
Improving Fault Localization for Simulink Models

using Search-Based Testing and Prediction Models

Bing Liu, Lucia, Shiva Nejati, Lionel Briand

SnT Centre, University of Luxembourg, Luxembourg

Email: {bing.liu, lucia.lucia, shiva.nejati, lionel.briand}@uni.lu

Abstract—One promising way to improve the accuracy of fault
localization based on statistical debugging is to increase diversity
among test cases in the underlying test suite. In many practical
situations, adding test cases is not a cost-free option because test
oracles are developed manually or running test cases is expensive.
Hence, we require to have test suites that are both diverse and
small to improve debugging. In this paper, we focus on improving
fault localization of Simulink models by generating test cases.
We identify three test objectives that aim to increase test suite
diversity. We use these objectives in a search-based algorithm to
generate diversified but small test suites. To further minimize test
suite sizes, we develop a prediction model to stop test generation
when adding test cases is unlikely to improve fault localization.
We evaluate our approach using three industrial subjects. Our
results show (1) the three selected test objectives are able to
significantly improve the accuracy of fault localization for small
test suite sizes, and (2) our prediction model is able to maintain
almost the same fault localization accuracy while reducing the
average number of newly generated test cases by more than half.

Index Terms—Fault localization, Simulink models, search-
based testing, test suite diversity, and supervised learning.

I. INTRODUCTION

The embedded software industry increasingly relies on

model-based development methods to develop software com-

ponents [1]. These components are largely developed in the

Matlab/Simulink language [2]. An important reason for in-

creasing adoption of Simulink in embedded domain is that

Simulink models are executable and facilitate model testing

or simulation, (i.e., design time testing based on system mod-

els) [3], [4]. To be able to identify early design errors through

Simulink model testing, engineers require effective debugging

and fault localization strategies for Simulink models.

Statistical debugging is a lightweight and well-studied de-

bugging technique [5]–[12]. Statistical debugging localizes

faults by ranking program elements based on their suspicious-

ness scores. These scores capture faultiness likelihood for each

element and are computed based on statistical formulas applied

to sequences of executed program elements (i.e., spectra)

obtained from testing. Developers use such ranked program

elements to localize faults in their code.

In our previous work [13], we extended statistical debug-

ging to Simulink models and evaluated the effectiveness of

statistical debugging to localize faults in Simulink models.

Our approach builds on a combination of statistical debugging

and dynamic slicing of Simulink models. We showed that the

accuracy of our approach, when applied to Simulink models

from the automotive industry, is comparable to the accuracy of

statistical debugging applied to source code [13]. We further

extended our approach to handle fault localization for Simulink

models with multiple faults [14].

Since statistical debugging is essentially heuristic, despite

various research advancements, it still remains largely unpre-

dictable [15]. In practice, it is likely that several elements have

the same suspiciousness score as that of the faulty, and hence,

be assigned the same rank. Engineers will then need to inspect

all the elements in the same rank group to identify the faulty

element. Given the way statistical debugging works, if every

test case in the test suite used for debugging executes either

both or neither of a pair of elements, then those elements will

have the same suspiciousness scores (i.e., they will be put

in the same rank group). One promising strategy to improve

precision of statistical debugging is to use an existing ranking

to generate additional test cases that help refine the ranking

by reducing the size of rank groups in the ranking [15]–[18].

In situations where test oracles are developed manually

or when running test cases is expensive, adding test cases

is not a zero-cost activity. Therefore, an important question,

which is less studied in the literature, is how we can refine

statistical rankings by generating a small number of additional

test cases? In this paper, we aim to answer this question for

fault localization of Simulink models. While our approach

is not particularly tied to any modeling or programming

language, we apply our work to Simulink since, in some

domains (e.g., automotive), it is expensive to execute Simulink

models and to characterize their expected behaviour [4], [19].

This is because Simulink models include computationally

expensive physical models [20], and their outputs are complex

continuous signals [19]. We identify three alternative test

objectives that aim to generate test cases exercising diverse

parts of the underlying code and adapt these objectives to

Simulink models [15], [16], [21]. We use these objectives

to develop a search-based test generation algorithm, which

builds on the whole test suite generation algorithm [22], to

extend an existing test suite with a small number of test cases.

Given the heuristic nature of statistical debugging, adding test

cases may not necessarily improve fault localization accuracy.

Hence, we use the following two-step strategy to stop test

generation when it is unlikely to be worthwhile: First, we

identify Simulink super blocks through static analysis of

Simulink models. Given a Simulink model M , a super block

is a set B of blocks of M such that, for any test case tc,

tc executes either all or none of the blocks in B. That is,

1-DT(u)

X

1-DT(u)

X

1-DT(u)

X
273

-100
0.5

0.15

10

15

2

1.5

1

2

3

4

5

1

2

+
+

+
+

x
/

>

>0

>100

1

2

*,3

NMOT

Clutch

Bypass

pIn

TIn

Seg

adjPress

Lookup

pCons
DecrPress

PressRatioSpd

pGain

IncrPress

LimitP

FlapPosThreshold
FlapIsClosed

pComp

pAdjust

pRatio

pLookup
0 C

T_C2K

IncrT

TScaler

SC_Active

CalcT

pOut

TOut

Fig. 1: A Simulink model example where pRatio is faulty.

there is no test case that executes a subset (and not all) of the

blocks in a super block. Statistical debugging, by definition,

always ranks the blocks inside a super block together in the

same rank group. Thus, when elements in a rank group are all

from a super block, the rank group cannot be further refined

through statistical debugging, and hence, test generation is not

beneficial. Second, we develop a prediction model based on

supervised learning techniques, specifically decision trees [23]

using historical data obtained from previous applications of

statistical debugging. Our prediction model effectively learns

rules that relate improvements in fault localization accuracies

to changes in statistical rankings obtained before and after

adding test cases. Having these rules and having a pair of

statistical rankings from before and after adding some test

cases, we can predict whether test generation should be

stopped or continued. Our Contributions include:

- We develop a search-based testing technique for Simulink

models that uses the existing alternative test objectives [15],

[16], [21] to generate small and diverse test suites that can

help improve fault localization accuracy.

- We develop a strategy to stop test generation when

test generation is unlikely to improve fault localization. Our

strategy builds on static analysis of Simulink models and

prediction models built based on supervised learning.

- We have evaluated our approach using three industrial

subjects. Our experiments show that: (i) The three alternative

test objectives are equally capable of improving the accuracy

of fault localization for Simulink models and with small

test suite sizes, and they are able to produce an accuracy

improvement that is statistically higher than the improvement

obtained by random test generation (baseline). (ii) Our strategy

based on static analysis and supervised learning is able to

stop generating test cases that are not beneficial for fault

localization. In particular, on average, by generating only 11
test cases, we are able to obtain an accuracy improvement

close to that obtained by 25 test cases when our strategy to

stop test generation is not used.

II. BACKGROUND AND NOTATION

In this section, we provide some background and fix our

formal notation. Figure 1 shows an example of a Simulink

model. This model takes five input signals and produces

two output signals. It contains 21 Simulink (atomic) blocks.

Simulink blocks are connected via lines that indicate data

TABLE I: Test execution slices and ranking results for

Simulink model in Figure 1. * denotes the faulty block.

Block Name
t1 t2 t3 t4 Score

Rank
(Min-Max)pOut TOut pOut TOut pOut TOut pOut TOut

SC Active X X X X 0 -

FlapIsClosed X X X X 0 -

FlapPosThreshold X X X X 0 -

LimitP X X 0 -

Seg X X 0 -

adjPress X X 0 -

Lookup X X 0 -

DecrPress X 0 -

pCons X 0 -

PressRatioSpd X 0 -

IncrPress NaN -

pGain NaN -

pRatio* X X X X 0.7 1-9

pLookup X X X X 0.7 1-9

pComp X X X X 0.7 1-9

pAdjust X X X X 0.7 1-9

CalcT X X X X 0.7 1-9

Tscaler X X X X 0.7 1-9

IncrT X X X X 0.7 1-9

T C2K X X X X 0.7 1-9

0 C X X X X 0.7 1-9

Pass(P)/Fail(F) P F P P P P P P

flow connections. Formally, a Simulink model is a tuple

(Nodes,Links, Inputs,Outputs) where Nodes is a set of

Simulink blocks, Links ⊆ (Nodes × Nodes) is a set of links

between the blocks, Inputs is a set of input ports and Outputs

is a set of output ports.

In our previous work [13], we have shown how statistical

debugging can be extended and adapted to Simulink mod-

els. Statistical debugging utilizes an abstraction of program

behavior, also known as spectra, (e.g., sequences of executed

statements) obtained from testing. Since Simulink models have

multiple outputs, we relate each individual Simulink model

spectrum to a test case and an output. We refer to each

Simulink model spectrum as a test execution slice. A test

execution slice is a set of (atomic) blocks that were executed

by a test case to generate each output [13].

Let TS be a test suite. Given each test case tc ∈ TS and

each output o ∈ Outputs , we refer to the set of Simulink

blocks executed by tc to compute o as a test execution slice

and denote it by testc,o. Formally, we define testc,o as follows.

testc,o = {n | n ∈ static slice(o) ∧ tc executes n for o}

where static slice(o) ⊆ Nodes is the static backward slice of

output o and is equal to the set of all nodes in Nodes that can

reach output o via data or control dependencies. We denote the

set of all test execution slices obtained by a test suite TS by

TESTS . In [13], we provided a detailed discussion on how the

static backward slices (i.e., static slice(o)) and test execution

slices (i.e., testc,o) can be computed for Simulink models.

For example, suppose we seed a fault into the model

example in Figure 1. Specifically, we change the constant value

used by the gain block (pRatio) from 0.65 to 0.5, i.e., the

input of pRatio is multiplied by 0.5 instead of 0.65. Table I

shows the list of blocks in this model and eight test execution

slices obtained from running four test cases (i.e., tc1 to tc4)

on this model. In this example, each test case generates two

execution slices (one for each model output). We specify the

blocks that are included in each test execution slice using a

X. The last row of Table I shows whether each individual test

execution slice passes (P) or fails (F).

After obtaining the test execution slices, we use a well-

known statistical ranking formula, i.e. Tarantula [6], [24],

to rank the Simulink blocks. Note that our comparison [13]

of alternative statistical formulas applied to Simulink models

revealed no significant difference among these formulas and

Tarantula. Let b be a model block, and let passed(b) and

failed(b), respectively, be the number of passing and failing

execution slices that execute b. Let totalpassed and totalfailed

represent the total number of passing and failing execution

slices, respectively. Below is the Tarantula formula for com-

puting the suspiciousness score of b:

Score(b) =
failed(b)
totalfailed

failed(b)
totalfailed

+
passed(b)
totalpassed

Having computed the scores, we now rank the blocks based

on these scores. The ranking is done by putting the blocks

with the same suspiciousness score in the same rank group.

For each rank group, we assign a “min rank” and a “max

rank”. The min (respectively, max) rank indicates the least

(respectively, the greatest) numbers of blocks that need to be

inspected if the faulty block happens to be in this group. For

example, Table I shows the scores and the rank groups for our

example in Figure 1. Based on this table, engineers may need

to inspect at least one block and at most nine blocks in order

to locate the faulty block pRatio.

III. TEST GENERATION FOR FAULT LOCALIZATION

In this section, we present our approach to improve statis-

tical debugging for Simulink by generating a small number

of test cases. Our test generation aims to improve statistical

ranking results by maximizing diversity among test cases. An

overview of our approach is illustrated by the algorithm in

Figure 2. As the algorithm shows, our approach uses two

subroutines TESTGENERATION and STOPTESTGENERATION

to improve the standard fault localization based on statis-

tical debugging (STATISTICALDEBUGGING). Engineers start

with an initial test suite TS to localize faults in Simulink

models (Lines 1-2). Since STATISTICALDEBUGGING requires

pass/fail information about individual test cases, engineers are

expected to have developed test oracles for TS . Our approach

then uses subroutine STOPTESTGENERATION to determine

whether adding more test cases to TS can improve the existing

ranking (Line 4). If so, then our approach generates a num-

ber of new test cases newTS using the TESTGENERATION

subroutine (Line 6). The number of generated test cases (i.e.,

k) is determined by engineers. The new test cases are then

passed to the standard statistical debugging to generate a new

statistical ranking. Note that this requires engineers to develop

test oracle information for the new test cases (i.e., test cases

in newTS). The iterative process continues until a number

of test generation rounds as specified by the input round

variable are performed, or the STOPTESTGENERATION sub-

routine decides to stop the test generation process. We present

subroutines TESTGENERATION and STOPTESTGENERATION

in Sections III-A and III-B, respectively.

A. Search-based Test Generation

We use search-based techniques [25] to generate test cases

that improve statistical debugging results. To guide the search

SIMULINKFAULTLOCALIZATION()

Input: - TS : An initial test suite

- M : A Simulink model

- round : The number of test generation rounds

- k : The number of new test cases per round

Output: rankList : A statistical debugging ranking

1. rankList ,TESTS ← STATISTICALDEBUGGING(M,TS)
2. initialList ← rankList

3. for r ← 0, 1, . . . , round − 1 do

4. if STOPTESTGENERATION(round , M , initialList , rankList) then

5. break for -Loop

6. newTS ← TESTGENERATION(TESTS ,M, k)
7. TS ← TS ∪ newTS

8. rankList ,TESTS ← STATISTICALDEBUGGING(M,TS)
9. end

10. return rankList

Fig. 2: Overview of our Simulink fault localization approach.

algorithm, we define fitness functions that aim to increase

diversity of test cases. Our intuition is that diversified test

cases are likely to execute varying subsets of Simulink model

blocks. As a result, Simulink blocks are likely to take different

scores, and hence, the resulting rank groups in the statistical

ranking are likely to be smaller. In this section, we first present

the fitness functions that are used to guide test generation,

and then, we discuss the search-based test generation algo-

rithm. We describe three different alternative fitness functions

referred to as coverage dissimilarity, coverage density and

number of dynamic basic blocks. Coverage dissimilarity has

previously been used for test prioritization [21], and is used in

this paper for the first time to improve fault localization. The

two other alternatives, i.e., coverage density [15] and number

of dynamic basic blocks [16], have been previously used to

improve source code fault localization.

Coverage Dissimilarity. Coverage dissimilarity aims to in-

crease diversity between test execution slices generated by test

cases. We use a set-based distance metric known as Jaccard

distance [26] to define coverage dissimilarity. Given a pair

testc,o and testc′,o′ of test execution slices, we denote their

dissimilarity as d(testc,o, testc′,o′) and define it as follows:

d(testc,o, testc′,o′) = 1−
|testc,o∩testc′,o′ |

|testc,o∪testc′,o′ |

The coverage dissimilarity fitness function, denoted by

fitDis, is the average of pairwise dissimilarities between every

pair of test execution slices in TESTS . Specifically,

fitDis(TS) =
2×

∑
testc,o,tes

tc′,o′
∈TESTS

d(testc,o,testc′,o′)

|TESTS |×(|TESTS |−1)

The larger the value of fitDis(TS), the larger the dissimilar-

ity among test execution slices generated by TS . For example,

the dissimilarity between test execution slices test1,TOut and

test2,TOut in Table I is 0.44. Also, for that example, the

average pairwise dissimilarities fitDis(TS) is 0.71.

Coverage Density. Campos et al [15] argue that the accuracy

of statistical fault localization relies on the density of test

coverage results. They compute the test coverage density as the

average percentage of components covered by test cases over

the total number of components in the underlying program. We

adapt this computation to Simulink, and compute the coverage

density of a test suite TS , denoted by p(TS), as follows:

p(TS) = 1
|TESTS |

∑
testc,o∈TESTS

|testc,o|
|static slice(o)|

That is, our adaptation of coverage density to Simulink

computes, for every output o, the average size of test execution

slices related to o over the static backward slice of o. Note that

a test execution slice related to output o is always a subset of

the static backward slice of o. Low values of p(TS) (i.e.,

close to zero) indicate that test cases cover small parts of the

underlying model, and high values (i.e., close to one) indicate

that test cases tend to cover most parts of the model. According

to Campos et al [15], a test suite whose coverage density

is equal to 0.5 (i.e., neither low nor high) is more capable

of generating accurate statistical ranking results. Similar to

Campos et al [15], we define the coverage density fitness

function as fitDens(TS) = |0.5−p(TS)| and aim to minimize

fitDens(TS) to obtain more accurate ranking results.

Number of Dynamic Basic Blocks. Given a test suite TS for

fault localization, a Dynamic Basic Block (DBB) [16] is a

subset of program statements such that for every test case

tc ∈ TS , all the statements in DBB are either all executed

together by tc or none of them is executed by tc. According

to [16], a test suite that can partition the set of statements of the

program under analysis into a large number of dynamic basic

blocks is likely to be more effective for statistical debugging.

In our work, we (re)define the notion of DBB for Simulink

models based on test execution slices. Formally, a set DBB is

a dynamic basic block iff DBB ⊆ Nodes and for every test

execution slice tes ∈ TESTS , we have either DBB ⊆ tes or

DBB ∩ tes = ∅. For a given set TESTS of test execution

slices obtained by test suite TS , we can partition the set

Nodes of Simulink model blocks into a number of disjoint

dynamic basic blocks DBB1, . . . ,DBB l. Our third fitness

function, which is defined based on dynamic basic blocks

and is denoted by fitdbb(TS), is defined as the number of

dynamic basic blocks produced by a given test suite TS ,

i.e., fitdbb(TS) = l. The larger the number dynamic basic

blocks, the better the quality of a test suite TS for statistical

debugging. For example, the test suite in Table I partitions

the model blocks in Figure 1 into six DBBs. An example

DBB for that model includes the following blocks: CalcT,

TScaler,IncrT, T_C2K, 0 C.

Test generation algorithm. Having defined the fitness func-

tions, we now define our search-based test generation al-

gorithm (i.e. TESTGENERATION in Figure 2). The TEST-

GENERATION algorithm is shown in Figure 3 and generates

new test cases based on any of our three fitness functions.

The algorithm adapts a single-state search optimizer [25]. In

particular, it builds on the Hill-Climbing with Random Restarts

(HCRR) algorithm [25]. We chose to build on HCRR because,

in our previous work on testing Simulink models [27], HCRR

was able to produce the best optimized test cases among

other single-state optimization algorithms. Computation of all

the three fitnesses we described earlier rely on test execution

slices. To obtain test execution slices, we need to execute test

cases on Simulink models. This makes our fitness computation

expensive. Hence, in this paper, we rely on single-state search

optimizers as opposed to population-based search techniques.

Algorithm. TESTGENERATION

Input: - TESTS : The set of test execution slices

- M : The Simulink model

- k: The number of new test cases

Output: newTS : A set of new test cases

1. TS curr ← Generate k test cases tc1, . . . , tck (randomly)

2. TES curr ← Generate the union of the test execution slices of

the k test cases in TS curr

3. fitcurr ← ComputeFitness (TES curr ∪ TESTS ,M)
4. fitbest ← fitcurr ; TS best ← TS curr

5. repeat

6. while (time != restartTime)

7. TSnew ← Mutate the k test cases in TS curr

8. TESnew ← Generate the union of the test execution slices of

the k test cases in TSnew

9. fitnew ← ComputeFitness (TESnew ∪ TESTS ,M)
10. if (fitnew is better than fitcurr)

11. fitcurr ← fitnew ; TS curr ← TSnew

12. end

13. if (fitcurr is better than fitbest)

14. fitbest ← fitcurr ; TS best ← TS curr

15. TS curr ← Generate k test cases tc1, . . . , tck (randomly)

16. until the time budget is reached

17. return TS best

Fig. 3: Test case generation algorithm.

The algorithm in Figure 3 receives as input the existing set

of test execution slices TESTS , a Simulink model M , and

the number of new test cases that need to be generated (k).

The output is a test suite (newTS) of k new test cases. The

algorithm starts by generating an initial randomly generated

set of k test cases TS curr (Line 1). Then, it computes the

fitness of TS curr (Line 3) and sets TS curr as the current

best solution (Line 4). The algorithm then searches for a

best solution through two nested loops: (1) The internal loop

(Lines 6 to 12). This loop tries to find an optimized solution

by locally tweaking the existing solution. That is, the search

in the inner loop is exploitative. The mutation operator in

the inner loop generates a new test suite by tweaking the

individual test cases in the current test suite and is similar

to the tweak operator used in our earlier work [28]. (2) The

external loop (Lines 5 to 16). This loop tries to find an

optimized solution through random search. That is, the search

in the outer loop is explorative. More precisely, the algorithm

combines an exploitative search with an explorative search.

After performing an exploitative search for a given amount of

time (i.e., restartTime), it restarts the search and moves to a

randomly selected point (Line 15) and resumes the exploitative

search from the new randomly selected point. The algorithm

stops after it reaches a given time budget (Line 15).

We discuss two important points about our test generation

algorithm: (1) Each candidate solution in our search algorithm

is a test suite of size k. This is similar to the approach

taken in the whole test suite generation algorithm proposed

by Fraser and Arcuri in [22]. The reason we use a whole

test suite generation algorithm instead of generating test cases

individually is that computing fitnesses for one test case

and for several test cases takes almost the same amount of

time. This is because, in our work, the most time consuming

operation is to load a Simulink model. Once the model is

loaded, the time required to run several test cases versus

one test case is not very different. Hence, we decided to

generate and mutate the k test cases at the same time. (2) Our

algorithm does not require test oracles to generate new test

cases. Note that computing fitDis and fitdbb only requires test

execution slices without any pass/fail information. To compute

fitDens , in addition to test execution slices, we need static

backward slices that can be obtained from Simulink models.

Test oracle information for the k new test cases is only needed

after test generation in subroutine STATISTICALDEBUGGING

(see Figure 2) when a new statistical ranking is computed.

In the next section, we discuss the STOPTESTGENERATION

subroutine (see Figure 2) that allows us to stop test generation

before performing all the test generation rounds when we can

predict situations where test generation is unlikely to improve

the fault localization.

B. Stopping Test Generation

As noted in the literature [15], adding test cases does not

always improve statistical debugging results. Given that in our

context test oracles are expensive, we provide a strategy to stop

test generation when adding new test cases is unlikely to bring

about noticeable improvements in the fault localization results.

Our STOPTESTGENERATION subroutine is shown in Figure 4.

It has two main parts: In the first part (Lines 1–6), it tries to

determine if the decision about stopping test generation can be

made only based on the characteristics of newList (i.e., the

latest generated ranked list) and static analysis of Simulink

models. For this purpose, it computes Simulink super blocks

and compares the top ranked groups of newList with Simulink

super blocks. In the second part (Lines 7-10), our algorithm

relies on a predictor model to make a decision about further

rounds of test generation. We build the predictor model using

supervised learning techniques (i.e., decision trees [23]) based

on the following three features: (1) the current test generation

round, (2) the SetDistance between the latest ranked list and

the initial ranked list, and (3) the OrderingDistance between

the latest ranked list and the initial ranked list. Below, we

first introduce Simulink super blocks. We will then introduce

SetDistance and the OrderingDistance that are used as input

features for our predictor model. After that, we describe how

we build and use our decision tree predictor model.

Super blocks. Given a Simulink model M =
(Nodes,Links, Inputs,Outputs), we define a super block as

the largest set B ⊆ Nodes of (atomic) Simulink blocks such

that for every test case tc and every output o ∈ Outputs , we

have either B ⊆ testc,o or B ∩ testc,o = ∅. The definition

of super block is very similar to the definition of dynamic

basic blocks (DBB) discussed in Section III-A. The only

difference is that dynamic basic blocks are defined with

respect to the test execution slices generated by a given

test suite, while super blocks are defined with respect to

test execution slices that can be generated by any potential

test case. Hence, dynamic basic blocks can be computed

dynamically based on test execution slices obtained by the

current test suite, whereas super blocks are computed by

static analysis of the structure of Simulink models. In order

STOPTESTGENERATION()

Input: - r : The index of the latest test generation round

- M : The underlying Simulink model

- initialList : A ranked list obtained using an initial test suite

- newList : A ranked list obtained at round r after some

test cases are added to the initial test suite

Output: result : Test generation should be stopped if result is true

1. Let rg1, . . . , rgN be the top N rank groups in newList

2. Identify Simuilnk superblocks B1, . . . , Bm in the set rg1 ∪ . . . ∪ rgN
3. if for every rg i (1 ≤ i ≤ N) there is a Bj (1 ≤ j ≤ m) s.t. rg i = Bj then

4. return true

5. if r = 0 then

6. return false

7. m1 = ComputeSetDistance(initialList, newList)

8. m2 = ComputeOrderingDistance(initialList, newList)

9. result = Prediction(m1, m2, r)

10. return result

Fig. 4: The STOPTESTGENERATION subroutine used in our

approach (see Figure 2).

to compute super blocks, we identify conditional (control)

blocks in the given Simulink model. Each conditional block

has an incoming control link and a number of incoming data

links. Corresponding to each conditional block, we create

some branches by matching each incoming data link with

the conditional branch link. We then remove the conditional

block and replace it with the new branches. This allows us

to obtain a behaviorally equivalent Simulink model with no

conditional blocks. We further remove parallel branches by

replacing them with their equivalent sequential linearizations.

We then use the resulting Simulink model to partition the set

Nodes into a number of disjoint super blocks B1, . . . , Bl.

We briefly discuss the important characteristics of super

blocks. Let rankList be a ranked list obtained based on

statistical debugging, and let rg be a ranked group in rankList .

Note that rg is a set as the elements inside a ranked group

are not ordered. For any super block B, if B ∩ rg 6= ∅ then

B ⊆ rg . That is, the blocks inside a super block always appear

in the same ranked group, and cannot be divided into two or

more ranked groups. Furthermore, if rg = B, we can conclude

that the ranked group rg cannot be decomposed into smaller

ranked groups by adding more test cases to the test suite used

for statistical debugging.

Features for building our predictor model. We describe

the three features used in our predictor models. The first

feature is the test generation round. As shown in Figure 2,

we generate test cases in a number of consecutive rounds.

Intuitively, adding test cases at the earlier rounds is likely

to improve statistical debugging more compared to the later

rounds. Our second and third features (i.e., SetDistance and

OrderingDistance) are similarity metrics comparing the latest

generated rankings (at the current round) and the initial

rankings. These two metrics are formally defined below.

Let initialList be the ranking generated using an initial

test suite, and let newList be the latest generated ranking.

Let rgnew1 , . . . , rgnewm be the ranked groups in newList, and

rg initial1 , . . . , rg initialm′ be the ranked groups in initialList. Our

SetDistance feature computes the dissimilarity between the

top-N ranked groups of initialList and newList using the

intersection metric [29]. We focus on comparing the top N

Round

SetDistance

OrderingDistance

SetDistance

!=R1 =R1

<0.079 >=0.079

SetDistance

Stop
Continue/Stop

43%/57%

Stop
Continue/Stop

3%/97%

<0.036 >=0.036

<0.36

<0.48 >=0.48

Continue
Continue/Stop

72%/28%

Stop
Continue/Stop

19%/81%
…

>=0.36

…

Fig. 5: A snapshot example of a decision tree.

ranked groups because, in practice, the top ranked groups are

primarily inspected by engineers. We compute the SetDistance

based on the average of the overlap between the top-N

ranked groups of the two ranked lists. Formally, we define

the SetDistance between initialList and newList as follows.

IM (initialList ,newList) = 1
N

∑N
k=1

|{
⋃

k
i=1 rg initial

i }∩{
⋃

k
i=1 rgnew

i }|

|{
⋃

k
i=1 rg initial

i
}∪{

⋃
k
i=1 rgnew

i
}|

SetDistance(initialList ,newList)=1− IM (initialList ,newList)

The larger the SetDistance , the more differences exist

between the top-N ranked groups of initialList and newList .

Our third feature is OrderingDistance. Similar to SetDis-

tance, the OrderingDistance feature also attempts to com-

pute the dissimilarity between the top-N ranked groups of

initialList and newList . However, in contrast to SetDistance,

OrderingDistance focuses on identifying changes in pairwise

orderings of blocks in the rankings. In particular, we define

OrderingDistance based on Kendall Tau Distance [30] that is

a well-known measure for such comparisons. This measure

computes the dissimilarity between two rankings by counting

the number of discordant pairs between the rankings. A

pair b and b′ is discordant if b is ranked higher than b′ in

newList (respectively, in initialList), but not in initialList

(respectively, in newList). In our work, in order to define the

OrderingDistance metric, we first create two sets initialL and

newL based on initialList and newList , respectively: initialL

is the same as initialList except that all the blocks that do not

appear in the top-N ranked groups of neither initialList nor

newList are removed. Similarly, newL is the same as newList

except that all the blocks that do not appear in the top-N

ranked groups of neither newList nor initialList are removed.

Note that newL and initialL have the same number blocks.

We then define the OrderingDistance metric as follows:

OrderingDistance(newL, initialL) = # of Discordant Pairs
(|newL|×(|newL|−1))/2

The larger the OrderingDistance, the more differences exist

between the top-N ranked groups of initialList and newList .

Prediction model. Our prediction model builds on an

intuition that by comparing statistical rankings obtained at the

current and previous rounds of test generation, we may be

able to predict whether further rounds of test generation are

useful or not. We build a prediction model based on the three

features discussed above (i.e., the current round, SetDistance,

OrderingDistance). We use supervised learning methods, and

in particular, decision trees [23]. The prediction model returns

a binary answer indicating whether the test generation should

stop or not. To build the prediction model, we use historical

data consisting of statistical rankings obtained during a

number of test generation rounds and fault localization

accuracy results corresponding to the statistical rankings.

When such historical data is not available the prediction model

always recommends that test generation should be continued.

After applying our approach (Figure 2) for a number of

rounds, we gradually obtain the data that allows us to build

a more effective prediction model that can recommend to

stop test generation as well. Specifically, suppose rankList

is a ranking obtained at round r of our approach (Figure 2),

and suppose initList is a ranking obtained initially before

generating test cases (Figure 2). The accuracy of fault

localization for rankList is the maximum number of blocks

inspected to find a fault when engineers use rankList for

inspection. To build our decision tree, for each rankList

computed by our approach in Figure 2, we obtain the triple

I = (r,SetDistance(initList , rankList),OrderingDistance(initList , rankList)).

We then compute the maximum fault localization accuracy

improvement that we can achieve if we proceed with

test generation from round r (the current round) until

the last round of our algorithm in Figure 2. We denote

the maximum fault localization accuracy improvement by

Max ACC r(rankList). We then label the triple I with

Continue, indicating that test generation should continue,

if Max ACC r(rankList) is more than a threshold (THR);

and with Stop, indicating that test generation should

stop, if Max ACC r(rankList) is less than the threshold

(THR). Note that THR indicates the minimum accuracy

improvements that engineers expect to obtain to be willing to

undergo the overhead of generating new test cases.

Having obtained triples I labelled with Stop or

Continue, we build our decision tree model (prediction

model). Decision trees are composed of leaf nodes, which

represent partitions, and non-leaf nodes, which represent de-

cision variables. A decision tree model is built by partitioning

the set of input triples in a stepwise manner aiming to create

partitions with increasingly more homogeneous labels (i.e.,

partitions in which the majority of triples are labelled either by

Stop or by Continue). The larger the difference between

the number of triples with Stop and Continue in a partition,

the more homogeneous that partition is. Decision variables

(i.e., non-leaf node) in our decision tree model represent

logical conditions on the input features (i.e., r, SetDistance, or

OrderingDistance). Figure 5 shows a fragment of our decision

tree model. For example, the model shows, among the triples

satisfying r = R1 and SetDistance < 0.36 conditions, 81%

are labelled with Stop and 19% are labelled with Continue.

We stop splitting partitions in our decision tree model if

the number of triples in the partitions is smaller than α, or the

percentage of the number of triples in the partitions with the

same label is higher than β. In this work, we set α to 50 and

β to 95%, i.e., we do not split a partition whose size is less

than 50, or at least 95% of its elements have the same label.

Stop Test Generation Algorithm. The STOPTESTGENER-

ATION() algorithm starts by identifying the super blocks in

newList , the latest generated ranking (Line 2). If it happens

that the top-N ranked groups in newList all comprise a single

super block, then test generation stops (Line 3-4), because such

ranking cannot be further refined by test generation. If we are

in the first round (i.e., r = 0), the algorithm returns false,

meaning that test generation should continue. For all other

rounds, we use the decision tree prediction model. Specifically,

we compute the SetDistance and OrderingDistance features

corresponding to newList , and pass these two values as well

as r (i.e., the round) to the prediction model. The prediction

model returns true, indicating that test generation should be

stopped, if the three input features satisfy a sequence of con-

ditions leading to a (leaf) partition where at least 95% of the

elements in that partition are labelled Stop. Otherwise, our

prediction model returns false, indicating that test generation

should be continued. For example, assuming the decision tree

in Figure 5 is our prediction model, we stop test generation

only if we are not in round one, SetDistance is greater than

or equal to 0.079, and OrderingDistance is less than 0.036.

This is because, in Figure 5, these conditions lead to the leaf

partition with 97% stop-labelled elements.

IV. EMPIRICAL EVALUATION

A. Research Questions

RQ1. [Evaluating and comparing different test genera-

tion fitness heuristics] How is the fault localization accuracy

impacted when we apply our search-based test generation

algorithm in Figure 3 with our three selected fitness functions

(i.e., coverage dissimilarity (fDis), coverage density (fDens),

and number of dynamic basic blocks (fdbb))? We report the

fault localization accuracy of a ranking generated by an initial

test suite compared to that of a ranking generated by a test

suite extended using our algorithm in Figure 3 with a small

number of test cases. We further compare the fault localization

accuracy improvement when we use our three alternative

fitness functions, and when we use a random test generation

strategy not guided by any of these fitness functions.

RQ2. [Evaluating impact of adding test cases] How

does the fault localization accuracy change when we apply

our search-based test generation algorithm in Figure 3? We

note that adding test cases does not always improve the fault

localization accuracy [15]. With this question, we investigate

how often fault localization accuracy improves after adding

test cases. In particular, we apply our approach in Figure 2

without calling the STOPTESTGENERATION subroutine, and

identify how often subsequent rounds of test generation do not

lead to fault localization accuracy improvement.

RQ3. [Effectiveness of our STOPTESTGENERATION

subroutine] Does our STOPTESTGENERATION subroutine

help stop generating additional test cases when they do

not improve the fault localization accuracy? We investigate

whether the predictor model used in the STOPTESTGENER-

ATION subroutine can stop test generation when adding test

cases is unlikely to improve the fault localization accuracy, or

when the improvement that the test cases bring about is small

compared to the effort required to develop their test oracles.

B. Experiment Settings

In this section, we describe the industrial subjects, test suites

and test oracles used in our experiments.

Industrial Subjects. In our experiment, we use three

Simulink models referred to as MA, MZ and MGL, and

developed by Delphi Automotive [31]. Table II shows the

number of subsystems, atomic blocks, links, and inputs and

outputs of each model. Note that the models that we chose

are representative in terms of size and complexity among the

Simulink models developed at Delphi. Further, these models

include about ten times more blocks than the publicly available

Simulink models from the Mathworks model repository [32].

TABLE II: Key information about industrial subjects.

Model Name #Subsystem #Blocks #Links #Inputs #Outputs #Faulty version

MA 37 680 663 12 8 20

MZ 65 833 806 13 7 20

MGL 33 742 730 19 9 20

We asked a Delphi engineer to seed 20 realistic and typical

faults into each model. We have provided detailed descriptions

of the seeded faults in [33]. In total, we generated 60 faulty

versions (one fault per each faulty version). We ensured that

the faults were of different types and were seeded into different

parts of the models. All experiment data and scripts are

available in [33].

Test Suite and Test Oracles. We generated three initial

test suites (i.e., TS in Figure 2) for MA, MZ and MGL

using Adaptive Random Testing [34]. Adaptive random testing

is a black box and lightweight test generation strategy that

distributes test cases evenly within valid input ranges, and

thus, helps ensure diversity among test cases. Given that in our

work we assume test oracles are manual, we aim to generate

test suites that are not large. However, the test suites should

be large enough to generate a meaningful statistical ranking.

Hence, at least some test cases in the test suite exhibit failures.

In our work, we chose to use initial test suites with size 10.

To enable the full automation of our experiments, we used the

fault-free versions of our industrial subjects as test oracles. On

average, our initial test suites covered 75.5% of the structure

of the faulty models.

Experiment Design. To answer our research questions, we

applied our approach to the faulty versions of our three models,

in total 60 faulty versions. We refer to the test generation

algorithm in Figure 3 as HCRR since it builds on the HCRR

search algorithm. We refer to HCRR when it is used with

fitness functions fDis , fDens and fdbb as HCRR-Dissimilarity,

HCRR-Density and HCRR-DBB, respectively. We set both the

number of new test cases per round (i.e., k in Figure 2), and the

number of rounds (i.e., round in Figure 2) to five. That is, in

total, we generate 25 new test cases by applying our approach.

We applied our three alternative HCRR algorithms to our 60
faulty versions. We ran each HCRR algorithm for 45 minutes

with two restarts. To account for randomness of the search

algorithms, we repeat our experiments for ten times (i.e., ten

trials). Further, to compute input features for our stopping

criteria setting, we set N (in Figure 4) to five. We ran our

experiment on a high performance computing platform [35]

with 2 clusters, 280 nodes, and 3904 cores. Our experiment

were executed on different nodes of a cluster with Intel Xeon

L5640@2.26GHz processor. In total, our experiment (using

a single node 4 cores) required 6750 hours. Most of the

experiment time was used to execute the generated test cases in

Simulink. In total, we generated and executed 129000, 159000,

and 120000 test cases for MA MZ, and MGL, respectively.

C. Evaluation Metrics

We evaluate the accuracy of the rankings generated at dif-

ferent rounds of our approach using the following metrics [8],

[9], [24], [36]–[38]: the absolute number of blocks inspected

to find faults, and the proportion of faults localized when

engineers inspect fixed numbers of the top most suspicious

blocks. The former was already discussed for prediction

models in Section III-B. The proportion of faults localized

is the proportion of localized faults over the total number of

faults when engineers inspect a fixed number of the top most

suspicious blocks from a ranking.

D. Experiment Results

RQ1. [Evaluating and comparing different test gen-

eration fitness heuristics] Figure 6 compares the fault lo-

calization results after applying HCRR-DBB, HCRR-Density

and HCRR-Dissimilarity algorithms to generate 25 test cases

(five test cases in five rounds) with the fault localization

results obtained before applying these algorithms (i.e., Initial)

and with the fault localization results obtained after generat-

ing 25 test cases randomly (i.e., Random). In particular, in

Figure 6(a), we compare the distributions of the maximum

number of blocks inspected to locate faults (i.e. accuracy)

in our 60 faulty versions when statistical rankings are gen-

erated based on the initial test suite (i.e. Initial), or after

using HCRR-DBB, HCRR-Density, HCRR-Dissimilarity and

Random test generation to add 25 test cases to the initial

test suite. Each point in Figure 6(a) represents fault localiza-

tion accuracy for one run of one faulty version. According

to Figure 6(a), before applying our approach (i.e., Initial),

engineers on average need to inspect at most 76 blocks to

locate faults. When in addition to the initial test suite, we

use 25 randomly generated test cases, the maximum number

of blocks inspected decreases to, on average, 62 blocks.

Finally, engineers need to inspect, on average, 42.4, 44 and

42.8 blocks if they use the rankings generated by HCRR-

DBB, HCRR-Density and HCRR-Dissimilarity, respectively.

We performed non-parametric pairwise Wilcoxon signed-rank

tests to check whether the improvement on the number of

blocks inspected is statistically significant. The results show

that the fault localization accuracy distributions obtained by

HCRR-DBB, HCRR-Density and HCRR-Dissimilarity are sig-

nificantly lower (better) than those obtained by Random and

Initial (with p-value<0.0001).

Similarly, Figure 6(b) shows the proportion of faults lo-

calized when engineers inspect a fixed number of blocks in

the rankings generated by Initial, and after generating 25 test

Initial Random HCRR-DBB HCRR
-Density

HCRR
-Dissimilarity

0

20

40

60

80

100

120

140

160

180

200

220

240

260

M
a

x
.
#

 o
f

B
lo

c
k

s
 i
n

s
p

e
c

te
d

Max. # of Blocks inspected (avg.)

P
ro

p
o

rt
io

n
 o

f
F

a
u

lt
s

 l
o

c
a

li
z
e

d

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial

Random

HCRR-DBB

HCRR-Density

HCRR-Dissimlarity

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80>80

(b)

Dissimilarity

Fig. 6: Comparing the number of blocks inspected (a) and the

proportion of faults localized (b) before and after applying

HCRR-DBB, HCRR-Dissimilarity and HCRR-Density, and

with Random test generation (i.e., Random).

cases with HCRR-DBB, HCRR-Density, HCRR-Dissimilarity,

and Random. Specifically, the X-axis shows the number of top

ranked blocks (ranging from 10 to 80), and the Y-axis shows

the proportion of faults among a fixed number of top ranked

blocks in the generated rankings. Note that, in Figure 6(b), the

maximum number of blocks inspected (X-axis) is computed as

an average over ten trials for each faulty version. According

to Figure 6(b), engineers can locate faults in 13 out of 60

(21.67%) faulty versions when they inspect at most 10 blocks

in the rankings generated by any of our techniques i.e.,

HCRR-DBB, HCRR-Density and HCRR-Dissimilarity. How-

ever, when test cases are generated randomly, by inspecting

the top 10 blocks, engineers can locate faults in only 3 out of

60 (5%) faulty versions. As for the rankings generated by the

initial test suite, no faults can be localized by inspecting the

top 10 blocks. Using HCRR-DBB, HCRR-Density and HCRR-

Dissimilarity, on average, engineers can locate 50% of the

faults in the top 25 blocks of each ranking. In contrast, when

engineers use the initial test suite or a random test generation

strategy, in order to find 50% of the faults, they need to inspect,

on average, 50 blocks in each ranking.

In summary, the test cases generated by our approach

are able to help significantly improve the accuracy of fault

localization results. In particular, by adding a small number of

test cases (i.e., only 25 test cases), we are able to reduce the

average number of blocks that engineers need to inspect to find

a fault from 76 to 43 blocks (i.e., 43.4% reduction). Further,

we have shown that the fault localization accuracy results

obtained based on HCRR-DBB, HCRR-Density and HCRR-

Dissimilarity are significantly better than those obtained by a

random test generation strategy. Specifically, with Random test

generation, engineers need to inspect an average of 62 blocks

versus an average of 43 blocks when HCRR-DBB, HCRR-

Density and HCRR-Dissimilarity are used.

RQ2. [Evaluating impact of adding test cases] We

evaluate the fault localization accuracy of the ranking re-

sults obtained at each test generation round. In particular,

we computed the fault localization accuracy of rankings ob-

tained by applying HCRR-DBB, HCRR-Density and HCRR-

Dissimilarity to our 60 faulty versions from round one to

five where at each round five new test cases are generated.

Recall that we have repeated 10 times each application of our

technique to each faulty model. That is, in total, we have 1800

trials (60 faulty versions × 3 algorithms × 10 runs). Among

these 1800 trials, we observed that, as we go from round one

to round five, in 953 cases (i.e., 53%), the fault localization

accuracy improves at every round; in 803 cases (i.e., 44.6%),

the accuracy improves at some (but not all) rounds; and in 44

cases (i.e., 2.4%), the accuracy never improves at any of the

rounds from one to five.

To explain why adding new test cases does not always

improve fault localization accuracy, we investigate the notion

of Coincidentally Correct Test cases (CCT) for Simulink [13].

CCTs are test execution slices that execute faulty blocks but

do not result in failure. We note that as we add new test cases,

the number of CCTs may either stay the same or increase. In

the former case, the fault localization accuracy either stays the

same or improves. However, in the latter case, the accuracy

changes will be unpredictable.

In summary, adding test cases may not always improve

fault localization accuracy. Hence, it is important to have

mechanisms to help engineers stop test generation when it

is unlikely to be beneficial for fault localization.

RQ3. [Effectiveness of our STOPTESTGENERATION

subroutine] In order to generate the prediction model used

in the STOPTESTGENERATION subroutine, we consider all

the statistical ranking results obtained by applying the five

rounds of test generation to the 60 faulty versions as well as

the corresponding accuracy results. We randomly divide the

results into three sets, and use one of these sets to build the

decision tree prediction model (i.e., as a training set). The

other two sets are used to evaluate the decision tree prediction

model (i.e., as test sets). Following a standard cross-validation

procedure, we follow this process three times so that each set is

used as the training set at least once. To build these models, we

set THR = 15 (i.e., the threshold used to determine the Stop

and the Continue labels in Section III-B). That is, engineers

are willing to undergo the overhead of adding new test cases

if the fault localization accuracy is likely to improve by at

least 15 blocks. Figure 7(a) shows the fault localization accu-

racy results (i.e., the maximum number of blocks inspected)

Without stop Without stop Without stopWith stop With stop With stop
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

HCRR-DBB HCRR-Density HCRR-Dissimilarity

M
a

x
.
#

 o
f

b
lo

c
k

s
 i
n

s
p

e
c

te
d

HCRR-DBB HCRR-Density HCRR-Dissimilarity
4

6

8

10

12

14

16

18

20

22

24

#
 o

f
a

d
d

it
io

n
a

l
te

s
t

c
a

s
e

s
 a

d
d

e
d

(a)

(b)

Fig. 7: The maximum number of blocks inspected and the

number of new test cases added when we applied STOPTEST-

GENERATION on the rankings generated using HCRR-DBB,

HCRR-Density, and HCRR-Dissimilarity based on the predic-

tor models obtained for three different validation sets.

obtained by our three test generation algorithms (HCRR-

DBB, HCRR-Density, and HCRR-Dissimilarity) and when the

STOPTESTGENERATION subroutine is used with the three

decision tree prediction models generated by cross-validation.

These results are shown in columns with With stop label.

Figure 7(a), further, shows the accuracy results obtained by ap-

plying the five rounds without using STOPTESTGENERATION

in columns labelled Without stop. In addition, Figure 7(b)

shows the number of new test cases generated by HCRR-DBB,

HCRR-Density and HCRR-Dissimilarity when we applied the

STOPTESTGENERATION subroutine. Note that we generate 25

test cases in five rounds without STOPTESTGENERATION.

According to Figure 7, we are able to obtain almost the same

fault localization accuracy with considerably fewer number

of new test cases when we use the STOPTESTGENERATION

subroutine compared to when we do not use it. In particular,

on average, when we use the STOPTESTGENERATION sub-

routine, the fault localization accuracies obtained for HCRR-

DBB, HCRR-Dissimilarity and HCRR-Density are 47.3, 47.9
and 50.4, respectively. In contrast, without the STOPTEST-

GENERATION subroutine, the fault localization accuracies

obtained for HCRR-DBB, HCRR-Dissimilarity and HCRR-

Density are 43, 43.4 and 45.1, respectively. We note that these

accuracies are obtained by only generating, on average, 11

test cases for HCRR-DBB, and 12 test cases for both HCRR-

Density and HCRR-Dissimilarity. We have also repeated our

experiments for THR = 10. The results for THR = 10 show

that the average fault localization accuracies improve by one to

two blocks while the number of new test cases also increases

by one or two when compared with the results for THR = 15.

In summary, our approach identifies situations where adding

new test cases does not improve fault localization results.

When engineers use the STOPTESTGENERATION subroutine,

they need to inspect a few more blocks (i.e., around five

blocks), on average, but the number of test cases, and hence

the test oracle cost, reduces by more than half (i.e., 52% to

56% fewer test cases).

V. RELATED WORK

Many test generation techniques have been proposed for dif-

ferent purposes e.g., maximizing program coverage ([22], [39]–

[52]) and revealing faults ([43], [44], [53]–[64]) for programs,

or maximizing structural coverage [65]–[74] and revealing

faults [19], [28], [75]–[83] for Simulink models. Nevertheless,

only a few test generation techniques aim to improve fault

localization accuracy. These techniques specifically focus on

Java/C programs [15]–[17] and on web applications [18]. Our

work aims to improve fault localization accuracy for Simulink

models by extending an existing test suite with a small number

of test cases. This is to ensure applicability of our approach

in situations where test oracles are developed manually or

running test cases is expensive.

One important requirement in our work is that the pass/-

fail information for each candidate test input is not readily

available, and hence, test generation techniques that require

such information to improve fault localization [17], [18] are

not applicable in our case since these techniques are feasible

only when test oracles are automatable. Hence, in our work,

we identify the test generation techniques of [16] and [15]

that satisfy our requirement. Both of these techniques attempt

to generate test cases that execute varying subsets of program

statements. In particular, Baudry et. al. [16] guide test gener-

ation by maximizing the number of Dynamic Basic Blocks

(i.e. program elements that are always executed together),

and Campos et. al. [15] attempt to generate test cases with

a balanced number of long and short structural test coverages.

In our work, we adapt these two test generation algorithms

to Simulink models. In addition, we introduce a new test

generation objective that has previously been used for test

prioritization [21] and use it to improve fault localization

for Simulink models. In contrast to the work of [15], [16],

[21], we assess the capabilities of test generation techniques

in improving Simulink fault localization when the number of

newly generated test cases is small. We, further, combine these

techniques with a predictor model that stops test generation

when new test cases are not likely to help improve fault

localization accuracy.

Le and Lo [84] propose an approach to predict fault localiza-

tion accuracy based on features extracted from statistical rank-

ings generated by a fixed and specific test suite. Our predictor

model instead is built based on features that compare statistical

rankings generated by a test suite and its extensions. Moreover,

our predictor model is used to help stop test generation and to

ensure test suite minimality. Further investigation is required

to assess the effectiveness of the features proposed in [84] as

a test generation stopping criterion.

Xia et al. [85] select a subset of a given test suite such that

the fault localization accuracy achieved by the subset is the

same as the accuracy achieved by the entire test suite. Similar

to our work, they create predictor models based on changes

in rankings as new test cases are added to the underlying test

suite. However, they build a predictor model for each program

element as opposed to our work where we build one predictor

model based on the changes in the top-N ranked groups. As

discussed earlier, since Simulink atomic blocks in the same

super block always have the same rank, creating separate

predictors for each individual atomic blocks is too fine-grained

and redundant. Furthermore, at each round, in order to select

a test case, Xia et al. [85] need to compare the spectra of

the candidate test case with those of all the remaining test

cases. This makes their approach computationally and memory

intensive when the test suite from which test cases are selected

is large. In our work, however, we extend an initial test

suite using a search-based test generation technique guided

by objectives that aim to increase test suite diversity without

any need to compare the spectra of many test cases.

VI. CONCLUSION

In this paper, we improve fault localization accuracy for

Simulink models by extending an existing test suite with a

small number of test cases. The latter requirements is very

important in contexts where running and analyzing test case is

expensive, such as with embedded systems. Our approach has

two components: (1) A search-based test generation algorithm

that aims to increase test suite diversity, and (2) a predictor

model that predicts if additional test cases are likely to help

improve fault localization accuracy. Our work is driven by an

important consideration that in some situations, test oracles

are manual and hence expensive, or running test cases is

expensive. As a result, we assess our test generation technique

for small test suite sizes, and use our predictor models to avoid

generating additional test cases when they cannot lead to sub-

stantial improvement justifying their incurred overhead. Our

results show that our test generation technique significantly

improves the accuracy of fault localization for small test suite

sizes, and further, our prediction model is able to maintain a

similar fault localization accuracy while reducing the average

number of newly generated test cases by more than half.

In future, we intend to study fault localization for evolving

Simulink models. A recent study of industrial Simulink models

indicates a strong co-evolution relation between changes in

models and in their corresponding test suites [86]. We plan

to investigate how such relations can be used to generate

test suites that lead to effective Simulink fault localization,

especially, when models are subject to frequent changes.

ACKNOWLEDGMENTS

This project has received funding from Luxembourg’s Na-

tional Research Fund (grant agreement numbers FNR/P10/03

and FNR-8003491), Delphi Automotive Systems and the Eu-

ropean Research Council under the European Union’s Horizon

2020 research and innovation program (grant agreement num-

ber 694277).

REFERENCES

[1] A. Thums and J. Quante, “Reengineering embedded automotive soft-
ware,” in Proceedings of the 28th IEEE International Conference on

Software Maintenance, 2012, pp. 493–502.

[2] MathWorks, “Simulink,” http://www.mathworks.nl/products/simulink/.

[3] P. Skruch, M. Panek, and B. Kowalczyk, “Model-based testing in
embedded automotive systems,” Model-Based Testing for Embedded

Systems, pp. 293–308, 2011.

[4] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-based testing

for embedded systems. CRC press, 2011.

[5] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and Industrial

Conference Practice and Research Techniques-MUTATION. IEEE,
2007, pp. 89–98.

[6] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International

Conference on Software Engineering, 2002, pp. 467–477.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” ACM SIGPLAN Notices, vol. 40, no. 6, pp.
15–26, 2005.

[8] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “Sober: statistical
model-based bug localization,” ACM SIGSOFT Software Engineering

Notes, vol. 30, no. 5, pp. 286–295, 2005.

[9] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in Proceedings of the 18th IEEE International Conference on

Automated Software Engineering, 2003, pp. 30–39.

[10] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight fault-
localization using multiple coverage types,” in Proceedings of the 31st

International Conference on Software Engineering. IEEE, 2009, pp.
56–66.

[11] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based statistical
method for effective fault localization,” in Proceedings of the Inter-

national Conference on Software Testing, Verification, and Validation,
2008, pp. 42–51.

[12] E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for effective
software fault localization,” IEEE Transactions on Reliability, vol. 63,
no. 1, pp. 290–308, 2014.

[13] B. Liu, Lucia, S. Nejati, L. Briand, and T. Bruckmann, “Simulink
fault localization : an iterative statistical debugging approach,” Software

Testing, Verification and Reliability, pp. 431–459, 2016.

[14] ——, “Localizing multiple faults in simulink models,” in Proceedings

of the 23rd IEEE International Conference on Software Analysis, Evo-

lution, and Reengineering. IEEE, 2016, pp. 146–156.

[15] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim, “Entropy-based
test generation for improved fault localization,” in the IEEE/ACM 28th

International Conference on Automated Software Engineering. IEEE,
2013, pp. 257–267.

[16] B. Baudry, F. Fleurey, and Y. Le Traon, “Improving test suites for
efficient fault localization,” in Proceedings of the 28th international

conference on Software engineering. ACM, 2006, pp. 82–91.

[17] J. Röβler, G. Fraser, A. Zeller, and A. Orso, “Isolating failure causes
through test case generation,” in Proceedings of the International Sym-

posium on Software Testing and Analysis. ACM, 2012, pp. 309–319.

[18] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation
for effective fault localization,” in Proceedings of the 19th international

symposium on Software testing and analysis. ACM, 2010, pp. 49–60.

[19] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Automated
test suite generation for time-continuous simulink models,” in proceed-

ings of the 38th International Conference on Software Engineering.
ACM, 2016, pp. 595–606.

[20] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in Proceedings of the 31st International Conference

on Automated Software Engineering. ACM, 2016, pp. 63–74.

[21] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive random test
case prioritization,” in Proceedings of the 24th IEEE/ACM International

Conference on Automated Software Engineering. IEEE, 2009, pp. 233–
244.

[22] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-

tions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[23] L. Olshen, C. J. Stone et al., “Classification and regression trees,”
Wadsworth International Group, vol. 93, no. 99, p. 101, 1984.

[24] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th

IEEE/ACM International Conference on Automated Software Engineer-

ing, 2005, pp. 273–282.

[25] S. Luke, “Essentials of metaheuristics,” vol. 113, 2009.

[26] P. Jaccard, Etude comparative de la distribution florale dans une portion

des Alpes et du Jura. Impr. Corbaz, 1901.

[27] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull,
“Search-based automated testing of continuous controllers: Framework,
tool support, and case studies,” Information and Software Technology,
vol. 57, pp. 705–722, 2015.

[28] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Effective test
suites for mixed discrete-continuous stateflow controllers,” in Proceed-

ings of the 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 84–95.

[29] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” SIAM

Journal on Discrete Mathematics, vol. 17, no. 1, pp. 134–160, 2003.

[30] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
pp. 81–93, 1938.

[31] Delphi Automotive, “Delphi automotive luxembourg,” http://www.
delphi.com/about/locations/luxembourg.

[32] MathWorks, “Stateflow,” http://www.mathworks.nl/products/stateflow/.

[33] B. Liu, “experiment related.” https://github.com/Avartar/TCGenForFL/.

[34] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in
Advances in Computer Science-ASIAN Higher-Level Decision Making.
Springer, 2005, pp. 320–329.

[35] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management of
an academic hpc cluster: The ul experience,” in Proc. of the Intl. Conf.

on High Performance Computing & Simulation. Bologna, Italy: IEEE,
July 2014, pp. 959–967.

[36] H. Cleve and A. Zeller, “Locating causes of program failures,” in Pro-

ceedings of the 27th International Conference on Software Engineering.
ACM, 2005, pp. 342–351.

[37] Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in Proceedings of

the 29th ACM/IEEE International Conference on Automated Software

Engineering, 2014, pp. 127–138.

[38] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 20th International Sym-

posium on Software Testing and Analysis, 2011, pp. 199–209.

[39] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo, “Optimiz-
ing for the number of tests generated in search based test data generation
with an application to the oracle cost problem,” in Third International

Conference on Software Testing, Verification, and Validation Workshops.
IEEE, 2010, pp. 182–191.

[40] N. Williams, B. Marre, P. Mouy, and M. Roger, “Pathcrawler: Automatic
generation of path tests by combining static and dynamic analysis,” in
European Dependable Computing Conference. Springer, 2005, pp. 281–
292.

[41] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: A framework
for generating object-oriented unit tests using symbolic execution,” in
International Conference on Tools and Algorithms for the Construction

and Analysis of Systems. Springer, 2005, pp. 365–381.

[42] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine
for c,” in ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5.
ACM, 2005, pp. 263–272.

[43] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” in ACM Sigplan Notices, vol. 40, no. 6. ACM, 2005,
pp. 213–223.

[44] N. Tillmann and J. De Halleux, “Pex–white box test generation for. net,”
in International conference on tests and proofs. Springer, 2008, pp.
134–153.

[45] B. Korel, “Automated software test data generation,” IEEE Transactions

on software engineering, vol. 16, no. 8, pp. 870–879, 1990.

[46] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment
for automatic structural testing,” Information and Software Technology,
vol. 43, no. 14, pp. 841–854, 2001.

[47] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella,
and T. Vos, “Symbolic search-based testing,” in Proceeding of the 26th

IEEE/ACM International Conference on Automated Software Engineer-

ing. IEEE, 2011, pp. 53–62.

[48] K. Inkumsah and T. Xie, “Improving structural testing of object-oriented
programs via integrating evolutionary testing and symbolic execution,”
in Proceeding of the 23rd IEEE/ACM International Conference on

Automated Software Engineering. IEEE, 2008, pp. 297–306.

[49] J. Malburg and G. Fraser, “Combining search-based and constraint-based
testing,” in Proceedings of the 26th IEEE/ACM International Conference

on Automated Software Engineering. IEEE Computer Society, 2011,
pp. 436–439.

[50] P. Tonella, “Evolutionary testing of classes,” in ACM SIGSOFT Software

Engineering Notes, vol. 29, no. 4. ACM, 2004, pp. 119–128.

[51] J. C. B. Ribeiro, “Search-based test case generation for object-oriented
java software using strongly-typed genetic programming,” in Proceed-

ings of the 10th annual conference companion on Genetic and evolu-

tionary computation. ACM, 2008, pp. 1819–1822.

[52] S. Wappler and F. Lammermann, “Using evolutionary algorithms for
the unit testing of object-oriented software,” in Proceedings of the 7th

annual conference on Genetic and evolutionary computation. ACM,
2005, pp. 1053–1060.

[53] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst, “Finding bugs in dynamic web applications,” in Proceedings of

the international symposium on Software testing and analysis. ACM,
2008, pp. 261–272.

[54] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” IEEE Transactions on Software Engineering, vol. 38, no. 2,
pp. 278–292, 2012.

[55] R. DeMilli and A. J. Offutt, “Constraint-based automatic test data
generation,” IEEE Transactions on Software Engineering, vol. 17, no. 9,
pp. 900–910, 1991.

[56] A. J. Offutt, Z. Jin, and J. Pan, “The dynamic domain reduction
procedure for test data generation,” Software-Practice and Experience,
vol. 29, no. 2, pp. 167–93, 1999.

[57] B. F. Jones, D. E. Eyres, and H.-H. Sthamer, “A strategy for using genetic
algorithms to automate branch and fault-based testing,” The Computer

Journal, vol. 41, no. 2, pp. 98–107, 1998.

[58] K. Ayari, S. Bouktif, and G. Antoniol, “Automatic mutation test input
data generation via ant colony,” in Proceedings of the 9th annual

conference on Genetic and evolutionary computation. ACM, 2007,
pp. 1074–1081.

[59] R. B. Evans and A. Savoia, “Differential testing: a new approach to
change detection,” in The 6th Joint Meeting on European software

engineering conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering: Companion Papers. ACM, 2007,
pp. 549–552.

[60] A. Orso and T. Xie, “Bert: Behavioral regression testing,” in Proceedings

of the 2008 international workshop on dynamic analysis: held in con-

junction with the ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2008). ACM, 2008, pp. 36–42.

[61] C. Pacheco and M. D. Ernst, “Eclat: Automatic generation and clas-
sification of test inputs,” in European Conference on Object-Oriented

Programming. Springer, 2005, pp. 504–527.

[62] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and N. Li,
“Scaling up automated test generation: Automatically generating main-
tainable regression unit tests for programs,” in Proceedings of the 26th

IEEE/ACM International Conference on Automated Software Engineer-

ing. IEEE Computer Society, 2011, pp. 23–32.

[63] M. A. Alipour, A. Groce, R. Gopinath, and A. Christi, “Generating
focused random tests using directed swarm testing,” in Proceedings of

the international symposium on Software testing and analysis. ACM,
2016.

[64] H. Tang, G. Wu, J. Wei, and H. Zhong, “Generating test cases to
expose concurrency bugs in android applications,” in Proceedings of

the 31st IEEE/ACM international Conference on Automated software

engineering. ACM, 2016.

[65] A. Windisch, “Search-based testing of complex simulink models con-
taining stateflow diagrams,” in Proceeding of the 31st International

Conference on Software Engineering-Companion. IEEE, 2009, pp.
395–398.

[66] ——, “Search-based test data generation from stateflow statecharts,” in
Proceedings of the 12th annual conference on Genetic and evolutionary

computation. ACM, 2010, pp. 1349–1356.

[67] S. Mohalik, A. A. Gadkari, A. Yeolekar, K. Shashidhar, and S. Ramesh,
“Automatic test case generation from simulink/stateflow models using
model checking,” Software Testing, Verification and Reliability, vol. 24,
no. 2, pp. 155–180, 2014.

[68] G. Hamon, B. Dutertre, L. Erkok, J. Matthews, D. Sheridan, D. Cok,
J. Rushby, P. Bokor, S. Shukla, A. Pataricza et al., “Simulink design
verifier-applying automated formal methods to simulink and stateflow,”
in Third Workshop on Automated Formal Methods, 2008.

[69] M. Satpathy, A. Yeolekar, and S. Ramesh, “Randomized directed testing
(redirect) for simulink/stateflow models,” in Proceedings of the 8th ACM

international conference on Embedded software. ACM, 2008, pp. 217–
226.

[70] S. Sims and D. C. DuVarney, “Experience report: the reactis validation
tool,” in ACM SIGPLAN Notices, vol. 42, no. 9. ACM, 2007, pp.
137–140.

[71] F. Böhr and R. Eschbach, “Simotest: A tool for automated testing of
hybrid real-time simulink models,” in Emerging Technologies & Factory

Automation (ETFA), 2011 IEEE 16th Conference on. IEEE, 2011, pp.
1–4.

[72] A. A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh, S. Mohalik, and
K. Shashidhar, “Automotgen: Automatic model oriented test generator
for embedded control systems,” in International Conference on Com-

puter Aided Verification. Springer, 2008, pp. 204–208.
[73] P. Peranandam, S. Raviram, M. Satpathy, A. Yeolekar, A. Gadkari, and

S. Ramesh, “An integrated test generation tool for enhanced coverage
of simulink/stateflow models,” in Design, Automation & Test in Europe

Conference & Exhibition. IEEE, 2012, pp. 308–311.
[74] M. Satpathy, A. Yeolekar, P. Peranandam, and S. Ramesh, “Efficient

coverage of parallel and hierarchical stateflow models for test case
generation,” Software Testing, Verification and Reliability, vol. 22, no. 7,
pp. 457–479, 2012.

[75] Y. Zhan and J. A. Clark, “Search-based mutation testing for simulink
models,” in Proceedings of the 7th annual conference on Genetic and

evolutionary computation. ACM, 2005, pp. 1061–1068.
[76] ——, “A search-based framework for automatic testing of mat-

lab/simulink models,” Journal of Systems and Software, vol. 81, no. 2,
pp. 262–285, 2008.

[77] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare,
P. Rümmer, and G. Weissenbacher, “Mutation-based test case generation
for simulink models,” in International Symposium on Formal Methods

for Components and Objects. Springer, 2009, pp. 208–227.
[78] R. Cleaveland, S. A. Smolka, and S. T. Sims, “An instrumentation-

based approach to controller model validation,” in Automotive Software

Workshop. Springer, 2006, pp. 84–97.
[79] J. Barnat, L. Brim, J. Beran, Í. R. Oliveira et al., “Executing model

checking counterexamples in simulink,” in Sixth International Sympo-

sium on Theoretical Aspects of Software Engineering. IEEE, 2012, pp.
245–248.

[80] M. Mazzolini, A. Brusaferri, and E. Carpanzano, “Model-checking based
verification approach for advanced industrial automation solutions,” in
Proceeding of the IEEE Conference on Emerging Technologies and

Factory Automation. IEEE, 2010, pp. 1–8.
[81] R. Venkatesh, U. Shrotri, P. Darke, and P. Bokil, “Test generation for

large automotive models,” in Proceeding of the IEEE International

Conference on Industrial Technology. IEEE, 2012, pp. 662–667.
[82] D. Holling, A. Pretschner, and M. Gemmar, “8cage: lightweight

fault-based test generation for simulink,” in Proceedings of the 29th

ACM/IEEE international conference on Automated software engineer-

ing. ACM, 2014, pp. 859–862.
[83] D. Balasubramanian, C. S. Păsăreanu, M. W. Whalen, G. Karsai, and

M. Lowry, “Polyglot: modeling and analysis for multiple statechart
formalisms,” in Proceedings of the International Symposium on Software

Testing and Analysis. ACM, 2011, pp. 45–55.
[84] T.-D. B. Le and D. Lo, “Will fault localization work for these failures? an

automated approach to predict effectiveness of fault localization tools,”
in Proceeding of the 29th IEEE International Conference on Software

Maintenance. IEEE, 2013, pp. 310–319.
[85] X. Xia, L. Gong, T.-D. B. Le, D. Lo, L. Jiang, and H. Zhang, “Diversity

maximization speedup for localizing faults in single-fault and multi-fault
programs,” Automated Software Engineering, vol. 23, no. 1, pp. 43–75,
2016.

[86] E. J. Rapos and J. R. Cordy, “Examining the co-evolution relationship
between simulink models and their test cases,” in Proceedings of the 8th

International Workshop on Modeling in Software Engineering. ACM,
2016, pp. 34–40.

