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Vision-based vehicle detection plays an important role in intelligent transportation systems. With the fast development of deep
convolutional neural networks (CNNs), vision-based vehicle detection approaches have achieved significant improvements
compared to traditional approaches. However, due to large vehicle scale variation, heavy occlusion, or truncation of the vehicle in
an image, recent deep CNN-based object detectors still showed a limited performance. (is paper proposes an improved
framework based on Faster R-CNN for fast vehicle detection. Firstly, MobileNet architecture is adopted to build the base
convolution layer in Faster R-CNN. (en, NMS algorithm after the region proposal network in the original Faster R-CNN is
replaced by the soft-NMS algorithm to solve the issue of duplicate proposals. Next, context-aware RoI pooling layer is adopted to
adjust the proposals to the specified size without sacrificing important contextual information. Finally, the structure of depthwise
separable convolution inMobileNet architecture is adopted to build the classifier at the final stage of the Faster R-CNN framework
to classify proposals and adjust the bounding box for each of the detected vehicle. Experimental results on the KITTI vehicle
dataset and LSVH dataset show that the proposed approach achieved better performance compared to original Faster R-CNN in
both detection accuracy and inference time. More specific, the performance of the proposed method is improved comparing with
the original Faster R-CNN framework by 4% on the KITTI test set and 24.5% on the LSVH test set.

1. Introduction

Vision-based vehicle detection is an essential prerequisite in
many intelligent transportation systems, such as advanced
driving assistance systems, autonomous driving, intelligent
traffic management systems, and so on. Traditional methods
usually use motion and handcrafted features to detect ve-
hicles from images directly. In recent years, deep con-
volutional neural networks (CNNs) have achieved incredible
success on object detection tasks as well as vehicle detection
[1]. However, when applying CNNs to vehicle detection,
real-time vehicle detection in driving environment is still
very challenging. (ese challenges come from many oc-
cluded and truncated vehicles with large vehicle scale var-
iations in traffic images. (us, the popular CNN-based
object detectors such as Faster R-CNN [2] and SSD [3]
without modification did not achieve very good perfor-
mance on vehicle detection. Many recent methods are based
on modifying the popular CNN-based object detectors to
enhance the performance of detection results. (ese

methods focus on modifying the base network to fit different
scales by applying multiscale feature maps of CNN [4] or
utilizing input images with multiple resolutions [3]. In most
public test datasets, these methods show better detection
accuracy compared to traditional CNN-based object de-
tectors. However, these methods still need significant
computation cost and thus are still incapable of real-time
vehicle detection.

In view of the aforementioned research challenges, this
paper proposes an improved framework based on Faster
R-CNN for real-time vehicle detection. First, MobileNet
architecture [5] is adopted to build the base network instead
of VGG architecture in the original Faster R-CNN frame-
work. MobileNet splits the convolution into a 3× 3
depthwise convolution and a 1× 1 pointwise convolution,
effectively reducing both computational cost and number of
parameters. (us, the proposed framework improves both
computation cost and inference time. In the region proposal
network, nonmaximum suppression algorithm is replaced
by soft nonmaximum suppression algorithm [6] in order to
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solve the issue of heavy vehicle occlusion. Furthermore,
context-aware RoI pooling [7] is used instead of RoI pooling
to maintain the original structures of the small objects.
Finally, a classifier based on MobileNet architecture is built
to classify proposals and adjust the bounding box for each of
the proposal. (e proposed approach is evaluated on the
KITTI benchmark dataset and the LSVH dataset. (e results
show that the proposed approach achieved better perfor-
mance compared to other traditional deep CNN-based
object detectors. More specific, the performance of the
proposed method is improved comparing with the Faster
R-CNN framework by 4% average with the KITTI test set
and 24.5% with the LSVH test set.

(is paper is organized as follows: an overview of pre-
vious methods on vehicle detection is presented in Section 2.
Section 3 describes in detail the proposed method. Section 4
demonstrates experimental results. Finally, the conclusion is
made in Section 5.

2. Theoretical Basis

In this section, this paper introduces previous methods on
vehicle detection, including traditional methods and re-
cently proposed methods based on deep CNN.

Vision-based vehicle detection system firstly locates
vehicle candidate regions. (en, a classifier is constructed to
eliminate false vehicle candidate regions. Traditional
methods can be divided into two categories: motion-based
methods and static appearance feature-based methods.
Motion-based methods use the motion to detect the vehicles
in the image frame. Background subtraction methods [8] are
most widely used.(e background removal methods include
Kalman filter [9], single Gaussian pixel distribution [10],
Gaussian mixture model (GMM) [11], and wavelets [12].
Another method of motion feature is based on the optical
flow [13]. Optical flow is widely used in vehicle detection
since it is less susceptible to occlusion issues. Static ap-
pearance feature-based methods focus on external physical
features such as color, texture, edge, and shape. A variety of
feature descriptors have been used in this field such as HOG
[14], SURF [15], Gabor [16], and Haar-like [17]. (ese
feature descriptors are usually followed by classifiers like
SVM [14], artificial neural network [16], and AdaBoost [17].
Traditional methods showed high accuracy in limited
conditions. However, with the effect of shadow, occluded
vehicle, complex scenarios, and environments, traditional
methods showed poor performance.

Recently, deep CNN-based methods have become the
leading method for high-quality general object detection,
including vehicle detection. Faster region-based convolu-
tional neural network (Faster R-CNN) [2] defined a region
proposal network (RPN) for generating region proposals
and a network using these proposals to detect objects. RPN
shares full-image convolutional features with the detection
network, thus enabling nearly cost-free region proposals.
(is method has achieved state-of-the-art detection per-
formance and becomes a commonly employed paradigm for
general object detection. MS-CNN [4] extends the detection
over multiple scales of feature layers, which produce good

detection performance improvement. SSD framework [18]
skips the region proposal stage and directly uses multiple
feature maps with different resolutions to perform object
localization and classification. YOLOv2 [19] introduces
improvements of batch normalization, high-resolution
classifier, convolutional with anchor boxes, and dimension
clusters compared to original YOLO [20]. Comparing to
YOLO, YOLOv2 achieves higher accuracy and higher speed.
To better handle the detection problem of vehicles in
complex conditions, Chu et al. [21] proposed a vehicle
detection scheme based on multitask deep CNN in which
learning is trained on four tasks: category classification,
bounding box regression, overlap prediction, and sub-
category classification. A region of interest voting scheme
and multilevel localization are then used to further improve
detection accuracy and reliability. Experimental results on
the standard test dataset showed better performance than
other methods. In [22], the authors proposed the deepmodel
for vehicle detection which consists of feature extraction,
deformation processing, occlusion processing, and classifier
training using the back propagation algorithm. Li et al. [23]
proposed a multivehicle detection method which consists of
YOLO under the Darknet framework. Tomake the full use of
the advantages of the depth information of lidar and the
obstacle classification ability of vision, Wang et al. [24]
proposed a real-time vehicle detection algorithmwhich fuses
vision and lidar point cloud information. (e experimental
results showed that the proposed algorithm significantly
improved the vehicle detection accuracy at different de-
tection difficulty levels compared to the original YOLOv3
algorithm, especially for the vehicles with severe occlusion.
In [25], the authors presented a two-stage detector based on
Faster R-CNN for high-occluded vehicle detection.(e part-
aware RPN is proposed to replace the original RPN at the
first stage of the Faster R-CNN module, and the part-aware
NMS is proposed to refine final results. Kim et al. [26]
proposed to integrate additional prediction layers into
conventional YOLOv3 using spatial pyramid pooling to
complement the detection accuracy of the vehicle for large-
scale changes or being occluded by other objects. (is ar-
chitecture showed a state-of-the-art mAP detection ratio
against the other vehicle detection approaches with rea-
sonable run-time speed.

3. The Proposed Framework

Figure 1 shows the overall framework of the proposed ap-
proach. To differentiate from the original Faster R-CNN
framework, the proposed enhancements are highlighted by
red boxes in Figure 1. In the first stage, MobileNet archi-
tecture [5] is used to build the base convolution layer instead
of VGG-16 architecture [27] in the original Faster R-CNN
framework. In the region proposal network, soft-NMS al-
gorithm is used to solve the issue of heavy vehicle occlusion.
RoI pooling layer is then replaced by the context-aware RoI
pooling layer to maintain the original structures of the small
vehicles. (e classifier based on MobileNet architecture is
built at the final stage to classify proposals into the vehicle
and background and adjust the bounding box for each of the
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detected vehicle. In the following section, the proposed
approach is explained in detail.

3.1. "e Base Network. (e original Faster R-CNN frame-
work used VGG-16 [27] as the base network. In [18], Liu
et al. proved that about 80% of the forward time is spent on
the base network so that using a faster base network can
greatly improve the speed of the whole framework. Mobi-
leNet architecture [5] is an efficient network which splits the
convolution into a 3× 3 depthwise convolution and a 1× 1
pointwise convolution, effectively reducing both computa-
tional cost and number of parameters. Table 1 shows the
comparison of MobileNet and VGG-16 on ImageNet [28].
As shown, MobileNet is nearly as accurate as VGG-16 while
being 32 times smaller and 27 times less compute intensive.
With the purpose of real-time vehicle detection in traffic
scenes, MobileNet architecture is used as the base network in
this study. MobileNet introduces two parameters which can
be used to tune to fit the resource/accuracy trade-off, in-
cluding width multiplier and resolution multiplier. (e
width multiplier allows us to thin the network, while the
resolution multiplier changes the input dimensions of the
image, thus reducing the internal representation at every
layer. In this study, MobileNet is adopted to build the base
convolutional layers in Faster R-CNN instead of VGG-16 in
the original framework for fast vehicle detection. Since this
paper uses only the convolution layers in MobileNet ar-
chitecture, the size of the input image does not have to be
fixed. Supposing the size of the input image is 224× 224× 3,
the architecture of the base network is defined, as shown in
Table 2.

In Table 2, “Conv” represents as a standard convolution;
“Conv dw” represents as a depthwise separable convolution;
“s1” represents that the convolution stride is 1× 1; and “s2”
represents that the convolution stride is 2× 2.

Depthwise separable convolution is made up of two
layers: depthwise convolutions and pointwise convolutions.
Depthwise convolutions are used to apply a single filter per
each input channel, while pointwise convolution, a simple
1× 1 convolution, is used to create a linear combination of
the output of the depthwise layer. MobileNet architecture
uses both batch norm and ReLU nonlinearities for both
layers. (e reduction of computational cost is in proportion
to the number of output feature map channel and the square

of kernel size. More details about MobileNet architecture
can be found in [5].

3.2. Region Proposal Network (RPN). (eRPN first generates
a set of anchor boxes from the convolution feature map
generated by the base network. An anchor is centered at the
sliding window and is associated with a scale and aspect
ratio. For the trade-off between recall and processing speed,
three anchor box scales of 128, 256, and 512 and three
anchor box ratios of 1 :1, 1 : 2, and 2 :1 are used for each
anchor in this paper as in [2], yielding 9 anchors at each
sliding position. For a convolutional feature map of a size
14×14, there are 1,764 anchors in total, as shown in Figure 2.

(e RPN then takes all the anchor boxes and outputs two
different outputs for each of the anchors. (e first one is
objectness score, whichmeans the probability that an anchor
is an object. (e second output is the bounding box re-
gression for adjusting the anchors to better fit the object, as
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Figure 1: (e overall framework of the proposed approach.

Table 1: Comparison of the MobileNet model with the VGG
model.

Model
ImageNet
accuracy (%)

Multiply-adds
(million)

Parameters
(million)

MobileNet 70.6 569 4.2
VGG-16 71.5 15300 138

Table 2: (e architecture of the base network.

Type/stride Filter shape Input size

Conv/s2 3× 3× 3× 32 224× 224× 3
Conv dw/s1 3× 3× 32 dw 112×112× 32
Conv/s1 1× 1× 32× 64 112×112× 32
Conv dw/s2 3× 3× 64 dw 112×112× 64
Conv/s1 1× 1× 64×128 56× 56× 64
Conv dw/s1 3× 3×128 dw 56× 56×128
Conv/s1 1× 1× 128×128 56× 56×128
Conv dw/s2 3× 3×128 dw 56× 56×128
Conv/s1 1× 1× 128× 256 28× 28×128
Conv dw/s1 3× 3× 256 dw 28× 28× 256
Conv/s1 1× 1× 256× 256 28× 28× 256
Conv dw/s2 3× 3× 256 dw 28× 28× 256
Conv/s1 1× 1× 256× 512 14×14× 256
5× conv dw/s1 3× 3× 512 dw 14×14× 512
5× conv/s1 1× 1× 512× 512 14×14× 512
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shown in Figure 3. Using the final proposal coordinates and
their objectness score, a good set of proposals for vehicles is
created. Since anchors usually overlap, proposals end up also
overlapping over the same object. Soft nonmaximum sup-
pression (NMS) algorithm [6] is used to solve the issue of
duplicate proposals. In most state-of-the-art object de-
tections, including Faster R-CNN, NMS algorithm is used to
remove duplicate proposals. Traditional NMS removes any
other proposal that has an overlap more than a predefined
threshold with a winning proposal. Due to heavy vehicle
occlusion in traffic scenes, traditional NMS algorithm may
remove positive proposals unexpectedly (as shown in Fig-
ure 4). To address the NMS issue with occluded vehicles, this
paper adopts soft-NMS algorithm. With soft-NMS, the
neighbor proposals of a winning proposal are not completely
suppressed. Instead they are suppressed based on updated
objectiveness scores of the neighbor proposals, which are
computed according to the overlap level of the neighbor
proposals and the winning proposal. Soft nonmaximum

suppression (NMS) algorithm will be discussed more in
detail in the following section. Figure 4 shows the example of
detection results with NMS (right) and soft-NMS (left). As
shown, NMS removed one car due to high overlap between
two cars, while soft-NMS kept two cars separately.

3.2.1. Soft Nonmaximum Suppression Algorithm. Let Pin �
p1, p2, p3, . . . , pn􏼈 􏼉 denote an initial proposal set output
from the object proposal layers, in which the proposals are
sorted by their objectiveness scores. For a proposal pi, any
other proposal that has an overlap more than a predefined
threshold Twith proposal pi is called a neighbor proposal of
proposal pi. In this paper, the neighbor proposal threshold T
is set to 0.5 by cross-validation. Let Si denote the objec-
tiveness score of pi, which is the maximum value in the
classification score vector of pi. For a proposal set, the
proposal with the highest objectiveness score is called the
winning proposal. Let pi be a winning proposal and pj be a
neighbor proposal of pi. (e updated objectiveness score of
pj (denoted by S

u
j ) is computed by the following formula [6]:

Suj � Si 1 − Opi ,pi􏼐 􏼑, (1)

whereOpi,pi denotes the intersection of union (IoU) between
proposal pi and proposal pj and is computed by the fol-
lowing formula:

Opi ,pi �
area pi ∩pj􏼐 􏼑
area pi ∪pj􏼐 􏼑

. (2)

Soft-NMS algorithm is described by the flowchart in
Figure 5.

3.3. Context-Aware RoI Pooling. In most two-stage object
detection algorithms, such as Fast R-CNN, Faster R-CNN,
and so on, the RoI pooling layer [29] is used to adjust the
size of proposals to the fixed size. (e principle of an RoI
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Figure 2: Anchor boxes generated by RPN.
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Figure 3: (e region proposal network.
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Figure 4: Detection results with (a) Soft-NMS and (b) NMS. Due to
heavy vehicle occlusion, NMS removed one car in detection results,
while soft-NMS detected two cars separately.
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pooling layer is illustrated in Figure 6(b). (e RoI pooling
layer uses max pooling to convert the features inside any
valid region of interest into a small feature map with a fixed
spatial extent of H×W. RoI max pooling works by dividing
the h × w RoI proposal into an H ×W grid of subwindows

of approximate size (h/H) × (w/W), and then max pooling
the values in each subwindow into the corresponding
output grid cell. If a proposal is smaller than H×W, it will
be enlarged to H ×W by adding replicated values to fill the
new space. RoI pooling avoids repeatedly computing the

Start

Pin = input proposal set

Create a temporary proposal
set Ptemp = Pin

Check if Ptemp

is empty?
Final proposal set = Pout End

Move the winning proposal in
Ptemp to �nal proposal set Pout

Compute the updated score of the
neighbor proposals of winning
proposal in Ptemp based on (1) 

Update set Ptemp by removing the neighbor
proposals of the winning proposal if their

updated scores are lower than a prede�ned
threshold Ts (Ts is set to 0.005 in this paper)

Yes

No

Figure 5: (e flowchart of the soft-NMS algorithm.
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Figure 6: Context-aware RoI pooling scheme. (a) Feature maps and proposals generated by the base network and the RPN. (b) Traditional
RoI pooling process. (c) CARoI pooling process.
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convolutional layers, so it can significantly speed up both
train and test time. However, adding replicated values to
small proposals is not appropriate, especially with small
vehicles, as it may destroy the original structures of the
small vehicles. Moreover, adding replicated values for small
proposals will lead to inaccurate representations in the
forward propagation and accumulation of errors in the
backward propagation during the training process. (us,
the performance of detecting small vehicles will be reduced.
To adjust the size of proposals to the fixed size without
destroying the original structures of the small vehicles and
enhance the performance of the proposed approach on
detecting small vehicles, context-aware RoI pooling
(CARoI pooling) [7] is used in this paper. (e principle
of context-aware RoI pooling layer is illustrated in
Figure 6(c). In CARoI pooling process, if the size of a
proposal is larger than the fixed size of the output feature
map, max pooling is used to reduce the size of the proposal
to a fixed size as in traditional RoI pooling. If the size of a
proposal is smaller than the fixed size of the output feature
map, deconvolution operation is applied to enlarge the size
of the proposal to a fixed size as the following formula:

yk � Fk ⊕ hk, (3)

where yk represents the output feature map with the fixed
size, Fk represents the input proposal, and hk is the kernel of
the deconvolution operation. (e size of the kernel is equal
to the ratio between the size of the output feature map and
the size of the input proposal. Moreover, when the width of a
proposal is larger than the fixed width of the output feature
map and the height of this proposal is smaller than the fixed
height of the output feature map, deconvolution operation
as in (3) is adopted to enlarge the height of this proposal, and
max pooling is applied to this proposal to reduce the width
of this proposal. With the CARoI pooling layer, the size of
proposals has been adjusted to the fixed size while dis-
criminative features from the small proposals can be still
extracted.

3.4. "e Classifier. (e classifier is the final stage in the
proposed framework. After extracting features for each of
proposals via context-aware RoI pooling, these features are
used for classification. (e classifier has two different goals:
classify proposals into the vehicle and background class and
adjust the bounding box for each of the detected vehicle
according to the predicted class. (e proposed classifier is
defined in Table 3.(is study uses the structure of depthwise
separable convolution inMobileNet architecture to build the
classifier.(e classifier has two fully connected (FC) layers, a
box classification layer and a box regression layer. (e first
FC layer is fed into the softmax layer to compute the
confidence probabilities of being vehicle and background.
(e second FC layer with linear activation functions re-
gresses the bounding box of the detected vehicle. All con-
volutional layers are followed by a batch normalization layer
and a ReLU layer. (e loss function and the parameteri-
zation of coordinates for bounding box regression are the
same as in the original Faster R-CNN framework [2]. (e

loss function of the RPN and the loss function of the
classifier share the same form but are optimized separately.

4. Results and Discussion

In order to compare the effectiveness of the proposed ap-
proach with other state-of-the-art approaches on vehicle
detection, this paper conducts experiments on widely used
public datasets: KITTI dataset [30] and LSVH dataset [7].
(e proposed approach is implemented on a Window
system machine with Intel Core i7 8700 CPU, NVIDIA
GeForce GTX 1080Ti GPU and 16Gb of RAM. TensorFlow
is adopted for implementing deep CNN frameworks, and
OpenCV library is used for real-time processing.

4.1. Dataset. KITTI dataset [30] is a widely used dataset for
evaluating vehicle detection algorithms.(is dataset consists
of 7,481 images for training with available ground truth and
7,518 images for testing with no available ground truth.
Images in this dataset include various scales of car in dif-
ferent scenes and conditions and were divided into three
difficulty level groups: easy, moderate, and hard. If the
bounding box size was larger than 40 pixels, a completely
unshielded vehicle was considered to be an easy object, if the
bounding box size was larger than 25 pixels but smaller than
40 pixels, a partially shielded vehicle was considered as a
moderate object, and a vehicle with the bounding box size
smaller than 25 pixels and an invisible vehicle that was
difficult to see with the naked eye were considered as hard
objects. LSVH dataset [7] contains 16 videos captured under
different scenes, time, weathers, and resolutions and is di-
vided into two groups: sparse and crowded. A video scene
containing more than 15 vehicles per frame on average is
considered as a crowded scene. Otherwise, it is considered as
a sparse scene. As in [7], this paper uses the eight videos in
the sparse group as the training data and the left four videos
in the sparse group as the testing data.

4.2. Evaluation Metrics. (is paper uses the average pre-
cision (AP) and intersection over union (IoU)metrics [31] to
evaluate the performance of the proposed method in all
three difficulty level groups of the KITTI dataset and LSVH
dataset.(ese criteria have been used to assess various object
detection algorithms [30, 31]. (e IoU is set to 0.7 in this
paper, which means only the overlap between the detected

Table 3: (e architecture of the classifier.

Type/stride Filter shape Input size

Conv dw/s2 3× 3× 512 dw 14×14× 512
Conv/s1 1× 1× 512×1024 7× 7× 512
Conv dw/s2 3× 3×1024 dw 7× 7×1024
Conv/s1 1× 1× 1024×1024 7× 7×1024
Avg pool/s1 Pool 7× 7 7× 7×1024
FC/s1 1024× 2 1× 1× 1024
Softmax Classification RoI× 2
FC/s1 1024× 4 1× 1× 1024
Linear Regression RoI× 4
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bounding box and the ground truth bounding box greater
than or equal to 70% is considered as a correct detection.

4.3. Training. For the base network, this paper uses the
MobileNet pretrained model on the ImageNet dataset [32]
and further fine-tuned on the KITTI dataset and the LSVH
dataset. To accelerate training and reduce overfitting, the
weights of each batch normalization layer in the pretrained
model are frozen during the training process. (e RPN and
the classifier are trained by turns. First, the RPN is trained on
a mini-batch, and the parameters of the RPN and the base
network are updated once. (en, positive proposals and
negative proposals generated by the RPN are used to train
and update the classifier. (e parameters of the classifier are
updated once and the parameters of the base convolutional
layers are updated once again. (e RPN and the MobileNet-
based classifier share the base convolutional layers. (e loss
function and the parameterization of coordinates for
bounding box regression in this study are the same as those
in original Faster R-CNN. (e balancing parameter λ is set
to 1 in the loss function.(e Adam algorithm [33] is adopted
for optimizing the loss functions. (e initial learning rates of
the RPN and the classifier are set to 0.0001 with the learning
rate decay of 0.0005 per mini-batch. (e network is trained
for 200 epochs.

4.4. Performance Results. In this section, this study first
checks the effectiveness of each enhanced module, and then
compares the performance of the proposed approach with
other state-of-the-art approaches on the KITTI dataset and
the LSVH dataset, including original Faster R-CNN [2], SSD
[18], YOLO [20], YOLOv2 [19], and MS-CNN [4].

4.4.1. Experimental Results on the KITTI Validation Set.
Since the ground truth of the KITTI test set is not publicly
available, this paper splits the KITTI training images into a
train set and a validation set to conduct experiments as in
[3], which results in 3,682 images for training and 3,799
images for validation. To examine the effectiveness of each
proposed enhancement, this paper conducts separate ex-
periments on each of the enhanced module and compares
the results with the original Faster R-CNN framework. In the
first experiment, the NMS algorithm is replaced by the soft-
NMS algorithm, while other modules in original Faster
R-CNN are kept unchanged. In the second experiment,
context-aware RoI pooling is adopted to replace RoI pooling
process, and the NMS algorithm is kept unchanged in this
experiment. Finally, MobileNet architecture is adopted as
the base network instead of VGG-16 architecture, while the
NMS algorithm and RoI pooling layer are kept unchanged.
Table 4 reports the AP results and the inference time of each
enhanced module and the original Faster R-CNN for vehicle
detection over the KITTI validation set. It can be observed
that soft-NMS improves the performance in all groups with
no extra computation time. More specific, the AP with soft-
NMS increases by 1.33%, 0.6%, and 0.01% in “easy,”
“moderate,” and “hard” groups, respectively, compared to

original Faster R-CNN. (ese results demonstrate the ef-
fectiveness of soft-NMS on solving the issue of duplicate
vehicles in driving environments. Comparing with RoI
pooling in the original Faster R-CNN, context-aware RoI
pooling process dramatically improves the accuracy while no
extra time is introduced (as shown in the 3rd row). Par-
ticularly, the improvements are significant with the “mod-
erate” and “hard” groups. (ese results demonstrate that the
recovered high-resolution semantic features are very useful
for detecting small vehicles.(e last row in Table 4 shows the
AP results of Faster R-CNNwith MobileNet architecture. As
shown, MobileNet is nearly as accurate as VGG while
dramatically improving the inference time. More specific,
Faster R-CNN with MobileNet needs 0.15 second to process
an image, while Faster R-CNN with VGG-16 needs up to 2
seconds.

Figure 7 presents some examples of detection results of
the proposed method (shown in the left column) and the
original Faster R-CNN framework (shown in the right
column) on the KITTI validation set. As shown in this figure,
with the contribution of context-aware RoI pooling, the
proposed approach can detect more small vehicles compared
to Faster R-CNN. Furthermore, with the contribution of
soft-NMS postprocessing, the proposed method can avoid
removing positive vehicle proposals unexpectedly (shown in
the first row and the third row in Figure 7).

4.4.2. Experimental Results on the KITTI Test Set. Next, this
study trains the proposed network with the KITTI training
set and compares the results of the proposed method with
recently published methods over the KITTI test set. Table 5
shows the comparison of detection results on all three
categories of the KITTI test set. As shown from Table 5, the
performance of the proposed method is improved com-
paring with the Faster R-CNN framework by 2.49%, 5.92%,
and 3.6% in “easy,” “moderate,” and “hard” groups, re-
spectively. Furthermore, comparing with the SSD frame-
work, the proposed algorithm improves by 11.49%, 23.8%,
and 18.55% in “easy,” “moderate,” and “hard” groups,
respectively. For the computational efficiency, the pro-
posed method takes 0.15 second for processing an image,
while the original Faster R-CNN framework takes up to 2
seconds. (e MobileNet architecture dramatically im-
proves processing speed of the proposed approach. (us,
the proposed approach meets the real-time detection
standard and can be applied to the road driving envi-
ronment of actual vehicles. Comparing the average pre-
cision and the processing time results in Table 5, it can be
concluded that there is no absolute winner with dominant
performance over all the comparison aspects. Among the
compared leading approaches, MS-CNN [4] ranked the
first. However, MS-CNN has the second longest processing
time (0.4 second), while the proposed approach needs only
0.15 second. Other one-stage deep learning-based detectors
(YOLO, YOLOv2, and SSD) are faster than the proposed
approach, but with very low accuracy. Figure 8 shows
detection results of the proposed method on the KITTI test
set (the left column).
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Table 4: (e AP results and the inference time of each enhanced module and the original Faster R-CNN.

Method
Average precision

Processing time (s)
Easy (%) Moderate (%) Hard (%)

Faster R-CNN [2] 87.33 86.67 76.78 2
Soft-NMS 88.66 87.27 76.79 2
Context-aware RoI pooling 88.05 90.84 80.16 2
MobileNet 86.25 86.07 76.18 0.15

(a) (b)

Figure 7: Detection results of the proposed method (a) and the original Faster R-CNN framework (b) on the KITTI validation set. As
shown, the proposed approach can detect more small vehicles and avoid removing positive vehicle proposals unexpectedly (shown in the
first row and the third row) compared to the original Faster R-CNN.
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Table 5: Detection results of the proposed method and other methods on the KITTI test set.

Method
Average precision

Processing time (s)
Easy (%) Moderate (%) Hard (%)

Faster R-CNN [2] 86.71 81.84 71.12 2
SSD [18] 77.71 64.06 56.17 0.06
MS-CNN [4] 90.03 89.02 76.11 0.4
YOLO [20] 47.69 35.74 29.65 0.03
YOLOv2 [19] 76.79 61.31 50.25 0.03
Proposed approach 89.20 87.86 74.72 0.15

(a) (b)

Figure 8: Detection results of the proposed method on the KITTI test set (a) and the LSVH test set (b).
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4.4.3. Experimental Results on the LSVH Test Set. (is paper
also compares the proposed method on another public
dataset: LSVH dataset [7]. In this paper, the eight videos in
the sparse group are used for training the proposed network,
and the left four videos in the sparse group are used for
testing the proposed network. To avoid retrieving similar
images, this paper extracts one frame in every seven frames
of these videos as the training/testing images as in [7].
Table 6 shows the comparison of detection results on the
LSVH test set. As shown in Table 6, the performance of the
proposed method is improved comparing with the Faster
R-CNN framework by 24.5%. Figure 8 shows detection
results of the proposed method on the LSVH test set (the
right column).

5. Conclusions

Most of state-of-the-art approaches on vehicle detection
are focused on detection accuracy. In driving environment,
apart from the detection accuracy, the inference speed is
also a large concern. Moreover, vehicles are unlikely to be
equipped with high-end graphic cards as powerful as used
in research environments. (us, it is necessary to build a
faster framework for vehicle detection in driving envi-
ronments. In this paper, an improved Faster R-CNN
framework for fast vehicle detection is proposed. To im-
prove the detection accuracy and the inference time in the
challenging driving environment such as large vehicle scale
variation, vehicle occlusion, and bad light conditions,
MobileNet architecture is first adopted to build the base
network of the Faster R-CNN framework. Soft-NMS al-
gorithm is used after the region proposal network to solve
the issue of duplicate proposals. Context-aware RoI
pooling is then used to adjust the proposals to the specified
size without sacrificing important contextual information.
Furthermore, the structure of depthwise separable con-
volution in MobileNet architecture is adopted to build the
classifier at the final stage of the Faster R-CNN framework
to classify proposals and adjust the bounding box for each
of the proposal. (e proposed approach is evaluated on the
KITTI dataset and the LSVH dataset. Compared with the
original Faster R-CNN framework, the proposed approach
showed better results in both detection accuracy and
processing time. (e results demonstrated that the pro-
posed network is simple, fast, and efficient. Moreover,
compared with other state-of-the-art methods on vehicle
detection, the proposed framework can easily be extended
and applied to the detection and recognition of other types
of objects encountered in the driving environment, such as

license plate, pedestrian, traffic sign, and so on. (e good
performance of the proposed algorithm on vehicle de-
tection has a high reference value in the field of intelligent
driving. In the future, this paper will investigate more
enhancements to improve detection results.
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