial user whose steps are controlled by the AI, similar to our
previous work [45, 107]. The artificial user gives the MAB an addi-
tional chance to provide good comparison targets, where human
users’ daily steps are unpredictable and thus may not provide the
motivating comparison targets the two humans in the group need.
Based on the changes in the users’ daily steps and their reported
motivation for PA, the MAB updates its model for their real-time
preference of social comparison direction and reaction to the com-
parison. It then recommends comparison targets to maximize the
chance of increasing PA and motivation.

We conducted a 21-day user study (n=53) to investigate our per-
sonalization mechanism and how exposure to personalized social
comparison targets may affect users’ PA and motivation to exercise.
Our initial results indicated that our approach was able to automat-
ically model and manipulate social comparison in the pursuit of PA

promotion. The detected effects achieved small-to-moderate effect
sizes, illustrating the real-world implications of the intervention
for enhancing motivation and PA [107].

3.2 Problem Formulation: The Greedy Bandit
Problem

Further analysis of the results in our preliminary design raised
questions regarding how the MAB distributes its “attention” to
different users. The MAB selects an arm (in the form of an artificial
user as the comparison target for two human users) to maximize
the sum of steps and self-reported motivation of both users. We
note that, in essence, our MAB operates similarly to the average
strategy for group recommender systems (Section 2.3).

Let us consider Figure 1 (right) and imagine a case in which the
model predicts Arm A will yield a highly positive effect on User 1
due to their preference for upward comparisons. However, in this
example, the AI also predicts a negative effect on User 2 due to
User 2’s dislike for upward comparisons. It may be that the net
prediction of Arm A still yields the highest overall effect (i.e., the
strength of User 1’s preference may be larger than that of User 2),
so our traditional bandit strategy optimizing for the sum of steps of
both users will select it. When faced with the same decision again
later, the MAB is likely to make the same decision. Over repeated
selections, a blind favoring of User 1 in a “greedy” pursuit of a
specific metric may lead to overlooking User 2 regularly.

In a larger group, a similar case may arise when a particular arm
appeals to the majority of users (e.g., 60% of users prefer one game
setting that the other 40% dislike). This is similar to the majority-
based group aggregation models in group recommender systems
(Section 2.3). Over time, a greedy strategy may risk repeatedly
neglecting the minority, leading to dissatisfaction among the users.

Disparity. Further analysis of our user study data indeed shows
evidence that users whose social comparison preferences are not
met by the MAB have a higher chance of missing sessions. In
Figure 2, the blue bars show the disparity between each user’s effort
and treatment, defined as follows. We define the effort 𝐸𝑖 of a user 𝑖
as their average daily total steps. We define a the treatment 𝑇𝑖 of
a user 𝑖 as the total number of days where they received the best
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Figure 2: Sorted disparity scores (blue) and miss likelihood (orange, secondary axis) for users in the preliminary design study.
Users sorted to the left depict those who were given very good treatment relative to their effort (i.e., step performance), while
users sorted to the right received poor treatment relative to their efforts. The graph reveals a positive correlation between a
user’s disparity score and their number of missed sessions (Pearson’s 𝑅=0.16).

social comparison targets according to the MAB estimations. We
now define 𝑃𝑅(𝐸𝑖 ) as the percentile where user 𝑖 falls in terms of
effort across all users in the study (e.g., 1.0 if they are the one with
the most steps, and 0.0 if they are the one with the least steps) and
𝑃𝑅(𝑇𝑖 ) as the percentile where the user 𝑖 falls in terms of treatment.
The disparity of a user 𝑖 is then defined as 𝐷𝑖 = (𝑃𝑅(𝐸𝑖 ) − 𝑃𝑅(𝑇𝑖 )).
This calculation results in a number between potential extremes
of -1 (i.e., highest treatment with lowest effort) and +1 (i.e., lowest
treatment with highest effort). Figure 2 sorts the users from least
disparity to the most. The orange plot shows the corresponding
user’s total number of missed sessions (days).

Our results show a positive correlation (Pearson’s𝑅=0.16), where
users who receive lower treatment relative to their effort percentile
are more likely to miss sessions. In other words, high disparity is
correlated with non-adherence behavior. When the AI does not
make choices catering to a user’s preferences to a degree commen-
surate to that user’s investment of effort within the game to support
their team, we see that those users are more likely to miss sessions.
In other words, they are more likely to divest from the activity and
the intervention it provides.

We argue that this result reveals two problems. The first is that
when a user ceases to participate in the application in which the AI
agent operates, any intervention attempted by the AI agent becomes
completely ineffective. The second involves a limited notion of
“fairness” derived from the example above. Although a user or group
of users may be in the preferential minority, they still bring value to
the game environment and therefore contribute to the overall game
experience and community. Indeed, even a user’s mere presence or
participation enables the multiuser environment to exist for others.
Therefore, we would like to promote a best practice in which an
AI agent operating in a group setting recognizes this contribution
provided by each user and ensures it is rewarded.

We refer to this problem as the Greedy Bandit Problem. Our main
technical contribution, the Shapley Bandit (Section 4), is designed to
directly target this problem via the following approach: (1) using the
Shapley Value to get an estimate of disparity (notice the definition
for disparity above relies on having access to the data for the whole
user study, and hence it cannot be directly usedwithin in the bandit),
and (2) using a fairness-aware bandit strategy targeted at reducing
disparity.

3.3 Improved Design: Idle Social Exergame Step
Heroes

For the main user study presented in this paper, we implemented
the same mechanism of adapting the social comparison environ-
ment of two users by MAB, this time within the context of a mobile
game called Step Heroes. There is a large body of work that shows
incorporating game-like elements is effective in motivating phys-
ical activity [24, 28, 61]. In particular, Step Heroes was designed
to include idle game features, which can be especially effective in
behavior change games [6, 55, 99].

Step Heroes is a multiplayer exergame where teams of three
players work together to combat invasive enemies who are draining
the health of the forest. The goal of the game is, as a team, to clear
as many forest areas as possible by defeating the enemies living
there. Similar to many idle games, a main part of the gameplay in
Step Heroes centers around upgrading avatars. A player needs to
decide how to allocate her currency (based on her real-world steps
and the experience points she earned from defeating past enemies)
to develop the different combat abilities of her avatar. To be really
successful, she also needs to work together with her teammates so
that their avatars have complementary strengths in the joint battles
(Figure 3, middle panel).
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Figure 3: Overview of the user interface of Step Heroes. Part A illustrates the unique avatars representing each player in the
game environment. Part B showcases the attack boost meter in which players can contribute “steps” to boost their avatar’s
attack power. Part C shows the currency meter, consisting of “pollen” earned from defeating enemies and spent on avatar
upgrades to their specific stats (Part E). Players may also purchase and equip a variety of available weapon options that each
have unique effects and abilities for further customization of their avatar, shown in part D.

A critical design decision was to bring the avatar upgrade me-
chanics to the center of players’ collaboration and social compari-
son. Each avatar has a blossom over its head (Figure 3, part A). The
blossoms visually expand and contract according to the number of
steps each player has taken, providing a visual representation of
each player’s contribution to the team for easy social comparison.
In addition, the color of an avatar’s blossom reflects its combat
abilities. For example, if a player invests heavily in her avatar’s
speed and attack abilities, its blossom will show yellow and red.
This design choice was intended to summarize a player’s gameplay
decisions and help other players to decide how to upgrade their
avatars for a more balanced team composition.

Step Heroes is designed for users to experience in regular short
bursts of play every day over several weeks. As an idle game, Step
Heroes is designed to encourage players to frequently return to ex-
amine their team’s progress and to spend their step-based currency
on upgrading their avatars [99]. In addition, we designed the game
to support a wide range of engagement to fit within users’ daily
schedules. A player can accumulate all the steps and play a short
session a day or log into the game and play as many times as they
like.

In the rest of the section, we focus on how a player’s interaction
with the profiles in Step Heroes—the main intervention that uses

social comparison—motivates players’ PA. It consists of a three-step
process. Notice that in order to test our AI, each team consists of
two human players and one AI-controlled artificial player. Human
players are again not made aware that one of their teammates is an
AI player.

Teammate Profile Selection. Each daywhen a player logs in, the
game first displays the player’s daily step count from the previous
day at the top of the interface (automatically retrieved from the
player’s Fitbit account) and the profiles of both of their teammates
(Figure 4, part A). We purposefully designed this selection page
with minimal information so the player could focus on a single
dimension for social comparison: the previous day’s total steps.
The player is asked to select between their teammates to continue,
with a notification that they can only choose one profile to review
in full each day and cannot go back to choose another.

Full Player Profile. After the player confirms their selection,
they are given more detailed information about the selected team-
mate. The profile reveals further information about that player’s
game decisions, such as stamen upgrades, weapons, and abilities.
For example, players may click on their teammate’s weapon or
stamen icons (Figure 4, part B) to reveal details about their team-
mate’s actions. Below the game information, we provide users with
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Figure 4: The Step Heroes Teammate Profile Selection screen
(left) and the Full Game Profile screen (right) that is revealed
when a teammate is chosen.

a step graph to examine and compare their step counts with the se-
lected teammate over time (Figure 4, part C). This screen is the only
time users can examine their teammate’s profiles. During gameplay,
we did not provide access to their teammate’s profiles to ensure a
meaningful selection at the start of each day.

MainGameplay.After the user has explored the selected profile,
they may continue to the game interface (center image in Figure 3,
where players may begin to play Step Heroes). Players can return to
the game as often as they would like throughout the day; however,
the Teammate Profile Selection screen will only display once during
their first login of each day.

4 SHAPLEY BANDITS: USING
SHAPLEY-BASED FAIRNESS CONSTRAINTS
TO GUIDE BANDITS

To address the Greedy Bandit Problem (Section 3.2), we propose a
new type of multi-armed bandit [87, 97] with two new contribu-
tions. The first is a method for calculating disparity by making use
of the Shapley Value equation (Equation 1) to estimate the contri-
butions of each player (notice that the definition for disparity in
Section 3.2 requires having access to the data for the whole user
study, and hence can only be used for post-user study analysis). The
second is a new type of fairness-aware bandit strategy designed to
reduce disparity while at the same time maximizing reward. These
two contributions result in what we call a Shapley Bandit. Let us
first introduce the concepts of the Shapley Value and multi-armed
bandits before describing Shapley Bandits.

4.1 Shapley Value
The core of our solution for allocating AI attention toward group
members is rooted in economic theory, where we leverage the con-
cept of the Shapley Value to determine fair attribution of a group’s

success to the individuals within that group. The Shapley Value [92]
was proposed as a method for determining the costs and rewards
that ought to be attributed to individuals working together in a
group endeavor [101]. Though the individual performance within
a group may be known, the output of the individual members as a
result of joining together as a team is more difficult to assess (due to
synergies and cross-influences among team members). For example,
consider a group of people joining together to be physically active
(measured in daily walking steps), where each individual walks
an average of 10,000 steps daily. Then, a new team member joins
who walks 12,000 steps daily, after which the average steps of the
other people increase to 11,000 steps per person. The newmember’s
contribution to the team is not just their 12,000 steps but also part
of the extra 1,000-step improvement gained by the others (which
would not have happened otherwise).

The Shapley Value aids in assessing the total contribution of an
individual member toward the group’s resulting aggregate perfor-
mance. Shapley proposed that such a calculation would satisfy the
following four axioms (and his solution has been shown to be the
only one that will do so [64, 89]): 1) Symmetry, where two individ-
uals are interpreted as equivalent if they prove to be completely
interchangeable within the group; 2) Nullity, where an individual
who provides no value to any part of the group beyond their individ-
ual achievement is given zero synergistic attribution; 3) Additivity,
where if separating a game into smaller games (i.e., “rounds”), the
contribution scores from the rounds add up to the score for the
whole game; and 4) Efficiency, where the contributions calculated
for the individuals add up to the full contribution of the group.

For a player 𝑖 participating in a coalition of players 𝑁 , we con-
sider each hypothetical sub-coalition (𝑆) of players of 𝑁 that do not
yet contain player 𝑖 (i.e., 𝑁 \ {𝑖}). We then add 𝑖 to each of these
sub-coalitions, noting the marginal benefit that player 𝑖 adds to the
group, and average these values. The result is the expected value
for the contribution that 𝑖 brings to 𝑁 as a whole. This marginal
value contributed by 𝑖 , denoted as 𝜑𝑖 (𝑁, 𝑣), is summarized in the
following equation [64]:

𝜑𝑖 (𝑁, 𝑣) = 1
𝑁 !

∑︁
𝑆⊆𝑁 \{𝑖 }

|𝑆 |!( |𝑁 | − |𝑆 | − 1)![𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)] (1)

The Shapley Value has found application across many fields,
including law [32], economics [74], political science [49], and ma-
chine learning [41, 72]. In this paper, we use the Shapley Value to
estimate player disparity in a group during the execution of the
bandit strategy.

4.2 Multi-Armed Bandits
A multi-armed bandit (MAB) problem is a type of decision prob-
lem [87, 97] in which an agent must repeatedly select from a set of
mutually exclusive opportunities (called arms). The rewards that
would be returned from these arms are not known to the agent at
the time of selection; however, over time, through repeated selec-
tions (or pulls), the agent can build an understanding of the reward
distributions available across the arms. Over its complete sequence
of selections, the agent aims to maximize its total reward; therefore,
it must continuously balance spending its limited pulls toward ex-
ploring the different arms to gather information about which arms
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are most promising versus exploiting the arm it currently believes
to be the best [58].

Popular strategies include those of the upper confidence bound
family (e.g., UCB1 [12]) or the Y-family of strategies (e.g., Y-greedy [58]).
In this paper, we formulate a player modeling problem as an MAB
problem as in our previous work [44, 45], where different game
adaptation options appealing to specific player types are made
available as arms to an MAB-based AI agent. As the agent selects
among the adaptation options, it observes response metrics from
the players (such as their self-reported motivation or daily steps)
to determine which adaptations are most effective at driving those
metrics.

4.3 Shapley Bandits
In contrast to a typical bandit strategy, which only aims to maximize
overall utility by selecting the arm predicted to perform the best, a
Shapley Bandit tracks the contribution attributed to each player and
prioritizes catering to players’ preferences based on those relative
contributions.

Shapley Disparity: Given a set of players 𝑁 , a Shapley Bandit
estimates the Shapley Disparity of each player 𝑖 in the following
way. At each step 𝑡 , when a reward is received for an arm pull
(i.e., the number of steps of a player is observed) the Shapley Value
(Equation 1) for player 𝑖 is computed and is added to a Cumulative
Shapley Value, CSV 𝑖 . We then define the CSV Ratio, CSVR𝑖 , as the
Cumulative Shapley Value of player 𝑖 divided by the sum of that of
all players. In parallel, the bandit maintains a Treatment Counter,
TC𝑖 , that counts the number of times up to time 𝑡 that the bandit
has selected the arm currently considered to be the best for player
𝑖 . Analogously, we define the TC Ratio, TCR𝑖 , as the sum of the
Treatment Counter for player 𝑖 divided by the sum of that of all
players. We then define the Shapley Disparity of a player 𝑖 at a
given time 𝑡 as SD𝑖 = |CSVR𝑖 − TCR𝑖 |. Intuitively, this measures
the difference between the fraction of the contribution of a player
to the group and the proportion of times the bandit has catered to
that player.

Also, notice that in order to evaluate Equation 1, we need access
to the performance of different sub-coalitions. Since not all of them
are observable, in this study, we approximated them by the sum
of the individual contributions (steps) of each member of the sub-
coalition.

Shapley Bandit: Given a group of players 𝑁 , at each iteration
𝑡 , instead of aiming to select the arm that maximizes the expected
sum of step counts (as a Greedy Bandit would do), a Shapley Bandit
works as follows:

• Exploration: With probability 𝜖 (𝜖 = 0.01 in our experi-
ments1), the bandit would decide to explore and choose a
random arm.

• Exploitation: Otherwise, the bandit decides to exploit. The
bandit then identifies which player 𝑖 would result in the
lowest overall sum of Shapley disparities (sum of Shapley
disparities of all players in 𝑁 ) if the bandit is to cater to 𝑖 in
this turn. Then, the arm currently estimated to be the best

1Notice this is a relatively very low exploration rate, but we set it this way because we
have a forced-exploration period at the beginning of the study where during the first
9 days the bandit always explores.

for player 𝑖 will be chosen. To predict which is the best arm,
the bandit uses all the observed rewards from that player up
to time 𝑡 , to estimate the expected reward of each arm.

For example, if after 9 rounds Player 1 has CSV 1 = 27, 500
steps with TC1 = 5 and Player 2 has CSV 2 = 32, 800 steps and
TC2 = 4, a Shapley Bandit would calculate a CSV ratio CSVR1 =
27500/(27500+32800)= 0.456, and TC ratio TCR1 = 5/(4+5)= 0.556 for
Player 1, resulting in a Shapley Disparity of SD1 = |0.456− 0.556| =
0.1. If we calculate the same for Player 2, we would also obtain
SD2 = 0.1 (with a current Shapley Disparity sum of 0.1 + 0.1 = 0.2).
If we were to cater to Player 1 (and TC1 would become = 6), the
sum of their disparities (doing similar calculations) would become:
0.288, and if we were to cater to Player 2 (and TC1 would become
= 5), the sum would become: 0.088. A Shapley Bandit predicts Arm
A to be the best for Player 1 and Arm C to be the best for Player
2. Hence, if in the next iteration, if the bandit decides to exploit, it
would choose to cater to Player 2 because it has a larger Shapley
Disparity, and the MAB would select Arm C for the current round
(and increment Player 2’s TC value).

In this way, a Shapley Bandit prioritizes the treatments allocated
to players in a manner commensurate with each player’s level of
contribution to the team. In our case, we targeted steps to repre-
sent this contribution because in Step Heroes a player’s steps serve
both as a proxy for the player’s real-world effort and the increased
in-game utility they provide to their overall team’s capability in
conquering the game’s challenges.

Comparing Shapley Bandits with traditional stochastic bandits,
we would like to make a few observations:

• A Shapley Bandit directly minimizes "Shapley disparity"
rather than maximizing utility. There is still an element of
utility maximization once the player with the highest dispar-
ity is selected and a Shapley Bandit selects the best arm for
that player; however, this is still subject to the main disparity
minimization objective. Notice that minimizing Shapley dis-
parity might sometimes go against maximizing utility (e.g.,
selecting the best choice for a player with a high Shapley
disparity might imply choosing an arm that is not the one
that would result in the highest utility gain overall). For this
reason, we also note that traditional performance metrics
for stochastic bandits, such as regret [12], are not directly
applicable and would need redefinition.

• A Shapley Bandit still needs to estimate which arms max-
imize utility for a given player in order to cater to them.
Hence, it benefits from exploration in the same way as a
traditional bandit.

• A Shapley Bandit needs to maintain a series of additional
quantities that traditional stochastic bandits do not need,
namely a Cumulative Shapley Value and Treatment Counter
for each human player. However, given the small groups of
users in our study (2 human players plus one AI player), the
extra computational cost is negligible.

Therefore, we do not expect a Shapley Bandit to outperform
a traditional, Greedy Bandit in terms of overall maximization of
the target metric (in this case, daily steps). Instead, we anticipate
incurring a cost to that total utility in favor of a strategy that
encourages overall player retention. However, we anticipate that
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this fairness constraint will provide a better experience to a greater
number of users (measured via adherence metrics) than focusing
on purely maximizing total step counts.

5 METHODS
We conduct a user study in the context of Step Heroes to evaluate
the effectiveness of using Shapley Bandits to personalize the social
comparison environment for a small group of users in the context
of a social exergame. Specifically, we aim to evaluate the following
hypotheses:

• H1: The Greedy Bandit will outperform the Shapley Ban-
dit in increasing players’ average steps and self-reported
motivation, the two metrics that the Greedy Bandit aims to
maximize directly.

• H2: Our Shapley Bandit will outperform the Greedy Ban-
dit in increasing player retention and adherence with the
intervention.

We recruited 46 participants (36 women, 10 men) from a major
university in the U.S. For our study, healthy adults were eligible if
they reported PA as being somewhat or very important to them and
had access to a Fitbit health tracker or a Fitbit-compatible smart-
phone. We did not include any applicants that reported medical
conditions or advisement that would limit their PA. We compen-
sated participants with either gift cards or equivalent extra course
credit at the end of the study. The study procedure was reviewed
and approved by the Institutional Review Board (IRB) at Drexel
University.

5.1 Procedure
After providing their demographic information, participants were
given a set of psychology surveys, including the Iowa Netherlands
Comparison Orientation Measure (INCOM-23) [42] and the Iden-
tification/Contrast Scale (ICS) [23]. These instruments provided
baselines regarding a participant’s social comparison orientation.
Participants were then provided instructions on accessing Step
Heroes and linking their Fitbit accounts. Players were asked to wear
their Fitbit device every day and log into the game at least once
per day to synchronize their steps and participate in their daily
sessions. The first three days of the study were considered a baseline
period, where we collected players’ daily steps before introducing
our game.

At the end of this baseline collection period, participants were
ranked according to their baseline results and separated into pairs
of similarly-ranked players for the rest of the intervention. Each
pair was joined by an artificial player (whose steps were controlled
by the game AI) to play Step Heroes as a team. Each participant could
only interact with the other human player and the AI player in
their team. Each team was randomly assigned one of the following
three conditions:

(1) Control Condition: The participants play a version of Step
Heroes where the AI makes a random decision about the
artificial player’s steps and gameplay information each day
(n=14).

(2) Experimental Condition #1: The participants play a version
of Step Heroes where the AI makes decisions based on the

same Greedy Bandit strategy used in the preliminary design
study (n=14).

(3) Experimental Condition #2: The participants play a version of
Step Heroeswhere the AI makes decisions based on a Shapley
Bandit strategy (n=18).

We asked participants to play at least once per day for 21 days.
We also asked them to fill out three weekly qualitative surveys to
assess any technical issues and gain insight into player motivation
for physical activity and their experience with the game. Finally,
we administered an exit survey at the end of participation.

5.2 Data Analysis
For quantitative data, we use inferential statistics for analysis.
Specifically, we analyzed several primary data sources resulting
from the user study:

(1) Data related to the artificial player, including MAB predic-
tions and selections.

(2) User metrics regarding their interaction with the platform,
including daily steps, reported motivation in the pre- and
post-session questionnaire, and user participation.

(3) Open-response feedback surveys provided to each partici-
pant following their 7th, 14th, and 21st session, along with an
exit survey provided to each participant on their completion
of the study.

Qualitative feedback in the weekly and exit surveys was coded
by two independent researchers who used thematic analysis [19]
to identify themes in the dataset. After initial observations, two
researchers conducted a preliminary open coding. During this anal-
ysis step, both researchers reviewed each response and noted initial
labels separately (e.g., the user noted a positive impact, or the user
reported an increased step awareness). Then, they discussed their
initial codes to form a codebook. Both researchers then indepen-
dently coded the full dataset. Finally, they collaboratively discussed
disagreements and modified their codes until they reached full
consensus [51].

6 RESULTS
6.1 Quantitative Results
We first consider H1, where we expect that the Greedy Bandit will
outperform the Shapley Bandit in the two metrics that the Greedy
Bandit aims to maximize directly (i.e., average player steps and
self-reported motivation). The Greedy Bandit operates without con-
sidering the fairness constraints integrated into a Shapley Bandit,
and therefore we expect to observe a cost for these constraints.

Table 1 reports in the two left columns results on average steps
for players in all three conditions relative to their baseline steps col-
lected in the three days prior to starting their Step Heroes game. We
see that the players in the Shapley Bandit condition achieved fewer
steps than the Greedy Bandit condition (which was optimizing for
that step count) and the random control condition. However, no
condition was found to be statistically significantly different (i.e.,
via two-tailed T-test) from any other.

The two right columns of Table 1 present the average self-reported
motivation following each session in all three conditions. Although
the Greedy Bandit aims tomaximize this metric alongwith steps, we
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Table 1: Average Steps vs. Baseline for players in the Control vs. Greedy and Shapley Bandit conditions

Condition Steps vs. Baseline P-Value vs. (C) Post-Motivation P-Value vs. (C)

Control (C) -69 1.316

Greedy (E1) 171 0.1868 1.400 0.095

Shapley (E2) -313 0.1023 1.451 0.011

find that the players in the Shapley Bandit condition reported higher
post-test motivation scores. Though there was no statistically sig-
nificant difference between the two experimental conditions when
compared directly, the Shapley Bandit condition demonstrates a
statistically significant difference between itself and the random
control condition (𝑝<0.05), whereas the Greedy Bandit did not.

We next consider H2, where we anticipate that the Shapley Ban-
dit condition will mitigate the symptoms of the Greedy Bandit
Problem. We believed this might result in lower missed sessions
and lower variance in disparity scores among players in the Shapley
Bandit condition. Though the data showed both of these expecta-
tions to be true—miss rates were 26% vs. 25% and average disparity
scores were 0.070 vs. 0.067 in the Greedy Bandit and Shapley Bandit
conditions, respectively—neither of these findings were statistically
significant due to sample size.

However, we anticipated that H2 would be supported most
strongly in the results of the disparity analysis that first illustrated
the symptoms of the Greedy Bandit Problem. Indeed, Figure 5 con-
ducts the same disparity analysis on the user study data we con-
ducted on the preliminary design study data (Section 3.2), with the
left graph illustrating results for the Greedy Bandit and the right
showing those of the Shapley Bandit. Regarding the correlation
between disparity and the player’s propensity to miss sessions, the
Greedy Bandit performed exactly as it did in the preliminary design
study, again demonstrating a Pearson’s R correlation of 𝑅=0.16. In
contrast, the Shapley Bandit demonstrated a negative correlation
of 𝑅= − 0.39. The difference between these coefficients [82] was
found to be statistically significant (𝑝<0.05). In other words, the
primary symptom of the Greedy Bandit Problem (i.e., higher dis-
parity correlating with higher non-adherence) was confirmed in
the Greedy Bandit condition of our user study scenario. However,
in the Shapley Bandit condition, players experience the opposite
relationship between disparity and non-adherence. Let us now look
at our qualitative analysis, which provides further support for H2.

6.2 Qualitative Results
The research team analyzed the participants’ qualitative feedback
using thematic analysis [19]. Two coders conducted a preliminary
open coding to identify notable patterns and used the consensual
qualitative approach [51] until they reached full agreement. Con-
sensus coding is generally more suited for small samples and for
considering multiple viewpoints [70] than inter-rater reliability
(IRR).

Qualitative feedback was coded into 11 distinct themes related
to participants’ reasons for how they believed their participation
impacted motivation for PA, level of PA, and group happiness. Three

additional codes were derived to capture whether or not the par-
ticipant reported a positive or no effect from their response to
questions asking participants to describe how participation im-
pacted their overall motivation for PA and level of PA. In addition,
feedback was also coded into three themes relating to other ways
(besides increasing PA) participation affected their daily activities
(i.e., Awareness, Relief, Step Habit). Finally, five themes emerged for
how participants chose their daily profile selection. An overview
of all codes is presented in Table 2.

Overall, the qualitative feedback suggested that participants
believed the team they were assigned to was comprised of other
participants in the study. 34 of 46 participants provided the post-
study survey responses, resulting in 150 responses from the five
survey questions. The weekly survey was administered three times
throughout the study (i.e., Day 7, Day 14, and Day 21). 32 of 46
participants provided responses, resulting in 332 responses from
the four survey questions. We consolidated the weekly and post-
study survey results for questions, asking participants to rate and
describe how participation impacted their “motivation for PA” and
“level of PA,” as these questions were the same for both surveys.

Motivation for PA: When asked to describe how participation
impacted their overall motivation for physical activity, 42% of par-
ticipants in the Shapley Bandit condition reported a positive impact
versus 27% in the Greedy Bandit condition. A majority of partic-
ipants explicitly acknowledged that participation impacted their
motivation to walk more or increase their step count. For example,
one participant wrote, “Yes. It makes me want to walk more so that
I have more steps on my profile.” In contrast, 69% of participants
in the Greedy Bandit condition reported a negative impact versus
42% of participants in the Shapley Bandit condition.

Participants elaborated on other ways participation affected their
daily activities, such as increased PA awareness (13%) and the feel-
ing of relief (3%). For example, one participant wrote, “I’ve actually
been sick, so my steps are really low for me. Seeing other people
around the same amount of steps as me right now, makes me think
of when I feel better and get more steps in a day.”

Level of PA:When asked to describe how participation impacted
their level of physical activity, 26% of participants in the Shapley
Bandit condition reported a positive impact in the level of PA versus
16% in the Greedy Bandit condition. For example, one participant
explained, “Yes, prior to the study I would talk about it but not
really do it, after, I actually got out there and did it, even if it was
just a little.” In contrast, 76% of participants in the Greedy Bandit
condition reported no impact versus 65% in the Shapley Bandit
condition. One participant reported, “Not really, most of my steps
are gotten between classes.”
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Figure 5: Comparison of Greedy Bandit (left) to Shapley Bandit (right) disparity analysis. Compare left to Figure 2, reflecting the
same analysis from the Greedy Bandit’s deployment in the preliminary design study. As in its performance in the preliminary
design study, the Greedy Bandit (left) again yields a correlation of 𝑅=0.16 between player disparity and non-adherence. In
contrast, the Shapley Bandit (right) demonstrates a negative correlation coefficient of 𝑅= − 0.39 that differs significantly
(𝑝<0.05) [82] from the Greedy Bandit.

Participants elaborated on other ways participation affected their
level of PA. For example, one participant wrote, “. . . I’m more aware
of the steps I’m getting and the days that I’m not as active.” 13%
described changes in their daily step habits. For instance, a partic-
ipant noted, “There were times when I chose to walk instead of
finding a ride home because of the game.”

Group Happiness: Participants were asked questions regarding
their experience with their team. Using a 5-point Likert scale, they
rated how happy they were with the group they were assigned
within the study (0 = very unhappy, 4 = very happy). Participants
in the Shapley Value condition responded with an average Likert
score of 2.4, while the Greedy Bandit condition scored 2.2.

When participants were prompted to elaborate on their answers,
63% provided a reason. For example, one participant simply wrote,
“They were fine,” which we coded as not providing a reason. How-
ever, those who provided a reason reported step counts (42%) as a
significant factor in their team happiness. For instance, a partici-
pant wrote, “I think that the players I was matched with took the
same amount of steps so it wasn’t intimidating or demotivating.” In
contrast, participants reported a lack of team connection (18%) and
insufficient information (18%) as reasons for not being as happy
with their team. For example, a participant who rated their team as
“Neutral” wrote, “Did not have enough info on each player to really
connect with them.”

Choosing Profiles: When participants were asked to describe
how they chose their profile each day, participants reported steps
being a significant factor in their decision, ranging from choosing
based on the highest steps (44%), similar steps (14%), or fewer steps
(10%) to their own. Alternatively, 34% reported they chose randomly,
and 7% alternated between teammates.

Motivation to Login: Using a 5-point Likert scale, participants
were also asked to rate their motivation to log in to the game
everyday (0 = not motivated, 4 = highly motivated). Participants
in the Shapley Value condition had a Likert score of 2.3, while the
Greedy Bandit condition had a score of 2.1.

These results, in general, show support for H2, where partici-
pants in the Shapley Bandit condition reported higher motivation,
higher positive impact in the level of PA, and higher group satisfac-
tion.

7 DISCUSSION
The increasing popularity of using technology, especially AI, to
personalize healthcare and to allocate resources among diverse
social groups [79, 94] makes fairness a pressing issue. We believe
that fairness-aware Shapley Bandit helped tomitigate the symptoms
of the Greedy Bandit Problem observed in both our pre-test and
our Step Heroes user study under the Greedy Bandit condition. Our
hypotheses were partially supported by data resulting from our
user study. We found that the Greedy Bandit outperformed the
Shapley Bandit in terms of average step achievement by players, in
line with our intuition that the fairness constraints would incur a
penalty compared to a strategy that aimed to maximize this value
at all costs (although this difference was not found to be statistically
significant between the two conditions).

Our results showed that the Shapley Bandit outperformed the
random control condition in terms of self-reported motivation to
a statistically significant degree (𝑝<0.05), where the Greedy Ban-
dit was not able to achieve the same. In retrospect, this supports
intuition regarding the aim of the Shapley Bandit’s design toward
improving player affect toward the intervention (e.g., adherence
and gameplay participation) as opposed to the Greedy Bandit’s
aim toward maximizing specific metrics (i.e., daily steps). It may
therefore be reasonable that player self-reported motivation is more
closely related to the intended affect change than a behavior metric
such as steps. Although this outcome was initially unexpected, it is
a positive reflection on the Shapley Bandit’s performance.

Our second hypothesis was fully supported by the results of
our Step Heroes user study, specifically in the repeating of the dis-
parity analysis we had conducted on our pre-test results (where
the symptoms of the Greedy Bandit Problem are observed). Our
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Table 2: The list of all codes and associated examples related to participants’ qualitative feedback.

Category Theme Example

Reported PA 
Effect

(3)

Yes P106: "It motivates me"

No Effect P47: "Sometimes it encouraged me to do more, other times the numbers are just there without much 
impact or effect on me."

Sometimes P217: "Seeing other profiles hasn't affected my motivation"

Other Reported 
Effects

(3)

PA Awareness P205: "A little bit, I've been more aware of the steps Im getting and the days that Im not as active"

Relief P26: "I've actually been sick, so my steps are really low for me. Seeing other people around the same 
amount of steps as me right now, makes me think of when I feel better and get more steps in a day."

Step Habit P250: "Yes, it has made me take the stairs instead of elevator at work in order to get more step 
count." 

Reasoning for 
Effects
 (11)

Lower Team 
Steps P168: "Normal. Theyve been slacking lately so I feel better about myself"

Higher Team 
Steps

P229: "Usually I have more steps than the other players, but when I do not have as many steps as 
them it makes me more motivated."

Similar Team 
Steps P28: "I feel less bad about how many steps I take since theyre about the same"

Competition with 
Team P91: "It is motivating to want to beat the players number of steps."

Cooperation with 
Team P267: "More motivated to try strategies, who may be stronger, teamwork"

Viewing Team 
Profiles P91: "Seeing other players profiles motivates me to want to do better."

Lack of Team 
Connection  P214: "It doesnt really motivate me because I have no real connection to the person."

Not Enough Info P255:"I did not know anything about them other than the number of steps each day. I wondered why 
neither of their characters had a ranking."

Underperforming 
Team P110: "It was a little frustrating because I think I had higher stats than them the whole time"

Work Schedule P187: "It has not impacted my activity. I only get as much as I can given my circumstances and busy 
schedule."

Personal 
Motivation P267: "No, still personally motivated, independent of others"

Choosing 
Profiles

(5)

Most Steps P97: "Usually whoever has higher steps"

Least Steps P120: "I look at ones who have less steps than mine so I feel better about myself. (Thats mean but its 
the truth)."

Similar Steps P20: "I choose the profile that has a step count closest to mine, or at random if they are all similar."
Alternate P168: "I switch between the two people every day."
Random P263: "I just choose at random."

disparity analysis in the Step Heroes user study data showed that
1) the Greedy Bandit performed consistently and with the same
resulting correlation (Pearson’s 𝑅=0.16) relating a player’s disparity
measurement to missed sessions even in the new context of the
Step Heroes exergame, and 2) that the Shapley Bandit reduced this
correlation (Pearson’s 𝑅=− 0.39) to a statistically significant degree
(𝑝<0.05) [82].

7.1 Implications
Our research has several implications. Concerning the literature of
multi-armed bandits, the idea of introducing fairness constraints
into MABs (in our case via the use of Shapley Values) in the context
of group preference modeling and adaptation opens up many new
avenues for future work. For example, further research is needed
to study the theoretical properties of this new type of bandit and
devise new measures to evaluate them beyond the traditional regret
metrics, which do not fully capture fairness considerations. Notice
that our idea of Shapley Bandits is not specific to exergames but is
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a general approach that is applicable to any domain that involves
groups or teams where the bandit makes choices that affect more
than one individual. Consider, for example, the idea of music recom-
mendation for groups and task allocations in a team, as discussed
in the related work.

Additionally, we show that holistic and ethical considerations of
the AI’s utility function are a key design issue for personalized adap-
tive applications. Our results provide evidence that, even though
introducing fairness considerations in adaptive group exergames
does not directly lead to higher PA levels, it can contribute to user
retention and adherence. Adherence and long-term engagement
are the foundation of whether a behavioral change intervention can
have a lasting positive impact. Our research shows that if the AI
only focuses on short-term performance (e.g., a group’s aggregated
daily steps), it risks consistently ignoring the needs of marginalized
users and, over time, losing their participation. This insight has
implications for the future design of player-AI interaction [111] not
only in adaptive group exergames but behavioral change apps in
general.

8 CONCLUSIONS
In this paper, we address the problem of fairness in AI-based group
personalization via multi-armed bandits. Specifically, we presented
evidence of what we call the Greedy Bandit Problem, arising when
deploying a bandit-based AI system to personalize the group experi-
ence in a social exergame, resulting in the system focusing primarily
on high-performance players and causing adherence problems. We
use these findings to construct a new fairness-aware bandit strategy
approach based on minimizing disparity estimated via the Shapley
Value, which aims to align the degree of AI attention a player re-
ceives to the player’s measured investment toward helping their
team. We deployed that strategy in a new user study based around
a team-based, idle exergame and evaluated results against two hy-
potheses that assessed our Shapley Bandit’s performance against
the traditional greedy approach. Our results support our intuition
regarding the Shapley Bandit’s ability to mitigate the effects of the
Greedy Bandit Problem.

We identify a few limitations of our approach, including the
small sample size of this initial Step Heroes user study. Future studies
with larger sample sizes may help to further establish some of the
trends so far observed. Additionally, our participants are healthy,
college students with relatively homogeneous health needs. Future
research is needed to test our approach with a more diverse group
of users. We also note that our application of the Shapley Value
does not currently include all terms we wish to consider regarding
user participation. The Shapley Value, and by extension the axioms
that it implements, intends to capture the totality of value that an
individual may bring to a group endeavor, including some benefits
that may not be easily measurable. For example, we argue that a
player’s mere participation in a game yields value to others simply
in the fact that it enables a multiplayer experience. However, this
is not currently reflected in the Cumulative Shapley Value (CSV)
discussed in Section 4, which is based solely on step performance.
Solving this problem is beyond the scope of this paper, where the
Shapley Value provided guidance in our effort to mitigate the effects

of the Greedy Bandit Problem. However, this remains an interesting
problem for future work.

Finally, there are many alternatives for modeling fairness [13],
where we have opted for an equality-enforcing individual notion of
fairness. Equality enforcing notions of fairness can have undesired
side-effects (such as leveling down) in cases where there is utility
dependency between the players [85], as it is in our case. We leave
the study of whether or not such side-effects can happen in our
framework as well as studying notions of fairness within as future
work.
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