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Abstract
Circuit specialization techniques such as constant

propagation are commonly used to reduce both the

hardware resources and cycle time of digital circuits.

When recon�gurable FPGAs are used, these advan-

tages can be extended by dynamically specializing cir-

cuits using run-time recon�guration (RTR). For sys-

tems exploiting constant propagation, hardware re-

sources can be reduced by folding constants within the

circuit and dynamically changing the constants using

circuit recon�guration.

To measure the bene�ts of circuit specialization, a

functional density metric is presented. This metric

allows the analysis of both static and run-time recon-

�gured circuits by including the cost of circuit recon-

�guration. This metric will be used to justify run-

time constant propagation as well as analyze the ef-

fects of recon�guration time on run-time recon�gured

systems.

1 Introduction
Con�gurable computing systems based on Field

Programmable Gate Arrays (FPGAs) are becoming
viable alternatives to conventional computing ap-
proaches. These con�gurable computing machines
(CCM) have been shown to outperform conventional
computing systems such as standard microproces-
sors, high-end workstations, and even supercomput-
ers. One of the methods used to achieve such high-
levels of performance with limited hardware resources
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is circuit specialization. CCM circuits are specialized
to the algorithm, interface, and user data-set to al-
low limited circuit resources achieve maximum levels
of performance.

1.1 Constant Propagation

One of the most common methods of circuit spe-
cialization among CCM systems is the propagation of
constants within arithmetic or other general-purpose
operators. Many digital systems are composed of such
operators that use a single �xed value for one of its in-
puts. Digital �lters, for example, commonly use con-
stant coe�cients for the multiplier of each �lter tap.

The circuit resources required to build such con-
stant operators can be reduced by 'folding' the �xed
operand value into the circuit [1]. Registers and de-
coding circuitry used to hold the operand value can
be removed. In addition, standard logic optimization
and minimization techniques can be used to further
reduce the hardware [2].

Several CCM applications have used this technique
to reduce hardware and improve circuit speed. Digi-
tal �lters designed within FPGAs propagate �lter co-
e�cients into multipliers to free hardware for addi-
tional functionality [3, 4, 5]. One such \dedicated"
IIR �lter has been shown to �t in half the space of
its general-purpose counterpart [6]. Other application
areas demonstrating this technique on FPGAs include
neural-networks [7, 8] and text-searching [1, 9, 10].

1.2 Run-Time Constant Propagation

If an operator within a system must support any
arbitrary input value, special-purpose constant prop-
agated operators cannot be used and the advantages of
constant propagation are not available. With dynam-
ically con�gurable hardware, however, arbitrary input
values can be supported by recon�guring constant-
propagated operators at run-time. A form of run-time
recon�guration (RTR) [11], this technique allows cir-
cuits to achieve the advantages of constant propaga-



tion while preserving the ability to support any arbi-
trary input value.

Run-time recon�guration of constants is not a new
technique | several working systems have been de-
signed to demonstrate this concept. Such systems in-
clude the run-time recon�guration of synaptic weights
within a neural network [12] and the recon�guration
of templates within a pattern-matching system [13].

Recon�guring constants within a circuit at run-
time is not available without cost. The time required
to recon�gure constant operators increases the total
execution time of a system. This recon�guration time
can be quite large and may eliminate the bene�ts
gained by constant propagation. The advantages as-
sociated with constant propagation are achieved only
when carefully balanced against the extra time of re-
con�guration.

Although working systems have demonstrated the
advantages of run-time specialization techniques such
as constant propagation, no metrics have been pro-
posed or used to quantify these advantages. Further,
it is unclear when the advantages of run-time constant
propagation override the disadvantages of recon�gu-
ration time. This paper will address these issues by
introducing and using a simple functional density met-
ric. This metric will be used to quantify the advan-
tages of constant propagation in both statically and
run-time recon�gured circuits. It will also be used to
evaluate the e�ect of recon�guration time in RTR sys-
tems.

Section 2 will introduce the functional density met-
ric for both static and dynamic systems. Section 3 will
describe a template matching circuit that will be used
to demonstrate the functional density metric. Sections
4 and 5 will analyze the advantages of static and run-
time constant propagation by analyzing the various
template matching circuits. Section 6 will summarize
the results of the analysis.

2 Functional Density

As discussed above, specialization techniques such
as constant propagation reduce the area and improve
the speed of FPGA circuits. A functional density
metric, D, will be used to quantify these bene�ts
of specialization. Functional density is a composite
area-time metric used to identify the computational
throughput (operations per second) of unit hardware
resources. Functional density is de�ned as follows:

D =
1

AT
: (1)

Circuit specialization techniques that reduce the cir-
cuit area (A) or operating time (T ) will improve func-

tional density.
For this analysis, functional density will be used to

evaluate the bene�ts of both static and run-time con-
stant propagation. To compare these techniques, tech-
nology dependent measures will be used. The area, A,
will be measured in the FPGA \cell-count" of the cir-
cuit. The operating time, T , will be measured as the
execution time (texec) of the system based on the op-
timal \cycle-time" of the mapped FPGA circuits.

As suggested earlier, run-time recon�gured circuits
have the added costs of recon�guration time. In or-
der to justify run-time recon�guration, the improve-
ments in area and time of specialized circuits must
be balanced against the cost of recon�guration. This
trade-o� can be made by adding recon�guration time,
tconfig, to the operating time, T , of Equation 1 as
follows:

T = texec + tconfig : (2)

The run-time functional density can be written as:

Drtr =
1

A(texec + tconfig)
: (3)

The cost of recon�guration associated with each op-
eration can be reduced by executing several operations
before recon�guring the hardware. For the execution
of n operations between con�guration, the functional
density of Equation 3 can be modi�ed as follows:

Drtrn =
1

A
�
texec +

tconfig
n

� : (4)

As more operations are completed between con�gu-
ration steps (increasing n), the cost of con�guration on
a per-operation basis is reduced. The upper bound of
Drtrn occurs when the execution time is much longer
than recon�guration time (texec �

tconfig
n

). Under
these conditions, functional density reduces to Equa-
tion 1 as follows:

Drtrn =
1

A
�
texec +

tconfig
n

�

�
1

Atexec
:

The functional density of circuits employing run-time
constant propagation is bound by the functional den-
sity of the same circuit that does not recon�gure
(tconfig = 0).

Equations 1 and 3 will be used to compare the func-
tional density of run-time recon�gured circuits against



their statically con�gured counterparts. Such a com-
parison may justify the use of run-time recon�guration
by showing that a dynamically specialized circuit pro-
vides greater computation per unit resource than its
more general-purpose static alternative.

3 Template Matching

A simple template matching circuit will be used to
demonstrate the bene�ts of both static and dynamic
constant propagation. Several variations of this circuit
will be discussed to demonstrate the advantages and
limitations of run-time constant propagation. These
circuit variations include a general-purpose circuit
that does not exploit constant propagation, a staticly
con�gured constant-propagated circuit, and several
run-time recon�gured constant-propagated circuits.

Template matching is a common operation used in
many image understanding systems. This operation,
however, requires signi�cant computation. Template
matching computes the cross-correlation, C, between
an image, f [i; j], and a template g[i; j]. For a template
of size M � N , the cross-correlation is computed as
follows:

C[i; j] =

M�1X
k=0

N�1X
l=0

g[k; l]f [i+ k; j + l]: (5)

To simplify the computation, the template image, g,
can be reduced to binary precision. This replaces the
multiplications in Equation 5 with AND operations. No
multiplications are needed and the entire operation
can be performed with addition.

For this analysis, the image and template parame-
ters of the Sandia Automatic Target Recognition will
be used [14]. Input images are 8-bit precision with
128 � 128 pixels. Template images are 16 � 16 and
have binary precision.

Each correlation result, C[i; j], will be obtained by
computing each of the 16� 16 additions of Equation
5 in parallel using bit-serial arithmetic. Conditional
bit-serial adders are used to perform the conditional
addition at each template pixel g[k; l]. As seen in Fig-
ure 1, each operator contains a template register to
hold the value of a template image pixel and a bit-
serial adder. A logical '1' within the template register
enables the bit-serial adder while a '0' disables the
addition.

As seen in Figure 2, the 256 conditional adders are
distributed spatially to represent each of the 256 tem-
plate values, g[k; l]. The circuit is pipelined to pro-
duce one cross-correlation result, C[i; j], every 16 cy-
cles with an initial latency of 240 cycles.

i+k,j+lf

is i+1s

g
k,l
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Figure 1: General-Purpose Conditional Bit-Serial
Adder.
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Figure 2: Parallel Computation of Correlation.

The conditional bit-serial adder circuit of Figure 1
was mapped to the �ne-grain National Semiconduc-
tor CLAy FPGA [15]. This circuit consumed nine
cells and operates with an internal delay of 9.4 ns.
A complete correlation circuit is created by physically
tiling 256 of these conditional bit-serial adders into a
16� 16 array as suggested by Figure 2. The 256 op-
erators consume 2304 cells and produce a correlation
result every 150 ns. Using Equation 1, the functional
density of this general-purpose circuit is calculated at
2890 correlations

cell�second
.

4 Static Constant Propagation
If the template image for this correlation calcula-

tion is held constant, each template value can be prop-
agated into the conditional bit-serial adder of Figure
1. Propagating each template value, g[k; l], into the
conditional bit-serial adder results in two unique cir-
cuits - one for the constant g[k; l] = 0 and another
for the constant g[k; l] = 1. For the constant '1', the
multiplexor, ip-op, and AND gate associated with
the conditional bit-serial adder are removed as seen in
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Figure 3: Special-Purpose Conditional Adder
(g[k; l] = 1).

Figure 3. Propagating the constant '1' into the cir-
cuit reduced the FPGA resources from nine cells to
six cells. In addition, removing the extra circuitry re-
duced the propagation delay down to 8.9 ns.

For the constant g[k; l] = 0, most of the hardware
associated with the bit-serial adder is removed. Only
a ip-op remains to propagate the sum of the previ-
ous adder in the pipeline. This circuit requires only a
single cell (ip-op) and operates at a speed of 2.1 ns.

The two constant values, '0' and '1', produce cir-
cuits that vary with respect to area and time. To mea-
sure the functional density of a complete system, the
worst-case '1' circuit will be used for area and tim-
ing parameters. The full array of six-cell bit-serial
adders consumes 1536 cells and require 142 ns for
a single correlation computation. Using Equation 1,
functional density of this special purpose circuit is
4580 correlations

cell�second
, a 58% improvement over its general-

purpose counterpart. The functional density of both
the general-purpose and constant propagated circuit
are contrasted in Table 1.

General-Purpose Constant-Propagated
A 2304 1536
T 150 ns 142 ns

D 2890 4580

Table 1: Functional Density of Template Matching
Circuit.

5 Run-Time Constant Propagation

For systems that must support any arbitrary tem-
plate image, the template pixel values may be propa-
gated into the circuit at run-time through recon�gu-
ration. A special-purpose correlation circuit for each
template image is created and con�gured as needed on

the FPGA.
For this analysis, the template matching system

will compute each correlation value of the output im-
age against a single template before con�guring a new
constant template image. With an output image of
size 113 � 113, 12769 correlation operations will be
computed between con�guration steps. This value is
the iteration count, n, used to determine the run-time
functional density in Equation 4.

Before Equation 4 can be applied to the template
matching circuit, the con�guration time, tconfig, of
the complete circuit must be determined. According
to device speci�cations, the minimum con�guration
time of the CLAy31 FPGA is 810 us. Using this value
for tconfig and the circuit values found in Table 1, the
functional density of this run-time recon�gured circuit
is calculated at 3170 correlations

cell�second
. This system provides

10% more functional density than its general-purpose
counterpart.

As seen in Equation 4, the iteration count, n, has
a signi�cant e�ect on the functional density. Using
the circuit parameters above, the functional density,
Drtrn , of run-time constant-propagated circuits can be
found as a function of the iteration count,

n. Figure 4 plots the relationship between the func-
tional density and the iteration count of this constant
propagated template matching system.
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Figure 4: Functional Density as a Function of Iteration
Count.

An important observation to make from Figure 4 is
the location in the graph where the functional density
of the run-time recon�gured (Drtrn) circuit matches
the functional density of the general-purpose non-



con�gured circuit (Dgp). At some iteration count, n0,
the functional density of both the run-time recon�g-
ured circuit and the general-purpose non-con�gured
circuit will be equal. This \break-even" point indi-
cates the iteration count at which run-time recon�gu-
ration is justi�ed. This value can be derived by solving
for n0 as follows:

Dgp = Drtrn

1

Agptgp exec

=
1

Artr

�
trtr exec +

tconfig
n0

�

n0 =
Artrtconfig

Agptgp exec �Artrtrtr exec

(6)

For the template matching circuit, the break even
point is calculated as follows:

n0 =
(1536cells)(810us)

(2304cells)(150ns)� (1536cells)(142ns)

= 9760

This result indicates that at least 9760 correla-
tion calculations must be performed before con�gur-
ing the circuit with di�erent constants. At this point,
the functional density of the general purpose circuit
matches the functional density of the constant prop-
agated circuit. This would allow images as small as
99 � 99 to bene�t from run-time constant propaga-
tion. Performing additional iterations between con�g-
urations (i.e. larger input images) will only improve
the functional density of the circuit as indicated in
Figure 4.

5.1 Improving Con�guration Time

As seen from Equation 4, functional density is sen-
sitive to recon�guration time. Recon�guration time is
a parasitic e�ect that reduces functional density. Re-
ducing the recon�guration time has several positive
e�ects on the system. First, the functional density
improves. Second, the iteration count, n0, required to
break even decreases. Such improvements extend the
technique to other systems where the technique would
otherwise be unjusti�able.

Partial con�guration is one technique that can sig-
ni�cantly reduce recon�guration time. This technique,
available in several FPGA families [15, 16, 17], allows
sub-circuits to be con�gured within the FPGA with-
out con�guring the entire device. For some systems,
only minor circuit changes are required from one con-
�guration to the next [18]. Partial con�guration can
signi�cantly lower con�guration time by con�guring
only changes within a circuit.

For the template matching circuit using constant
bit-serial adders, partial con�guration can have a sig-
ni�cant e�ect on con�guration time. Because changes
to the circuit involve only local changes to the con-
stant bit-serial adders, the con�guration overhead for
I/O and global routing is eliminated. In addition, only
two of the six cells associated with the bit-serial adder
are needed to convert a '1' cell to a '0' cell or vice-
versa.

The two cells of logic required to modify a bit-
serial adder require four bytes of con�guration data.
If every constant bit-serial adder within the circuit is
modi�ed between con�guration steps, 1024 bytes are
required to recon�gure the circuit. In practice, how-
ever, few template cells are actually modi�ed. With
an average of 128 bit-serial adders changing between
con�guration, only 512 bytes are required for con�gu-
ration. Con�guring at 10 MByte/s, this con�guration
processes consumes 51 us, or 15 times less time than
the statically con�gured circuit.

As expected, reducing con�guration time from 810
us to 51 us improves the functional density of the
template matching circuit. Using Equation 4, func-
tional density improves to 4460 correlations

cell�second
(54% im-

provement over the general-purpose circuit). Using
Equation 6, only 614 iterations are required to justify
run-time constant propagation. This allows images as
small as 25� 25 to take advantage of this technique.

Although improving con�guration time by over a
factor of �fteen increases functional density, further
improvements in con�guration time for this template
matching circuit provide diminishing returns. Assum-
ing device con�guration speeds were improved by a
factor of 100, con�guration of the device would reduce
from 810 us to 8.1 us. The functional density of this
system is 4560 correlations

cell�second
(only a 2% improvement

over the partially con�gured circuit). In this example,
the faster con�guration speed provided limited im-
provements over the partially con�gured circuit. For
circuits that execute for a long time relative to the
con�guration time, improving con�guration speed has
a limited e�ect.

Although further improvements in con�guration
time does not signi�cantly improve functional den-
sity for this example, it has a signi�cant impact on
systems that execute with less time than this exam-
ple. Figure 5 plots the e�ect of iteration count on
functional density for the three run-time recon�gured
circuits (complete con�guration, partial con�guration,
and fast con�guration). For shorter execution pro�les,
this faster con�guration provides signi�cant improve-
ments to functional density and the break-even point.



Table 2 summarizes the functional density and break-
even points of the various systems.

Circuit tconfig D n0

General Purpose N/A 2890 N/A
Run-time Con�gured 810 us 3170 9760
Partially Con�gured 51 us 4460 614
Fast Con�guration (100x) 8.1 us 4560 98
Statically Con�gured 0 4580 N/A

Table 2: Summary of Functional Density.
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Figure 5: Improved Con�guration Time.

6 Conclusions
Propagating constants within FPGA circuits is a

specialization technique that often improves the com-
putation of unit-cell FPGA resources (functional den-
sity). This technique, as well as other specialization
techniques, can be used in dynamic systems by recon-
�guring circuit elements at run-time. The advantages
of run-time specialization, however, must be balanced
against the added cost of recon�guration time.

Systems that execute for many cycles between con-
�guration steps can easily justify the added cost of
recon�guration. For systems that do not execute for
extended periods of time, justi�cation is not as clear.
A functional density metric was presented to clarify
the execution time (iteration count, n0, in this case)
required to justify run-time specialization.

Recon�guration time can have a signi�cant e�ect on
both the functional density (D) and iteration break-

even point (n0) of RTR systems. Decreasing recon�g-
uration time will increase the functional density of the
system. In addition, systems with smaller execution
pro�les become justi�ed.
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