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In this paper we develop a study on several types of parallel genetic algorithms (PGAs). Our mo-

tivation is to bring some uniformity to the proposal, comparison, and knowledge exchange among

the traditionally opposite kinds of serial and parallel GAs. We comparatively analyze the properties

of steady-state, generational, and cellular genetic algorithms. Afterwards, this study is extended to

consider a distributed model consisting in a ring of GA islands. The analyzed features are the time

complexity, selection pressure, schema processing rates, efficacy in finding an optimum, efficiency,

speedup, and resistance to scalability. Besides that, we briefly discuss how the migration policy affects

the search. Also, some of the search properties of cellular GAs are investigated. The selected bench-

mark is a representative subset of problems containing real world difficulties. We often conclude that

parallel GAs are numerically better and faster than equivalent sequential GAs. Our aim is to shed

some light on the advantages and drawbacks of various sequential and parallel GAs to help researchers

using them in the very diverse application fields of the evolutionary computation.

Keywords: parallel genetic algorithms, distributed GAs, cellular GAs, PGAs theory, PGA parameters

influence, speedup, efficiency, scalability

1. Introduction

Parallel and sequential genetic algorithms (P-GAs) are modern

techniques for searching complex problem spaces for an op-

timum (Bäck, Fogel and Michalewicz 1997, Reeves 1993). In

Fig. 1 we locate genetic algorithms in relation to other search

techniques. Genetic algorithms are randomized optimization

methods that need minimal information on the problem to guide

the search. They use a population of multiple structures, each

one encoding a tentative solution, to perform a search from many

zones of the problem space at the same time. The application

of simple stochastic operators moves this population towards

better sub-optimal solutions in an iterative manner, until a stop-

ping criterion is fulfilled (Holland 1975, Goldberg 1989a, Bäck,

Hammel and Schwefel 1997).

Until recent years, sequential GAs have received the greatest

attention from the research community. However, here we focus

on parallel GAs since they have many interesting unique features

that deserve in-depth analysis (Gordon and Whitley 1993, Baluja

1993). These characteristics include (Hart et al. 1997):

(1) the reduction of the time to locate a solution (faster

algorithms),

(2) the reduction of the number of function evaluations (cost of

the search),

(3) the possibility of having larger populations thanks to the

parallel platforms used for running the algorithms, and

(4) the improved quality of the solutions worked out.

In addition, the parallel GA versions are less prone to pre-

mature convergence to sub-optimal solutions (Alba and Troya

1999), thus improving the search. PGAs deserve a special at-

tention since they are not just “faster versions” of sequential

GAs. Instead, they represent a new algorithmic class providing

a different (often better) search mechanism.

We analyze GAs and not EAs (evolutionary algorithms) since

GAs are quite popular and receive many applications, and also

because many results with GAs are extensible to other kinds

of EAs. See (Bäck 1996) for learning how similar the differ-

ent EA families are. Let us see the well-accepted sub-classes

of EAs in Fig. 1, namely genetic algorithms (GA), evolutionary
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Fig. 1. Taxonomy of search techniques

programming (EP), evolution strategies (ES), genetic program-

ming (GP), and classifier systems (CS). In Bäck, Fogel and

Michalewicz 1997) the reader can find a great compendium of

the state of the art in evolutionary computing (EC). We also have

included four types of parallel GAs, a distinction depending of

the homogeneity at execution/search levels, and some other pop-

ular techniques such as tabu search, simulated annealing and

neural networks.

The class of problems solved with GAs is very general, since

the optimized function can have an arbitrary complexity e.g.,

see our results on training neural networks (Alba, Aldana and

Troya 1993), load balancing (Alba, Aldana and Troya 1995),

designing fuzzy logic controllers (Alba, Cotta and Troya 1996),

and validating communication protocols (Alba and Troya 1996).

Hence, providing useful conclusions on the relative performance

of these algorithms by looking to existing works is difficult

for many reasons. Firstly, different parameters, hill-climbing,

hybridized or specialized operations are considered (Gordon

and Whitley 1993, Voigt, Santibáñez-Koref and Born 1992,

Mühlenbein, Schomisch and Born 1991). Secondly, in some

works only one single problem is studied. Thirdly, existing pa-

pers on PGAs usually cover a reduced range of models (Tanese

1989) or analyze only one feature (Munetomo, Takai and Sato

1993). On the contrary, in this paper we present several canon-

ical models, and undertake a broad but detailed presentation.

This requires including both theoretical and experimental re-

sults, using many non-toy problems, and analyzing important

parameters. The selected benchmark contains a compendium of

the actual difficulties found in the optimization of real world

problems, namely epistasis, multimodality, deception, and large

problem instances. All this is very useful for guiding researchers

willing to use PGAs.

The main contributions of this paper are (1) the unified de-

scription and study of PGAs, and (2) the comparison among

the canonical models which usually receive parallel implemen-

tations. To achieve these goals we make several considerations

on their complexity, selection pressure, and relative efficiency

(speedup). Also, we include results on their scalability when

solving increasingly larger problems. We also discuss the sim-

ilarities and differences between parallel and speciation GAs

(next section). In summary, we revisit some important points in

PGAs and offer new results to improve their understanding.

The paper is organized as follows. In Section 2 we present

a survey of PGAs to put in context our research and to help

non-EA readers. Section 3 analyzes three theoretical issues in

PGAs, namely time complexity, selection pressure, and schema

processing rates. Section 4 deals with distributed PGAs, while

in Section 5 we examine cellular GAs, the underlying model for
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fine grain PGAs. Section 6 gives a general PGA performance

analysis. The scalability of PGAs is presented in Section 7, and

Section 8 summarizes the most important conclusions. Finally,

we add an Appendix describing the benchmark and nomencla-

ture to ease the comprehension of the paper.

2. Survey of parallel genetic algorithms

Let us begin by examining the outline of a general PGA

(Algorithm 1). As a class of stochastic technique, we can distin-

guish three major steps in a PGA, namely initial sampling, op-

timization and checking the stopping criterion. It begins (t = 0)

by randomly creating a population P(t = 0) of µ structures,

each one encoding the p problem variables on some alpha-

bet of symbols. Each structure is usually a vector (string) over

IB = {0, 1} (I = IBp·lx ) or IR(I = IRp) i.e., most GAs encode each

problem variable in lx bits or in a floating-point number.

An evaluation function � is needed each time a new structure

is generated in the algorithm. This evaluation is used to associate

a real value to the decoded version of the structure. This value

indicates its quality as a solution to the problem. In textbook

GAs decoding means mapping the binary string to a decimal

value in some given range.

Afterwards, the GA iteratively applies a set of variation opera-

tors to some selected structures from the current population. The

goal is to create a new pool of λ tentative solutions and evaluate

them to yield P(t + 1) from P(t). This generates a sequence of

populations P(0), P(1), P(2), . . . with increasingly fitter struc-

tures. The stopping criterion ι is to fulfill some condition like

reaching a given number of function evaluations, finding an opti-

mum (if known), or detecting stagnation in the algorithm after a

given number of generations. See Michalewicz (1992) and Bäck,

Hammel and Schwefel (1997) for more in depth background.

The selection s�s uses the relationship among the fitness val-

ues of the structures to create a mating pool. Some parameters �s

might be required depending on the selection type (Baker 1987).

Typical variation operators are crossover (⊗ binary) and muta-

tion (m, unary). Crossover recombines two parents by exchang-

ing string slices to yield two new offspring. Mutation randomly

alters the contents of these new offspring. The behavior of these

two stochastic operators is governed by a set of parameters such

as a probability (rate) of application: �c = {pc} and �m = {pm},
usually high for crossover (⊗), and low for mutation (m).

Finally, each iteration of the algorithm ends by selecting µ

(out of λ) new individuals that will be used as the new popula-

tion. For this purpose, the temporal pool P ′′′(t) plus a set Q are

considered. Q might be empty (Q = ∅) or else contain the old

population Q = P(t). This step applies a replacement policy r .

It uses the recently created temporary pool (and optionally the

old pool) to compute the new population of µ individuals. It is

usual for the best structure in one population to deterministically

survive in the next generation (elitist evolution).

Many sequential GAs exist, but two of them are especially

popular. The first one is the generational GA –genGA– where

a whole new population (λ = µ) is created to replace the old

one (Q = ∅). The second one is the steady-state GA –ssGA– in

which only a few structures are generated in each iteration (λ = 1

or 2) and they are inserted in the current population (Q = P(t))

(Syswerda 1991). They both are panmictic algorithms having an

unstructured population.

Algorithm 1: Parallel genetic algorithm

t := 0;

initialize: P(0) := {�a1(0), . . . , �aµ(0)} ∈ I µ;

evaluate: P(0) : {�(�a1(0)), . . . , �(�aµ(0))};
while ι(P(t)) 
= true do //Reproductive plan

select: P ′(t) := s�s
(P(t));

recombine: P ′′(t) := ⊗�c
(P ′(t));

mutate: P ′′′(t) := m�m
(P ′′(t));

evaluate: P ′′′(t) : {�(�a′′′
1 (t)), . . . , �(�a′′′

λ (t))};
replace: P(t + 1) := r�r

(P ′′′(t) ∪ Q);

<communication>

t := t + 1;

end while

Many works such as Levine (1997), Syswerda (1991), and

Whitley and Starkweather (1990) show that the one-at-a-time

reproduction of ssGA is very useful. However, pure genGAs

are still widely accepted, since some of their drawbacks can be

solved by using improved operators, that, incidentally, could also

improve the canonical ssGA as well. Anyway, further studies are

needed to highlight their relative advantages.

In a parallel GA there exist many elementary GAs performing

the reproductive plan on their own sub-populations P i (t). Each

sub-algorithm includes an additional phase of communication

with a set of neighboring sub-algorithms. At first glance, the

precedent pseudocode could lead the reader to think that there

exist other models of PGAs which differ from the one shown.

However, we must realize that each sub-population P i (t) can

contain as much as several hundreds of strings or as few as only

one string. The reproductive plan can thus manage millions or

only a few operations before the algorithm is engaged with the

communication step. Also, we must note that the communication

step is not only intended to exchange strings among neighboring

sub-populations. On the contrary, any other information judged

interesting for the search can be exchanged e.g., statistics or per-

forming string evaluations in other processors. In addition, the

number of elementary GAs is another free parameter. This al-

lows us to say that the above pseudocode is a general description

of PGAs.

If a population with tens of strings is contained in every sub-

algorithm, the PGA is coarse grained and interactions with

neighbors are sparsely undertaken (Lin, Punch and Goodman

1994) (Fig. 2(b)). If the population is composed of a single in-

dividual then we have a fine grained or cellular GA –cGA–

(Fig. 2(c)), and interactions with neighbors are very frequent in

order to get the small pool of structures to apply the reproduc-

tive plan on (Spiessens and Manderick 1991). It is usual in this

diffusion model that every sub-algorithm waits (synchronously)
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Fig. 2. Different models of PGA: (a) global parallelization, (b) coarse grain, and (c) fine grain. Many hybrids have been defined by combining
PGAs at two levels: (d) coarse and fine grain, (e) coarse grain and global parallelization, and (f) coarse grain plus coarse grain

for its neighbors, while the coarse grain PGA can either wait or

not for incoming strings.

The coarse grain PGA sends and receives strings from neigh-

boring sub-populations, while the fine grain PGA uses an over-

lapped neighborhood system to provide a smooth diffusion of

the strings. Coarse (fine) grain PGAs are easy to parallelize

on MIMD (SIMD) computers, respectively (Stender 1993).

However, even when run in a monoprocessor, they have some

advantages over many sequential panmictic GAs thanks to their

structured population.

The research performed on PGAs and on speciation methods

(Deb and Spears 1997) share some similarities. Speciation GAs

are aimed at locating several optima at the same time. To achieve

this goal speciating algorithms explicitly maintain different solu-

tion species during the optimization process by applying specific

techniques. Parallel GAs lead naturally and implicitly to cre-

ate multiple niches of solution species, just as speciation GAs.

However, the latter ones dynamically allocate a different num-

ber of individuals and a different fitness value to individuals in

every niche. This concentrates effort on more promising peaks,

while still maintaining individuals in other areas of the search

space. Distributed GAs provide only constant sized niches, and

no fitness changes are associated to any standard parallel model.

On the other hand, cellular GAs allow speciation e.g., in a grid,

but one particular species will eventually take over the whole

population if no specific operators are included.

Many sorts of PGAs exist. See again Fig. 2 for an overview of

pure and hybrid PGAs. In the taxonomy of Fig. 1 we include four

accepted PGA types. The global parallelization type evaluates,

and possibly crosses and mutates the strings in parallel; selection

uses the whole population. Interesting considerations on global

parallelization can be found in Cantú-Paz and Goldberg (1997).

This model provides lower run time only for very slow objective

functions (which is a drawback) and its search mechanism uses

a single population.

The type called automatic parallelization PGA in Fig. 1 is

rarely found since the compiler must “automatically” provide

the parallelization of the algorithm. The hybrid models in Fig. 2

combine different PGAs at two levels to enhance the search.

Interesting surveys on PGAs can be found in Alba and Troya

(1999), Cantú-Paz (1997), and Adamidis (1994).

Previous research has been conducted on these parallel mod-

els separately, but much can be gained by studying them under

a common viewpoint. They are not opposite sub-classes of al-

gorithms. The traditional distribution of sub-populations with

sparse migrations of individuals is considered in this paper as

a mechanism to enhance the behavior of any kind of basic GA.

This basic GA can be the any of the mentioned GAs (Alba and

Troya 2000a).

We provide in Table 1 a quick overview of different PGAs to

point out important milestones in parallel computing with GAs.

These “implementations” have rarely been studied as “paral-

lel models”. Instead, only the implementation itself is usually

evaluated.

Some coarse grain algorithms like dGA (Tanese 1989),

DGENESIS (Mejı́a-Olvera and Cantú-Paz 1994), GALOPPS

(Goodman 1996), PARAGENESIS (Stender 1993), PGA 2.5

(http://www.aic.nrl.navy.mil/galist/src/pga-2.5.tar.Z) and PGA

(Mühlenbein, Schomisch and Born 1991) are relatively close

to the general model of migration islands. They often in-

clude many own features to improve efficiency. Some other

coarse grain models like CoPDEB (Adamidis and Petridis

1996) and GDGA (Herrera and Lozano 2000) have been de-

signed for specific goals such as providing explicit explo-

ration/exploitation by applying different operators on each

island.

Some other PGAs execute non-orthodox models of coarse

grain evolution. This is the case of GAMAS (Potts, Giddens

and Yadav 1994) based on using different alphabets in every

island, GENITOR II (Whitley and Starkweather 1990) based on

a steady-state reproduction, or iiGA (Lin, Punch and Goodman

1994) that promotes coding and operator heterogeneity.

On the other hand, massively parallel GAs have been strongly

associated to the machines on which they run: ASPARAGOS

(Gorges-Schleuter 1989) and ECO-GA (Davidor 1991). This

is also the case of models of difficult classification (although

most of the mentioned ones are of difficult classification!)

like PEGAsuS (Ribeiro, Alippi and Treleaven 1993), SP1-GA

(Levine 1994) or SGA-Cube (Erickson, Smith and Goldberg

1991). As to the global parallelization PGA, some implementa-

tions such as EnGENEer (Robbins 1992) or PGAPack (Levine

1996) are available.

Finally, some efforts to construct general frameworks for

PGAs are GAME (Stender 1993), PEGAsuS, and RPL2

(Radcliffe and Surry 1994). They are endowed of “general”

programming structures intended to ease the implementation
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Table 1. Details of popular PGAs

Parallel GA Kind of parallelism Topology Some applications

ASPARAGOS Fine grain. Applies hill-climbing if no improvement Ladder TSP

CoPDEB Coarse grain. Every sub-pop. applies different operators Full connected Func. opt. and ANN’s

dGA Distributed populations. Studies migration rate and freq. Ring Function optimization

DGENESIS 1.0 Coarse grain with migrations among sub-populations Any desired Function optimization

ECO-GA Fine grain. One of the first of its class Grid Function optimization

EnGENEer Global parallelization (parallel evaluations) Master/Slave Various

GALOPPS 3.1 Coarse grain. A very portable software Any desired F. opt. and transport

GAMAS Coarse grain. Uses 4 species of strings (nodes) Fixed hierarchy ANN, func. opt., . . .

GAME Object oriented set of general programming tools Any desired TSP, func. opt., . . .

GDGA Coarse grain. Admits explicit exploration/exploitation Hypercube Func. opt. (floating p.)

GENITOR II Coarse grain. Interesting crossover operator Ring Func. opt. and ANN’s

HSDGA Hierarchical coarse and fine grain GA. Uses E.S. Ring, Tree, Star, . . . Function optimization

iiGA Injection island GA, heterogeneous and asynchronous Hierarchy of nodes Function optimization

PARAGENESIS Coarse grain. Made for the CM-200 (1 ind. ⇔ 1 CPU) Multiple Function optimization

PeGAsuS Coarse or fine grain. High-level programming on MIMD Multiple Teaching and func. opt.

PGA Sub-populations, migrate the best, local hill-climbing,. . . Circular 2-D ladder Func. opt. and TSP

PGAPack Global parallelization (parallel evaluations) Master/Slave Function optimization

RPL2 Coarse grain. Very flexible to define new GA models Any desired Research and Business

SGA-Cube Coarse grain. Implemented on the nCUBE 2 Hypercube Function optimization

SP1-GA 128 steady-state islands on an IBM SP1 with 128 nodes 2-D toroidal mesh Function optimization

of any model of PGA. The user must particularize these general

structures to define his/her own algorithm.

All these models and implementations offer different levels

of flexibility, ranging from a single PGA to the specification of

general PGA models. This list is not complete, of course, but it

helps in describing the current “state of the art”.

3. Some theoretical aspects of PGAs

In order to offer a more complete comprehension of the possible

sources of efficiency and flexibility of PGAs we discuss in this

section three main issues relating theoretical aspects. First, we

review and derive new values for the algorithmic complexities

of panmictic and structured GAs. Structured GAs are the kind

of GAs that usually receive a parallel implementation i.e., dis-

tributed and cellular GAs. We also include panmictic GAs in the

analysis to link our results with these popular GAs. Second, we

discuss the selection pressure of these algorithms i.e., the rela-

tive growth of the best solution under selection, which represents

the exploration/exploitation features of a GA. The third issue we

deal with is schema processing rate, a well-known theoretical

explanation of the search with GAs.

Table 2. A comparison of the time complexity for some algorithms

Generational O(n2 + n · l) n · n

2
+ n · (2 · l + l + Cev + l) + n · l + n

Steady-state O(n2 + n · l) n · [ n

2
+ n

2
+ 2 · l + l + Cev + n

2
+ l + 1]

Cellular O(n · l + n · nnb) n · (Cnb · nnb + nnb + nnb + 2 · l + l + Cev + l) + n · l + n

Distributed O(d · O(< ga >) + d · l) d · O(< ga >) + d · (l + Ccomm + l) + d · Ccomm + d

3.1. Time complexity of the algorithms

In this section we derive the basic time complexities of a genGA,

ssGA and cGA. Afterwards we discuss the complexity of their

distributed versions running a unidirectional ring of islands with

sparse migrations of one randomly selected string. This section

is brief because we only want to highlight the main points influ-

encing the execution time of these algorithms.

See in Table 2 a summary of their complexities. There, n = µ

is the number of structures in every island, and l is their length.

We derive the complexity of one generation in every algorithm

i.e., the effort for creating n new individuals from the n old ones.

Let us make a separate presentation for every GA class.

In genGAs, a binary tournament has complexity O(n · n/2),

because it selects two pairs of random strings and keeps the best

one in each pair as a parent. The operations of crossing, mutating,

evaluating, and copying a string to the temporary population are

O(2 · l + l + Cev + l). The replacement of the old population is

O(n · l) and computing statistics is O(n).

In a ssGA, the binary tournament of two parents is O(n/2 +
n/2), crossover, mutation and evaluation are O(2 · l + l + Cev),

ordered insertion is O(n/2), copying the offspring is O(l) and

statistics needs only O(1). The basic step in ssGA generates only
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one child, thus the process has to be repeated n times to have the

same computational grain as in the rest of algorithms.

Although we have mentioned binary tournament, fitness pro-

portional selection such as roulette wheel (RW) can be used.

In addition, generational GAs can use Stochastic Universal

Sampling (SUS). SUS is very efficient for this kind of algorithms

(Baker 1987). In fact, SUS can remove the quadratic term from

genGAs’ complexity to yield O(n + n · l) complexity.

The cellular GA selects a set of neighbors for every one of

the n strings. The complexity of identifying neighbors is O(Cnb ·
nnb) and selecting two parents is O(nnb + nnb), depending both

on the neighborhood size nnb and a constant Cnb for arbitrary

neighborhood shapes. The crossover, mutation, evaluation and

insertion in a temporary population is O(2 · l + l +Cev + l). The

replacement of the old pool is O(n · l) and computing statistics

is O(n).

The distributed ring is composed of d islands and every dis-

tributed step accounts for the complexity of the basic islands.

The migration, transference (system dependent constant Ccomm)

and replacement of the worst string with an immigrant are of

complexity O(l +Ccomm +l). Finally, computing statistics needs

O(d · Ccomm) for the requests to the islands and O(d) for making

the global statistics for the distributed algorithm. The communi-

cation time can be modeled by a power law Tcomm = Ccomm · dγ ,

that yields a constant value when a ring is used (γ = 0). See

Cantú-Paz and Goldberg (1997) for more details on this last

matter.

In summary, genGA and ssGA have the same complexity

when using tournament selection. If RW is used then a genGA

will have a slight advantage over ssGA since each pair of selec-

tions work out two new children in genGA, but only one in a

standard ssGA. When using SUS the complexity of genGA is

smaller than that of ssGA.

Cellular GAs have a complexity that depends on the tech-

nique for managing the neighborhood. Their complexity is quite

good if a MIMD machine is used, while it is similar to pan-

mictic GAs in a monoprocessor implementation. In fact, since

neighborhoods are very small (5 strings) any selection oper-

ator will provide faster executions than panmictic GAs in a

monoprocessor. Finally, distributed GAs have a complexity de-

pending on the complexity of its islands, with a clear overhead

due to the communication steps needed for migrating strings

and computing global statistics. Of course, when cGA/dGA

runs on SIMD/MIMD computers their complexity is shared

among parallel processors, which greatly reduces the total run

time.

Table 3. Models of selection pressure for every algorithm

Generational nt+1( f ) = nt ( f ) · f

f̄

Steady-state (random) nt+1( f ) = nt ( f ) + nt ( f ) · ( f
∑n

i=1 fi
− 1

n
)

Steady-state (least-fit) nt+1( f ) = nt ( f ) + nt ( f ) · ( f
∑n

i=1 fi
) − (1 − ⌈ f − fmin

f
⌉)

Cellular nt+1( f ) = n∗( f )

1+(
n∗ ( f )
n0( f )

−1)·e−at

Distributed nt+1( f ) =
∑d

i=1 ni
t+1( f ) | ni

t+1( f ) = ni
t ( f ) + ni

t ( f ) · ( 1

n
) − (1 − ⌈ f − fmin

f
⌉)

3.2. Selection pressure in centralized

and decentralized models

In order to understand the basic expected performance of these

algorithms we derive their theoretical models of proportional

selection pressure. Selection is one of the primary operations in

a GA because it controls the exploration/exploitation ratio. We

summarize the work in Syswerda (1991) comparing genGAs

vs. ssGAs and extend it to consider also cGAs by using the

formalization in Sarma and De Jong (1996). Our contribution is

the unified description of both panmictic and structured models,

and the extension for distributed algorithms. Other statistical

explanations successfully predict the takeover regime (Rogers

and Prügel-Bennett 1999) i.e., the expected time one solution

needs to occupy the full population under selection.

In Table 3 we show the expected number of instances (copies)

allocated to a given string of fitness f in the next step nt+1( f ). In

a genGA, every string gets an increment in its expected number

of copies proportional to the ratio between its fitness and the

average fitness of the population. As regards ssGA, when random

replacement is used, the average behavior after creating n = µ

strings is similar to a that of genGA. On the other hand, if we

replace the least-fit string in the ssGA then the number of copies

in the next step grows fitness-proportionally and decreases only

for the least-fit string.

The model for the cGA (Sarma and De Jong 1996) uses a pa-

rameter a that controls the selection pressure depending on the

neighborhood, grid, and selection operator; n∗( f ) is the expected

proportion of strings having fitness f at convergence. The pro-

portion of the best string is Pb,t = nt ( fmax), and at convergence

n∗( fmax) = 1. The parameter a is a function of the population

structure and of the kind of selection being applied.

Finally, for the distributed model, the number of instances is

highly related to the sum of expected instances of each GA in

the ring, only perturbed by migrations. When migration occurs,

each string increases its number of instances uniformly due to

the random selection of migrants in each island. The reduction

only affects to the least-fit string, since the immigrant always

replace it in the target island (see Section 4.1 for more details

on the migration policy).

The genGA and ssGA(random) show the same selection

pressure—we call it SP1. The ssGA(least fit) has a faster con-

vergence, both in theory–SP2–and practice (as we will see). The

cGA–SP3–is easily tunable by changing the parameter a. We will

notice these theoretical differences in practice when solving the

problems in the forthcoming sections.
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Fig. 3. Proportion of the best class in steady-state (least-fit), gen-
erational, and cellular evolution modes (population size is 1024
individuals)

The advantage of a cGA is that we can tune the selection

pressure by changing the grid shape, keeping constant the rest

of parameters (including the neighborhood). See Fig. 3 to con-

firm this fact: the cGA with 32 × 32 strings provides a larger

selection pressure and a faster convergence than with 4 × 256.

This represents an additional degree of flexibility in that the user

can shift the selection pressure from high to low easily at will

(Alba and Troya 2000b).

In Fig. 3 it is clear that there exists a quick convergence to

the best string of the ssGA(least-fit), and the moderate growth in

the genGA. The cGA can be shifted from high to low selection

pressure simply by changing the shape of the grid from 32 × 32

to 4 × 256. We will revisit this subject later in Section 5.

Since our focus is set on PGAs, we also plot in Fig. 4 the

relative growth of the best string until convergence for three dis-

tributed algorithms with 8 islands: dssGA, dgenGA and dcGA.

In all the tests one random string is being exchanged (least fit

replacement). The results for dssGA (left) show a slight decrease

in the curve slope with respect ssGA. This should provide good

results due to the combined effect of a better diversity and a

lower run time. In dgenGA and in the rest of distributed models

a higher selection pressure can be obtained by making migra-

tions more frequently (f label in Fig. 4; see also Section 4.1). A

0 means separate (idle) evolution, 1 means tight coupling, and

32 represents long isolation.

The selection pressure is much more flexible for dcGA since

the elementary cGA islands allow for a flexible tuning (Fig. 4,

right). In fact, increasing the selection pressure in a dcGA is pos-

sible in two ways: by making more frequent migrations or/and

Fig. 4. Proportion of the best class in distributed versions of ssGA/genGA (left) and cGA (right). Global population size is 1024 individuals

by using squared grids. A third way is to change the selection

operator, but this can be made in any sort of GA.

In conclusion, highly coupled islands provide a larger selec-

tion pressure and allow a centralized-like evolution in a lower

run time with respect panmictic algorithms. In dcGA there ex-

ists an additional parameter to control the selection pressure: the

shape (or neighborhood) of the grid population.

The selection pressure is only one of the features of a GA.

When variation operators are included, the convergence velocity

is usually modified. However, selection pressure is a good in-

dicator of the expected behavior of the algorithm. We have just

offered a comparative overview on this matter for many mod-

els of panmictic and structured GAs. The goal of the following

section will be to study some fundamental search properties of

these algorithms, and also to confirm the selection pressure just

analyzed.

3.3. Schema processing rates in panmictic

and structured GAs

Our aim in this section is twofold. First, we want to introduce

the reader into a popular theoretical explanation of the working

principles of genetic algorithms: the schema theorem. Second,

we want to check the relative selection pressure of both panmictic

and structured GAs when analyzing these schemata.

The schema theorem is one plausible explanation for the be-

havior of genetic algorithms (Holland 1975, Goldberg 1989a). It

is based on the concept of a schema. A schema is a string over the

alphabet V = {0, 1, ∗} having defined (0 or 1) and undefined (∗)

positions. The GA implicitly processes O(n3) schemata (hyper-

planes) while it is really working with n strings (Holland 1975).

Two important features of a schema are its order and its defining

length. The order of a schema is the number of defined (non *)

positions, while its defining length is the difference between the

location of its two outermost defined positions.

The mathematical form of the schema theorem (equation (1))

provides a lower bound for the expected number of instances of

a schema H in next generation m(H, t + 1). This estimate is

based on the importance of its fitness �(H ) and on its survival

probability under crossover and mutation. The parameter pc and

pm are the probabilities of crossover and mutation, respectively.

δ(H ) is the defining length, and o(H ) is the order of the schema.

The algorithm is supposed to implicitly recombine low order
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Table 4. Parameters, algorithms and the problem being studied

Parameters Values Algorithms Strings and solution schema

Problem size 3 xxGA(1,80, , ,ss,ifb) Solution1:

String length 36 xxGA(1,80, , ,sus,e) 110000000000 110000000000 000000000011

Pop size 80 xxGA(1,2 × 40, , ,cel,ifb) Solution2:

pc 1.0 xxGA(4,20,r,640,ss,ifb) 110000000000 000000000011 000000000011

pm 0.01 xxGA(4,20,r,32sus,e) Schema: [order = 32, defining length = 35]

Max. allowed evals. 10400 xxGA(4,2 × 10,r,32,cel,ifb) 110000000000 **00000000** 000000000011

schemata of short defining length to work out better solutions.

See Goldberg (1989b) for extensions on these concepts in par-

allel GAs.

m(H, t + 1)

≥ m(H, t) ·
�(H )

�̄
·

{

1 −

(

pc ·
δ(H )

l − 1

)

− o(H ) · pm

}

(1)

The schema theorem can be translated into an equality by in-

cluding string gains and losses (Whitley 1993). However, even

if an equality is used to predict the exact number of schema in-

stances, the schema theorem fails to capture the full complexity

of a GA. Many works have been devoted to solve these deficien-

cies. Some shortcomings come from an unnecessarily restricted

interpretation of schemata under binary alphabets (Antonisse

1989). Also, building blocks are difficult to identify in many

applications (Whitley 1993), and there is not direct informa-

tion about the fitness function in the given estimate (Bäck et al.

1997).

Nevertheless, the theorem depicts the exponential growth of

expected number of instances as a desirable characteristic for a

GA, and this still holds whenever it can be attained. Besides this,

the schema theorem gives useful information on the GA when

“used to predict the number of instances of a given schema only

for the next generation” (Whitley 1993).

The new interpretation of schemata for non-binary alphabets

overcomes the drawbacks of low expressiveness that the initial

interpretation assigned to alphabets of higher cardinality (for ex-

ample integers V = Z or reals V = IR) (Antonisse 1989). In ad-

dition, new extended and alternative explanations to the schema

theorem are being proposed and used; see Bäck et al. (1997)

for a summary of theories on genetic algorithms. Besides, the

reader can find in Menke (1997) a correct estimate, and in Poli

(1999) a deeper understanding in relation to GA operators.

In this section, we study the schema processing abilities of

the models. We proceed in two steps. The first step will be to ex-

perimentally confirm the theoretical selection pressures derived

in the precedent section in the schema space. The second step

is intended to confirm the expected exponentially growth of the

number of instances belonging to a solution schema.

The optimization problem used here consists in finding one

out of two solution strings of 36 bits. The fitness evaluation (as-

suming a maximization problem) subtracts from 72 the sum of

hamming distances of the evaluated string to each one of these

strings (subtracting 0 when one of the two solutions is evalu-

ated). The optimum is thus 72, and the problem is bimodal. In

Table 4 we give the strings, the studied schema, the compared

algorithms, and the parameters of the problem (see the nomen-

clature in the Appendix).

The analyzed schema contains the two solution strings as well

as another 14 “undesired” strings that are not a solution to the

problem. In fact, it is not a very difficult problem, but we use it

because it is easy to track the schema proportion in the popula-

tion. We have selected a schema of high order and long defining

length because it is a “bad” schema; to confirm this end, see

again the definition of the schema theorem in equation (1).

The results of tracking this schema in the population are very

indicative of the internal behavior of the algorithms (Fig. 5).

Generational GAs, distributed or not, have problems with in-

troducing this schema in their populations, as predicted by the

schema theorem. However, the four other algorithms (d-ssGA

and d-cGA) do show an exponentially increased number of in-

stances for this schema. Thus, the first conclusion is that genGA

is appropriately described with this theorem, while d-ssGA and

d-cGA are not.

In addition, the two generational GAs are very slow. The ssGA

is the quicker in exploiting the genotypic material, while its dis-

tributed counterpart (dssGA) is better in preserving diversity and

smoothing the curve of ssGA, but far from the slow progress of

dgenGA. The results for cGA and dcGA show an intermedi-

ate pressure level, as expected. Since the population is small

Fig. 5. Proportion of schema instances for the algorithms (average of
20 runs)
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(80 individuals), cGA and dcGA are not very influenced by the

grid shape. This is also the reason of the similarities between the

schema processing rates of cGA and dcGA.

Larger differences can be observed either for larger popu-

lations and for more difficult problems (with high epistasis,

multimodality, . . . ), in which a distributed algorithm provides

a more noticeable impact on the performance. As stated be-

fore, our second concern is selection pressure in schema pro-

cessing. Selection pressure can be also noticed when studying

schemata. We can confirm that clear differences in the growth of

the better strings appear, even when crossover and mutation are

used.

In short, the proportion of instances of the solution schema

grows very slowly in generational GAs, even for such a simple

problem. The deviation from a desirable behavior is clearly no-

ticeable for genGA and dgenGA. The d-ssGA, and d-cGA do

present the theoretically expected “exponential growth” of in-

stances that traditionally has been credited to good GAs, even

for this “undesired” schema.

Here, we end with the theoretical side on the internal behavior

of panmictic and structured GAs. Until now, we have been of-

fering some results that have suggested some relationship with

the migration policy in a parallel dGA, and with the grid shape

in a cellular GA. In the next two sections we will get deeper on

these matters.

4. Parallel distributed GAs

Parallel distributed GAs have a few parameters that are very

important for guiding the search and that distinguish them from

other GAs. This section discusses four main issues in parallel dis-

tributed GAs, namely their migration policy, effort, synchronous

versus asynchronous execution, and speedup. Every subsection

will deal with such matters. In addition, further extensions to

new problems are analyzed along this section.

4.1. Migration policy in a distributed GA

In relation to the migration policy, many authors have reported

the benefits of running “loosely coupled” islands (Belding 1995,

East and McFarlane 1993, Tanese 1989), both in terms of lower

execution time and numerical effort. However, no clear con-

clusions can be drawn since most of these results utilize non-

standard algorithms or include new operators, local search, etc.

To save this gap, here we link the migration frequency to the

size of the global population and study the effects on canonical

versions of dssGA and dcGA.

The migration policy determines the connectivity of the is-

lands in the parallel distributed GA. We define the migration

policy as a tuple of five values (Alba and Troya 2000a):

Definition (Migration Policy). A migration policy in a parallel

distributed GA can be defined by five items:

M = (m, ζ, ωS, ωR, s) (2)

where:

• m: is the number of individuals undergoing migration,

m ∈ {0, 1, . . . ,∞} (migration rate).
• ζ : is the frequency of migration (we express it in number of

evaluations), ζ ∈ {0, 1, . . . , ∞}.
• ωS: is the policy for selecting migrants; usually a copy of an

individual is sent to the neighboring island. Alternatively, the

individual itself could be sent.
• ωR : is the migration replacement policy used for integrat-

ing an incoming individual in the population of the receptor

island.
• s: is the kind of communication, either synchronous or asyn-

chronous exchange.

We define the migration gap (frequency) in terms of the num-

ber of evaluations made in the island, and not in terms of the

number of generations, since we are comparing models of dif-

ferent basic steps. A steady-state model must take µ steps to

complete one generation (if we follow the traditional nomencla-

ture) while the atomic step of genGA and cGA is to complete

a full new generation of µ individuals. Anyway, in all the algo-

rithms a generation needs µ evaluations of the objective function

to be completed.

We will study the frequency of migrations as a function of

the global population size. Specifically, integer factors such

as 1 · µ, 2 · µ, 4 · µ, 8 · µ, and fractional factors like 0.25 · µ or

0.5 · µ will be used when the population size (µ) is large enough.

The value 0 stands for disconnected distributed evolution.

In this way, the migration ωM is used in the communication

phase (see Algorithm 1 in Section 2) of a PGA �par. It is an op-

erator indicating how the structures of one sub-algorithm �i are

shared by another one � j . The selection operator ωS determines

which of the structures of the source sub-algorithm �i will be

inserted in the target sub-algorithm � j , i.e. the migrated strings;

ωS(�i , � j ) is the set of shared structures between neighboring

sub-algorithms. If ωS(�i , � j ) = ∅ then the sub-algorithms i

and j are not neighbors:

ωM�M
(� j ) = ωR ◦ ωS(�i , � j ) | ∀�i , � j ∈ �par (3)

The number of migrated individuals is the number of shared

structures in every island:

m = |ωS(�i , � j )| (4)

and the probability of application is

pM =
1

ζ
(5)

Some works strongly suggest to use asynchronous commu-

nications (Alba and Troya 2001, Hart et al. 1997, Maruyama,

Hirose and Konagaya 1993). This can be achieved by insert-

ing an individual whenever it arrives, thus eliminating the ne-

cessity of blocking the algorithm every ζ steps (i.e., sending

and receiving strings are managed in separate portions of the

code).



100 Alba and Troya

The set of parameters controlling the migration is defined by

the migration policy:

�M = {M} (6)

The basic reproductive cycle of the dGA is then a composition

of the island reproductive cycle and the migration operator:

ωd = ωM ◦ ωisland (7)

If ωisland works on a small pool of spatially close neighbors,

then we have a dcGA.

To analyze the influence of the migration policy, we have

performed several tests with MMDP15 and RAS20 (see the

Appendix). We study the influence of the migration frequency ζ ,

and the migration selection ωS (“better” or “random”) in a ring

of islands. We plot the number of hits on dssGA and dcGA in

Fig. 6 (optimum found out of 50 runs). Eight different migration

frequencies are analyzed for dseqGA = dssGA and dcGA.

The results indicate that it is better to migrate a random string

than the best one, since migration of the best string often gen-

erate super-individuals in the target population and diversity is

quickly lost. A second conclusion is that loosely coupled islands

provide a better efficacy; 16 or 32 are the factors that worked out

the best results. A high isolated search time allows quick inte-

gration/rejection of incoming migrants, thus provoking a clear

non-panmictic evolution in the dGA. The dcGA yields better

results than the dseqGA = dssGA in all the tests (with the ex-

ception of 16 for RAS20). This tendency is also found in the

next subsections.

The forthcoming subsections are devoted to compare the par-

allel distributed models dssGA and dcGA from additional points

of view. We study the numeric effort (4.2), the effects of syn-

chronization (4.3), and the speedup (4.4) of distributed versions

of ssGA and cGA. We end in Section 4.5 by summarizing and

extending these results.

The parallel dGAs with 1 to 8 processors have been run

in a LAN of similar computers (SUN UltraSparc 1, 143 Mhz

Fig. 6. Efficacy of several migration policies on distributed GAs for MMDP15 (left) and RAS20 (right)

and 64 Mb RAM) using an ATM communication network

(155 Mbps). Since the migration frequency and the synchro-

nization of the distributed algorithms will influence the search

we plot different cases using three isolation time values through-

out. These values range from a highly coupled algorithm (ζ = 1)

to an almost idle set of islands (ζ = 4), with an intermediate

value of ζ = 2. Besides that, we compare the effects of using

synchronous (s label) and asynchronous (a label) versions.

We first study a large instance of the generalized Sphere prob-

lem with 16 variables and 32 bits per variable (l = 512 bits)

(problem SPH16-32, see the Appendix for more details). For

all the results we use a global population of 512 individuals,

two point crossover (TPX) pc = 1.0, and bit-flip mutation

pm = 1/ l.

4.2. Numeric effort

All the numeric results when solving SPH16-32 share some clear

characteristics (see Fig. 7). Since this problem is not especially

difficult for a PGA, tight migration (ζ = 1) are faster in finding a

solution. This is an exception to the “general rule” by which iso-

lated islands are thought to perform better. However, for SPH16-

32, a high interaction among the sub-algorithms provides the

same effect than using panmixis (one single population) with

the added advantage of a much lower execution time.

The dssGA (Fig. 7 left) is more sensible to the number of

processors, while the dcGA (Fig. 7 right) is less influenced.

This confirms the trends found in Section 4.1 in that the search

of a cGA is numerically better only for difficult problems (even

when distributed).

4.3. Synchronous vs. asynchronous

Synchronous and asynchronous versions perform both the same

algorithm. Sync and async lines of Fig. 7 are quite similar since

the island GAs and the computers are homogeneous. They could
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Fig. 7. Number of evaluations for the dssGA (left) and dcGA (right) for SPH16-32. Three migration frequencies (1, 2, 4) are shown for synchronous
(s) and asynchronous (a) versions

Fig. 8. Absolute time for solving SPH16-32 with dssGA and dcGA. We plot two separate comparisons: for the synchronous algorithms (left) and
for the asynchronous ones (right)

have shown great differences if variable string lengths or differ-

ent parameters were being used (heterogeneous search, see again

the taxonomy in Fig. 1).

However, the expected execution time (Fig. 8) for different

number of processors is consistently lessen by any asynchronous

model with respect to its equivalent synchronous algorithm. This

is easily explainable since the synchronous dssGA must wait

in every iteration, while the asynchronous one must not. Since

the number of evaluations to solve the same problem are quite

similar for each version, asynchronous models are expected to

show a better speedup (next section).

An interesting finding is that, although the dssGA outperforms

dcGA numerically, the user response time is smaller for dcGA

than for dssGA. Since communications are sought after every

step, the higher computational grain of dcGA is advantageous

(see the left and right parts of Fig. 8). The dssGA can be improved

by ignoring any communication task until having performed

a given number of evaluations (≫1). However, by doing this,

the asynchronous model becomes meaningless. Nevertheless,

although this is not a good practice for fair comparisons, it could

be a good idea for speeding up applications using PGAs.

4.4. Speedup

Speedup is a widely used measure allowing to assess the ef-

ficiency of a parallel algorithm. It has been being used for

many years to analyze deterministic algorithms. It relates the

times of running the same algorithm in 1 and nproc processors

(equation (8)).

S(nproc) =
T1

Tnproc

(8)

However, before discussing speedup in parallel GAs we need

to make some especial considerations. When dealing with PGAs
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Fig. 9. Speedup for the dssGA (left) and dcGA (right)

we must use average times and not absolute times, since PGAs

are non-deterministic algorithms (equation (9)).

S(nproc) =
T̄1

T̄nproc

(9)

In addition, as many works have established, sequential and

parallel GAs must be compared by running them until a solution

of the same quality has been found (Cantú-Paz and Goldberg

1997, Hart et al. 1997). Completing the same number of steps

must not be used as the termination criterion when measuring

speedup.

Besides, although speedup is upper bounded by the number

of processors nproc, for a PGA it might not, since the PGA re-

duces both the number of necessary steps and the execution

time in relation to the sequential one. See superlinear speedups

in Belding (1995). The theoretical explanation is that a PGA

can find a solution in any time T > 0 (Shonkwiler 1993). Also,

the separate chunks of data structures can fit into the cachés of

processors (while they do not fit in a monoprocessor), thus pro-

viding an additional source for superlinear speedup. Therefore,

superlinear speedup is possible from a theoretical point of view

whatever operators or parameters are being used. But there are

still some ambiguities. We can choose to measure the speedup

of a distributed GA on nproc processors versus (1) a sequential

panmictic GA or (2) versus the same distributed GA on a single

processor. These two possibilities are discussed in the next two

subsections.

4.4.1. Distribution versus panmixia

In this subsection we compare the time to locate a solution

needed by a panmictic GA versus a distributed GA with the

same global population and parameters. This is the usual way in

which many authors have measured speedup in the past. Hence,

we do the same in this section only to establish a bridge from

these works to a “more correct” or “fairer” way of measuring

speedup that we will introduce in Subsection 4.4.2. The goal

of the present section is twofold. First, we want to show that

super-linear speedup is possible in practice, wherever the GA is.

Second, we want to point out that the EC community must use in

the future a more correct and widely accepted way of measuring

speedup.

In Fig. 9 we show the speedup of dssGA and dcGA for solving

SPH16-32. Two conclusions can be drawn. On the one hand, the

speedup is clearly superlinear since e.g., an eight island dssGA

(dcGA) is better than the sequential ssGA (cGA) in a factor

larger than 8. This is due to its higher diversity and parallel

exploration from many different zones of the problem space.

The second outcome is the excessively large magnitude of such

a speedup. The reason is that a dGA and a panmictic GAs are

not (definitely) the same algorithm.

4.4.2. Orthodox speedup

Superlinear speedup is possible from both, theoretical and prac-

tical sides. However, the reader could think that other parameters

such as the complexity of the selection algorithm is allowing this

gain in speed when changing from panmictic to distributed GAs.

Splitting the population can of course reduce the execution time

because resulting sub-populations are smaller. But, if this were

the source of superlinear speedup, we could not get a speedup

larger than nproc when comparing the same distributed algorithm

on 1 and nproc processors.

In this section we show that exactly the same multi-population

algorithm can show superlinear speedup (Alba and Troya

2001).

Incidentally, in deterministic algorithms, superlinear speedup

can arise since the data structures are split into smaller pieces

that fit into the cachés of the processors, while the whole data

structure did not fit in because of its larger size. This source of su-

perlinear speedup can also appear when using non-deterministic

algorithms such as PGAs.

For these tests, we use a total of 512 individuals separated into

the number of islands. The algorithm is an homogeneous parallel

dssGA in which all the islands perform proportional selection,

two point crossover with probability pc = 1.0, and bit mutation

with probability pm = 1/ℓ, being ℓ the string length. We show

results with the Sphere problem having 16 variables each one

encoded in lx = 32 bits (ℓ = 512), and with an instance of the

MMDP deceptive problem with 40 unitation lx = 6 bit segments

(ℓ = 240)—see the Appendix.

In the following graphs we call “weak1” to a speedup mea-

sure in which the base case is the panmictic GA and the
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Fig. 10. Weak definition type 1 versus type 2 for SPH16-32 (left) and MMDP40 (right)

distributed GA has the same number of islands as processors.

We call “weak2” the measure in which the distributed GA has

always a constant number of islands, and they are allocated to the

available processors. The size of the population is always con-

stant and equivalent between the compared algorithms. In both

cases the measure is called “weak” because a “strong” speedup

can only be defined when comparing with the worst time of

the fastest sequential algorithm, as the traditional definition of

speedup requires (Akl 1992). We use the weak measure because

we are only considering one type of GA with no warranties that

it is the best algorithm to solve the problem.

Figure 10 left shows that superlinear speedup is possible when

comparing a distributed algorithm on nproc processors with a

panmictic one (weak1), and also when comparing it to itself on

one processor (weak2). This is especially clear for the SPH16-32

problem. For MMDP40, the weak2 measure is slightly sublinear,

but the trend is to increase toward linear and moderate super-

linear speedup when more processors are used. Of course, one

cannot expect to achieve superlinear values for any algorithm

and problem, and MMDP40 is an example of such a case we

include to asses the correctness of our measures.

In short, superlinear speedup is possible, both theoretically

and practically, in PGAs.

4.5. Quick summary and extensions of the results

To summarize the mentioned conclusions, dcGA worked out

the overall best results measured in terms of real time. Besides

that, the results of precedent sections and the scaling properties

presented in this section give dcGA some advantages. The dcGA

is more robust, and increasing the number of processors is more

beneficial for it than for dssGA. The time of dcGA for easy

GA-problems like the Sphere becomes very similar to dssGA

for 8 processors, and dcGA shows many other advantages when

faced to difficult problems.

Let us mention that the speedup is not always that large in all

the applications of a PGA, as it might be suggested from graphs

in Fig. 9 and 10 (left). More difficult problems do not allow for

such values. However, the superiority of asynchronous PGAs

over synchronous ones has been also reported frequently in

these years (Hart et al. 1997), (Maruyama, Hirose and Konagaya

1993).

A dssGA with frequent migrations could consume an unnec-

essarily large communication time. This is where a distributed

algorithm with a larger grain of computation such as dcGA could

show its advantages over dssGA.

Although the parallel characteristics of dcGA seem to be supe-

rior to dssGA we cannot recommend it as “the best” distributed

PGA for global optimization (the No Free Lunch theorem pre-

vents on this matter (Wolpert and Macready 1997)). In fact,

complex applications in which final parameter tuning is very

important are often better solved by using dssGA. Training a

neural network is an example of such a complex domain. It

has high epistasis (genotype linkage), multimodality and non-

linearities. Some dssGA-like algorithms such as GENITOR II

(Whitley and Starkweather 1990) have proved to be useful in the

past for this task.

In Fig. 11 we show the influence of the synchronization and

migration frequency for both, a dssGA and dcGA used to train

the neural network described in the Appendix. We confirm two

conclusions: asynchronous algorithms need lower (often much

lower) execution times, and they are less influenced by the mi-

gration frequency.

These results prove that asynchronous algorithms are bet-

ter in easy and in complex domains, and that applications

Fig. 11. Time to train a neural network with dssGA and dcGA using 8
processors. We plot synchronous (s) and asynchronous (a) versions in
the graph. Migration frequencies 1, 16, 32, and 128, and total isolation
–0– are evaluated
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of distributed PGAs should prefer them over synchronous

implementations (Alba and Troya 2001).

A somewhat surprising result is that the evolution of non-

connected islands performs quite well in this problem. The rea-

son can be found in the characteristics of training multilayer

perceptrons with EAs in general. Since the strings represent

sets of weights, and since each set of weights is a given func-

tional mapping of the training patterns, crossing two strings is

most times useless. The resulting offspring often lacks of the

functional modules that are present in its parents. In general,

crossover is not very extended in training NNs with EAs, we

use it here for avoiding long explanations on when and how it

is useful. This effect promotes algorithms that only merge two

parent strings when they have very similar contents. This kind

of intra-species crossover is natural and implicitly provided by

a multi-population PGA, thus explaining the good behavior of

disconnected executions, where isolated species evolve.

In this application, the dcGA is a slower mechanism for final

tuning of the solution in relation to the dssGA. This is why

many authors directly propose parallel models having a hill-

climbing technique that works inside the neighborhoods of a

cGA (Mühlenbein, Schomisch and Born 1991).

5. Cellular GAs

In this section we discuss the importance of the neighborhood

and topology in the cellular GA. The influence of these two

parameters on the performance of a cGA has already been sug-

gested but it is only in recent works that common numerical

models are gaining acceptance (Sarma and De Jong 1997). Since

cGAs are not widely known optimization algorithms we present

a detailed study on them.

Concretely, we first characterize the shape/neighborhood re-

lationship with a numerical ratio value in Subsection 5.1. Then,

we analyze the influence on the ratio in the effort for obtaining a

solution (Subsection 5.2), in the efficacy of the algorithm (Sub-

section 5.3), in the scalability of the algorithm (Subsection 5.4),

and, finally, we address a problem-dependent ratio performance

study (Subsection 5.5).

5.1. Ratio between the neighborhood and topology

radii in a cGA

Many parameters distinguish a cellular GA from other kinds of

algorithms. In particular, the topology in which individuals are

placed, and the neighborhood inside which the reproductive plan

is applied are very important. This is common sense since the

population is not a pool like in panmictic GAs. In cGAs the pop-

ulation is structured, usually in some kind of grid in which one

string is located in every node. Toroidal meshes are very usual,

with the grid folded to a torus. A geographical distribution like

this one needs also some rules to decide which strings belong to

the same neighborhood, for every given string in the population.

Different neighborhoods can be defined on a toroidal mesh

of individuals. See some possible neighborhoods in Fig. 12.

Fig. 12. Types of neighborhoods: Linear and compact

We fill in black the strings belonging to the same neighbor-

hood hosted by the central string. All these neighborhoods share

some common characteristics (Baluja 1993). Usually, they all are

composed by a small number of strings in order to reduce the

communication overhead in a SIMD machine, or the execution

time if a monoprocessor implementation is being used to hold

the grid. Many authors use the NEWS (North-East-West-South)

neighborhood since it is very simple (also called linear5).

Such a large diversity of topologies and neighborhoods needs

a common quantification. The results in De Jong and Sarma

(1995), and Sarma and De Jong (1996) proved that the relation-

ship between neighborhood and topology determines the selec-

tion pressure of a cGA. Here, we provide an independent and

different confirmation of their theory by using a quantity to char-

acterize the topology, called “the radius”. We consider the grid

to have a radius representing the dispersion of n∗ points in a

circle centered in (x̄, ȳ) (Fig. 13).

This definition can quantify the type of neighborhood as well,

and thus it helps in distinguishing different neighborhoods that

might be defined on the same toroidal grid.

For a constant number of individuals (n = n∗) and neighbor-

hood the radius will increase as the grid gets thinner (Fig. 14(a)).

Therefore, the thinner is the grid the smaller is the overall ratio.

In Sarma and De Jong (1996) it is shown that different grids and

neighborhoods having the same ratio show also the same selec-

tion pressure. This and other works (Baluja 1993) change the

type of neighborhood to get different selection pressures on the

same grid. Our contribution consists in keeping a constant neigh-

borhood (NEWS) and changing the grid shape. Therefore, we

can tune the selection intensity by changing a single parameter:

Fig. 13. (a) Radius, and (b) the ratio between the topology and neigh-
borhood radii

Fig. 14. Two radii (a), NEWS neighborhood (also known as linear5)
(b), and its radius (c)
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Table 5. Parameters of the tests

Parameters ras10 (16 bits) ras20 (8 bits) ros10 (16 bits) ros20 (8 bits) sph3 (32 bits) sph6 (32 bits) ummdp6 (6 bits) mmdp16 (6 bits)

Problem size 10 20 10 20 3 6 6 16

String length 160 160 160 160 96 192 36 96

pc 1.0 1.0 0.8 0.8 1.0 1.0 1.0 1.0

pm 0.01 0.01 0.03 0.03 0.01 0.01 0.05 0.05

the ratio (Alba and Troya 2000b). This is much easier to imple-

ment, use, and study (see also Alba, Cotta and Troya 2000).

5.2. Ratio and effort

Reducing the ratio in some way means reducing the global se-

lection pressure in the cellular GA. This is expected to allow a

high diversity and promote exploration.

To show the influence of the ratio in the search we applied

different cGAs to solve a set of problems and then compared the

resulting number of steps. Parameters are in Table 5 and results

in Fig. 15. We have used canonical versions and have not carried

out any special parameter tuning to avoid biasing the results.

In Fig. 15 we can appreciate the computational effort for solv-

ing every problem in terms of the number of evaluations (aver-

age of 50 independent runs). Clearly, ros20-8 and ras20-8 are

the more difficult problem instances among all, and mmdp16-6

is the easier one. However, our goal is not to compare different

problems, but different grid shapes on the same problem. For a

given problem, the number of evaluations to get a solution is es-

sentially the same for any grid except for the 2 × 50 and 1 × 100

shapes (very small ratios). For these thin grids the algorithm

Fig. 15. Efficiency in terms of the average #evaluations to solve the problems

needs a larger number of evaluations to get a solution. We will

validate this outcome also on much larger populations later in

this section. Thinner grids provide a higher diversity and explo-

ration (advantage), but this usually requires a larger number of

evaluations (drawback). An intermediate ratio might be the best

trade-off decision.

5.3. Ratio and efficacy

In this section we show that there exists a relationship between

the number of hits in finding a solution to difficult problems

and thinner grids. See Fig. 16 to verify this point. The smaller

problem instances are successfully solved whatever the disposi-

tion of individuals is (right half of graph in Fig. 16). But for the

two instances of Rosenbrock and Rastrigin functions (10 and 20

variables) thinner grids are progressively better.

Therefore, we can conclude that thinner grids provide bet-

ter efficacy on difficult problems (with bounded and constant

computational resources). The increment in the number of eval-

uations shown by small ratios is a practical drawback for “easy”

problems, but an advantage when analyzing the resulting ef-

ficacy. There exist some alternatives that could alleviate this



106 Alba and Troya

Fig. 16. Percentage of successful runs (out of 50) in solving multiple problems with different shapes (i.e., different ratios)

higher number of evaluations. For example, instead of using a

cGA with a large grid, we could run several connected islands of

smaller cGAs in parallel; this algorithm, which we have called

dcGA, would profit from the physical and numerical benefits of

the migration models, like shown in Alba and Troya (2001).

5.4. Ratio and scalability

Now we turn to consider the way in which the same cGA can

solve problems of increasing size. This will give us an idea

of how the cGA exploits and profits from the genotypic infor-

mation. The better the cGA scales the better it is supposed to

perform when faced with unseen problems. Table 6 contains the

parameters used to get the results shown in Fig. 17 (only non-

distributed algorithms). We use small population sizes because

our interest in using bounded computational resources (wide ap-

plicability). As in the previous tests, 2 × 64 means we are using

a grid of 128 individuals geographically distributed in 2 rows of

Table 6. Parameters for solving SPHxx, RASxx, ROSxx, and MMDPxx with a cGA

Parameters SPH {1, 2, 3, 4, 5, 6} RAS {10, 12, 14, 16, 18, 20} ROS {10, 12, 14, 16, 18, 20} MMDP {1, 2, 4, 8, 16}

Pop. shape & size 2 × 64 = 128 2 × 50 = 100 2 × 95 = 190 2 × 24 = 48

pc 1.0 1.0 0.8 1.0

pm 0.01 0.01 0.03 0.05

Max. funct. eval. 300000 300000 450000 300000

64 strings each. The same holds for the rest of population size

values.

For all the instances of a given family the cGA is exactly

the same. Let us show in Fig. 17(left) how the algorithm

is able to manage the instances of easy problems like the

SPH16-32 without important increments in the numeric effort.

Problems like ROS and RAS need a clear larger number of

evaluations.

The graph in Fig. 17 left suggests the relative difficulty that

the cGA face to solve these two problems, much more evident

for the ROS family due to its epistasis. In addition, deceptive

problems (MMDP) provoke large jumps on the efficacy for very

large instances.

It is important to keep in mind the relationship between cGA

and other algorithms such as ssGA and genGA. We compare

in Fig. 17 right their percentage of hits for several ROS in-

stances. When analyzing results that only include cGAs one

could be prone to think that some grid shapes are not efficient.
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Fig. 17. (left) Scaling properties of a cGA and (right) percentage of success for Rosenbrock of a cGA versus ssGA and genGA (parameters in
Table 5, 50 executions)

This conclusion might be wrong since even in these cases the

cGA could outperform panmictic GAs. This is the reason to in-

clude Fig. 17 right at this point. Since ssGA and genGA have

not a structured population, convergence to sub-optimal solu-

tions is often encountered. In particular, the genGA is very

slow.

Although we have been able to solve many problems with

small populations, one can wonder if the scaling of a cGA

still holds for much larger populations and difficult problems.

We have used a total population of 1024 individuals and solve

MMDP of 15, 20, 25, 30, 35 and 40 sub-functions. The graphs in

Fig. 18 reveal the computational effort (left) and the scalability

(right) of different shaped grids.

The numerical effort grows similarly for grids 32 × 32,

16 × 64 and 8 × 128. These are good news since, in addition,

the thinner grids maintain a good diversity and a larger num-

ber of hits than square grids in other problems like Rastrigin or

Rosenbrock. The very thin grid 4 × 256 needs a larger com-

putational effort, as expected after the previous results. The

Fig. 18. Numeric cost (#evals.) to get a solution in a cGA (left) and its scalability (right) for different shaped cGAs and increasingly larger instances
of MMDP

growth in size is directly followed by the growth in the effort

to solve the problem, with a slight advantage for the square

grid (high ratio). Even a very small ratio such as 4 × 256 scales

well.

As a conclusion, we see that thinner grids perform well in

difficult problems and that they scale adequately. A square grid

scales slightly better than thinner grids, has similar computa-

tional effort on MMDPxx, and worst results in the previous

problems. The exception is for extremely thin grids in which the

larger computational effort is only admissible when a complex

problem is being solved.

5.5. Ratio and problem dependent behavior

We now proceed to present and analyze the results of our cGA

when solving two different problems with various ratios. These

problems are the multimodal deceptive MMDP40 function, and

a highly epistatic instance of a problem generator known as the

P-PEAKS problem (De Jong, Potters and Spears 1997). See the
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Table 7. Parameters for solving MMDP40 and P-PEAKS

Total popsize ⇒ 400 individuals

String length (ℓ) ⇒ 240 for MMDP40, and 100 bits for P-PEAKS

Parent’s selection ⇒ Roulette wheel + Roulette wheel

Crossover ⇒ Two point, pc = 1.0

Bit mutation ⇒ pm = 1/ℓ = 0.0042, pm = 1/ℓ = 0.01

Replacement ⇒ Rep If Better

Appendix for more details on these optimization tasks. For these

two problems we have used the parameterization summarized in

Table 7. Our goal is to prove that there exists no globally better

value of ratio, but instead, every problem is more suited for a

given value of ratio.

The selected techniques and parameter values are very usual

in EA’s in order to get results widely useful for the research com-

munity. We use 400 individuals (of bit length ℓ), proportional

selection of two parents within the neighborhood of 5 strings,

two point crossover with probability 1.0, and bit-flip mutation

with probability 1/ℓ.

For every point in the grid, we replace it only if the new string

is better than the existing one. The stopping condition for all

the algorithms and problems is to find a solution. We analyze

the cost of solving a problem by measuring the number of func-

tion evaluations. For every problem, the same cGA is applied

in which we only change the ratio between neighborhood and

topology. Three clearly different ratios are used corresponding to

the grid shapes 20 × 20, 10 × 40, and 4 × 100 individuals. The

computed ratio values with NEWS is 0.110, 0.075 and 0.031,

respectively (see Table 8).

The results are shown in Table 9. We summarize the average

results of 30 independent runs for solving the two problems. We

can see that a small ratio (0.031) is more efficient than a high ratio

in P-PEAKS. For this epistatic problem the reduced selection

pressure of a small ratio improves exploration. However, for

MMDP40, the higher pressure of the square grid (0.110) is more

efficient. We underline the best results in Table 9.

These values confirm the previous results in which a high

ratio is more efficient in the absence of epistatis, and also for a

Table 8. Three different grid shapes, their radius, and their ratio with

NEWS

Shape radtopology radNEWS Ratio

20 × 20 8.15 0.8944 0.10968 ≈ 0.110

10 × 40 11.9 0.8944 0.07519 ≈ 0.075

4 × 100 28.9 0.8944 0.03096 ≈ 0.031

Table 9. Mean number of evaluations

0.110 0.075 0.031

MMDP40 170637.9 237003.4 331719.6

P-PEAKS 50458.1 50364.6 48653.6

Table 10. MMDP40 and P-PEAKS: t-test (p-values)

MMDP40 P-PEAKS

ratio 0.110 0.075 0.031 0.110 0.075 0.031

0.110 – 0.0177 5.12e-06 – 0.9409 0.0829

0.075 0.0177 – 0.0181 0.9409 – 0.1531

0.031 5.12e-06 0.0181 – 0.0829 0.1531 –

medium degree of multimodality (MMDP40). A small ratio is

desirable when epistasis or multimodality are high (P-PEAKS),

because it speeds up the search and quickly gets out of local

optima. In these cases, the driving force of the search resides in

that different grid regions are mapped to different search regions,

sought in parallel.

Since we want to be sure that these results are statistically

significant, Table 10 contains the results of performing t-tests

on the average results of Table 9. If we consider the stan-

dard p-value = 0.05 level of significance, all the results with

MMDP40 are meaningful, thus indicating that a high ratio is

more efficient. The significance with P-PEAKS is above 0.05

(around ∼0.1), which only allows us to say that there is “a trend”

toward smaller ratios. However, the tests have had a great reg-

ularity and the smaller ratios yielded the faster algorithms for

P-PEAKS.

6. Numeric efficiency

After considering such a large number of behaviors and algo-

rithms we now turn to provide an overview on their search fea-

tures. Therefore, this section contains an empirical vision of the

theoretical behavior of the algorithms. We will track the progress

of the observed best string in the population of serial and parallel

GAs. Besides the mentioned algorithms, non-elitist versions (ne

labels) are analyzed to confirm the popular thought that at least

the best string must survive between consecutive generations

(elitist selection, label e). Non-elitism is rarely found in algo-

rithms used to solve (real) problems with large computational

requirements.

The global population size is kept the same for all the results

in this section (180 individuals), and one random string is mi-

grated every 32 · TotalPopsize evaluations (loosely coupled) in

distributed GAs, as Section 4.1 suggests.

We only plot RAS20 in Fig. 19 as a representative example,

although we carried out similar tests for all the problems (aver-

age results of 50 independent runs). We conclude (Fig. 19) that

the basic ssGA –ssa– and cGA(ifb) –ci– algorithms are the best

among all of them in reaching an optimum with a fast conver-

gence. The algorithms having selection pressure SP2 and SP3

(see Section 3.2) perform with the highest efficiency. The dis-

tributed execution maintains or enlarges the numerical efficiency

(e.g., in genGAs), and improves algorithms having SP1 (see the

rank in Table 11) although they still converge slowly.



Improving flexibility and efficiency with PGAs 109

Fig. 19. Performance on RAS20 (8 × 20 = 160 bits, 180 individuals, pc = 1.0, pm = 0.01, plotted during 540000 evaluations). (a) Non-distributed
and (b) distributed

Clearly, the non-elitist generational GAs and the

cGA(always)—always replacing every considered string

with the newly computed one—are the worst algorithms. This

confirms the importance of using elitism (binary tournament)

in the replacement of a cGA, and the low convergence velocity

of genGAs. In addition, it is clear that roulette wheel selection

(rw) shows a larger sampling error than stochastic universal

sampling (sus) (Baker 1987). Our contribution is to conclude

that this result holds not only for serial GAs, but also for

distributed parallel GAs.

In Fig. 19(b) the distributed versions (8 islands) confirm the

ranking in Table 11. Distribution seems to speed up the slow

Table 11. Ranking

1. dssi, dci, dssa

2. ssi, ci, ssa

3. dsuse, drwe

4. suse, rwe

5. dsusn,susn

6. ca, dca

7. drwn, rwn

algorithms, and tends to unify the behavior of similar non-

distributed selection pressures.

7. Resistance to scalability

In this section our goal is to find out the average number

of evaluations needed to reach a solution and how it scales

with the increasing difficulty of the problems. The analysis in-

clude the algorithms xxGA(. . . ,ss,ifb), xxGA(. . . ,cel,ifb), and

xxGA(. . . ,sus,e), either distributed (d label) and not. Here, we

want to extend and unify the results obtained only with cellular

GAs (Section 5.4) to include all the algorithms.

We allow a maximum of 3 · 105 evaluations (4.5 · 105 for

Rosenbrock) and make a constant and single parameterization

for all the instances of a given problem. Figure 20 plots the

results. The parameters have been provided in Table 6.

In Fig. 20 we can see some general trends. First, the number of

evaluations in generational GAs, distributed or not, grows very

quickly with the problem size for all the problems, with a lower

number of steps if distributed. This is an undesired behavior.

Second, the ssGA is slightly faster than the cGA and their

distributed versions for RASxx and ROSxx.
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Fig. 20. Growth of the computational cost for different instances of (a) SPHxx, (b) RASxx, (c) ROSxx and (d) MMDPxx functional families. Mean
of 50 independent runs

Third, the distributed cGAs would have needed larger sub-

populations for showing clear numerical benefits. A small pop-

ulation prevents elementary cGAs to show their intrinsic prop-

erties since the selection pressure is quite large.

The results for other difficult problems like MMDP16 are

more conclusive. With the same resources, the cGA and dcGA

Fig. 21. Plot of the % of success for ROSxx

are the only ones efficiently solving the largest instances or even

solving the problem at all. The steady-state even fails to solve

MMDP16.

From an additional point of view, the cGA and dcGA (Fig. 21)

give the best efficacy on these problems. There are some excep-

tions for ROS18 and ROS20 in which the ssGA is slightly better

than the cGA.

8. Conclusions and future work

In this paper we have presented a unified point of view for the

class of sequential and parallel GAs. This has allowed to com-

pare a large number of algorithms fairly. Since there are many

versions in the literature for any class of GA and PGA we use

popular canonical expressions of them, by stressing the impor-

tance of the underlying distributed, cellular, or mixed model.

The cellular GA is slower than the steady-state in many cases,

but better in efficacy for most tested problems. Local selec-

tion procedures and other refinements could greatly improve the

search with cGAs. We have confirmed the importance of the ra-

tio between the radius of the topology and the neighborhood, in

cGAs. This is a tradeoff parameter which has to be considered

for obtaining good solutions efficiently.

The distributed and non-distributed ssGA and cGA algo-

rithms yield a fast schema growth in the studied problem.
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Table A.1. Symbols used for referring to the algorithms

Symbols Meaning

xxGA(d, n, m, g, e,re) d ∈ {1, . . . , ∞} number of sub-populations running in parallel

n ∈ {1, . . . ,∞} size of one population

m ∈ {r, better} controls whether we migrate a random or the best individual

g ∈ {1, . . . ,∞} migration gap (steps) between two successive migrations

e ∈ {ss, rw, sus, cel} evolution mode: steady-state, generational or cellular

re ∈ {alw, ifb, e, ne} replac. policy: always, if better, elitist or non elitist

ssi ≡ steady-state if better ssa ≡ steady state always replace least-fit

rwe ≡ roulette-wheel with elitism rwn ≡ roulette-wheel without elitism

suse ≡ stochastic universal sampling with elitism susn ≡ stochast. universal sampl. without elitism

ci ≡ cellular GA with if better replacement ca ≡ cellular GA with always replacement

dssi, dssa, drwe, drwn, dsuse, dsusn, dci, dca ≡ distributed versions of the algorithms

However, the predicted and actual number of instances are quite

different in our tests for these algorithms, indicating that the

basic schema theorem is not valid for them.

Distributed parallel GAs seem to be a widely useful and avail-

able technique that researchers can use to solve their particular

optimization problems. When applied, there is no need of re-

nouncing to the advantages of the structured populations found

in massively parallel GAs. The distributed model can be com-

bined with a diffusion model to outperform traditional panmictic

islands in many aspects and problems.

The parallel asynchronous distributed versions of all the tested

algorithms have worked out better results in time and speedup

than the synchronous ones. If the reader has similar conditions

to those used in this paper (similar workstations, parameters,

or problems), and after other referenced papers, he/she should

prefer asynchronous parallel distributed GAs for a novel appli-

cation. Also, we have shown that superlinear speedup is possible

in PGAs.

As a future work it would be interesting to discover if the

merging of steady-state and cellular GAs in the same ring should

profit from their relative advantages. Besides that, a study on

the influence of using ranking or tournament selection would be

useful for future applications. Of course, the ability of parallel

GAs to face modern optimization domains such as dynamic

optimization could be of interest due to their very good diversity

and multi-solution capabilities.

Fig. A.1. Sphere, Rastrigin, Rosenbrock, and massively multimodal deceptive problems

Appendix: Nomenclature and testbed

In this Appendix we first present the nomenclature (see

Table A.1) used to label the charts. Then we present the op-

timization problems we have used throughout this paper.

In Table A.1 we summarize how we refer in the paper to dif-

ferent algorithms, number of processors, selection techniques,

etc.

For the test suite we have selected problems that satisfy a large

set of requirements, namely

1. Lab and real world problems.

2. Problems showing epistasis i.e., high parameter linkage.

3. Problems showing multimodality i.e., having numerous local

optima and multiple different global optima.

4. Deceptive problems, designed to mislead the search of a GA.

5. Simple problems, with the aim of offering baselines for

comparisons.

The reader will easily classify the following problems into

one of these classes. We have selected a heterogeneous test

suite that contains some of the most popular features that a re-

searcher can face in real world optimization. For our tests we

have used various problems instances (Fig. A.1): the general-

ized Sphere (gene –parameter– length lx = 32 bits), Rosenbrock

(lx = 8 and 16 bits), and Rastrigin (lx = 8 and 16 bits) functions
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(maximized). Also, several instances of a 6-bit massively mul-

timodal deceptive problem (lx = 6 bits).

This set of problems is expected to cover a wide and repre-

sentative spectrum of search spaces. We use sometimes abbrevi-

ations like ROS, MMDP, or SPH for these functions since they

help in clarifying the discussion.

We address an additional optimization problem consisting in

training an artificial neural network (ANN) for urban traffic noise

prediction defined in Cammarata et al. (1993). We will use our

PGAs to solve this problem. Training neural networks with GAs

is an alternative to gradient-descent techniques which frequently

get stuck in local optima. Many approaches exit to genetically

designed ANNs, although we are only interested in genetically

training ANNs. This is a difficult, epistatic, and multimodal

task that additionally requires a final tuning of the quality of the

solution. See Whitley and Schaffer (1992) and Alba, Aldana and

Troya (1993) for more details and interesting results in this kind

of application.

The network is trained to determine functional relationships

between the road traffic noise and some physical parameters.

Should this goal achieved, it is possible to modify the causes

of traffic noise in order to sensibly reduce it. The neural net-

work is capable of modeling non-linear systems such as this

one.

The meaningful parameters of the traffic noise refer to the

number of vehicles and flow velocity (traffic parameters), type of

pavement and slope of the road (road parameters), and road width

and building height (urban parameters). Combining trucks and

cars into one single parameter (#cars + 6· #trucks), and averaging

the height of the buildings in both sides of the road, we can

define a backpropagation network (Kung 1993) with 3 inputs

and 1 output:

INPUT: (number of vehicles, average height of buildings,

width of the road )

OUTPUT: (sound pressure level )

We consider a network with a 3-30-1 topology (input-hidden-

output) for learning the set of examples on roads in Messina,

Fig. A.2. Encoding the weights of a neural network into a GA string (left) and the fitness function we use (right)

Palermo and Catania, in Italy. The neurons have a sigmoid ac-

tivation function that provides continuous values in the range

[0 · ·1]. This poses a much difficult optimization problem than

using boolean activation functions (discrete optimization). We

code the weights and bias of the network (151 parameters) in a

string of 151 real numbers as indicated by the input-output code

of Fig. A.2 left.

The objective function (Fig. A.2 right) consists in finding a

network (multilayer perceptron) that learns the pattern set i.e.,

that minimizes the error between the expected and actual output

(supervised learning). This error is summed for all the n output

neurons and for all the p patterns of the pattern set. We include

this error into a maximization function by subtracting it from a

constant (C).

We finally describe an interesting problem generator pro-

posed in De Jong, Potter and Spears (1997) that is also used

in the present paper. A problem generator is an easily param-

eterizable task which has a tunable degree of epistasis, thus

allowing to derive very difficult instances at will. Also, using

a problem generator removes the opportunity to hand-tune al-

gorithms to a particular problem, therefore allowing a larger

fairness when comparing algorithms. In addition, with a prob-

lem generator we evaluate our algorithms on a high number

of random problem instances, thus increasing the predictive

power of the results for the problem class as a whole. Here

we utilize their multimodal epistatic generator that we call

P-PEAKS.

The idea is to generate a set of P random N -bit strings that

represent the location of P peaks in the search space. To evaluate

an arbitrary bit string, first locate the nearest peak in Hamming

space. Then the fitness of the bit string is the number of bits

the string has in common with that nearest peak, divided by N

(equation (A.1)). Problems with a small/large number of peaks

are weakly/strongly epistatic. Our instance uses P = 100 peaks

of N = 100 bits each, which represents a medium-high epistasis

level.

fP-PEAKS (�x) =
1

N

P
max
i=1

{N − HammingD( �x, Peaki )} (A.1)
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