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ABSTRACT

We present a novel approach to generating fundamental fre-
quency (intonation and voicing) trajectories in an EMG-to-
Speech conversion Silent Speech Interface, based on quantiz-
ing the EMG-to-F0 mappings target values and thus turning a
regression problem into a recognition problem.

We present this method and evaluate its performance with
regard to the accuracy of the voicing information obtained
as well as the performance in generating plausible intonation
trajectories within voiced sections of the signal. To this end,
we also present a new measure for overall F0 trajectory plausi-
bility, the trajectory-label accuracy (TLAcc), and compare it
with human evaluations.

Our new F0 generation method achieves a significantly
better performance than a baseline approach in terms of voic-
ing accuracy, correlation of voiced sections, trajectory-label
accuracy and, most importantly, human evaluations.

Index Terms— electromyography, EMG-to-Speech,
Silent Speech Interfaces, intonation, F0

1. INTRODUCTION

Silent Speech Interfaces (SSIs) – speech interfaces that con-
tinue to function even when an audible acoustic signal is not
present – have recently been growing in popularity as a re-
search topic.

SSIs can be built based on many different sensor modal-
ities, such as ultrasound [1, 2], permanent-magnetic articu-
lography [3], microwave radar [4], surface electromyography
(sEMG, with muscle movement [5] or sub-vocal [6]), non-
audible murmur recorded with a throat microphone [7] or even
electrocorticography [8].

When built as direct-conversion interfaces – directly con-
verting non-audio biosignals to speech without an intermediate
recognition step – SSIs have the potential to replace or aug-
ment audible speech. Common suggested use cases of such
direct conversion SSIs range from voice prostheses for people
who are unable to produce speech (e.g. Laryngectomees) to
interfaces for healthy users who may not want to produce audi-
ble speech (e.g. in a public place) or want to avoid exhaustion
or noise pollution (e.g. agents in a call center).

Fig. 1. An overview of the system evaluated in this paper,
described in Section 2.

While these use cases differ in various ways and present
various different challenges, they also have one thing in com-
mon: All of them require that the output speech is not only
intelligible, but also that it sounds natural – i.e. as much like
normal human speech as possible. Most current SSI research,
including our own previous work, focuses primarily on intel-
ligibility, due to the large amount of unsolved problems and
the difficulty of the challenges involved in building SSIs at all.
However, as explained above, this is only one side of the equa-
tion – paralinguistic information such as intonation carries
important context cues that can completely alter the meaning
of what is spoken (consider e.g. the sentence ”I never said
that she stole my money”, which can take on seven different
meanings depending on where emphasis is placed).

In this work, we present a technique for improving the
generation of fundamental frequency (F0) trajectories from
sEMG data. This technique is based on quantizing the F0

into discrete intervals, turning the task of predicting F0 from
a regression into a recognition problem, an approach that has
recently been used with some success in audio generation [9].

We present an evaluation of this new technique compared
to a baseline regression system introduced by Janke et al. [10]
(the state of the art for estimation of F0 from sEMG signals),
comparing the voicing accuracy and the quality of generated
contours within correctly-recognized-as-voiced sections. We



also present a novel measure for comparing a generated and
reference F0 contour and present evidence for the validity of
this measure in the form of a subjective listening test evalua-
tion.

The rest of this paper is organized as follows: in Section 2
we describe the EMG-to-Speech conversion systems (the base-
line system as well as our new system with F0 quantization).
Section 3 presents an overview of the experiments we per-
formed, Section 4 presents their results in terms of common
error measures and Section 5 presents our new error measure.
The results are discussed in Section 6. Finally, Section 7 will
give an outlook on future avenues for research we are currently
considering.

2. EMG-TO-SPEECH CONVERSION WITH F0

QUANTIZATION

We present two different systems for performing EMG-to-
Speech conversion that differ in how they represent F0 con-
tours: once as a sequence of continuous numbers (in the base-
line system, labeled ”Baseline” throughout the rest of this
paper) and once as a set of discrete steps (in our new, proposed
quantization based system, labeled ”Quantized” in the rest of
this paper.). An overview of the structure of our proposed
system as evaluated in this paper can be seen in Figure 1.

2.1. sEMG input features

The input for the EMG-to-Speech conversion system is, for
both of these systems, a set of stacked EMG time-domain
features (TD-15 features) [11]. To extract them, we first split
each channel of the multi-channel EMG signal into its low
(below 134 Hz) and high (above 134 Hz) parts. We then apply
windowing, using a 32ms Blackman window with 10ms frame
shift (i.e. 22ms overlap between frames).

For each frame, we calculate the power and mean of the
low frequency part and the power, rectified mean and zero-
crossing rate of the high frequency part. These five features
(extracted separately for each channel) together make up the
TD feature vector, which is then stacked 15 frames into both
the past and the future to create the final TD-15 features which
we use as the input for our EMG-to-Speech mapping.

For details on EMG recording and analog signal prepro-
cessing, refer to Section 3.

2.2. Audio output features

We extract two different features for the audio signals: the F0,
representing excitation and Mel-Frequency Cepstral Coeffi-
cients [12] (MFCCs), representing the spectral features of the
speech signal. For both, the first step is once again to window
the signal with a Blackman window and the same frame shift
and size as with the sEMG signal.

2.2.1. F0 and quantized F0

Our system extracts the excitation of the speech signal using
the YIN [13] algorithm, a commonly used algorithm for the
extraction of speech fundamental frequency trajectories for
which good implementations are readily available. This results
in one value per frame, giving either the fundamental excitation
frequency (in Hz) or 0 for segments of speech that are unvoiced.
The trajectories obtained using the YIN algorithm are used to
train our models and as a reference for evaluation.

While the baseline system uses regression to directly pre-
dict the F0 for each frame, our proposed system converts it
to a different representation. For this, it uses the median-cut
algorithm [14]. The algorithm works as follows: It starts off
considering the entire range of data as one big interval. In
each step, the largest remaining interval is then split along
its median into two new intervals. This is repeated until the
desired number of intervals (32, in our case – determined to
be enough to produce good quality output in re-synthesis ex-
periments) is reached. Each interval now represents one class.
This process loses very little information: The correlation of
voiced sections (compare Section 4.2) between reference F0

value and quantized F0 values is ∼0.996 on average.

An F0 value can now be quantized into different classes
by looking up into which interval the value would fall. Since
the F0 is now split into discrete classes, task of predicting F0

values turns from a regression problem with one continuous
output into a recognition problem – predicting one of the 32
F0 classes. While this reduces the resolution available to the
F0, it at the same time simplifies the problem, making it easier
to train a reliable EMG-to-excitation conversion system. The
reverse direction, transforming from classes back to F0 values,
can be achieved by looking up the median value for a given
class.

As the evaluation data would not be available at training
time, we calculate the intervals on the training data of each
session and then use these intervals throughout system training
and evaluation.

2.2.2. Spectral features and vocoding

Our system uses 25 MFCCs to model the spectral attributes
of the audio signal (the part of the speech signal that is not
the excitation). These can, together with a F0 trajectory, be
converted back into an audible speech waveform using vocod-
ing for evaluation (In this work, we use the AhoCoder [15]
vocoder, as it generates more high quality output waveforms
compared to the MLSA vocoder used in many previous EMG-
to-Speech conversion systems. The parameters and features
used have been found to work well for EMG-to-Speech con-
version in our previous work [10].



Fig. 2. Structure of the feed-forward neural network used for
EMG-to-Excitation mapping in this work.

2.3. sEMG feature to excitation mapping

To convert EMG signals to F0 trajectories, we use a feed-
forward neural network architecture employing a bottleneck
shape with ReLU activations, which has been found to work
well for this task [16].

2.3.1. Baseline system

The baseline systems structure is as introduced by Janke et
al. [10] (this system, to the best of the authors knowledge,
represents the current state of the art for estimation of F0

trajectories from surface EMG signals), with two differences:
first, the target features are only the F0 values (we do not
consider the mapping of the MFCCs in this work). Second, the
parameter optimization is performed using the AdaDelta [17]
method with a learning rate of 0.1 and 1024 sample mini-
batches, which we have found results in more stable training.
When converting sEMG to F0 values, thresholding is applied
as a final step, setting all values below 25 Hz to 0 (unvoiced).

2.3.2. Proposed quantized system

The new proposed system replaces the single linear F0 out-
put unit with a soft-max layer with 32 outputs, one for each
possible class in the quantized F0 signal, which is one-hot
encoded for training. The system is trained using the AdaDelta
method, again with a learning rate of 0.1 and 1024 sample
mini-batches. Additionally, since the task to be learned is now
a discrete labeling instead of a regression problem, we use a
binary cross-entropy loss instead of the mean squared error
the baseline uses.

When estimating F0 from sEMG data during evaluation,
we always select the class with the highest probability accord-
ing to the soft-max output for each frame, and then turn it back
into a numerical F0 value, as described in Section 2.2.1. An
overview of this new structure, which also uses additional lay-
ers compared to the baseline system, can be seen in Figure 2.

As in the baseline system, ReLU activations are used in all
layers except the output layer, which uses a Softmax activation
function.

All systems are trained and evaluated in a session-
dependent manner – they are trained on the training set
of only one recording session and then evaluated on the evalua-
tion set of that same session. This is because the sEMG signal,
due session differences in exact electrode placement as well
as electrode, skin and muscle conditions, is strongly session
dependent. Creating session-independent systems, though an
area of research that is of significant importance within the
SSI community [18, 19], is not the subject of this paper and
the data corpus used is not well-suited for such investigations –
however, research on session-independent EMG processing is
ongoing using publicly available corpus data [20].

3. DATA CORPUS AND RECORDING SETUP

To train and evaluate the systems, we use sEMG and audio data
recorded in parallel and synchronized with a marker channel
present in both signals, and the delay between audio and sEMG
signals caused by the physiology of speech production [21]
was accounted for by shifting the EMG signal by 50 ms. Note
that, since we require audible speech to train and evaluate a
system, all evaluations presented are done on sEMG recorded
during audible speech (however, the input for the mapping is
strictly sEMG data, no audio information is used).

sEMG was recorded using two system setups: One using a
setup with six single electrode channels, with the electrodes
positioned to capture signals from specific muscles of the ar-
ticulatory apparatus, and another using two array electrodes
(One 4 x 8 matrix electrode positioned on the cheek and one 8
electrode strip positioned below the chin, both with a 10 mm
inter-electrode distance and using long-axis-first chained differ-
ential derivation). Speech audio was recorded using a standard
close-talking microphone in either setup.

Table 1. Data Corpus Information

Speaker-
Session

Length [mm:ss] Total.
Utts.Sex Train Dev Eval

S1-Single m 24:23 02:47 01:19 520
S1-Array m 28:01 03:00 00:47 510
S1-Array-Lrg m 68:56 07:41 00:48 1103

S2-Single m 24:12 02:42 00:49 509
S2-Array m 22:14 02:25 01:10 520

S3-Array-Lrg f 110:46 11:53 00:46 1977

Total 278:32 30:28 05:39 5139

The corpus we use contains a total of six sessions recorded
by three speakers (two male, one female) using these setups.



Fig. 3. Results of the MUSHRA listening test, showing the
scores for the anchor, the baseline system and our proposed
quantization-based system. Scores normalized by reference
score to account for inter-rater differences. Higher is better,
error bars indicate 95% confidence interval.

Each recording consists of a set of phonetically balanced En-
glish sentences from the broadcast news domain (For the large
sessions, this was additionally augmented with sentences from
the CMU Arctic [22] and TIMIT [23] corpora). In order to
ensure consistent pronunciation of words, recordings were
supervised by a researcher and participants were allowed to
re-record sentences if they or the recording supervisor deemed
the recording quality unsatisfactory.

The data was split into a training, development and eval-
uation set. The development set was used during explorative
research and hyper-parameter optimization, whereas the evalu-
ation holdout was used to produce final figures for this paper.
A detailed breakdown of the data can be found in Table 1.

4. EVALUATION

4.1. Subjective listening test

We evaluate the performance of the baseline and our proposed
systems using the MUltiple Stimuli with Hidden Reference
and Anchor (MUSHRA) [24] method, implemented by the
BeaqleJS [25] framework. We have each participant of the
listening test listen to – and rate the naturalness of – four
audio files generated from 30 utterances each (5 randomly
selected utterances from the evaluation set of each session),
synthesized using the reference MFCCs and the F0 from either
the baseline system (audio 1) or our proposed system (audio 2).
A completely flat F0 trajectory (the median of the reference
F0 trajectory for each utterance), resulting in a robotic sound,
is used as a low anchor (audio 3), and the re-synthesized
signal (using the reference MFCCs and F0 trajectory) is used
as the reference (audio 4). Both the order of the utterances
within the test and the order of options for each utterance were
randomized. A total of 21 people participated in the listening
test, one of which we removed from the results because they
consistently rated the reference as 0 points, indicating that they
did not complete the test as instructed. This leaves us with data
from 20 participants for each of the 30 utterances evaluated
for a total of 600 ratings.

To account for inter-rater differences in speech naturalness

Fig. 4. Voicing accuracy of the F0 trajectories generated by the
baseline and our proposed quantization-based system. Higher
is better, error bars indicate 95% confidence interval, dashed
line indicates chance level, ’*’ indicates significant differences.

perception, we normalize the ratings according to the rating
assigned to the reference in the MUSHRA test. The resulting
scores can be seen in Figure 3. It is clear that the proposed
system is considered significantly (verified using a two-tailed
independent sample t-test not assuming equal variance at a
level of p < 0.05) better than the baseline system by the
listening test participants.

4.2. Objective evaluation

We further evaluate the performance of our proposed method
compared to the baseline with two objective measures captur-
ing different aspects of the F0 signal.

The first measure is the voicing accuracy, i.e. the ratio of
frames for which a system has correctly assigned either the
value 0 (i.e. the frame is unvoiced) or a value other than 0 (i.e.
the frame is voiced), compared to the reference F0 trajectory.
The results of this evaluation can be seen in Figure 4. Note
that the chance level in the data set would be ∼0.51, as voiced
and unvoiced or silent frames are present in roughly equal
measure.

It can be seen that while our system significantly improves
the accuracy for some of the sessions – specifically, sessions
S1-Single, S2-Single and S3-Array-Lrg (tested using a paired
two-tailed t-test at p < 0.05), it actually performs signifi-
cantly worse for one (S1-Array-Lrg), and for the two remain-
ing sessions there are no statistically significant differences
between the two systems outputs. Averaged over all sessions,
the baseline system achieves an accuracy of ∼0.75, whereas
our proposed system achieves an accuracy of ∼0.77 – this
improvement is, once again, significant.

The second measure that we consider looks specifically at
the voiced sections of the signal: We calculate the correlation
of the hypothesized and the reference F0 signals, restricted
to only those parts that are voiced in the reference and were
correctly recognized as voiced (i.e. the F0 value is not 0) in



Fig. 5. Correlation of the F0 trajectories generated by the base-
line and our proposed quantization-based system, calculated
only within segments correctly considered as voiced by the
systems. Higher is better, error bars indicate 95% confidence
interval.

the systems output. The correlations obtained in this way for
each session can be found in Figure 5. It is clear that while the
baseline system can discriminate voiced and unvoiced sections,
its performance with regard to generating a good F0 trajectory
seems to be severely lacking (average correlation of ∼0.07).
Our proposed system, on the other hand, produces significantly
better (tested at p < 0.05 with a two-tailed paired t-test, overall
as well as within each session) results (average correlation:
∼0.27).

It should be noted that, while the improvement is signifi-
cant, the correlations are very low especially for the baseline
system. This should not come as a surprise, as the task of
estimating F0 from surface EMG data is hard – the base ex-
citation of the voice box is nor measured by facial EMG, so
only indirect inference is possible. It is for this reason that we
introduce a measure which we believe to be better suited for
the comparison of F0 trajectories especially in settings where
the output quality of the systems being compared is relatively
low in the following section.

Finally, we consider the performance of the recognizer
for the quantized F0 and compare it with the baseline system
by taking that systems output, quantizing in the same way as
we did for the quantized system (compare Section 2.3.2) and
then calculating the recognition rate against the reference F0

trajectory. The results can be seen in Figure 6 – the proposed
system significantly (tested at p < 0.05 with a two-tailed
paired t-test) outperforms the baseline.

5. TRAJECTORY-LABEL ACCURACY

While the measures mentioned above quantify the quality of
the systems output objectively, the correlation is somewhat
hard to interpret and neither measure shows the whole picture
– our system may have performed worse with regard to voicing
accuracy for the sessions where this accuracy was high to

Fig. 6. Accuracy of the quantized F0 values of the baseline
and our proposed system. Higher is better, error bars indicate
95% confidence interval.

begin with, but is this offset by performing better in voiced
sections?

To ameliorate the issues we see with these measures, we
introduce a new objective measure for comparing generated
F0 trajectories to a reference: The trajectory-label accuracy
(TLAcc). Intuitively, it combines both the accuracy of the voic-
ing as well as how well voiced sections are restored, reducing
the movement within voiced sections to its most basic compo-
nents: going up, going down, or neither of the two. While this
is a major simplification of the complexity of F0 movement
during speech, this allows comparisons of whether a gener-
ated trajectory is basically similar to another – unlike other
representations or annotation schemes, which may provide too
much detail to allow for meaningful comparisons, or may not
even be accurately extractable without human assistance.

We are able to show that, on our results, this measure
is more strongly correlated with subjective assessments of
naturalness than voicing accuracy or correlation while still
being easy to evaluate without human interference, potentially
making it a better candidate for use during system development
than those measures.

5.1. Calculating the TLAcc

The TLAcc is calculated as follows: First, the central differ-
ences gradient of the F0 trajectory is calculated by subtracting
the value of the frame right of the current frame from the value
left of the current frame – however, if either the value of the
frame to the left or to the right of the current frame is zero (un-
voiced), the central value is used instead of that value. Then,
labels are assigned:

• ”unvoiced” (the F0 value of this frame is zero / un-
voiced),

• ”rising” (the F0 value rises by at least 5 Hz, according
to the calculated gradient)

• ”falling” (the F0 value falls by at least 5 Hz, according
to the calculated gradient)

• ”flat” (otherwise)



Fig. 7. Scatter plots of utterance mean normalized MUSHRA
scores (baseline and quantized systems) against the ratings
assigned to the same utterances by the voicing accuracy (left),
the voiced section correlation (middle) and our proposed
trajectory-label accuracy measure (right). Red lines indicate
regression line.

The trajectory-label accuracy is then the accuracy calcu-
lated between the reference and hypothesis trajectory labels. A
reference python implementation of this measure is available
online1.

To verify that this is a sensible approach, we compare the
ratings produced by this new measure to the human evaluations
from the subjective listening test (compare Section 4.1).

A scatter plot of the MUSHRA scores (average per utter-
ance scores) versus the three different objective measures for
all utterances from the listening test can be seen in Figure 7,
showing that the trajectory label accuracy is strongly correlated
with the listening test scores (Pearson’s r ≈ 0.71, compared
to only r ≈ 0.3 for the voicing accuracy and r ≈ 0.25 for the
voiced section correlation).

5.2. Evaluation of proposed method using TLAcc

Finally, we perform an evaluation of the baseline and our
proposed system according to trajectory-label accuracy, which
can be found in Figure 8. In this, our proposed quantization-
based system clearly and significantly (tested at p < 0.05 with
a two-tailed paired t-test) outperforms the baseline approach
(average trajectory label accuracies: ∼0.42 for the baseline
system compared to ∼0.59 for the proposed approach).

6. DISCUSSION

Paralinguistic attributes of speech such as intonation should be
an important consideration in trying to build direct synthesis
Silent Speech Interfaces, yet they are often only considered
on the side. One reason for this may be that the quality of
synthesized intonation is hard to measure – a F0 contour may
differ from the reference to some extent, but still be perfectly
sensible.

In this paper, we have made two contributions: (1) we
have presented a novel recognition-based prediction of F0

which outperformed the baseline system for direct synthesis
SSIs, and (2) we have introduced the TLAcc measure which

1https://github.com/cognitive-systems-lab/
trajectory-label-accuracy

Fig. 8. Our proposed trajectory-label accuracy measure for the
baseline and our proposed quantization-based system. Higher
is better, error bars indicate 95% confidence interval.

correlates well with human listening tests and thus allows to
better quantify improvements than traditional measures.

In Section 4.1, we presented an evaluation of our new pro-
posed method according to the gold standard in evaluating
speech audio – human listening tests. This clearly demon-
strates that our proposed method manages to improve upon
the baseline system, however, such listening tests are time-
consuming and are only sensible as a final evaluation and not
during development and tuning of new methods.

For this reason, we considered some objective measures
that can be quickly and automatically calculated in Section 4.2,
again demonstrating that our new system improves upon the
baseline to some extent (and, when considering the quantized
accuracy, the measure that the proposed system optimizes
directly, to a large extent – however, such an evaluation seems
unfairly biased towards the proposed system). To address
the shortcomings we see with these measures, in Section 5,
we introduced a new objective measure – the TLAcc – and
were able to show that it correlates well (and better than other
objective measures) with human listening test scores.

7. SUMMARY

We have presented a novel approach that can be used to im-
prove excitation predictions of direct-synthesis SSIs. This
approach significantly outperforms a baseline regression ap-
proach in human listening test evaluations as well as, to some
extent, on objective measures.

We have additionally introduced the TLAcc, a new ob-
jective measure of F0 trajectory quality which we hope will
be useful in easing the development future SSI systems with
regard to the quality of the generated intonation.

In the future, we may further explore quantization based ap-
proaches to direct-synthesis SSI, potentially taking a quantize-
and-recognizes approach for not only the excitation, but also
for the spectral features and further experimenting with the
amount of intervals used for quantization.
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