
IMPROVING GATEWAY PERFORMANCE WITH
A ROUTING-TABLE CACHE

David C. Feldmeier
Massachusetts Institute of Technology
Laboratory for computer Science

Cambridge, Ma 02139

Abstract

A way to increase gateway throughput is to reduce the
muting-table lookup time per packet. A routing-table
cache can be used to reduce the average lookup time per
packet and the purpose of this paper is to determine the
best management policies for this cache as well as its
measured perfonnance. The performance results of
simulated caches for a gateway at MlT are presented.
These results include the probability of reference versus
previous access time, cache hit ratios, and the number of
packets between cache misses. A simple, conservative
analysis using the presented measurements shows that
c m n t gateway routing-table lookup time could be
reduced by up to 65%.

1. Introduction
A gateway is a device that connects two or more

heterogeneous networks and is responsible for
tran-g packets among them, assuring that packets
anivmg f” one network are retransmitted toward their
ultimate destination. Any gateway that is not directly
connected to the destination must send the packet to the
next gateway in the chain from some to destination; the
address of this next gateway is the next-hop address. The
gateway examines the destination address of a meived
packet and determines the next hop address by using the
destination address as an index to a routing table. A
routing table is a table of destinatiodnext-hop address
pairs that is maintained by the gateway. A routing-table
lookup converts an internet destination address into a
local network address. If the packet destination is on the
same network as the source, then the next-hop is the local
network address of the destination. Otherwise, the next-
hop is the local network address of the next gateway that
brings the packet closer to its final destination. The
gateways used in this study forward TCP/IP packets.

The routing-table laokup is a time-consuming process
of packet farwarding. Routing-table caching of
destinatiodnext-hop address pairs will decrease the
average processing time per packet if loa& exists for
packet addresses. Therefore, gateway througput can be
increased if internet address locality exists and earlier
measurements suggest that this is likely. The purpose of
this research is to determine whether internet address

caching in gateways is effective and what type of cache
performs best. This research simulates the performance
of several routing-table caches in a busy gateway, using
recorded gateway traflic to drive the simulation. The
following sections include a discussion of the cache
simulation models, the collection of data that drive the
cache hulation, the simulation results and analysis, a
cache performance analysis, and conclusions.

2. Data Generation
The method used for generating data to determine the

effectiveness of routing-table caching is truce-driven
simulation. A trace is gathered for an operating gateway
by recording every routing table refemxe during normal
gateway operation. This trace is then used to drive a
cache simulation model. The cache model can be altered
to simulate a cache of any type and size, and the
simulation can be repeated on the same data set.

2.1. Cache Modeling

2.1.1. Cache Location
Determining the next-hop address of a packet based on

its destination address is “e complex than a simple
muting-table access on current gateways. Currently,
routing is based on a hierarchical addressing scheme,
which means that some part of the destination address
contains infimnation about what network the destination
host is on. The routing table contains information only
about the next hop to reach a given network, rather than a
given destination. Before the routing table is used, the
network address for the destination must be extracted
from the destination address. The decoding of the
destination address into a network address and a host
address is non-trivial because the network address may
be encoded in the destination address in many different
ways.

Two possible positions for a cache are before the
address decoder or between the address decoder and the
routing table. The advanta e of placin a cache before
the address is that &tination L found in
the cache need never be sedbythedecoder. The
disaciwntage is that for a E E L i c a ~ addressing sckme,
the number of addresses exceeds the number of networks,

0298

3D. 1.1.
CH2534-6/88/0000-0298 $1 .OO 0 1988 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

so for a cache of fned size, the cache performance for
the full address must be no better than the performance of
a cache for the network part of the address. The choice
of cache location is determined by the relative cache
performance for flat and h i m h i c a l addresses and by
the time required for address decoding. In fact, some
simple preprocessing of the destination address in such a
way that does not affect address decoding may increase
the performance of the cache placed before the address
decoder at relatively little cost. The cachetpre-proCessor
combination before the address decoder may offer the
best overall performance.

2.1.2. Cache Simulation
A routing-table cache differs from a main memory

cache in several ways. A main-memory cache is
bidhxtional - it must be able to handle both read and
write c o w & from the processor. A routing-table
cache is unidireca 'onal, because the packet-forwarding
process only reads from the table. Read-only operation
eliminates the need for routing-table update from the
cache and simplifies cache operation. Another difference
is that on a network with d amic routing, the routing
table changes over time. ?the routing table changes,
those entries in the cache may become inconsistent with
the routing table. The cache model assumes that the
cache is never flushed, which appximates true cache
operation if the routing table is quasi-static or there exists
an inexpensive method of updating the cache. Current
gateway routing tables are relatively static, so never
flushing the cache approximates cache performance on
current gateways.

Different types of caches will behave differently with
the same data set, so a type of cache to simulate must be
chosen. A routing-table cache is defined by its
associativity, replacement, and prefetch strategies, as
well as size. Each of these must be defined for the
simulation model.

The associativity of a cache ranges from fully
associative to direct mapped. Fully associative caches
allow any destinatiodnext-hop pair to be s t o d in any
cache location. A direct-mapped cache allows each
destinatiodnext-hop pair to be stored in only a certain
cache location, so multiple destination addresses are
mapped into a single cache location. In general, the
cache is divided into a disjoint set of locations that may
contain the contents of a certain subset of
destinatiodnext-hop pairs, and this is a set-associative
cache. For these measurements, a fully associative cache
is used because it provides the best performance for a
given number of cache slots. Also, the performance of
any set-associative cache depends on the value of those
items to be stored in the cache and the cache association
mechanism. A fully-associative cache avoids the
problem of measurement bias because of specific
network addresses in the measurements and makes the
results general for any set of network addresses with
similar characteristics. In addition, broad associative
searches are easily implemented in MOS VLSI, so it is
reasonable to expect that highly associative caches will
be available on a chip'.

Whenever there is a cache miss, the missed entry must
be entered into the cache and some other item must be
discarded The three most popular strategies are random
replacement, first-in first-out (FIFO), and least recent use
(LRU). A random replacement strategy simply discards
a random location in the cache. The "random" location is
most easily chosen based on some counter value (such as
a clock) from elsewhere in the system. A FIFO
replacement strategy discards the cache entry that is the
oldest; a FIFO cache is easily implemented as a circular
buffer. The most complex strategy, but also the one that
generally provides the best cache performance, is LRU.
An LRU cache operates by storing not only the data, but
also the time that each datum was last referenced. If a
reference is in the cache, its time is u p d a e otherwise
the data that was least recently accessed is discarded and
the data for the new reference is cached.

An LRU cache is a good choice for the type of address
locality expected and a fully-associative, LRU cache
forms an upper-bound on the cache hit ratio for a fixed
number of cache slots. Unfortunately, this type of cache
is also the most complex and expensive to implement. A

orm worse for a given

cache can afford to have more slots and perhaps exceed
the performance of a smaller fully-associative LRU
cache; this is a cost trade-off that only the gateway
designer can assess.

A strategy for pfetching is suggested by observing
that a packet from host A to host B is often followed by a
packet from B to A2. If the cache pfetches the next-
hop for the packet source, then a packet traveling through
the same gateway in the reverse direction no longer
causes a cache miss. For the cache simulations, two
situations are analyzed. The first is that only the packet
destination is used to update the cache and this
carresponds to a case where prefetching is not
economical. The second assumes that prefetching is free
and should be done any time that the packet source is not
in the cache. In reality, the truth is somewhere in-
between, so these two sets of curves give lower and
upper bounds for fully associative LRU caches where
prefetching occm.

of cache may
number o rp" slots, but for a f!Y ed price, a less efficient

2.2. Trace Generation
We would like to estimate the performance of a

gateway with a routing-table cache before the system is
built. The performance can be determined by trace-
driven simulation, which requires a list of all routing-
table accesses on a gateway. We ~IZ interested m
statistics of packet arrivals at various gateways, but
building a measurement system directly into a gateway
has several disadvantages. The main problem is that
each gateway would need to be reprogrammed to include
a monitoring system. Reprogramming is difficult
because some of the gateways m owned by other
research groups, which are reluctant to disturb gateway
operation; other gateways are commercial products, in
which case the source code is unavailable. In addition,
any monitoring system installed in a gateway will use
processor time and m e m 9 space and this overhead
could affect gateway operanon during periods of heavy

3D.1.2.
0299

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

load, causing packets to be dropped. Since p e r i d of
heavy load are of particular interest to determine the
efficiency of the caching system, the measurement
artifact of such a monitoring program is unacceptable.
Also, it is advantageous to be able to try various caching
suategies and cache sizes on a single measurement set, so
that differences in results are directly attributable to the
change in strategy, rather than simply a change in the
gateway Wic. Instead of monitoring the packet arrivals
at each gateway, it is simpler to measure all of the
packets on the network that pass through the gateway.
This replaces monitoring programs in each gateway with
a single dedicated monitoring system.

Trace-driven simulation computes the exact cache
performance as long as the trace-gathering operation is
exact and has no processing cost. Measuring packets on
the network with a separate measurement system assures
that the gateway itself operates as usual. Two types of
packets are observed traveling to a gateway: packets to
be forwarded to another network or packets destined to
the gateway itself. Not all packets addressed to the
gateway itself are observed, since only one of the
networks attached to the gateway is monitored, but this is
a problem only if a packet to a gateway causes a routing
table reference. Whether a packet to a gateway causes a
routing table reference depends on the gateway
implementation. One possibility is to explicitly check
each incoming packet against a table of all of the
gateway’s addresses to see if there is a match. This
explicit check means that the routing table is never
consulted about packets destined to the gateway.
Another possibility is to use the routing table for all
packets. The gateway will discover that it is directly
connected to the proper network and will try to send the
packet. Before the packet is sent, the gateway checks if
the packet is to its own address on the appropriate
network. If the packet is for the gateway, then it is never
transmitted. The explicit check after the muting-table
lookup requires checking a smaller number of gateway
addresses at the increased cost of a routing-table lookup.
For this paper, it is assumed that gateways do an explicit
address check and that the unobserved packets do not
cause routing-table accesses.

Another disadvantage of measuring all packets is that
the packets on the network to (or h m) a gateway may
not be the same as those to be handled by the gateway
software. If the current gateway drops a packet, some
protocols will retransmit that packet. Thus our packet
trace now has multiple copies of a single packet, only one
of which is actually forwarded by the gateway. Some of
these extraneous packets can be eliminated by filtering
the packet trace to remove identical packets with certain
interarrival times. In any case, these duplicate packets
should only appear when the gateway is overloaded, and
this is relatively rare.

The measurement system on the token ring is a general
measurement system for monitoring all traffic and was
originally built for the research done by Feldmeid. The
monitoring system consists of two computers - a passive
monitor and a data analysis machine. The passive
monitor receives the packets on the ring and timestamps
them upon arrival. The passive monitor then compresses

The measurement system on the token ring is a general
measurement system for monitoring a l l traffic and was
originally built for the research done by Feldmeid. The
monitoring system consists of two computers - a passive
monitor and a data analysis machine. The passive
monitor receives the packets on the ring and timestamps
them upon arrival. The passive monitor then compresses
the information of interest from each packet into a large
data packet that is sent to the analysis machine. The
monitoring system generates less than 2% of the network
traffic, so the monitoring overhead is acceptable; also,
none of the packets pass through a gateway, so the arrival
order of packets at a gateway remains unchanged A
more complete description of the design of the network
monitoring station may be found in a paper by Feldmeier
4. F O ~ these measurements, the monitor compresses
information only for packets that are to or from non-local
hosts; in other words, all the packets that pass through the
gateways. The analysis machine simply stores all of the
received data for later analysis.

Only a single trace using complete intemet addresses
for all packets through the gateway is needed for both flat
and h i m h i c a l addressing scheme cache simulation.
Flat addressing measurements use the entire internet
address for the cache simulation; hierarchical addressing
uses only the network field of the internet addresses for
the cache simulation.

2.3. Data Analysis
The measurements used in this paper are h m the MIT

ARPANET gateway. This is the main ARPANET
connection to MIT and it serves the entire campus and
several local companies involved in research as well.
The ARPANET gateway processed 2,147,956 packets
during the 24 hour measurement period. About 91% of
a l l packets passing through the ARPANET gateway are
part of virtual circuit connections (TCP protocol). The
other interface of the ARPANET gateway is attached to a
10 Mbps token ring at the MIT LCS. In addition to 8
gateways, 20 computers also reside on the ring, including
10 VAXs, 7 PCs, a microVAX, an IBM-4341, and a
PDP- 1 1/45. The total number of packets processed by all
gateways during a 24 hour period was 4,546,766. The
ring itself d e d 4,819,189 packets.

The results in this paper m based on network
measurements made during the 24 hour period h m 1:OO
AM Monday, November 30th to 1:OO AM Tuesday,
December 1st 1987. It is for this data that cache
performance is evaluated; however any cache must start
with no data and each cache reference that initializes the
cache causes a cache miss. Since the reason for installing
a cache in a gateway is to improve long-term average
performance of the system, we are interested in the
steady-state cache performance. To avoid cache misses
caused by cache htialhtion, the cache is pre-loaded so
that once the measurement period begins, the cache has
many of its most referenced entries. Measurements
during the 61 minute period from 1159 PM Sunday,
November 29th to 1:OO AM on Monday, November 30th
1987 were used to pre-load the cache to avoid
measurements during cache initialization. During cache
initialization, 230 distinct destination addresses and 254

3D.1.3.
0300

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

distinct destination and source addresses arrived, out of
44,284 packets. Although a longer cache initialization
would increase the cache performance, there is a limit to
the amount of data storable by the network measurement
system.

As mentioned above, the monitor cannot receive
packets addressed to the gateway or badcast packets
from other networks, and it is assumed that these packets
do not cause routing table accesses. Any packets of these
types received on the monitored network are ignored in
the data analysis.

As with any measurement, the data collected is not as
precise as we would like. Because a machine could not
be dedicated to the receiving of data from the network
monitor, a time-sharing machine was used instead. The
monitor transmits each packet to the analyzer once to
minimize network loading, and if the receiving machine
is occupied with other network functions at that time, the
monitoring data are lost. During the course of
monitoring, data were lost for 0.33% of packets passing
through gateways on the ring.

Another source of measurement inaccuracies is caused
by low-level retransmissions. As mentioned above, not
all packets on the network are seen by the intended
receiver. To assure more reliable packet transmission,
the ring has a low-level acknowledgment system built
into the network hardware; if an interface receives a
packet, an acknowledgment bit in the packet trailer is
marked. Since the transmitter must remove any packets
that it transmits on the ring, the transmitter always can
determine whether the packet it has sent was received by
checking for the receiver’s mark. The device drivers for
hosts on the ring include a low-level retransmit
mechanism that automatically refransmits a packet up to
eight times without higher-level intervention if the
receiver has not acknowledged the packet by marking it.
This means that several closely-spaced identical packets
may be transmitted, but only a single packet is received
by the intended host. The monitoring station is fast
enough to receive all of the packets present in a burst, but
the receiver itself receives only one of them. The
monitoring station cannot check the acknowledgment bit,
so somehow these retransmissions must be removed from
the data so that the time locality of the data will not be
exaggerated. Since a low-level packet burst is at high
speed, any packets with the same source and destination
address that arrive within a short time of each other
should be discardex$ however, if this threshold is set too
high, multiple packets between a hostdestination pair
may be i n m t l y eliminated. The specific value that
determines whether a packet is caused by a low-level
retransmission depends on parameters of the network and
the network hosts. Also, the threshold should exceed the
transmission time of most packets. Most packets on the
ring are 576 bytes or less long, and at 10 MBPS the
transmission time is 461 microseconds.

The graph in figure 2-1 is a histogram of the
interpacket arrival times for packets to all gateways with
identical source and destination addresses, from 0 to 5
milliseconds with a clock granularity of 25
microseconds. There is a peak around 725 microseconds,

6.0

2 0

1.0

0.0
0.00

Interpacket Arrlval nme In Mllllseconds

Figure 2-1: Interpacket Arrival Time of
Identically Addressed Packets

and this is where most of the low-level retransmission
must occur. The higher the low-level retransmission
detection threshold is set, the more low-level
retransmissions that are eliminated. However, the upper
bound of this threshold is set by the interpacket time for
the fastest host on the network. Since a gateway can
transmit over 700 packets per second, the interpacket
time of 1.35 milliseconds (the peak around 2% of all
packets) is probably caused by a gateway transmission.
For this data, any packets with the same source and
destination that arrive within a millisecond or less of each
other are discarded as low-level reuansmissions.

3. Measurement Results
Although hierarchical addressing is relevant to existing

gateways, the behavior of the cache under a flat
addressing scheme is m r e easily understood because the
performance of the cache can be understood in terms of
various packet flows among hosts. It is also of interest to
learn whether flat addressing can be done efficiently with
a cache. Hierarchical addressing requires that many flat
addresses are mapped to the same network address.
Hierarchical addressing requks an understanding of a
conglomerate of host flows seen as network flows.

3.1. Results for Flat Addresses
From a previous study, it is known that a packet from

host A to host B has a high probability of being followed
by another packet from A to B2, which implies time
locality of packet addresses. Consider a time-ordered list
of previously seen addresses; for a current address that
has been previously seen, how far down the list is this
address? Figure 3-1 shows the percentage of references
versus time-ordered position of previous reference for the
400 most recently referenced packet destination
addresses. The graph is averaged over all packets
received by the gateway and it is plotted on a logarithmic
scale so that the relative popularity of the slots is more
easily seen. The graph for destinatiodsource caching is
similar.

3D.1.4.
0301

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

I I I I I I I I
0 50 I @ 7 9 a#, 250 940 950 140

Figure 3-1: Percentage of Reference versus Time of Last Reference (Destination)

o.oo011

PIW~OUS ~eference posltlon

The decrease in probability far both graphs is nearly
monotonic until about 50 most recently referenced
addresses. This monotonically decreasing function
implies that the LRU cache management strategy is

timal for caches of less than 50 slots. After reference 3, the probability continues to decrease generally, but
there is more variance. One reason far the increased
variance is that the probability of reference decreases
with increasing age, so that the amount of data that falls
into the farther positions is too small to properly
approximate the probability distribution curve at these
pomts. At these outer parts of the curve, the average
number of ackets per slot is about 15, as compared to
between sbb and 876,000 in the first 50 positions.
Another explanation is that the relationship between
probability of reference and time of last reference
changes at some point on the curve. This change in
relationship might be caused by two separate
mechanisms that determine whether the current packet
address is in the cache.

The first mechanism that produces cache hits is a
current packet that is part of a train of packets. The fim
packet of the train initialins the cache and as long as the
cache is not too small, all following packets are cache
hits. The second mechanism is that the first packet of a
train is to a destination already in the cache. If N is the
number of packets in a train*, the number of packets that
arrive due to the 6rst mechanism must be greater than
N-1 times the number of packets that arrive due to the
second mechanism** This means that the destination
a s of packets an active train are most likely to
be near the first slot of an LRU cache and that addresses
of inactive but popular train destinations are likely to be
between slot i, where i is the number of simultanmusly
active ttains, and the last slot of the cache. The
relationship among train arrivals at a destination is

'Jain and Routhier claim the average number of packets in atIairI

*%or a cache enough to hold entries faa l l simultaawus

is 17.42.

traias.

unknown, but undoubtedly it is weaker than the
relationship among packets in a train, and this could
explain the higher variance in the later part of the
probability distribution. Additional information is
necessary to decide whether an insuff5cient number of
samples or two cache hit mechanisms more d y
explains the inmxsed variance in the later part of the
probability distribution above.

If the probability distribution does change with age
.after a certain point, the most cost-effective strategy may
be to have an LRU cache with 50 slots, followed by a
FWO or random management cache with a few hundred
slots. If the probability of reference does not decrease
monotonically with increasin? last-reference age, then an
LRU cache decreases in effiwncy relative to other cache
types and its higher cost may not be justified because
other cache types allow a larger cache for the same price
and perhaps a higher cache hit ratio far a given cost.

Given the data above, an LRU cache should be
effective for d u c i n the number of routing-table
rderence~, he pro&ty of reference v m tune of
previous mference data allows simple calculation of an
LRU cache hit ratio for a given number of cache slots.
The dationship between cache hit ratio and probability
ofacoessis:

Where fh(i) is the cache hit ratio as a function of i, the
number of cache slots; and pj is the probability of a
acket address being the fh previous mfmnce. figure

$2 shows the percentage of cache hits vmus cache size
for both destination and destination/source caches.
Notice that even a relative1 small cache has a high cache
hit ratio. Table 3-1 slows just how quickly the
probability of a cache hit climbs even for small cache
sizes. With as few as 9 slots, the hit ratio is already
above 0.9.

3D.1.5.
0302

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

s
li! m -

- Dest!n@n/Source LRU Caching
Destinabn LRU Caching

i
a-

10-

9 0 -

; ; o ; s ; o ; s ~ & s ; o ; s ; 4
Number of Cache Slots

Figure 3-2: Percentage of Cache Hits
versus Cache Size

Table 3-1: Cache Hit Ratio Percentage
versus Cache Size

Number of Destination Destination
Cache Slots only Source

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

40.78
63.53
72.34
78.19
81.96
84.78
86.95
88.72
90.17
91.37
92.38
93.22
93.92
94.52
95.02
95.45
95.82
96.13
96.40
96.64

27 .OS
67.83
76.30
82.12
85.34
87 .44
89.15
90.48
91.57
92.52
93.30
93.97
94.54
95.05
95.48
95.87
96.19
96.47
96.73
96.96

Another way of looking at the hit ratio data is to plot
the average number of packets through the gateway
between cache misses. The relation between cache h t
ratio and packets between cache misses is:

Where f(i) is the number of packets between cache
misses as a function of i, the number of cache slots; and
fh(i) is the probability of a cache hit as a function of the
number of cache slots.

The effectiveness of a cache depends on the ratio of the
packets-between-misses values before and after the
cache, not an absolute number, so the graph in figure 3-3
is plotted on a logarithmic scale so that equal ratios
appear as equal vertical intervals. This graph shows the
incremental efficiency of each additional slot in the
cache. In addition to curves for destination LRU,
destinatiodsowce LRU, destination FIFO, and
destinatiodsome FIFO, also shown arc the destination
and destinatiodsource curves for a two cache system
consisting of a 64 slot LRU cache followed by a FIFO
cache.

As expected, the destinatiodsource LRU cache
performed best, followed closely by the destination LRU
cache. The destinatiodsome cache outperforms the
destination only cache, which confirms that much of the
traffic through the gateway is bidirectional. Performance
of both FIFO caches is relatively poor until the
destination FIFO cache size exceeds 1250. It turns out
that 1035 is the number of distinct destination addresses
handled by the gateway in a 24 hour period, in addition
to 230 destinations in the preload, for a total of 1265.
For destinatiodsowce caching, the FIFO buffer size does
not help until 1370 slots, which is about the number of
distinct destination and source addresses processed by the
gateway in a 24. hour 'od, 1 130, plus 254 during
preload for a total of 1388en

The incremental efficiency of each slot in the cache is
the slope of the c w e at that slot number. A-shyp
decrease in the slope indicate a point of dirmtllshmg
returns for larger cache sizes. patticularly notice the
drop in LRU cache efficiency around cache slot 50.

The dual cache systems perform moderately well. For
example, consider a 128 slot destination LRU cache (this
can be thought of as two 64 slot LRU caches back to
back). The same performance can be obtained with a 64
slot destination LRU cache followed by a 241 slot
destination FIFO cache. A FIFO cache is simpler to
implement than an LRU cache and if an 241 slot FIFO
cache is cheaper than a 64 slot LRU cache, then the dual
cache combination provides a better hit ratio for a given
cost than a single LRU cache.

how many cache slots
arc necessary far a g i v m r of packets between
cache misses, the above graph is better plotted on a linear
scale. The graph in figure 3 4 is interesting because each
of the curves seems to be composed of two or three linear
regions. At least for the LRU cwes, the number of
packet between misses seems proportional to the number
of cache slots, until the curve approaches its maximum,
where the incremental slot efficiency drops.

If the interest is in de ' *

3D. 1.6.
0303

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

I d I

I

I

I

. ai
i lm-

I

I I I I 1

I
m 800 lOQ0 1200 1400 --

Number of cache Slots
Figure 3-3: Number of Packets Between Cache Misses versus Cache Size (log-hear)

- DestinationlSourceLRU - DestjnationLRU - 0.. - Destmationlsource FIFO - ... - Destinah FIFO - -. - Destination/Source LRU(64)FIFO --- Destinm LRU(64yFIFO
i I

I’ ’ :
I

Number of Cache Slots

Figure 3 4 Number of Packets Between Cache Misses versus Cache Size (linear-hear)

3.2. Results for Hierarchical Addressing based on network addresses and since the number of
Although in the previous section packet addresses were networks is d e r than the number of hosts, the cache

treated as flat ad&esses, in reality they are hiermhicd hit ratio for a network cache is higher than the hit ratio of
addresses,whichmeansthatanaddresscanbeseparated a flat address cache. In order to cache network
into network and host pieces. currently, routing 1s done addresses, the complete address must pass through an

3D.1.7.
0304

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

address decoder that extracts the network address. The
tradeoff is that the hit ratio of the cache is higher than for
flat addresses, but each address must be decoded.

Hierarchical addressing, as done by current gateways,
is complex because the separation of the network and
host fields of the intemet address is determined by the
type of address. In order to avoid this complication, the
separation of fields for the purposes of this research is
that the first three bytes of the full address refer to the
network and that the last byte refers to the host. This
procedure never removes part of the network address as
long as the address is not a class C address with
subnetting (which is not known to be used by anyone).
In some cases, some of the host’s address will be left
with the network address, which means that the cache hit
ratio will be lower than if the address were completely
Separated.

Since the purpose of a cache is to speed up routing
table access, it is probably advantageous to place the
cache before the address separation, rather than after it,
so that each cache hit saves not only a table lookup, but
also the trouble of dissecting the full address. It may be
advantageous to use a simple address separation
procedure before the cache, such as the suggested one of
removing the last byte of the address. This preprocessing
step increases the cache hit ratio by eliminating most, if
not all, of the host address from the full address, and yet
avoids the complexity of complete address decoding.

rcentage of references versus
time-ordered position o&kwious reference for the 80
most recently referenced packet destination addresses.
The graph is averaged over all packets received by the
gateway and it is plotted on a logarithmic scale so that
the relative popularity of the slots is more easily seen.
The graph for destinatiodsource caching is similar.

Figure 3-6 shows the percentage of cache hits versus
cache size for both destination and destinatiodsource
caches. Notice that even a relatively small cache has a
high cache hit ratio. Table 3-2 shows just how quickly
the probability of a cache hit climbs even for small cache

Figure 3-5 shows the

sizes. With as few as 7 slots, the hit ratio is already
above 0.9.

- oest!nenlsource LRU Caching
Destinatron LRU Caching

0 s 1 0 1 5 2 0 2 5 9 0 9 5 1 0 J s m
W

Number of Cache Slots
Figure 3-6: Percentage of Cache Hits

versus Cache Size
Another way of looking at this data is to plot the

average number of packets through the gateway between
cache misses. The gra h in figure 3-7 shows the
incremental efficiency o f each additional slot in the
cache. Curves are shown for destination LRU,
destinatiodsome LRU, destination FIFO, and
destinatiodsome FIFO.

As expected, the destinatiodsource LRU cache
performed best, followed closely b the destination LRU
cache. Performance of both FIF8 caches is relatively
poor until the destination FIFO cache size exceeds 102.
It turns out that 52 is the number of distinct destination
addresses handled by the gateway in a 24 hour period, in
addition to 52 destinations in the preload, for a total of
104. For destinatiodsource caching, the FIFO buffer

82
g O.loo0 -
8
t5 a 0.0100 -

0.0010 -
I I I I I 1 I I
10 20 90 10 50 60 70 80

0 . m

Prevloui, Refemme Position
Figure 3-5: Percentage of Reference versus Time of Last Reference (Destination)

3D.1.8.
0305

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

c a

E

- D&!nationlSource LRU
Destinatkn LRU - 0.- - DestinatbnSource FIFO - .-. - Destination FIFO

-

2
120

Number of cache Slots

Figure 3-7: Number of Packets Between Cache Misses versus Cache Size (log-hear)
4

size does not help until 104 slots, which is about the
number of distinct destination and source addresses
F e d by the gateway in a 24 hour period, 54 plus 53
dunng preload for a total of 107.

Table 3-2: Cache Hit Ratio Percentage
versus Cache Size

Number of Destination Destination
cache Slots only Source

1
2
3
4
5
6
7
8
9

10

42.31
66.54
76.03
82.52
86.61
89.53
91.74
93 .44
94.75
95.77

29.94
71.28
80.81
86.32
89.61
91.81
93.48
94.76
95.77
96.56

4. Caching Cost Analysis
Although the hit ratios have been given for various

gateway caches, the impemant question is what is the
performance improvement that is gained for the gateway.
The following analysis is meant to be a simple woTstc8st
analysis. The cache used for this analysis is a fully
associative cache with a LRU replacement licy. The
cache is im lemented completely in so&are as a
doubly-linkahear list. The list is searched linearly
from most recently used to least recently used and when
the list is rearran.& to pserve the LRU ordering, this is
done by swappmg p o m m of the doubly-linked list.
Only destination addresses are cached.

~stimates of the number of instructions are basedb a
load-store machine architecture. Loading the pointer to
the cache requires 1 instruction. A matching e n q is
recognized in 3 instructiow in addition, 7 instnrcaons
are needed for each previously checked cache slot. After
each cache search, the cache must be reordered to
pnxme the LRU ordering (except if the entry was found
in the first slot) and this takes 21 instructions (except for
the Iast cache slot, which needs 11 instructions).

An estimate of the minimum-time address decode and
routing table lookup for a packet is 80 instructions, a
figme obtained by estimating the number of load-store
instructions generated by the C gateway code at MlT.
The current gateway code would take even long-, this
estimate is conservative because it does not include
function call overhead, err01 handling, or the additional
routing table lookup necessary for subnet routing and
assumes that then are no hashing c o ~ o n s . This
estimate also does not include the time necessary to ma
a next-hop IF' address into a local network address, whic!
is at least 2 instructions, but varies depending on the local
network.

Tbe average lookup rime with the cache is now:
1 + 3p, + (7+3+21)p2 + (14+3+21)p,
+ * - - + (7[k-l]+3+21)p,
+
+(1-zpi)(7n+2l+80)

- * + (7[*1]+3+ ll)p,
I

hl

If the cache stores flat addresses and destinations only,
then the optimum number of cache slots is 16. The
average lookup time with the cache becomes 37.9
instructions, only 47% as long as a table lookup. One
problem with LRU caches is that it is expensive to
maintain LRU ordering. A way to reduce this expense is
to use only two entries and a single bit to determine

3D.1.9.
0306

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

which is first in order. In this case, the average lookup
time is 33.9 instructions, 42% as long as table lookup.
For a source-destination twoelement cache, the average
lookup time is 29.6 instructions or 37% of table lookup.

With hierarchical addressing, the performance is even
better. To obtain a network address f” a flat address,
the last byte is dropped h m the address. Although this
does not necessarily result in a network address, the
number of distinct addresses that the cache must handle
is reduced and the overhead is only a single AND
instruction. The optimal cache size is 51 slots and the
average lookup time is 31.5 instructions, 39% as long as
table lookup. A two element simple cache as described
above averages 33.3 instruction, 42% of a table lookup.
A sourcedestination cache requires 27.7 instructions, or
35% of a table lookup.

Although the figures above minimize average lookup
time, it may be that a lower maximum lookup time is
desired at the cost of a slightly higher average lookup
time.

Obviously, a better cache implementation would
increase performance. Cache lookup could use a hash
table rather than a linear search, the cache slots need not
be fully associative, a replacement strategy
approximating LRU may be implemented less
expensively, the cache fetch strategy could use both
destination and source addresses, or a hadware cache
could be built into the system. But even with this simple
cache implementation and optimistic assumptions about
routing-table looku time, the best cache above reduces
lookup time by 652

5. Conclusion
pnX;essing time per packet is reduced if average

routing-table access time is reduced, and an economical
way to reduce access time is to use a cache. Recardings
wert made of routing-table accesses for several operating
gateways and these records are used to drive cache
simulations to determine the hit ratio for various types of
caches. The caches simulated are fully-assoCiative, LRU
or FIFO, and cached destination addresses or destination
and source addresses.

The probability of reference to a destination address
versus time of ous reference to that address is
monotonically E a s i n g for up to 50 previous
references, implying that an LRU cache management
procedure is optimal for caches of 50 slots or less.

Locality of packet flat addresses causes an LRU cache
of 9 slots to have a hit ratio of over 90%. Hierarchical
addressing measurements place hit ratios at over 90% for
7 slots.

In addition to caching the packet destinatiodnext-hop
pair, it is worth caching the packet source/next-hop par
if it can be done inexpensively.

The data indicate that back-@back caches may be the
most effective implementation of large caches. This first
cache should have an LRU management licy to cache
packets aniving in a train. Cache misses k this cache
should then check a FIFO cache to check for trains from
previously seen destinations.

Hieradical addressing recognition allows a higher
cache hit ratio at the expense of address decoding each
packet destination address. Simple -sing before
a cache for flat addresses provides a ht raao not as high
as that for hierarchical addressing, but higher than the hit
ratio for flat addressing at little cost.

A simple conservative cost analysis shows that ament
gatewa routing-table lookup time can be reduced to
35% ot‘its current time. his is a conservative estimate
and a good cache design or a hardware cache could
further reduce the average lookup time.

The hit ratio for a flat address cache is high enough that
flat addressing may be practical to use in a gateway with
a cache.

6. Acknowledgments
I would like to thank Dave Clark for suggesting the

idea of a routing-table cache in a gateway. My thanks
also to Thu Nguyen and an anonymous reviewer for their
“ments .

References

1.

2.

3.

4.

Alan Jay Smith, “Cache Memories”, ACM
Computing Surveys, Vol. 14, No. 3, September

R Jain and S. Routhier, “Packet Trains -
Measurements and a New Model for Computer
Network Traffic”, IEEE Journal on Selected
Areas in Communications, Vol. SAC-4,
No. 6, September 1986, pp. 986-995.

David C. Feldmeier, “Traffic M e a ” e n t s on a
Token Ring Network”, Proceedings of the I986
Computer Neworking Symposium, (Washington,
DC, November 1986), pp. 236-243.

David C. Feldmeier, “An Empmcal Analysis of a
Token Ring Network”, Technical Memo
TM-254, MIT Laboratory for computer Science,
January 1984.

1982, pp. 473-530.

3D.1.10.
0307

Authorized licensed use limited to: MIT Libraries. Downloaded on February 19,2010 at 12:47:13 EST from IEEE Xplore. Restrictions apply.

