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Abstract

In this paper we propose an analytical framework that intelligently
combines multiple forecasts into a single and more accurate combined
forecast. Four different combination methods are derived by using dif-
ferent weight estimation and forecast selection techniques. We exam-
ine our methods and four other commonly used combination methods
in computational experiments. The results suggest that combination
does improve accuracy and our methods have better and more stable
performance than the others.

1 Related Research on Forecast Combination

Considerable literature has accumulated over the years regarding the com-
bination of forecasts. The primary conclusion of this line of research is that
forecast accuracy can be substantially improved through the combination of
multiple individual forecasts. Furthermore, simple combination methods of-
ten work reasonably well relative to more complex methods (Clemen, 1989).
In this paper we propose several new forecast combination methods and test
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them and other commonly used methods in computational experiments.

Reid (1968) and Bates and Granger (1969) are considered to be the sem-
inal works in the area of combining forecasts. Since then a large number of
combination procedures have appeared in the literature. Many models have
been developed to find ’optimal’ combinations of forecasts. Both simula-
tion and empirical studies have been conducted to test performance of those
models. The results consistently indicate that combining multiple forecasts
increases forecast accuracy. Throughout the years, applications of combined
forecasts have been found in many fields such as meteorology, economics,
insurance and forecasting sales and price. Details can be found in Clemen
(1989), an extensive review paper discussing theoretical and empirical work
on various methods of combining forecasts. More recently, de Menezes et al.
(2000) review evidence on the performance of different combining methods
with the aim of providing practical guidelines based on three properties of
the forecast errors: variance, asymmetry and serial correlation. The evidence
indicates that using different criteria leads to distinct preferences, and that
the properties of the individual forecast errors can strongly influence the
characteristics of the combination’s errors.

Well-studied combining methods range from the robust simple average
to the far more theoretically complex, such as state-space methods that at-
tempt to model non-stationarity in the combining weights (de Menezes et

al., 2000). To get a sense of the methodology five well-studied methods are
worth mentioning. All of the methods adopt the linear formulation. The
vector f consists of k individual forecasts, which are combined via a linear
weighting vector w. The combined forecast fc is equal to w′f .

• Simple Average: Assign equal weight to each individual forecast. This
approach has the virtues of simplicity and robustness. It has consis-
tently been the choice of many researchers. Many studies provide strong
support for this method (Clemen, 1989). Gunter (1990) identified an-
alytically the conditions under which the Simple Average outperforms
Optimal and OLS, which will be discussed later. A possible answer to
the success of simple average may rely on the instability of the com-
bining weights, which results from unsystematic changes over time in
the covariance matrix of individual forecast errors.

• Outperformance Probabilities: This method is initially proposed by
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Bunn (1975). By this method, each individual weight is an estimate
of the probability that its respective individual forecast performs best
on the next occasion. Each probability is estimated as the fraction of
occurrences in which the respective individual forecast has performed
the best in the past. This is a robust, nonparametric method, which
performs well when there is relatively little historical data.

• Optimal (Minimum Variance): The combining weights are calculated
to minimize the variance of the error of the combined forecast, based
on the assumption that each individual forecast is unbiased. Mathe-
matically, the weight vector w is determined as follows:

w =
S−1e

e′S−1e

where e is a unit vector and S is the covariance matrix of individual
forecast errors. As S is generally unknown in practice, this method re-
quires S to be properly estimated. Bates and Granger (1969) suggested
five procedures to estimate S. In a finite sample of typical size, sam-
pling error and collinearity among individual forecasts contaminate the
estimate of combining weights. Thus, while one hopes to reduce out-
of-sample forecast mean squared error (MSE) by combination, there is
no guarantee that this will happen in practice.

• Ordinary Least Squares (OLS): In this method the individual forecasts
are used as regressors in an ordinary least squares (OLS) regression
with a constant term. Granger and Ramanathan (1984) showed that
if the individual forecasts are biased, this method is better than the
Optimal method. Granger and Ramanathan’s suggestion has been dis-
cussed and contested theoretically (Clemen, 1986; Bordley, 1986) and
empirically (Holden and Peel, 1989; Aksu and Gunter, 1992). Recently,
MacDonald and Marsh (1994) reported that the presence of substan-
tial biases in individual forecasts led them to use OLS regression to
combine exchange rate forecasts.

• Constrained OLS: Here the least squares regression is performed with
the inclusion of a group of constraints on the vector of combining
weights. Among others see Pindyck and Rubinfeld (1981), Clemen
(1989), Gunter (1992), Aksu and Gunter (1992), Dorfman and McIn-
tosh (2001) and, in the context of forecast combination, Chan et al.
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(1999). All of these authors conclude that introducing inequality con-
straints into the least squares model improves accuracy.

The empirical work of Gunter (1992) and Aksu and Gunter (1992) com-
pared the accuracy of a wide range of constrained least squares com-
bining procedures, plus Simple Average. They found that constraining
the weights to be non-negative was as robust and accurate as Simple
Average, and that both of these methods almost always outperform
least squares without constraint and least squares with a constraint
that weights sum to one but are allowed to be negative. Dorfman
and McIntosh (2001) provide evidence that the Bayesian inequality-
constrained posterior mean is more efficient than the restricted-MLE
for medium sample sizes.

There exist many other combination models in the literature. Interested
readers are referred to Clemen (1989), an excellent review on this topic, and
the papers referenced there.

Consider the problem of variable selection in forecast combination. Com-
pared with classical statistical approaches, in practical business settings there
is often a somewhat different set of potential benefits and risks to consider.
The classical statistical criterion for including an individual forecast in a
combination approach is the probability that using the forecast will reduce
the error. From the business point of view, when forecasting demand for a
large number of products on a weekly basis, the expected size of the decrease
in forecast error is at least as important as important as the probability that
the decrease is real. The economic benefit of including a forecast in a com-
bination technique (measured by the forecast error) is balanced against the
risks involved - the risk that random effects in the data will result in false
signals, and the risk inherent in using historical data to forecast in a dynamic
business climate, where the past may misrepresent the future.

We propose several approaches for dealing with these issues. To address
the magnitude of the benefit of including a forecast, as well as the probabil-
ity that the benefit is real, we propose a new Economic Significance Test for
selecting which forecasts should be used. To ameliorate the impact of ran-
dom effects we constrain the combination coefficients, using constraints that
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differ from what has been done in the past. Finally, we perform simulation
tests of forecast combination methods. To test the robustness of the methods
proposed we use both dynamic and stationary environments. Whereas this
paper does simulation experiments with simulated data, a companion paper
tests these methods on an extensive data set from a large semiconductor
manufacturing company (Zhang et al 2004).

2 Our Combination Methods

The major problems to be solved in a forecast combination process are how to
choose which individual forecasts will be combined (i.e., choose a sub-model),
and how to estimate combining weights. This section will answer these two
questions. Note that these two questions are not isolated. In order to choose
the best sub-model 1, an error measurement for each sub-model is required,
which in turn is based on the estimation of combining weights for the given
sub-model. The combination process can be summarized as follows:

• Step 1: Estimation of combining weights and computation of error
measurement for all sub-models 2.

• Step 2: Sub-model selection (or variable selection).

• Step 3: Generation of combined forecasts based on the previous two
steps.

In section 2.1 we discuss the constraints that we place on the combining
weights. Section 2.2 addresses estimation of the weights. It is followed section
2.3, in which we discuss two methods for sub-model selection: The Economic
Significance Test, and Bayesian Model Averaging.

1A sub-model defines a subset of k candidate individual forecasts to use. Thus, in
total, 2k sub-models are under consideration. A forecast selection problem is essentially
to determine which sub-model is the best, or is true in some sense.

2This exhaustive enumeration approach does not work well when the number of indi-
vidual forecasts is big, because it is time-consuming. However this is not a problem for
the applications that we have in mind.
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2.1 Constraints on Combining Weights

We assume that yt = xtβ + εt or, in matrix format,

y = Xβ + ε (1)

where y is an n× 1 vector of actual demand in periods 1 . . . n, X is an n× k
forecast matrix, β is a k × 1 vector of unknown weights and ε is an n × 1
vector of errors with distribution N(0, σ2I).

As we mentioned in section 1, there is a substantial literature on using
linear inequality constraints in linear regression model. Specific constraints
that have been studied include:

• No intercept
• Non-negative weights
• Sum of weights is 1
• Lower and upper bounds on weights

As we mentioned earlier, Gunter (1992) and Aksu and Gunter (1992)
examined various combinations of linear constraints. They concluded that
constraining the weights to be non-negative was as robust and accurate as
anything, and comparable to Simple Average. In a forecasting context, Chan
et al. (1999) conclude that it is important to use the constraint that the
weights are nonnegative and sum to unity.

Considering past research, and as a result of a series of preliminary exper-
iments, we impose the linear inequality constraints on the combining weights
β described below. Intuitive reasoning to support each constraint is provided.

• Nonnegativity constraint: βi ≥ 0 ∀i. It is believed that each individual
forecast should be positively correlated with the underlying demand
model. Although positive correlation between the demand and each
individual forecast does not guarantee that the optimal weights are
non-negative, we require nonnegative combining weights.

• Unbiasedness constraint:
∑

i βi = 1. This constraint is based on the
assumption that each individual forecast is unbiased. However, this
is a rather restrictive, sometimes unrealistic, assumption. To make
the proposed combination model robust, the Unbiasedness constraint
is often relaxed to a band constraint.
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• Band constraint: 1−γ ≤
∑

i βi ≤ 1+γ. This constraint is based on the
assumption that there is some bias in the individual forecasts, but the
bias is limited. The user will use either the Unbiasedness constraint
or the Band constraint, not both. The parameter γ, 0 < γ ≤ 1 is
user-selected.

• Diversification constraint: βi ≤ 1 ∀i. This constraint is used in con-
junction with the Nonnegativity constraint and the Band constraint.
Without this constraint, it is possible for one βi to become very large
while the others are very small. This is risky because the individual
forecast with the large combining weight is likely to have experienced
a string of random under-predictions in the recent past. It is likely to
bounce back, or even to over-predict, in subsequent time periods.

Hereafter these linear constraints on β are represented by an indicator
function q(β), which takes value 1 when all constraints are satisfied, and
value 0 otherwise.

2.2 Estimation of Combining Weights

The use of Bayes’s theorem in statistical inferences has been thoroughly stud-
ied. One advantage of the Bayesian approach is that prior knowledge about
parameters of interest can be combined in a well-defined mathematical way
with information obtained from observed data. Inference in the normal linear
regression model subject to inequality constraints is one of the most common
tasks in applied econometrics. Geweke (1986) solved this problem using a
Bayesian approach. However, Geweke only considered an uninformative prior
distribution where there is very limited prior information available. Our ap-
proach is a generalization to Geweke’s.

First we present the prior and posterior distributions. Then we discuss
hyperparameter selection for the prior distribution, and finally, our estima-
tion procedures.

2.2.1 Prior and Posterior Distributions

Both for reasons of computational simplicity and for the interpretability of re-
sults, the most obvious choice for the prior distribution is a natural conjugate
distribution. In this paper, a Normal-Gamma conjugate prior distribution is
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adopted, which is the most commonly used one in Bayesian research.

Let p(β, σ) denote the prior distribution of β and σ 3. By Bayes Theorem

p(β, σ) = p(β|σ)p(σ)

where
p(β|σ) = f

(k)
N (β|µ, σ2V)

Here, f
(k)
N (β|µ, σ2V) denotes the p.d.f. of a k-variate normal distribution

with mean µ and covariance matrix σ2V. Also,

p(σ−2) = fG(σ−2|c, d)

which corresponds to a Gamma distribution with mean c/d and variance
c/d2. Thus σ has an inverse Gamma distribution, i.e.,

p(σ) = fIG(σ|v′, s′) ∝ e−
v′s′2

2σ2 (
v′s′2

2σ2
)

v′

2
+ 1

2

where v′ = 2c and s′2 = d
2c

. Therefore the joint prior distribution is

p(β, σ) = f
(k)
N (β|µ, σ2V)fIG(σ|v′, s′) (2)

∝ (σ−2)
1
2
(k+v′+1)e−

1
2σ2 [(β−µ)′V−1(β−µ)+v′s′2]

It is assumed that the error term ε in model (1) has a multi-variate
normal distribution with mean 0 and covariance matrix σ2I. Consequently,
the likelihood function is

l(y|β, σ) = f
(n)
N (y|Xβ, σ2I)

∝ σ−ne−
1

2σ2 (y−Xβ)′(y−Xβ)

= (σ−2)
1
2
(k+v)e−

1
2σ2 [(β−β̂)′X′X(β−β̂)+vs2]

where v = n−k , β̂ = (X′X)−1X′y, and s is given by vs2 = (y−Xβ̂)′(y−Xβ̂).

By Bayes Theorem again, the joint posterior distribution is given by

p(β, σ|y) ∝ p(β, σ)l(y|β, σ)

∝ (σ−2)
1
2
(k+v′+1+k+v)e−

1
2σ2 [vs2+v′s′2+(β−β̂)′X′X(β−β̂)+(β−µ)′V−1(β−µ)]

= (σ−2)
1
2
(k+v′′+1)e−

1
2σ2 [v′′s′′2+(β−µ̃)′W(β−µ̃)] (3)

3For the time being, β is unconstrained. Appropriate constraints will be applied later
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where

W = V−1 + X′X

µ̃ = W−1(X′Xβ̂ + V−1µ)

v′′ = v′ + v + k

s′′2 =
(v′s′2 + µ′V−1µ) + (vs2 + β̂′X′Xβ̂) − µ̃′Wµ̃

v′′

It is obvious that posterior distribution is of the same form as the prior
distribution. Taking the integral of p(β, σ|y) over σ, one can get the marginal
posterior distribution of β (see Appendix A for the derivation).

p(β|y) ∝
1

2
(

2

v′′s′′2 + (β − µ̃)′W(β − µ̃)
)

v′′+k
2 Γ((v′′ + k)/2)

This is a multi-variate t distribution.

2.2.2 Prior Hyperparameters

Generally, the choice of the prior hyperparameters µ, V, v′ and s′ in (2) is
not trivial in the absence of prior information. In the proposed combination
framework, it is assumed that every individual forecast is assigned equal
weight in the prior, i.e.,

µ = (
1

k
,
1

k
, . . . ,

1

k
)′

where k = dim(µ). The reason for choosing equal weights is that many empir-
ical studies provide strong support for the Simple Average method (Clemen,
1989). If there exists relatively strong prior evidence against equal weights,
other choices of µ should be considered.

Eliciting a prior covariance V is even more difficult. We adopt the con-
venient g-prior (Zellner, 1986), which corresponds to taking

V−1 = gX′X

with g > 0. The power of this g-prior approach stems from the fact that
specification of the prior covariance structure, which is typically very difficult,
is reduced to the choice of a single parameter. Consequently, µ̃ in (3) becomes

g

1 + g
µ +

1

1 + g
β̂

9



This is a convex combination of the prior mean µ and OLS estimator β̂. A
large value of g implies high prior precision and hence substantial shrinkage
toward µ. A smaller g leads to less shrinkage.

Fernandez et al. (2001) make g a function on the sample size n and the
number of regressors k and examine all candidates in an extensive simulation.
We adopt one of the functions studied in Fernandez et al. (2001), namely
g = 1

k2 in the proposed combination framework.

As for σ, a widely accepted non-informative improper prior distribution is
actually used, which is the limiting distribution of the inverse Gamma prior
in (2) when v′ → 0. The density is given by

p(σ) ∝ σ−1

This distribution is invariant under scale transformations. Thus the joint
prior (2) simplifies to

p(β, σ) ∝ (σ−2)
1
2
(k+1)e−

1
2σ2 [(β−µ)′V−1(β−µ)] (4)

If there is a group of constraints, say q(β) on β, then the prior distribu-
tion becomes proportional to p(β, σ)q(β), where p(β, σ) is defined in (2). The
derivations remain the same. Therefore, the joint posterior distribution be-
comes proportional to p(β, σ|y)q(β) and the marginal posterior distribution
of β is proportional to p(β|y)q(β). Further details on algebraic simplifica-
tions, and on how they relate to our code, are found in Appendix B.

2.2.3 Estimating The Weights

Based on the posterior distribution, there are many possible ways to estimate
the combining weights β. Two techniques are discussed here and tested in
numerical experiments later. The first one is generalized maximum likelihood
estimator (GMLE) or maximum a posteriori. Let b denote the estimate of
β. The GMLE method sets

b = argmax p(β|y)q(β) (5)

Obviously b has the interpretation of being the ”most likely” value of β,
given the prior and the observations. Note that p(β|y)q(β), the posterior
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density function of β, is a function of [(β − µ̂)′W(β − µ̂)]. Therefore this
method reduces to solving a convex quadratic minimization problem on the
feasible region defined by q(β). Fortunately there exist many well-studied
algorithms which can solve quadratic programming problems efficiently.

The other way to estimate β is to take the expectation of the posterior
distribution, which is proportional to p(β|y)q(β), i.e.,

b = E(β|y) =

∫
βp(β|y)q(β)dβ∫
p(β|y)q(β)dβ

(6)

This method is referred as EPost (Expectation of Posterior distribution).

We now argue that EPost is equivalent to minimizing the mean squared
forecasting error in the next period. To see this, suppose that b is the estimate
of β based on the first n data points. Then the combined forecast for period
n + 1 is ŷn+1 = xn+1b. Recall that the unknown actual demand in period
n + 1 is yn+1 = xn+1β + εn+1. The forecasting error in period n + 1 is
en+1 = yn+1 − ŷn+1, and the mean squared forecasting error in is

E[e2
n+1] = E[(xn+1(β − b) + εn+1)

2]

= E[(xn+1(β − E(β|y) + E(β|y) − b) + εn+1)
2]

= σ2 + [xn+1(E(β|y) − b)]2 + xn+1Cov(β)x
′

n+1

Only the second term can be influenced by the choice of b. Obviously when
b = E(β|y), E[e2

n+1] is minimized.

Because q(β) captures linear inequalities, analytical integration of p(β|y)q(β)
in (6) is usually impossible. Numerical integration is challenging when the di-
mension of β is greater than 3 or 4. Therefore importance sampling, a Monte
Carlo integration technique, is adopted to compute the posterior mean of β.
This method can be described as follows. Suppose that βi i = 1 . . . N is a
random sample from a distribution with p.d.f. I(β), called the importance
function. The support of I(β) must include the support of the posterior
density of β. Then almost surely

E(β|y) = lim
N→∞

∑N
i=1 βip(βi|y)q(βi)/I(βi)∑N
i=1 p(βi|y)q(βi)/I(βi)
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The rate of almost sure convergence depends critically on the choice of the
importance sampling density I(β). Loosely speaking, the tails of I(β) should
not decay more quickly than the tails of p(β|y)q(β). We generate the random
samples βi uniformly over the feasible region defined by q(β).

2.3 Forecast Selection

As mentioned before, the other problem that the proposed combination
framework must address is selecting which individual forecasts to combine.
Obviously no one wants to omit any potentially beneficial individual fore-
cast. However a simple model is preferred since it is easier to understand and
maintain. Also, unnecessary individual forecasts introduce additional uncer-
tainty into the combined forecast. When many forecasts are used, collinearity
among forecasts may affect the estimate of combining weights. Apparently
very limited attention has been paid to this problem in the forecast com-
bination literature, although it has been addressed in the broader statistics
literature.

In classical statistics, the variable selection problem in regression has been
thoroughly studied. The usual approach is to include an individual forecast
if the probability that using it makes the combined forecast more accurate,
exceeds a given threshold. We note that many classical statistical signifi-
cance tests do not fit naturally into the proposed combination framework.
The constraints on the combining weights β effect the posterior distribution,
invalidating critical assumptions. This is one of the reasons that we propose
a simple, new forecast selection procedure.

2.3.1 The Test of Economic Significance

In practical business settings there is often a different measure of benefit and
a different element of risk to consider. Business environments are contin-
ually changing. So a method for combining individual forecasts may see a
sharp degradation in performance when the relationship between the fore-
casts being used and the true demand shifts. When the business environment
does not change, the classical statistical criterion for including an individual
forecast is the probability that its inclusion will reduce the error. From the
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business point of view, the size of the decrease in error is at least as im-
portant as the probability that the decrease is real. The trade-off between
benefit and risk associated with each individual forecast should reflect both
the expected decrease in forecast error that the forecast is capable of deliv-
ering, and the risk associated with using the forecast in both stationary and
dynamic business climates.

One of the research goals is to find a systematic way to determine which
individual forecasts should be combined and which should not, reflecting the
considerations described above. To this end we propose a new significance
test, named the ”economic significance test”, in contrast to the regular sta-
tistical significance test.

Each one of those k individual forecasts may or may not be used in the
final combination. There are a total of 2k −1 different subsets of the individ-
ual forecasts to consider. For the applications we have in mind k is unlikely
to be greater than 5 or 6, so total enumeration of the 2k subsets is man-
ageable. The proposed economic significance test considers all subsets one
by one. For each one, the estimate of β is obtained using one of estimation
methods discussed before. Note that some elements of the estimate of β are
constrained to be zero because the corresponding individual forecasts are not
used in the combination. For each subset, after β has been estimated, the
in-sample squared forecast error is calculated.

Let S be one of the 2k − 1 non-empty subsets of individual forecasts, and
let i ∈ S. Individual forecast i is economically significant in S if

ERRS−i
− ERRS

ERRS

> α (7)

where

• ERRS is the in-sample squared error associated with subset S,

• S−i is the subset where the ith forecast is dropped from S, and

• α is a pre-determined economical significance threshold.

Intuitively, given a subset S, an individual forecast is economically significant
if its presence in the combination can reduce the in-sample forecast error by
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more than a certain percentage. Otherwise we conclude that it is not wise
to include this forecast because the benefit of using it is too low to offset the
risk associated with using it.

A subset S of individual forecasts is admissible if all forecasts in S are
economically significant in S. Singleton sets are automatically admissible.
The economic significance test algorithm enumerates the non-empty subsets
S of the individual forecasts, identifies the admissible ones, and selects the
admissible subset with the smallest in-sample squared forecast error.

The economic significance test differs from one classical model selection
method, the Schwarz Information Criteria (SIC), in following senses:

• The threshould α is flexible and has actual business meanings. In
contrast, it is implicitly determined by sample size in SIC.

• Economic significance does not apply a dimension penalty when com-
paring admissible subsets.

• Other measurements, besides the in-sample squared error, can be used
in the economic significance test.4

2.3.2 Bayesian Model Averaging

There is another way to tackle the model selection problem. Both the classic
statistical approach and the the economic significant test described before
only choose one single sub-model from 2k − 1 candidates. To what extent
is one confident in that sub-model? Model risk is present, and basing in-
ferences on a single sub-model might be risky. The Bayesian approach to
this problem is conceptually straightforward: model selection is treated as
a further parameter which lies in the model space. In addition to select-
ing priors for the weights β and the error variance σ, we select a prior for
the sub-models themselves. Bayesian inference can be conducted in the usual
way, with one level (the prior on the sub-model space) added to the hierarchy.

Bayesian model averaging (BMA) takes a weighted average of the weights
for each sub-model, using the posterior probabilities as weights. Min and

4We tried using the out-of-sample squared error rather than the in-sample error, but
the in-sample error worked better.
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Zeller [18] show that such mixing over models minimizes the expected pre-
dictive squared error loss, provided that the set of models under consideration
is exhaustive. Also see Leamer [16].

BMA solves the variable selection problem as follows. Suppose that
M1, . . . ,MK are the models under consideration. For each model Mj, θj =
(βj, σj) consists of weights βj and the error variance σj. One selects a
prior probability π(Mj) that model Mj is selected, and a prior distribu-
tion p(θj|Mj) on the parameter vector θj for model Mj. Then the posterior
probability of model Mj, given data y, is

p(Mj|y) =
f(y|Mj)π(Mj)∑
j f(y|Mj)π(Mj)

(8)

where
f(y|Mj) =

∫
f(y|θj,Mj)p(θj|Mj)dθj (9)

is the integrated likelihood function of model Mj. If ∆ is the quantity of
interest, and if ∆j = E(∆|Mj,y) is the estimate of ∆ obtained from model
Mj, then the BMA estimate of ∆ is

∆ =
∑
j

∆jp(Mj|y) (10)

We assume that there is no useful prior information, and assign equal
prior probabilities to each model (π(Mj) = 1

2k
−1

). If prior information is

available, it can be captured by adjusting π(Mj). Recall that θj = (βj, σj).
Setting σ to σj and βj to the appropriate subset of [β1, β2, . . . , βk] for model
j, (4) becomes

p(θj|Mj) = Cj{σ
−(kj+1)e−

1
2σ2 (βj

−µ)′V−1(βj
−µ)q(βj)

where kj = dim(βj) and

Cj =
1∫

σ−(kj+1)e−
1

2σ2 (βj
−µ)′V−1(βj

−µ)q(βj)dσdβj
(11)

The likelihood function, given θj and Mj, is

f(y|θj,Mj) = f
(n)
N (y|Xjβj, σ2I)
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Therefore,

f(y|Mj) = Cj(2π)−
n
2

∫
σ−(n+kj+1)e−

1
2σ2 [(βj

−µ)′V−1(βj
−µ)+(y−Xβ)′(y−Xβ))]q(βj)dβjdσ

It is impossible to get f(y|Mj) analytically because of the presence of q(β).
We turn to the importance sampling method again to compute the integral
numerically. Similarly, Cj can be calculated numerically as well by applying
the importance sampling technique to the integral in (11). In this manner
one is able to obtain the posterior model probability p(Mj|y) as given in (8),
and the BMA combined forecast as in (10).

3 Computational Experiments

The primary goal of the following numerical experiments is to test the per-
formance of our combination methods, along with other methods from the
literature. Four methods are derived from the previously proposed combi-
nation framework. Epost(BMA) estimates combining weights by taking the
expectation of the posterior, and selects forecasts using the BMA approach.
GMLE(ES) estimates weights using maximum likelihood and forecasts us-
ing economic significance. EPost(ES) and GMLE(BMA) are similarly de-
fined. All of them exhibit very similar performance. We show results from
Epost(BMA) because it is usually the best of the four, and from GMLE(ES)
because it is the fastest5. Four other popular combination methods are tested:
Simple Average (SA), Ordinary Least Squares (OLS), Outperformance (Out-
per) and Optimal (Minimum Variance).

3.1 Data Generation Process

In the experiments we use randomly generated data. Computer-generated
data is easier to understand and to manipulate, and enables sensitivity anal-
ysis. Recall that in time period n, we assume yn = xnβ + εn. Forecast
vectors xn are drawn from a multi-variate normal distribution N(µ, Σ), and
the error εn is drawn from N(0, σ2). The parameters to be specified are the

5Average running time to generate a combined forecast is about 2.5 seconds for the
EPost-based methods, and 1.5 seconds for the MLE-based methods, on a good PC.
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true weights β, the mean of individual forecasts µ, the covariance matrix of
individual forecasts Σ, and the variance of the error term σ2.

There are two rounds of computational experiments. In the first round we
test performance in a stationary environment. The second round is designed
to examine the effect of an undetected shift in forecast characteristics. Shifts
might occur for a variety of reasons. Consider the following scenarios:

1. An unanticipated competitor aggressively enters the market.

2. A sales forecaster modifies his forecasting technique or adopts a new
one.

In both scenarios historical data on may not reflect current conditions, poten-
tially impacting the statistical properties of the forecasts. In our experiments,
there is a pre-specified change point. Different sets of parameters are used
before and after the change point.

3.2 Experiments on Stationary Data

In the experiments on stationary data a Base case is studied first. The
performance of each combination method is measured by its Mean Squared
Forecast Error (MSFE). Suppose that at the beginning of period n + 1, the
estimate of β is b. The out-of-sample forecast error is xn+1(β − b) + εn+1.
The MSFE is given as

E[xn+1(β − b) + εn+1]
2 = (β − b)′Σ(β − b) + σ2 + ((β − b)′µ)2

Since the historical data is computer-generated, β, Σ and σ2 are known.
The smallest possible out-of-sample MSFE is σ2 (attained by estimating β
perfectly). To obtain a unitless measure with intuitive meaning, we define
the MSFE by the MSFE of a perfect forecast (with b = β). Thus, the Mean
Squared Forecast Error Ratio(MSFER) is

(β − b)′Σ(β − b) + σ2 + ((β − b)′µ)2

σ2

There are three individual forecasts in the Base Case. They are unbiased,
have similar variance, and are slightly correlated. The parameters are:
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• true weights β = [ 7
14

, 5
14

, 2
14

]′

• mean forecast µ = [700, 700, 700]

• variance of individual forecasts 3002 ∗ [φ1, φ2, φ3] where φi is randomly
generated using φi ∼ U(0.85, 1.15).

• correlation among individual forecasts [ρ12, ρ13, ρ23] where ρij is ran-
domly generated according to ρij ∼ U(0, 1

3
) 1 ≤ i 6= j ≤ 3.

• residual uncertainty 6 σ2

σ2+β′Σβ
= 0.3

Demand and individual forecast data for up to 36 historical time periods is
generated and fed into the combination methods.

A good forecast combination method is expected to perform well across
all scenarios of demand and forecasts. Therefore more cases are generated
by changing the parameters of the Base case (β, Σ, σ, etc), to test all com-
bination methods. To limit the dimensionality of the search space and test
sensitivity, only one parameter is perturbed at a time. For example, in the
HeterCor case, only the correlations among individual forecasts are different
from the Base case. Other parameters are unchanged. Table 1 summarizes
all 8 cases tested in the experiments and their differences from the Base case.

Table 2 presents the MSFER of all combination methods and of the best
individual forecast, averaged over all cases listed in Table 1. For each case
2500 different historical data sets are generated and tested. After every 25
data sets, a new group of parameters φi, ρij is randomly drawn. The number
25 is chosen so that the standard deviation of the sample mean of these 25
instances is within 5% of the mean. T is the number of historical time periods
used to estimate the combining weights β. It starts from 6 and goes up to 36.

Table 2 clearly shows that combination does improve forecast accuracy.
Each combined forecast is much more accurate than the best individual fore-
cast and the improvement grows as more periods of historical data are used.
However the gain is marginal more than 24 time periods are used. Among

6The residual uncertainty is defined as the ratio between the variance of ε and the
variance of demand. It is the portion of the demand variance that can not be eliminated,
no matter how well one forecasts.
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Table 1: Summary of Cases in Computational Experiments on Stationary
Data

Case Difference from the Base case

Base NA
HeterCor ρ12 ∼ U(0, 1

3), ρ13 ∼ U(1
3 , 2

3), ρ23 ∼ U(2
3 , 1)

HighCor ρ12 ∼ U(2
3 , 1), ρ13 ∼ U(2

3 , 1), ρ23 ∼ U(2
3 , 1)

HeterBeta β = [23 , 1
4 , 1

12 ]
ZeroBeta β = [23 , 1

3 , 0]

Ratio=0.2 σ2

σ2+β′Σβ
= 0.2

Ratio=0.4 σ2

σ2+β′Σβ
= 0.4

HeterVar φi ∼ U(0.4, 1.6), 1 ≤ i ≤ 3

Table 2: Mean (Standard Deviation) of MSFER in All Cases
Methods T = 6 T = 12 T = 18 T = 24 T = 30 T = 36
EPost(ES) 1.52 (0.55) 1.26 (0.27) 1.17 (0.16) 1.13 (0.12) 1.10 (0.09) 1.09 (0.07)
Epost(BMA) 1.48 (0.50) 1.27 (0.28) 1.18 (0.17) 1.13 (0.12) 1.10 (0.09) 1.09 (0.08)
GMLE(ES) 1.59 (0.63) 1.27 (0.28) 1.17 (0.16) 1.13 (0.12) 1.10 (0.09) 1.09 (0.07)
GMLE(BMA) 1.57 (0.58) 1.29 (0.31) 1.19 (0.18) 1.13 (0.13) 1.11 (0.10) 1.09 (0.08)
SA 1.32 (0.23) 1.32 (0.23) 1.32 (0.23) 1.32 (0.23) 1.32 (0.23) 1.32 (0.23)
OLS 2.37 (3.39) 1.36 (0.40) 1.21 (0.20) 1.14 (0.13) 1.11 (0.10) 1.09 (0.08)
Outper. 1.46 (0.56) 1.29 (0.34) 1.23 (0.26) 1.20 (0.22) 1.18 (0.19) 1.17 (0.17)
Optimal 2.02 (2.77) 1.25 (0.33) 1.14 (0.17) 1.10 (0.11) 1.08 (0.08) 1.06 (0.07)
Best Single 2.12 (0.78) 2.12 (0.78) 2.12 (0.78) 2.12 (0.78) 2.12 (0.78) 2.12 (0.78)

the combination methods, Simple Average (SA) is the most accurate when
we only use very recent historical data (T=6). As more historical data is
available, Optimal becomes the best. All of our methods perform similarly.
They do not dominate, but they are clearly robust. For most T ’s they are
second best. For small amounts of historical data Epost is slightly better
than GMLE, and both Optimal and OLS perform poorly.

We now turn to sensitivity analysis with respect to the parameters (β,
Σ, σ, etc). Figure 1 illustrates the impact of correlation among individual
forecasts on the performance of combination methods. It shows 3 different
cases, with an increasing degree of correlation, and with 12 and 24 time pe-
riods of historical data. Only the most interesting combination methods are
included. Correlation among individual forecasts dramatically improves the
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performance of Simple Average and Outperformance, substantially improves
the performance of Epost(BMA) and GMLE(ES), and has virtually no im-
pact on Optimal. Simple Average and Outperformance perform very well
when there is strong positive correlation among individual forecasts, espe-
cially when historical data is limited.

As Figure 2 shows, the structure of the true weights β has a great impact
on Simple Average and Outperformance. As the true weights become more
unbalanced, the performance of SA and Outperformance suffers dramaticaly.
Simple Average and Outperformance are very risky when forecasts of dubious
value are used. Epost(BMA), GMLE(ES) and Optimal are robust to the true
weights’ structure. Figure 3 illustrates how the residual uncertainty affects
performance. SA and Outperformance get much better when the residual
uncertainty increases, and they get much worse when it goes down. So do
our methods, but the changes are small. Again,Optimal is insensitive to the
ratio. The variance structure of individual forecasts has no significant impact
on the performance of the different methods.

In summary, combination does improve accuracy. The methods proposed
by the authors are the most robust ones. Simple Average and Outperfor-
mance do very well with small amounts of data and when forecast correla-
tion is high, but they perform very poorly when the true weights are far from
uniform and when the residual uncertainty is low. OLS and Optimal beat
our methods by a small margin when sufficient data is available, but they
require much more historical data to calibrate. This causes problems with
highly the skewed demands and short product life spans that characterize
the semiconductor industry.

3.3 Experiments on Non-stationary Data

The motivation behind the experiments on non-stationary data is that pa-
rameters β, Σ and σ in model (1) can change as the business context changes.
A structural change is simulated as follows. Two different cases are randomly
selected from those candidates listed in Table 1. A set of parameters is cre-
ated for the first case, and demand and individual forecast data for periods
1-30 are generated based on these parameters. From the second case we gen-
erate parameters and data for periods 31-54. Since the change occurs in time

20



1.00

1.10

1.20

1.30

1.40

1.50

MSFER (T=12)

Epost(BMA) 1.32 1.22 1.14

GMLE(ES. ) 1.30 1.23 1.19

SA 1.25 1.12 1.03

Out. 1.30 1.14 1.04

Optimal 1.26 1.26 1.25

Single Best 2.51 1.68 1.18

Base HeterCor HighCor

1.00

1.10

1.20

1.30

1.40

1.50

MSFER (T=24)
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Optimal 1.10 1.10 1.09
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Figure 1: Impact of Correlation Among Individual Forecasts
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Figure 2: Impact of True Weights
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Figure 3: Impact of the Residual Uncertainty Ratio
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period 30 and the most recent 24 periods are used as historical, a mixture
of pre-change and post-change data is used when one estimates combining
weights for time periods from 31 through 53. As in the stationary data ex-
periments, 2500 data sets are generated. After every 25 data sets, a new pair
of cases is randomly picked.

1

1.2

1.4

1.6

1.8

2

2.2

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

EPost(BMA) GMLE(ES. )   SA OLS Out. Optimal

Figure 4: Evoution of SMFER over Time, for Non-Stationary Data

Figure 47 shows that how different combination methods respond after the
structural change. An ideal method will converge quickly to its last value. As
expected, both OLS and Optimal require more data to converge and produce
relatively bad forecasts during the early transition periods. SA and Outper-
formance demonstrate good adaptability to structural change in early peri-
ods, but they converge to higher MSFER’s. Epost(BMA) and GMLE(ES)
have better performance than OLS and Optimal in early periods and con-
verge to a low MSFER.

7Only a subset of the combination methods is included.
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4 Conclusions

The purpose of this paper is to explore the improvement of forecast accu-
racy by combining multiple forecasts. Based on a Bayesian combination
framework, four new forecast combination methods are proposed. Compu-
tational experiments are conducted in both stationary and non-stationary
environments. Combined forecasts are clearly superior to individual ones.
The combination methods proposed by the authors exhibit the most stable
and satisfactory performance in the scenarios tested, compared to other com-
monly used combination methods. OLS and Optimal require more historical
data to calibrate, but they perform slightly better when they lots of rep-
resentative data. Simple Average and Outperformance are very effective in
certain settings, and perform very poorly in others (see the last paragraph
of section 3.2). In Zhang et al (2004) we test these methods on a large data
set from a major semiconductor manufacturer.
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A Derivation of posterior distribution

The marginal posterior distribution of β is given by

p(β|y) ∝
∫

∞

0
(σ−2)

v′′+r+1
2 e−

1
2σ2 [v′′s′′2+(β−µ̂)′W(β−µ̂)]dσ

Let z = σ−2. Then

p(β|y) ∝
∫

∞

0

1

2
z

v′′+r−2
2 e−

v′′s′′2+(β−µ̂)′W(β−µ̂)
2

zdz

Since
∫
∞

0 zα−1e−z/γdz = γαΓ(α),

p(β|y) ∝
1

2
(

2

v′′s′′2 + (β − µ̂)′W(β − µ̂)
)

v′′+r−2
2 Γ(v′′ + r)

B Notes on Simplification and Computation

In this section of the appendix we present some of the algebraic simplifications
that we found to be useful in developing computer code for these methods.
Recall that in section 2.2.2 we assume that p(σ) ∝ σ−1, an improper distri-
bution. In light of the definition of p(σ) two lines before equation (2), this is
tantamount to letting v′ → 0 and v′s′2 → 0. Thus equation (2) simplifies to
(4). We also note that in section 2.2.1 the following simplifications arise:

V−1 = gX′X

W = (g + 1)X′X

µ̃ =
1

1 + g
[gµ + β̂]

v′′ = n

Applying (4) we can now express (3) as

p(β, σ|y) ∝ (σ−2)
1
2
(2k+v+1)e−

1
2σ2 [(β−µ)′V−1(β−µ)+(β−β̂)′X′X(β−β̂)+vs2] (12)

which is the limit of the middle line of (3) as v′ tends to zero. The term in
brackets is key. The paper simplifies it as v′′s′′2 + (β − µ̃)′W(β − µ̃). We
claim that

v′′s′′2 + (β − µ̃)′W(β − µ̃) = (y−Xβ)′(y−Xβ) + (β − µ)′V−1(β − µ) (13)
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We use (13) in computation. The proof of (13) is algebraic, starting from
the exponent in (12) and applying the definition of s.

Consider the last equation of section 2.2.3, the basis for computing the
mean of the posterior distribution of the weights via Monte-Carlo integration.
In our code we only generate points for which q(βi) = 1. Also, we use the
uniform distribution, so I(βi) is independent of βi. Both terms cancel in the
ratio. The formula for p(βi|y) is the last equation of section 2.2.1. Note that
the Gamma term and the 1

2
in this equation are independent of βi, so they

will also cancel in the ratio. Finally, we apply (13), so

p(β|y) ∝ [(y − Xβ)′(y − Xβ) + (β − µ)′V−1(β − µ)]−
n+k

2

In the code, the i-th element of tt is this expression, evaluated for the the i-th
randomly generated β vector. The i-th element of AA is the corresponding
(y − Xβ)′(y − Xβ) term, and the i-th element of BB is the corresponding
(y − Xβ)′(y − Xβ) term.
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