
Improving FPGA Design Robustness with Partial

TMR
Brian Pratt, Michael Caffrey, Paul Graham, Keith Morgan, Michael Wirthlin

Abstract— This paper describes an efficient approach of ap-
plying mitigation to an FPGA design to protect against Single
Event Upsets (SEUs). This approach applies mitigation selectively
to FPGA circuit structures depending on the importance of
structure within the design. Higher priority is given to structures
causing “persistent” errors within the design. For certain appli-
cations, applying partial mitigation to the persistent components
can provide higher returns in reliability for the investment in
mitigation cost than full mitigation. A software tool is also
introduced which automatically classifies circuit structures based
on this concept and applies Triple Modular Redundancy (TMR)
selectively based on the classification of the circuit structure.

Index Terms— SEU, FPGA, TMR, persistence, error propaga-
tion, simulator, radiation, selective mitigation

I. INTRODUCTION

FPGAs are an increasingly attractive solution for space

systems. They perform well in high-throughput signal pro-

cessing applications often used in space. Furthermore, their

programmability allows in-field application adjustments.

Unfortunately, FPGAs are susceptible to radiation-induced

Single-Event Upsets (SEU). Since FPGAs store their con-

figuration in an SRAM-like configuration memory, an SEU

can actually alter the desired configuration. As such, FPGAs

destined for a radiation environment must employ a form of

SEU mitigation to insure reliable operation [1]–[3].

SEU sensitivity in the configuration memory can be miti-

gated through techniques such as Triple Modular Redundancy

(TMR) [1], [2]. These mitigation strategies offer tremendous

improvements in reliability, but are often expensive in terms of

FPGA resource utilization, power consumption, etc. [1], [4].

We seek new ways to offer acceptable levels of reliability at

much lower costs.

One way to reduce the cost of mitigation is to apply

mitigation selectively on a sub-set of an FPGA design. By

selectively applying design mitigation, the designer can trade

off the improvements in reliability with the cost of design

mitigation. In this paper we will show that applying TMR to

a subset of the user design allows the designer to make this

trade-off. Applying TMR selectively to a user design is called

“Partial TMR”. This paper introduces a tool for automatically

This work was supported by the Department of Energy at Los Alamos
National Laboratory. Approved for public release under LA-UR-05-6882;
distribution is unlimited.

B. Pratt and K. Morgan are with both Los Alamos National Laboratory
and Brigham Young University.

P. Graham and M. Caffrey are with Los Alamos National Laboratory, Los
Alamos, NM.

M. Wirthlin is with the Department of Electrical and Computer Engineering,
Brigham Young University, Provo, UT.

applying TMR selectively and reports on the improvements in

reliability obtained from this tool.

II. FPGA SINGLE EVENT EFFECTS

Much like SRAM and DRAM memory, programmable

FPGAs contain a large number of memory cells susceptible

to radiation-induced upset. Within FPGAs, the vast majority

of memory cells are devoted to the configuration memory.

Configuration memory upsets are particularly troublesome as

they may change the operation of the circuit within the device.

Upsets within the configuration memory may alter the function

of the configurable logic, routing network, I/O, or other FPGA

resources.

One technique used to reduce the effects of upsets within

the configuration memory is called configuration scrubbing

[5]. Configuration scrubbing involves the continual reading

and evaluation of the FPGA configuration memory contents.

If a fault is found in the configuration memory, the FPGA

configuration is repaired by reloading the correct configuration

information back into the FPGA. Configuration scrubbing

prevents the build-up of configuration faults and significantly

reduces the time in which an invalid circuit configuration is

allowed to operate.

A. FPGA Design Sensitivity

Although a modern FPGA contains a large amount of

configuration cells, not all of the configuration memory cells

affect behavior of the design. A configuration memory cell

that impacts the behavior of a particular design is called a

sensitive configuration bit. The set of sensitive configuration

bits is unique for each design and depends on the logic, I/O,

routing, and other FPGA resources used by the given design.

In a previous effort, we developed a fault injection tool

that identifies the sensitive configuration bits of the device

for any given FPGA design [6], [7]. The tool operates by

artificially injecting faults within the configuration bitstream

and monitoring the behavior of the device. By comparing the

behavior of the device under test against a golden device, we

can determine when the device behavior changes. By testing

every configuration bit of the device, a detailed sensitivity

profile of a given design can be created.

This fault injection tool has been used to characterize the

sensitivity of many FPGA designs. A sample of these results

is shown in Table I. For each design tested, the table provides

the utilization (in logic slices and percentage) and the number

of sensitive configuration bits. In addition, it provides an

Pratt 1 MAPLD2005/202



DSP Kernel

FPGA Layout Sensitive Bits Persistent Bits

Fig. 1. The diagram on the left is a screen capture of the layout of the DSP Kernel design. The center and right diagrams are graphical representations of
the portion of the DSP Kernel design layout which correspond to the sensitive and persistent bits respectively.

Synthetic Design

FPGA Layout Sensitive Bits Persistent Bits

Fig. 2. The diagram on the left is a screen capture of the layout of the Synthetic design. The center and right diagrams are graphical representations of the
portion of the Synthetic design layout which correspond to the sensitive and persistent bits respectively.

overall “sensitivity” measure that indicates the percentage

of configuration bits that are sensitive in the design. It is

important to note that the configuration sensitivity is design

dependent and must be characterized on a design by design

basis.

Design Utilization Sensitive Persistent
(Slices) Bits Bits

DSP Kernel 5, 746 (46.8%) 575, 448 (9.9%) 13, 841 (0.24%)

Synthetic 2, 538 (20.6%) 189, 835 (3.3%) 77, 159 (1.3%)

Multiplier 10, 305 (83.9%) 550, 228 (9.5%) 0 (0%)

Counter 2, 151 (17.5%) 201, 691 (3.5%) 108, 750 (1.9%)

TABLE I

CONFIGURATION SENSITIVITY AND PERSISTENCE FOR SEVERAL

DESIGNS.

Figures 1 and 2 visually demonstrate the concept of config-

uration sensitivity for two different FPGA designs. The first

design (Figure 1) is a digital signal processing (DSP) kernel

developed at Los Alamos National Laboratory. The second

design (Figure 2) is a synthetic design made from feedback

shift registers (LFSRs) that feed an array of multipliers and

adders.

The left most figure for both design representations is a

depiction of the logic resources used by the design. This was

obtained by taking a screen capture of the fpga editor re-

source editor provided by the manufacturer. The middle figure

is a plot of the sensitive configuration bits within the device.

Points marked in this plot indicate a sensitive configuration

bit. Note the correspondence between the resource utilization

and sensitivity map. As expected, sensitive configuration bits

are located in areas where the FPGA device is utilized.

III. CLASSIFICATION OF SENSITIVE CONFIGURATION BITS

To successfully pursue partial mitigation techniques, we

need a method of more finely categorizing or ranking the

sensitive configuration bits. Since mitigation techniques will

be applied to only a subset of the circuit, only a subset of the

corresponding sensitive configuration bits will be addressed.

To maximize the benefit of partial mitigation techniques,

the importance of the all circuit structures will be ranked

and mitigation will be applied to the most important circuit

structures in the design. This section will describe a method

for characterizing the sensitive configuration bits into two

categories. We will use this classification to direct our partial

mitigation strategy.

A. Persistent Configuration Upsets

In [8] and [9] we introduced a new way to categorize

the sensitive configuration bits by separating them into two

categories called “persistent” and “non-persistent”. A non-

persistent configuration bit is a sensitive configuration bit

that will cause a design fault when upset through radiation.

This will introduce functional errors. When the non-persistent

Pratt 2 MAPLD2005/202



configuration bit is repaired through configuration scrubbing,

however, the design returns to normal operation. Eventually

all previously induced functional errors will disappear. No

additional intervention is required to return the circuit to

normal functionality.

A persistent configuration bit is also a sensitive configu-

ration bit that will cause a design fault when upset. How-

ever, even after repairing persistent configuration bits through

configuration scrubbing, the FPGA circuit does not return

to normal operation. Persistent configuration upsets introduce

functional errors which persist after the bit is repaired through

scrubbing. Persistent upsets put the design into an incorrect

state that cannot self-restore. In this case, a global reset

is needed to return the circuit to proper state, or normal

operation. This global reset takes the circuit offline for the

time needed to reset the circuit and start up in normal operating

mode.

The differing behavior of the two types of sensitive config-

uration bits can be seen in the plots of Figure 3. Each figure

plots the arithmetic difference of the output signal between

the Design Under Test (DUT) and a golden circuit design

as captured by our fault injection simulation environment.

When the two circuits are operating correctly, the arithmetic

difference is zero. When one of the circuits has functional

errors, the arithmetic difference is non-zero.

The left figure demonstrates the behavior of non-persistent

configuration upsets. After an upset, the difference between

the two circuits is non-zero. The output of the corrupted

design is incorrect. Once repaired through scrubbing, the

difference returns to zero. The corrupted circuit returns to

normal behavior.

The right figure demonstrates the behavior of persistent con-

figuration upsets. Almost immediately after the configuration

upset, the arithmetic difference is non-zero. The outputs of

the DUT and golden circuits do not match. In this case, even

after the upset bit is repaired through scrubbing, the corrupted

circuit continues to generate incorrect output. In other words,

the circuit fails to return to normal operation. Only a system

reset will restore the circuit to a proper state.

Sensitive Upset Persistent Upset

Fig. 3. The left and right plots show the delta between the outputs of a
DUT and golden circuit before, during and after a sensitive and persistent
upset respectively.

The fault injection tool of [7] was augmented to measure

configuration persistence. The tool begins by determining

the sensitive configuration bits within the design. Once the

sensitive configuration bits are identified, the tool performs

additional tests to identify the subset of sensitive configuration

bits that are also persistent configuration bits. Table I lists

the configuration persistence for several designs tested within

the fault injection framework. In some designs, the persistent

component is a major portion of the design (i.e. synthetic)

while the persistence in other designs is relatively small (i.e.

multiplier). The persistence of two designs can be seen visually

in the right-most plot of Figure 1 and Figure 2. In general, the

persistent configuration bits represent a small fraction of the

overall configuration bits within the device.

B. Persistent Circuit Structures

The circuit structures that correspond to persistent configu-

ration bits can be identified statically by analyzing the structure

of the circuit netlist. Specifically, circuit primitives that are

part of feedback structures within the design contribute to

the persistent error behavior. If a circuit fault occurs within a

feedback structure, the incorrect values produced by the faulty

circuit are propagated into the feedback state. Once the state

of the feedback circuit has been corrupted, the circuit will not

behave correctly until the circuit state has been reinitialized

with a global reset. Although configuration scrubbing will

repair the faulty circuit, it will not restore the proper circuit

state.

The schematics in Figure 4 illustrate the major subsections

of a simple circuit that may cause persistent configuration

faults. Figure 4(a) highlights a feedback structure of a sample

design. An upset within this feedback structure will indefi-

nitely propagate incorrect values within the state flip flops.

Upsets within the logic feeding into feedback structures will

also cause persistent configuration faults (see Figure 4 (b)).

Logic calculations made in these feedback input structures

contribute to the state values within the feedback structure

circuit. Upsets within logic structures driven by a feedback

structure or that operate independently of feedback do not

cause persistent faults (see Figure 4 (c)). To maximize the

benefits of partial mitigation, redundancy should be added for

circuits highlighted in Figure 4 (a) and (b) before addressing

the circuits of Figure 4 (c).

IV. PARTIAL MITIGATION

SEU mitigation is essential to ensure absolute reliable

operation of FPGA devices in a radiation environment. Triple

Modular Redundancy is one of the common methods of

SEU mitigation. It has been shown to greatly reduce the

dynamic cross section of an FPGA design and, when combined

with bitstream scrubbing, virtually eliminate the configuration

bitstream from SEU susceptibility [1], [2]. TMR can greatly

decrease the downtime of the circuit in radiation environments.

Full mitigation of an FPGA design using techniques such

as TMR, however, is costly in terms of FPGA resource

utilization, power consumption, and circuit performance. Many

user designs, in fact, cannot be mitigated with full TMR due

to the more than 3× increase in design resource utilization.

An attractive alternative to full mitigation is to mitigate

only the most critical sections of a design. This reduces

mitigation costs while efficiently reducing circuit downtime

Pratt 3 MAPLD2005/202



(a)

(b)

(c)

Fig. 4. A simple representation of a circuit with different sections highlighted
(a) The feedback section (b) The input to the feedback section (c) The feed-
forward logic section

[3]. By selectively applying mitigation to a design, one can find

the most effective balance of mitigation cost and reliability.

A. Partial Mitigation With Respect to Persistence

We can leverage the concept of persistence, discussed

in Section III, to efficiently apply partial mitigation to an

FPGA design. Since a persistent upset causes a permanent

interruption in service, we would like to first apply mitigation

to persistent circuit components. A non-persistent upset simply

causes a temporary service interruption, thus non-persistent

circuit structures are a lower mitigation priority.

A partial mitigation strategy based on the concept of

persistence should rank the different structures of a circuit

by their contribution to the persistence of a design. The

more critical sections of a design should be mitigated first,

with those of lower priority following as constraints allow.

Referring back to Figure 4, the feedback structures of the

design should be mitigated first. Any logic feeding into the

feedback structures should follow, since these contribute to

the state of the design and thus the persistence. The feed-

forward logic—the non-persistent circuit components—does

not contribute to the persistence of a design and should be

mitigated last.

It must be made clear that only certain FPGA applications

are candidates for partial mitigation, as the non-persistent por-

tion of the sensitive configuration bits remains after mitigation.

The output of the system may be incorrect after an SEU in the

remaining set of unmitigated bits. However, applications that

can tolerate this data-loss stand to realize tremendous gains in

Mean Time Between Failure (MTBF).

Even an application that can tolerate temporary data-loss

will still fail after all persistent upsets. As discussed in

Section III, these upsets cause the circuit to enter an incorrect

state, which will not self-correct, even after configuration

scrubbing. However, these tolerant circuits may take advantage

of incremental partial mitigation, starting with the persistent

circuit structures. Valuable circuit resources are utilized to first

eliminate failure. In Section V we will show that, in some

cases, non-linear improvements in MTBF can be achieved at

a linear cost.

B. BYU-LANL Partial TMR Tool

In cooperation with Los Alamos National Laboratory

(LANL), a software tool was developed at Brigham Young

University (BYU) to automatically apply partial mitigation on

any EDIF-format design.The BYU-LANL Triple Modular Re-

dundancy (BLTmr) tool uses TMR and the concepts presented

in this paper to increase the uptime of the design with minimal

user intervention.

Fig. 5. Basic flow of the BYU-LANL Partial TMR (BLTmr) tool.

Figure 5 shows the basic flow of the BYU-LANL Partial

TMR (BLTmr) tool. The tool first parses the input EDIF file(s)

into a netlist data structure. The data structure is analyzed

to identify feedback structures by searching for strongly con-

nected graph components. Once all feedback structures are

identified, the feedback input, and feedback output structures

are identified and classified. These circuit classes are separated

for later analysis by the BLTmr tool.

The BLTmr tool uses this information to select circuit struc-

tures for triplication. Based on the user constraints, the BLTmr

tool will select as much of the feedback, feedback input, and

output logic as possible. Once the triplicated circuit elements

are selected, the tool determines where in the design to insert

the voters necessary to support TMR. The newly constructed

circuit, which has the same functionality of the original, is

then written out in EDIF format. The new circuit structure

can then mapped to the corresponding FPGA technology.

Our tool follows the basic decision-making process de-

scribed in Section IV-A, prioritizing the application of TMR

based on a circuit component’s contribution to design persis-

tence. The feedback structures of a design are of the most

concern and thus are triplicated first. If resources allow, TMR

is applied to the input to the feedback to further reduce

persistence. Finally, mitigation is applied to the non-persistent

circuit structures to reduce the remaining design sensitivity.

Pratt 4 MAPLD2005/202



Slices Utilization Sensitive Sensitivity Persistent Persistence
Design BLTmr Level Bits Bits

Unmitigated 5, 746 46.8% 575, 448 9.9% 13, 841 0.24%

DSP Feedback 7, 276 59.2% 572, 605 9.9% 5, 074 0.087%

Kernel Feedback &
design Input to FB 8, 036 65.4% 569, 700 9.8% 152 0.0026%

Max TMR† 11, 114 90.4% 556, 062 9.6% 154 0.0027%

Unmitigated 2, 538 20.7% 189, 835 3.3% 77, 159 1.3%

Synthetic Feedback 9, 867 80.3% 125, 017 2.2% 804 0.014%

design Feedback &
Input to FB 9, 867 80.3% 125, 017 2.2% 804 0.014%

Full TMR‡ 11, 961 97.3% 20, 256 0.3% 671 0.012%

TABLE II
MEASUREMENTS OF THE SENSITIVITY AND PERSISTENCE OF THE DSP KERNEL AND SYNTHETIC DESIGNS. THE XILINX XCV1000 CONTAINS 12, 288

SLICES AND 5, 810, 048 CONFIGURATION BITS.

† FULL TMR COULD NOT BE APPLIED DUE TO FPGA RESOURCE CONSTRAINTS.
‡ “FULL” TMR HERE DOES NOT INCLUDE TRIPLICATION OF THE CLOCK AND OUTPUT SIGNALS.

V. EXPERIMENTAL RESULTS

As a verification of our partial TMR tool, we used the

tool in various configurations on two FPGA designs. The first

is a digital signal processing (DSP) kernel developed at Los

Alamos National Laboratory. The second is a synthetic design

made up of linear feedback shift registers (LFSRs) that feed

into an array of multipliers and adders.

A. Design Measurements

The BLTmr tool was used to investigate the improvements

in reliability for various levels of partial TMR. Four different

mitigation approaches were used and tested for each of the two

designs: first, an unmitigated design was created for a baseline,

second, TMR was applied to feedback structures only, third,

TMR applied to feedback plus the input to the feedback, and

fourth, TMR was applied to as much of the circuit as allowed

by the device density limitations. The sensitive and persistent

configuration bits were measured and plotted for each of these

test cases.

The fault injection results for the DSP Kernel and Synthetic

designs are summarized in Table II. For the DSP kernel, the

number of persistent bits was reduced by two orders of mag-

nitude for a relatively small hardware cost. The sensitivity was

reduced by over 3%. The synthetic design also demonstrated

two orders of magnitude reduction in persistent configuration

bits. In addition, the sensitive configuration bits were reduced

by 90%.

Figure 7 and Figure 8 show layouts, sensitivity plots, and

persistence plots of the mitigated DSP Kernel and Synthetic

designs, respectively. The figures of the DSP Kernel corre-

spond to the “Feedback & Input to FB” mitigation level in

Table II, while the figures of the Synthetic design correspond

to the “Full TMR” mitigation level. Notice that the persistence

of each design has been virtually eliminated.

B. Mean Time Between Failure

An important motivation for measuring the sensitivity

and/or persistence of a design is to determine how often a

given system will fail. Like sensitivity and persistence, Mean

Time Between Failure (MTBF) is application dependent. How-

ever, MTBF also depends on the destined system environment.

A detailed explanation of how we predicted MTBF can be

found in [10].

Table III shows our predictions of MTBF for the DSP

Kernel design. The first set of values (columns 4-6) shows

the MTBF prediction for an application that does not tolerate

any service interruptions. Applications in this category will

“fail” after all dynamic upsets. The second set of values

(columns 7-9) corresponds to applications that can function

with temporary data-loss. Applications in this category “fail”

only after persistent upsets. The final set of values in Table III

corresponds to the DSP Kernel with mitigation applied to

just persistent structures. Here too, the application will only

“fail” after persistent upsets. However, they have been virtually

eliminated.

Figure 6 is a plot of MTBF vs. resource utilization for

the DSP kernel and Synthetic circuit designs in a GPS orbit.

This graph clearly shows a non-linear relationship between

resources and MTBF improvement. In both cases, MTBF

reaches a “saturation” point. After this point, additional miti-

gation logic primarily only improves data-loss rates. For both

designs saturation occurred after all persistent circuit elements

were mitigated (since the feedback in the Synthetic design

consists of input-less LFSRs, the feedback and feedback plus

input circuits are the same). This indicates that once the

persistent circuit elements are triplicated, MTBF will saturate.

Additional mitigation logic will only improve data-loss rates,

not MTBF.

It is important to analyze the trade-offs made by applying

TMR to just the persistence of a design. Since full TMR

and other comprehensive mitigation techniques are costly in

terms of area and power [1], [4], the positive benefit of partial

TMR is a reduction in mitigation circuitry, and consequently

power, required. For example, Table I shows that a completely

unmitigated implementation of the DSP Kernel design utilized

5,746 slices. Full TMR would require at least a 200% increase.

The partial TMR implementation done with the BLTmr tool,

on the other hand, needed only 8,036 slices, or a 40% increase.

Pratt 5 MAPLD2005/202



Partially Mitigated DSP Kernel (Feedback & Input to FB TMR)

FPGA Layout Sensitive Bits Persistent Bits

Fig. 7. The diagram on the left is a screen capture of the layout of a version of the DSP Kernel design which has been mitigated with the BLTmr partial
mitigation tool. The center and right diagrams are graphical representations of the portion of the DSP Kernel design layout which correspond to the sensitive
and persistent bits respectively.

Fully† Mitigated Synthetic Design

FPGA Layout Sensitive Bits Persistent Bits

Fig. 8. The diagram on the left is a screen capture of the layout of a version of the Synthetic design which has been mitigated with the BLTmr partial
mitigation tool. The center and right diagrams are graphical representations of the portion of the Synthetic design layout which correspond to the sensitive
and persistent bits respectively.
† “Full” Mitigation here does not include triplication of the clock and output signals.

Fig. 6. Plot of MTBF vs. resource utilization for the DSP kernel and Synthetic
circuit designs in a GPS orbit.

The negative trade-off for only applying partial TMR, is

that the non-persistent configuration bits are still vulnerable

to SEUs. However, if only persistent upsets are considered

failures, as some applications may, the system will only

temporarily lose data after non-persistent upsets.

VI. CONCLUSIONS

The selective use of TMR on FPGA circuits was shown to

provide improved reliability at a lower cost than full TMR.

In fact, the amount of triplication inserted into a design

allows a designer to trade off the incremental cost of selective

triplication with improvements in reliability. The BLTmr tool

was created to perform this selective TMR automatically to a

degree directed by the user.

This tool applied selective TMR to several designs and

demonstrated the benefits of this approach. Results obtained

from the BLTmr tool confirm that for certain applications,

MTBF can be more efficiently increased when mitigation is

focused on the persistent structures of a design. Specifically,

this tool improved the MTBF of both designs by two orders

of magnitude for a fraction of the cost of full TMR.

Efforts to improve the BLTmr tool and associated circuit

analysis continues. Specifically, additional analysis approaches

will be added to improve the classification of FPGA circuit

structures. Architecture-specific mitigation techniques may

provide greater improvements in reliability at a lower hardware

cost. Other efforts include more design testing, radiation

testing for tool validation, and improvements in the user

interface. We expect this approach to be used on several

designs operating on a spacecraft to be launched in 2006.

Pratt 6 MAPLD2005/202



Alt. Inc. Unmitigated - Data Loss Unmitigated - Persistent Failures Partially Mitigated - Persistent Failures
Orbit (km) (deg) MTBF (days) MTBF (days) MTBF (days)

Typical Stormy Worst Day Typical Stormy Worst Day Typical Stormy Worst Day
Solar Min Solar Max Solar Max Solar Min Solar Max Solar Max Solar Min Solar Max Solar Max

LEO 560 35.0o 22.9 34.4 32.8 950.5 1428.5 1365.6 86555.7 130077.0 124634.5

Polar 833 98.7o 9.1 11.5 0.2 378.2 479.5 7.0 53350.3 51590.9 179.8

GPS 22,200 55.0o 14.1 13.6 4.7× 10−2 585.9 566.6 2.0 53350.3 51590.9 179.8

GEO 36,000 0.0o 13.9 11.4 4.7× 10−2 579.6 473.3 2.0 52781.9 43101.2 177.8

TABLE III

MEAN TIME BETWEEN FAILURE (MTBF) FOR THE DSP KERNEL DESIGN IN SEVERAL ORBITS FOR THREE DIFFERENT SITUATIONS: UNMITIGATED

DESIGN FAILING WITH ANY SENSITIVE UPSET, UNMITIGATED DESIGN FAILING ONLY WITH PERSISTENT UPSET, PARTIALLY MITIGATED DESIGN FAILING

ONLY WITH PERSISTENT UPSETS.

VII. ACKNOWLEDGMENT

The authors would like to thank the Department of Energy’s

funding of this work through the Deployable Adaptive Pro-

cessing Systems and Cibola Flight Experiment projects at Los

Alamos National Laboratory.

REFERENCES

[1] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evaluating TMR
techniques in the presence of single event upsets”, in Proceedings fo

the 6th Annual International Conference on Military and Aerospace

Programmable Logic Devices (MAPLD), Washington, D.C., September
2003, NASA Office of Logic Design, AIAA, p. P63.

[2] C. Carmichael, “Triple module redundancy design techniques for Virtex
FPGAs”, Tech. Rep., Xilinx Corporation, November 1, 2001, XAPP197
(v1.0).

[3] P. K. Samudrala, J. Ramos, , and S. Katkoori, “Selective triple modular
redundancy for SEU mitigation in FPGAs”, in Proceedings fo the

6th Annual International Conference on Military and Aerospace Pro-

grammable Logic Devices (MAPLD), Washington, D.C., 2003, NASA
Office of Logic Design, AIAA, p. C1.

[4] N. Rollins, M. Wirthlin, and P. Graham, “Evaluation of power costs in
triplicated FPGA designs”, in Proceedings of the MAPLD Conference,
September 2004.

[5] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-event
upsets through Virtex partial configuration”, Tech. Rep., Xilinx Corpo-
ration, June 1, 2000, XAPP216 (v1.0).

[6] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P. Graham, “The
reliability of FPGA circuit designs in the presence of radiation induced
configuration upsets”, in Proceedings of the 2003 IEEE Symposium

on Field-Programmable Custom Computing Machines, K. Pocek and
J. Arnold, Eds., Napa, CA, April 2003, IEEE Computer Society, p. TBA,
IEEE Computer Society Press.

[7] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin,
“Accelerator validation of an FPGA SEU simulator”, IEEE Transactions

on Nuclear Science, vol. 50, no. 6, pp. 2147–2157, December 2003.
[8] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirth-

lin, “SEU-induced persistent error propagation in FPGAs”, IEEE

Transactions on Nuclear Science, December 2005.
[9] E. Johnson, K. Morgan, N. Rollins, M. Wirthlin, M. Caffrey, and

P. Graham, “Detection of configuration memory upsets causing per-
sistent errors in SRAM-based FPGAs”, in Proceedings of the MAPLD

Conference, September 2004.
[10] K. Morgan and M. Wirthlin, “Predicting on-orbit SEU rates”,

http://dspace.byu.edu, July 2005.

Pratt 7 MAPLD2005/202


	Introduction
	FPGA Single Event Effects
	FPGA Design Sensitivity

	Classification of Sensitive Configuration Bits
	Persistent Configuration Upsets
	Persistent Circuit Structures

	Partial Mitigation
	Partial Mitigation With Respect to Persistence
	BYU-LANL Partial TMR Tool

	Experimental Results
	Design Measurements
	Mean Time Between Failure

	Conclusions
	Acknowledgment
	References

