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Abstract 

A way to increase gateway throughput is to reduce the 
muting-table lookup time per packet. A routing-table 
cache can be used to reduce the average lookup time per 
packet and the purpose of this paper is to determine the 
best management policies for this cache as well as its 
measured perfonnance. The performance results of 
simulated caches for a gateway at MlT are presented. 
These results include the probability of reference versus 
previous access time, cache hit ratios, and the number of 
packets between cache misses. A simple, conservative 
analysis using the presented measurements shows that 
c m n t  gateway routing-table lookup time could be 
reduced by up to 65%. 

1. Introduction 
A gateway is a device that connects two or more 

heterogeneous networks and is responsible for 
tran-g packets among them, assuring that packets 
anivmg f” one network are retransmitted toward their 
ultimate destination. Any gateway that is not directly 
connected to the destination must send the packet to the 
next gateway in the chain from some to destination; the 
address of this next gateway is the next-hop address. The 
gateway examines the destination address of a meived 
packet and determines the next hop address by using the 
destination address as an index to a routing table. A 
routing table is a table of destinatiodnext-hop address 
pairs that is maintained by the gateway. A routing-table 
lookup converts an internet destination address into a 
local network address. If the packet destination is on the 
same network as the source, then the next-hop is the local 
network address of the destination. Otherwise, the next- 
hop is the local network address of the next gateway that 
brings the packet closer to its final destination. The 
gateways used in this study forward TCP/IP packets. 

The routing-table laokup is a time-consuming process 
of packet farwarding. Routing-table caching of 
destinatiodnext-hop address pairs will decrease the 
average processing time per packet if loa& exists for 
packet addresses. Therefore, gateway througput can be 
increased if internet address locality exists and earlier 
measurements suggest that this is likely. The purpose of 
this research is to determine whether internet address 

caching in gateways is effective and what type of cache 
performs best. This research simulates the performance 
of several routing-table caches in a busy gateway, using 
recorded gateway traflic to drive the simulation. The 
following sections include a discussion of the cache 
simulation models, the collection of data that drive the 
cache hulation, the simulation results and analysis, a 
cache performance analysis, and conclusions. 

2. Data Generation 
The method used for generating data to determine the 

effectiveness of routing-table caching is truce-driven 
simulation. A trace is gathered for an operating gateway 
by recording every routing table refemxe during normal 
gateway operation. This trace is then used to drive a 
cache simulation model. The cache model can be altered 
to simulate a cache of any type and size, and the 
simulation can be repeated on the same data set. 

2.1. Cache Modeling 

2.1.1. Cache Location 
Determining the next-hop address of a packet based on 

its destination address is “e complex than a simple 
muting-table access on current gateways. Currently, 
routing is based on a hierarchical addressing scheme, 
which means that some part of the destination address 
contains infimnation about what network the destination 
host is on. The routing table contains information only 
about the next hop to reach a given network, rather than a 
given destination. Before the routing table is used, the 
network address for the destination must be extracted 
from the destination address. The decoding of the 
destination address into a network address and a host 
address is non-trivial because the network address may 
be encoded in the destination address in many different 
ways. 

Two possible positions for a cache are before the 
address decoder or between the address decoder and the 
routing table. The advanta e of placin a cache before 
the address is that &tination L found in 
the cache need never be sedbythedecoder. The 
disaciwntage is that for a E E L i c a ~  addressing sckme, 
the number of addresses exceeds the number of networks, 
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so for a cache of fned size, the cache performance for 
the full address must be no better than the performance of 
a cache for the network part of the address. The choice 
of cache location is determined by the relative cache 
performance for flat and h i m h i c a l  addresses and by 
the time required for address decoding. In fact, some 
simple preprocessing of the destination address in such a 
way that does not affect address decoding may increase 
the performance of the cache placed before the address 
decoder at relatively little cost. The cachetpre-proCessor 
combination before the address decoder may offer the 
best overall performance. 

2.1.2. Cache Simulation 
A routing-table cache differs from a main memory 

cache in several ways. A main-memory cache is 
bidhxtional - it must be able to handle both read and 
write c o w &  from the processor. A routing-table 
cache is unidireca 'onal, because the packet-forwarding 
process only reads from the table. Read-only operation 
eliminates the need for routing-table update from the 
cache and simplifies cache operation. Another difference 
is that on a network with d amic routing, the routing 
table changes over time. ?the routing table changes, 
those entries in the cache may become inconsistent with 
the routing table. The cache model assumes that the 
cache is never flushed, which appximates true cache 
operation if the routing table is quasi-static or there exists 
an inexpensive method of updating the cache. Current 
gateway routing tables are relatively static, so never 
flushing the cache approximates cache performance on 
current gateways. 

Different types of caches will behave differently with 
the same data set, so a type of cache to simulate must be 
chosen. A routing-table cache is defined by its 
associativity, replacement, and prefetch strategies, as 
well as size. Each of these must be defined for the 
simulation model. 

The associativity of a cache ranges from fully 
associative to direct mapped. Fully associative caches 
allow any destinatiodnext-hop pair to be s t o d  in any 
cache location. A direct-mapped cache allows each 
destinatiodnext-hop pair to be stored in only a certain 
cache location, so multiple destination addresses are 
mapped into a single cache location. In general, the 
cache is divided into a disjoint set of locations that may 
contain the contents of a certain subset of 
destinatiodnext-hop pairs, and this is a set-associative 
cache. For these measurements, a fully associative cache 
is used because it provides the best performance for a 
given number of cache slots. Also, the performance of 
any set-associative cache depends on the value of those 
items to be stored in the cache and the cache association 
mechanism. A fully-associative cache avoids the 
problem of measurement bias because of specific 
network addresses in the measurements and makes the 
results general for any set of network addresses with 
similar characteristics. In addition, broad associative 
searches are easily implemented in MOS VLSI, so it is 
reasonable to expect that highly associative caches will 
be available on a chip'. 

Whenever there is a cache miss, the missed entry must 
be entered into the cache and some other item must be 
discarded The three most popular strategies are random 
replacement, first-in first-out (FIFO), and least recent use 
(LRU). A random replacement strategy simply discards 
a random location in the cache. The "random" location is 
most easily chosen based on some counter value (such as 
a clock) from elsewhere in the system. A FIFO 
replacement strategy discards the cache entry that is the 
oldest; a FIFO cache is easily implemented as a circular 
buffer. The most complex strategy, but also the one that 
generally provides the best cache performance, is LRU. 
An LRU cache operates by storing not only the data, but 
also the time that each datum was last referenced. If a 
reference is in the cache, its time is u p d a e  otherwise 
the data that was least recently accessed is discarded and 
the data for the new reference is cached. 

An LRU cache is a good choice for the type of address 
locality expected and a fully-associative, LRU cache 
forms an upper-bound on the cache hit ratio for a fixed 
number of cache slots. Unfortunately, this type of cache 
is also the most complex and expensive to implement. A 

orm worse for a given 

cache can afford to have more slots and perhaps exceed 
the performance of a smaller fully-associative LRU 
cache; this is a cost trade-off that only the gateway 
designer can assess. 

A strategy for pfetching is suggested by observing 
that a packet from host A to host B is often followed by a 
packet from B to A2. If the cache pfetches the next- 
hop for the packet source, then a packet traveling through 
the same gateway in the reverse direction no longer 
causes a cache miss. For the cache simulations, two 
situations are analyzed. The first is that only the packet 
destination is used to update the cache and this 
carresponds to a case where prefetching is not 
economical. The second assumes that prefetching is free 
and should be done any time that the packet source is not 
in the cache. In reality, the truth is somewhere in- 
between, so these two sets of curves give lower and 
upper bounds for fully associative LRU caches where 
prefetching occm. 

of cache may 
number o rp" slots, but for a f!Y ed price, a less efficient 

2.2. Trace Generation 
We would like to estimate the performance of a 

gateway with a routing-table cache before the system is 
built. The performance can be determined by trace- 
driven simulation, which requires a list of all routing- 
table accesses on a gateway. We ~IZ interested m 
statistics of packet arrivals at various gateways, but 
building a measurement system directly into a gateway 
has several disadvantages. The main problem is that 
each gateway would need to be reprogrammed to include 
a monitoring system. Reprogramming is difficult 
because some of the gateways m owned by other 
research groups, which are reluctant to disturb gateway 
operation; other gateways are commercial products, in 
which case the source code is unavailable. In addition, 
any monitoring system installed in a gateway will use 
processor time and m e m 9  space and this overhead 
could affect gateway operanon during periods of heavy 
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load, causing packets to be dropped. Since p e r i d  of 
heavy load are of particular interest to determine the 
efficiency of the caching system, the measurement 
artifact of such a monitoring program is unacceptable. 
Also, it is advantageous to be able to try various caching 
suategies and cache sizes on a single measurement set, so 
that differences in results are directly attributable to the 
change in strategy, rather than simply a change in the 
gateway Wic.  Instead of monitoring the packet arrivals 
at each gateway, it is simpler to measure all of the 
packets on the network that pass through the gateway. 
This replaces monitoring programs in each gateway with 
a single dedicated monitoring system. 

Trace-driven simulation computes the exact cache 
performance as long as the trace-gathering operation is 
exact and has no processing cost. Measuring packets on 
the network with a separate measurement system assures 
that the gateway itself operates as usual. Two types of 
packets are observed traveling to a gateway: packets to 
be forwarded to another network or packets destined to 
the gateway itself. Not all packets addressed to the 
gateway itself are observed, since only one of the 
networks attached to the gateway is monitored, but this is 
a problem only if a packet to a gateway causes a routing 
table reference. Whether a packet to a gateway causes a 
routing table reference depends on the gateway 
implementation. One possibility is to explicitly check 
each incoming packet against a table of all of the 
gateway’s addresses to see if there is a match. This 
explicit check means that the routing table is never 
consulted about packets destined to the gateway. 
Another possibility is to use the routing table for all 
packets. The gateway will discover that it is directly 
connected to the proper network and will try to send the 
packet. Before the packet is sent, the gateway checks if 
the packet is to its own address on the appropriate 
network. If the packet is for the gateway, then it is never 
transmitted. The explicit check after the muting-table 
lookup requires checking a smaller number of gateway 
addresses at the increased cost of a routing-table lookup. 
For this paper, it is assumed that gateways do an explicit 
address check and that the unobserved packets do not 
cause routing-table accesses. 

Another disadvantage of measuring all packets is that 
the packets on the network to (or h m )  a gateway may 
not be the same as those to be handled by the gateway 
software. If the current gateway drops a packet, some 
protocols will retransmit that packet. Thus our packet 
trace now has multiple copies of a single packet, only one 
of which is actually forwarded by the gateway. Some of 
these extraneous packets can be eliminated by filtering 
the packet trace to remove identical packets with certain 
interarrival times. In any case, these duplicate packets 
should only appear when the gateway is overloaded, and 
this is relatively rare. 

The measurement system on the token ring is a general 
measurement system for monitoring all traffic and was 
originally built for the research done by Feldmeid. The 
monitoring system consists of two computers - a passive 
monitor and a data analysis machine. The passive 
monitor receives the packets on the ring and timestamps 
them upon arrival. The passive monitor then compresses 

The measurement system on the token ring is a general 
measurement system for monitoring a l l  traffic and was 
originally built for the research done by Feldmeid. The 
monitoring system consists of two computers - a passive 
monitor and a data analysis machine. The passive 
monitor receives the packets on the ring and timestamps 
them upon arrival. The passive monitor then compresses 
the information of interest from each packet into a large 
data packet that is sent to the analysis machine. The 
monitoring system generates less than 2% of the network 
traffic, so the monitoring overhead is acceptable; also, 
none of the packets pass through a gateway, so the arrival 
order of packets at a gateway remains unchanged A 
more complete description of the design of the network 
monitoring station may be found in a paper by Feldmeier 
4. F O ~  these measurements, the monitor compresses 
information only for packets that are to or from non-local 
hosts; in other words, all the packets that pass through the 
gateways. The analysis machine simply stores all of the 
received data for later analysis. 

Only a single trace using complete intemet addresses 
for all packets through the gateway is needed for both flat 
and h i m h i c a l  addressing scheme cache simulation. 
Flat addressing measurements use the entire internet 
address for the cache simulation; hierarchical addressing 
uses only the network field of the internet addresses for 
the cache simulation. 

2.3. Data Analysis 
The measurements used in this paper are h m  the MIT 

ARPANET gateway. This is the main ARPANET 
connection to MIT and it serves the entire campus and 
several local companies involved in research as well. 
The ARPANET gateway processed 2,147,956 packets 
during the 24 hour measurement period. About 91% of 
a l l  packets passing through the ARPANET gateway are 
part of virtual circuit connections (TCP protocol). The 
other interface of the ARPANET gateway is attached to a 
10 Mbps token ring at the MIT LCS. In addition to 8 
gateways, 20 computers also reside on the ring, including 
10 VAXs, 7 PCs, a microVAX, an IBM-4341, and a 
PDP- 1 1/45. The total number of packets processed by all 
gateways during a 24 hour period was 4,546,766. The 
ring itself d e d  4,819,189 packets. 

The results in this paper m based on network 
measurements made during the 24 hour period h m  1:OO 
AM Monday, November 30th to 1:OO AM Tuesday, 
December 1st 1987. It is for this data that cache 
performance is evaluated; however any cache must start 
with no data and each cache reference that initializes the 
cache causes a cache miss. Since the reason for installing 
a cache in a gateway is to improve long-term average 
performance of the system, we are interested in the 
steady-state cache performance. To avoid cache misses 
caused by cache htialhtion, the cache is pre-loaded so 
that once the measurement period begins, the cache has 
many of its most referenced entries. Measurements 
during the 61 minute period from 1159 PM Sunday, 
November 29th to 1:OO AM on Monday, November 30th 
1987 were used to pre-load the cache to avoid 
measurements during cache initialization. During cache 
initialization, 230 distinct destination addresses and 254 
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distinct destination and source addresses arrived, out of 
44,284 packets. Although a longer cache initialization 
would increase the cache performance, there is a limit to 
the amount of data storable by the network measurement 
system. 

As mentioned above, the monitor cannot receive 
packets addressed to the gateway or badcast  packets 
from other networks, and it is assumed that these packets 
do not cause routing table accesses. Any packets of these 
types received on the monitored network are ignored in 
the data analysis. 

As with any measurement, the data collected is not as 
precise as we would like. Because a machine could not 
be dedicated to the receiving of data from the network 
monitor, a time-sharing machine was used instead. The 
monitor transmits each packet to the analyzer once to 
minimize network loading, and if the receiving machine 
is occupied with other network functions at that time, the 
monitoring data are lost. During the course of 
monitoring, data were lost for 0.33% of packets passing 
through gateways on the ring. 

Another source of measurement inaccuracies is caused 
by low-level retransmissions. As mentioned above, not 
all packets on the network are seen by the intended 
receiver. To assure more reliable packet transmission, 
the ring has a low-level acknowledgment system built 
into the network hardware; if an interface receives a 
packet, an acknowledgment bit in the packet trailer is 
marked. Since the transmitter must remove any packets 
that it transmits on the ring, the transmitter always can 
determine whether the packet it has sent was received by 
checking for the receiver’s mark. The device drivers for 
hosts on the ring include a low-level retransmit 
mechanism that automatically refransmits a packet up to 
eight times without higher-level intervention if the 
receiver has not acknowledged the packet by marking it. 
This means that several closely-spaced identical packets 
may be transmitted, but only a single packet is received 
by the intended host. The monitoring station is fast 
enough to receive all of the packets present in a burst, but 
the receiver itself receives only one of them. The 
monitoring station cannot check the acknowledgment bit, 
so somehow these retransmissions must be removed from 
the data so that the time locality of the data will not be 
exaggerated. Since a low-level packet burst is at high 
speed, any packets with the same source and destination 
address that arrive within a short time of each other 
should be discardex$ however, if this threshold is set too 
high, multiple packets between a hostdestination pair 
may be i n m t l y  eliminated. The specific value that 
determines whether a packet is caused by a low-level 
retransmission depends on parameters of the network and 
the network hosts. Also, the threshold should exceed the 
transmission time of most packets. Most packets on the 
ring are 576 bytes or less long, and at 10 MBPS the 
transmission time is 461 microseconds. 

The graph in figure 2-1 is a histogram of the 
interpacket arrival times for packets to all gateways with 
identical source and destination addresses, from 0 to 5 
milliseconds with a clock granularity of 25 
microseconds. There is a peak around 725 microseconds, 
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Figure 2-1: Interpacket Arrival Time of 
Identically Addressed Packets 

and this is where most of the low-level retransmission 
must occur. The higher the low-level retransmission 
detection threshold is set, the more low-level 
retransmissions that are eliminated. However, the upper 
bound of this threshold is set by the interpacket time for 
the fastest host on the network. Since a gateway can 
transmit over 700 packets per second, the interpacket 
time of 1.35 milliseconds (the peak around 2% of all 
packets) is probably caused by a gateway transmission. 
For this data, any packets with the same source and 
destination that arrive within a millisecond or less of each 
other are discarded as low-level reuansmissions. 

3. Measurement Results 
Although hierarchical addressing is relevant to existing 

gateways, the behavior of the cache under a flat 
addressing scheme is m r e  easily understood because the 
performance of the cache can be understood in terms of 
various packet flows among hosts. It is also of interest to 
learn whether flat addressing can be done efficiently with 
a cache. Hierarchical addressing requires that many flat 
addresses are mapped to the same network address. 
Hierarchical addressing requks an understanding of a 
conglomerate of host flows seen as network flows. 

3.1. Results for Flat Addresses 
From a previous study, it is known that a packet from 

host A to host B has a high probability of being followed 
by another packet from A to B2, which implies time 
locality of packet addresses. Consider a time-ordered list 
of previously seen addresses; for a current address that 
has been previously seen, how far down the list is this 
address? Figure 3-1 shows the percentage of references 
versus time-ordered position of previous reference for the 
400 most recently referenced packet destination 
addresses. The graph is averaged over all packets 
received by the gateway and it is plotted on a logarithmic 
scale so that the relative popularity of the slots is more 
easily seen. The graph for destinatiodsource caching is 
similar. 
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Figure 3-1: Percentage of Reference versus Time of Last Reference (Destination) 

o.oo011 

PIW~OUS ~eference posltlon 

The decrease in probability far both graphs is nearly 
monotonic until about 50 most recently referenced 
addresses. This monotonically decreasing function 
implies that the LRU cache management strategy is 

timal for caches of less than 50 slots. After reference 3, the probability continues to decrease generally, but 
there is more variance. One reason far the increased 
variance is that the probability of reference decreases 
with increasing age, so that the amount of data that falls 
into the farther positions is too small to properly 
approximate the probability distribution curve at these 
pomts. At these outer parts of the curve, the average 
number of ackets per slot is about 15, as compared to 
between sbb and 876,000 in the first 50 positions. 
Another explanation is that the relationship between 
probability of reference and time of last reference 
changes at some point on the curve. This change in 
relationship might be caused by two separate 
mechanisms that determine whether the current packet 
address is in the cache. 

The first mechanism that produces cache hits is a 
current packet that is part of a train of packets. The fim 
packet of the train initialins the cache and as long as the 
cache is not too small, all following packets are cache 
hits. The second mechanism is that the first packet of a 
train is to a destination already in the cache. If N is the 
number of packets in a train*, the number of packets that 
arrive due to the 6rst mechanism must be greater than 
N-1 times the number of packets that arrive due to the 
second mechanism** This means that the destination 
a s  of packets an active train are most likely to 
be near the first slot of an LRU cache and that addresses 
of inactive but popular train destinations are likely to be 
between slot i, where i is the number of simultanmusly 
active ttains, and the last slot of the cache. The 
relationship among train arrivals at a destination is 

'Jain and Routhier claim the average number of packets in atIairI 

*%or a cache enough to hold entries faa l l  simultaawus 

is 17.42. 

traias. 

unknown, but undoubtedly it is weaker than the 
relationship among packets in a train, and this could 
explain the higher variance in the later part of the 
probability distribution. Additional information is 
necessary to decide whether an insuff5cient number of 
samples or two cache hit mechanisms more d y  
explains the inmxsed variance in the later part of the 
probability distribution above. 

If the probability distribution does change with age 
.after a certain point, the most cost-effective strategy may 
be to have an LRU cache with 50 slots, followed by a 
FWO or random management cache with a few hundred 
slots. If the probability of reference does not decrease 
monotonically with increasin? last-reference age, then an 
LRU cache decreases in effiwncy relative to other cache 
types and its higher cost may not be justified because 
other cache types allow a larger cache for the same price 
and perhaps a higher cache hit ratio far a given cost. 

Given the data above, an LRU cache should be 
effective for d u c i n  the number of routing-table 
rderence~,  he pro&ty of reference v m  tune of 
previous mference data allows simple calculation of an 
LRU cache hit ratio for a given number of cache slots. 
The dationship between cache hit ratio and probability 
ofacoessis: 

Where fh(i) is the cache hit ratio as a function of i, the 
number of cache slots; and pj  is the probability of a 
acket address being the fh previous mfmnce. figure 

$2 shows the percentage of cache hits vmus cache size 
for both destination and destination/source caches. 
Notice that even a relative1 small cache has a high cache 
hit ratio. Table 3-1 slows just how quickly the 
probability of a cache hit climbs even for small cache 
sizes. With as few as 9 slots, the hit ratio is already 
above 0.9. 
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Figure 3-2: Percentage of Cache Hits 
versus Cache Size  

Table 3-1: Cache Hit Ratio Percentage 
versus Cache Size 

Number of Destination Destination 
Cache Slots only Source 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

40.78 
63.53 
72.34 
78.19 
81.96 
84.78 
86.95 
88.72 
90.17 
91.37 
92.38 
93.22 
93.92 
94.52 
95.02 
95.45 
95.82 
96.13 
96.40 
96.64 

27 .OS 
67.83 
76.30 
82.12 
85.34 
87 .44 
89.15 
90.48 
91.57 
92.52 
93.30 
93.97 
94.54 
95.05 
95.48 
95.87 
96.19 
96.47 
96.73 
96.96 

Another way of looking at the hit ratio data is to plot 
the average number of packets through the gateway 
between cache misses. The relation between cache h t  
ratio and packets between cache misses is: 

Where f(i) is the number of packets between cache 
misses as a function of i, the number of cache slots; and 
fh(i) is the probability of a cache hit as a function of the 
number of cache slots. 

The effectiveness of a cache depends on the ratio of the 
packets-between-misses values before and after the 
cache, not an absolute number, so the graph in figure 3-3 
is plotted on a logarithmic scale so that equal ratios 
appear as equal vertical intervals. This graph shows the 
incremental efficiency of each additional slot in the 
cache. In addition to curves for destination LRU, 
destinatiodsowce LRU, destination FIFO, and 
destinatiodsome FIFO, also shown arc the destination 
and destinatiodsource curves for a two cache system 
consisting of a 64 slot LRU cache followed by a FIFO 
cache. 

As expected, the destinatiodsource LRU cache 
performed best, followed closely by the destination LRU 
cache. The destinatiodsome cache outperforms the 
destination only cache, which confirms that much of the 
traffic through the gateway is bidirectional. Performance 
of both FIFO caches is relatively poor until the 
destination FIFO cache size exceeds 1250. It turns out 
that 1035 is the number of distinct destination addresses 
handled by the gateway in a 24 hour period, in addition 
to 230 destinations in the preload, for a total of 1265. 
For destinatiodsowce caching, the FIFO buffer size does 
not help until 1370 slots, which is about the number of 
distinct destination and source addresses processed by the 
gateway in a 24. hour 'od, 1 130, plus 254 during 
preload for a total of 1388en 

The incremental efficiency of each slot in the cache is 
the slope of the c w e  at that slot number. A-shyp 
decrease in the slope indicate a point of dirmtllshmg 
returns for larger cache sizes. patticularly notice the 
drop in LRU cache efficiency around cache slot 50. 

The dual cache systems perform moderately well. For 
example, consider a 128 slot destination LRU cache (this 
can be thought of as two 64 slot LRU caches back to 
back). The same performance can be obtained with a 64 
slot destination LRU cache followed by a 241 slot 
destination FIFO cache. A FIFO cache is simpler to 
implement than an LRU cache and if an 241 slot FIFO 
cache is cheaper than a 64 slot LRU cache, then the dual 
cache combination provides a better hit ratio for a given 
cost than a single LRU cache. 

how many cache slots 
arc necessary far a g i v m  r of packets between 
cache misses, the above graph is better plotted on a linear 
scale. The graph in figure 3 4  is interesting because each 
of the curves seems to be composed of two or three linear 
regions. At least for the LRU cwes,  the number of 
packet between misses seems proportional to the number 
of cache slots, until the curve approaches its maximum, 
where the incremental slot efficiency drops. 

If the interest is in de ' * 
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Figure 3-3: Number of Packets Between Cache Misses versus Cache Size (log-hear) 
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Figure 3 4  Number of Packets Between Cache Misses versus Cache Size (linear-hear) 

3.2. Results for Hierarchical Addressing based on network addresses and since the number of 
Although in the previous section packet addresses were networks is d e r  than the number of hosts, the cache 

treated as flat ad&esses, in reality they are hiermhicd hit ratio for a network cache is higher than the hit ratio of 
addresses,whichmeansthatanaddresscanbeseparated a flat address cache. In order to cache network 
into network and host pieces. currently, routing 1s done addresses, the complete address must pass through an 
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address decoder that extracts the network address. The 
tradeoff is that the hit ratio of the cache is higher than for 
flat addresses, but each address must be decoded. 

Hierarchical addressing, as done by current gateways, 
is complex because the separation of the network and 
host fields of the intemet address is determined by the 
type of address. In order to avoid this complication, the 
separation of fields for the purposes of this research is 
that the first three bytes of the full address refer to the 
network and that the last byte refers to the host. This 
procedure never removes part of the network address as 
long as the address is not a class C address with 
subnetting (which is not known to be used by anyone). 
In some cases, some of the host’s address will be left 
with the network address, which means that the cache hit 
ratio will be lower than if the address were completely 
Separated. 

Since the purpose of a cache is to speed up routing 
table access, it is probably advantageous to place the 
cache before the address separation, rather than after it, 
so that each cache hit saves not only a table lookup, but 
also the trouble of dissecting the full address. It may be 
advantageous to use a simple address separation 
procedure before the cache, such as the suggested one of 
removing the last byte of the address. This preprocessing 
step increases the cache hit ratio by eliminating most, if 
not all, of the host address from the full address, and yet 
avoids the complexity of complete address decoding. 

rcentage of references versus 
time-ordered position o&kwious reference for the 80 
most recently referenced packet destination addresses. 
The graph is averaged over all packets received by the 
gateway and it is plotted on a logarithmic scale so that 
the relative popularity of the slots is more easily seen. 
The graph for destinatiodsource caching is similar. 

Figure 3-6 shows the percentage of cache hits versus 
cache size for both destination and destinatiodsource 
caches. Notice that even a relatively small cache has a 
high cache hit ratio. Table 3-2 shows just how quickly 
the probability of a cache hit climbs even for small cache 

Figure 3-5 shows the 

sizes. With as few as 7 slots, the hit ratio is already 
above 0.9. 

- oest!nenlsource LRU Caching 
Destinatron LRU Caching 

0 s 1 0 1 5 2 0 2 5 9 0 9 5 1 0 J s m  
W 

Number of Cache Slots 
Figure 3-6: Percentage of Cache Hits 

versus Cache Size 
Another way of looking at this data is to plot the 

average number of packets through the gateway between 
cache misses. The gra h in figure 3-7 shows the 
incremental efficiency o f  each additional slot in the 
cache. Curves are shown for destination LRU, 
destinatiodsome LRU, destination FIFO, and 
destinatiodsome FIFO. 

As expected, the destinatiodsource LRU cache 
performed best, followed closely b the destination LRU 
cache. Performance of both FIF8 caches is relatively 
poor until the destination FIFO cache size exceeds 102. 
It turns out that 52 is the number of distinct destination 
addresses handled by the gateway in a 24 hour period, in 
addition to 52 destinations in the preload, for a total of 
104. For destinatiodsource caching, the FIFO buffer 
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Figure 3-5: Percentage of Reference versus Time of Last Reference (Destination) 
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Figure 3-7: Number of Packets Between Cache Misses versus Cache Size (log-hear) 
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size does not help until 104 slots, which is about the 
number of distinct destination and source addresses 
F e d  by the gateway in a 24 hour period, 54 plus 53 
dunng preload for a total of 107. 

Table 3-2: Cache Hit Ratio Percentage 
versus Cache Size 

Number of Destination Destination 
cache Slots only Source 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

42.31 
66.54 
76.03 
82.52 
86.61 
89.53 
91.74 
93 .44 
94.75 
95.77 

29.94 
71.28 
80.81 
86.32 
89.61 
91.81 
93.48 
94.76 
95.77 
96.56 

4. Caching Cost Analysis 
Although the hit ratios have been given for various 

gateway caches, the impemant question is what is the 
performance improvement that is gained for the gateway. 
The following analysis is meant to be a simple woTstc8st 
analysis. The cache used for this analysis is a fully 
associative cache with a LRU replacement licy. The 
cache is im lemented completely in so&are as a 
doubly-linkahear list. The list is searched linearly 
from most recently used to least recently used and when 
the list is rearran.& to pserve the LRU ordering, this is 
done by swappmg p o m m  of the doubly-linked list. 
Only destination addresses are cached. 

~stimates of the number of instructions are basedb a 
load-store machine architecture. Loading the pointer to 
the cache requires 1 instruction. A matching e n q  is 
recognized in 3 instructiow in addition, 7 instnrcaons 
are needed for each previously checked cache slot. After 
each cache search, the cache must be reordered to 
pnxme the LRU ordering (except if the entry was found 
in the first slot) and this takes 21 instructions (except for 
the Iast cache slot, which needs 11 instructions). 

An estimate of the minimum-time address decode and 
routing table lookup for a packet is 80 instructions, a 
figme obtained by estimating the number of load-store 
instructions generated by the C gateway code at MlT. 
The current gateway code would take even long-, this 
estimate is conservative because it does not include 
function call overhead, err01 handling, or the additional 
routing table lookup necessary for subnet routing and 
assumes that then are no hashing c o ~ o n s .  This 
estimate also does not include the time necessary to ma 
a next-hop IF' address into a local network address, whic! 
is at least 2 instructions, but varies depending on the local 
network. 

Tbe average lookup rime with the cache is now: 
1 + 3p, + (7+3+21)p2 + (14+3+21)p, 
+ * - - + (7[k-l]+3+21)p, 
+ 
+(1-zpi)(7n+2l+80) 

- * + (7[*1]+3+ ll)p, 
I 

hl 

If the cache stores flat addresses and destinations only, 
then the optimum number of cache slots is 16. The 
average lookup time with the cache becomes 37.9 
instructions, only 47% as long as a table lookup. One 
problem with LRU caches is that it is expensive to 
maintain LRU ordering. A way to reduce this expense is 
to use only two entries and a single bit to determine 
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which is first in order. In this case, the average lookup 
time is 33.9 instructions, 42% as long as table lookup. 
For a source-destination twoelement cache, the average 
lookup time is 29.6 instructions or 37% of table lookup. 

With hierarchical addressing, the performance is even 
better. To obtain a network address f” a flat address, 
the last byte is dropped h m  the address. Although this 
does not necessarily result in a network address, the 
number of distinct addresses that the cache must handle 
is reduced and the overhead is only a single AND 
instruction. The optimal cache size is 51 slots and the 
average lookup time is 31.5 instructions, 39% as long as 
table lookup. A two element simple cache as described 
above averages 33.3 instruction, 42% of a table lookup. 
A sourcedestination cache requires 27.7 instructions, or 
35% of a table lookup. 

Although the figures above minimize average lookup 
time, it may be that a lower maximum lookup time is 
desired at the cost of a slightly higher average lookup 
time. 

Obviously, a better cache implementation would 
increase performance. Cache lookup could use a hash 
table rather than a linear search, the cache slots need not 
be fully associative, a replacement strategy 
approximating LRU may be implemented less 
expensively, the cache fetch strategy could use both 
destination and source addresses, or a hadware cache 
could be built into the system. But even with this simple 
cache implementation and optimistic assumptions about 
routing-table looku time, the best cache above reduces 
lookup time by 652 

5. Conclusion 
pnX;essing time per packet is reduced if average 

routing-table access time is reduced, and an economical 
way to reduce access time is to use a cache. Recardings 
wert made of routing-table accesses for several operating 
gateways and these records are used to drive cache 
simulations to determine the hit ratio for various types of 
caches. The caches simulated are fully-assoCiative, LRU 
or FIFO, and cached destination addresses or destination 
and source addresses. 

The probability of reference to a destination address 
versus time of ous reference to that address is 
monotonically E a s i n g  for up to 50 previous 
references, implying that an LRU cache management 
procedure is optimal for caches of 50 slots or less. 

Locality of packet flat addresses causes an LRU cache 
of 9 slots to have a hit ratio of over 90%. Hierarchical 
addressing measurements place hit ratios at over 90% for 
7 slots. 

In addition to caching the packet destinatiodnext-hop 
pair, it is worth caching the packet source/next-hop par 
if it can be done inexpensively. 

The data indicate that back-@back caches may be the 
most effective implementation of large caches. This first 
cache should have an LRU management licy to cache 
packets aniving in a train. Cache misses k this cache 
should then check a FIFO cache to check for trains from 
previously seen destinations. 

Hieradical addressing recognition allows a higher 
cache hit ratio at the expense of address decoding each 
packet destination address. Simple -sing before 
a cache for flat addresses provides a ht raao not as high 
as that for hierarchical addressing, but higher than the hit 
ratio for flat addressing at little cost. 

A simple conservative cost analysis shows that ament 
gatewa routing-table lookup time can be reduced to 
35% ot‘its current time.  his is a conservative estimate 
and a good cache design or a hardware cache could 
further reduce the average lookup time. 

The hit ratio for a flat address cache is high enough that 
flat addressing may be practical to use in a gateway with 
a cache. 
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