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Abstract

Each new generation of GPUs vastly increases the resources avail-
able to GPGPU programs. GPU programming models (like CUDA)
were designed to scale to use these resources. However, we find
that CUDA programs actually do not scale to utilize all available
resources, with over 30% of resources going unused on average for
programs of the Parboil2 suite that we used in our work. Current
GPUs therefore allow concurrent execution of kernels to improve
utilization. In this work, we study concurrent execution of GPU
kernels using multiprogram workloads on current NVIDIA Fermi
GPUs. On two-program workloads from the Parboil2 benchmark
suite we find concurrent execution is often no better than serial-
ized execution. We identify that the lack of control over resource
allocation to kernels is a major serialization bottleneck. We pro-
pose transformations that convert CUDA kernels into elastic ker-
nels which permit fine-grained control over their resource usage.
‘We then propose several elastic-kernel aware concurrency policies
that offer significantly better performance and concurrency com-
pared to the current CUDA policy. We evaluate our proposals on
real hardware using multiprogrammed workloads constructed from
benchmarks in the Parboil 2 suite. On average, our proposals in-
crease system throughput (STP) by 1.21x and improve the aver-
age normalized turnaround time (ANTT) by 3.73x for two-program
workloads when compared to the current CUDA concurrency im-
plementation.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; C.1.2 [Processor Ar-
chitectures]: Multiple Data Stream Architectures (Multiprocessors)

Keywords GPGPU, CUDA, Concurrent Kernels

1. Introduction

Graphics Processing Units (GPUs) have evolved from hardware-
accelerated fixed-function pipelines to multicore data parallel com-
putation engines. Increasingly general purpose in nature, many are
now used exclusively for General Purpose GPU (GPGPU) code
(i.e. non-graphical or computational code), especially as compo-
nents of some of the world’s fastest supercomputers [19].

Each new GPU generation incorporates features that expand
their ability to tackle larger and more complex computational prob-
lems. The architectural resources available to GPU programs also
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Resource Tesla (1.3) Fermi (2.0) Kepler (3.0)
Registers 16384 32768 (2x) 65536 (2x)
Shared 16384 49152 (3x) 49152
Memory

Threads 1024 1536 (1.5x) 2048 (1.33x)
Resident 8 8 16 (2x)
Blocks

Table 1. Resources per Streaming Multiprocessor across three
NVIDIA GPU generations. Multipliers in parentheses indicate
change over preceding generation.

increase with each new GPU generation. We observe that from
the NVIDIA Tesla [9] to the NVIDIA Kepler [13], shared mem-
ory has trebled, registers have quadrupled, and the number of hard-
ware threads has doubled (Table 1). GPU programming models like
CUDA and OpenCL have been designed to allow older programs to
take advantage of these increased resources without any program-
mer intervention. Programs written in CUDA for the Tesla scale to
use the increased resources available on the Kepler because CUDA
requires parallelism to be made explicit and performs resource al-
location at runtime.

In reality, however, we find that CUDA programs are unable
to effectively utilize these additional resources. Programs from the
Parboil2 benchmark suite, for example, utilize only 20-70% of re-
sources on average (Section 2). Ironically, we find that the grid',
a GPU programming construct that was designed to achieve scal-
ability, also leads to under-utilization of those same resources. A
grid is the runtime instance of a GPU kernel, and consists of thread
blocks. By allowing the programmer to create a large number of
thread blocks — more than the resources available in the hardware —
CUDA grids can scale up to newer hardware by simply increasing
the number of thread blocks that run concurrently. This is possible
because in the CUDA programming model, each thread block in
the grid is an independent unit of parallelism and can execute inde-
pendently of other thread blocks in the grid. Each thread block, in
turn, consists of threads which ultimately consume resources and
execute on the hardware. The number of threads in a thread block
and the number of thread blocks in a grid are decided by the pro-
grammer, who divides the work to be performed among the thread
blocks. Apart from work distribution and scalability, thread blocks
are also used to allocate resources for a grid which leads to under-
utilization of resources.

Figure 1 illustrates how resource allocation at the thread block
level leads to wastage. Each thread block occupies a fixed amount
of the GPU’s resources — registers, threads and shared memory
— which it occupies exclusively until it finishes. A GPU runs as
many thread blocks concurrently as possible until limitations due to
any of (i) number of registers, (ii) threads, (iii) shared memory or

! Although these constructs are common to all GPU programming models,
we use CUDA terminology in this paper for consistency.



Running/Resident Waiting
Thread Blocks Thread Blocks

NN OO

Resource
Requirements| A A,

i ?5%%5

pEQEERERCREREKS

(Wastage)

Phy5|cal Hesources

Figure 1. Resource wastage due to allocation at Thread Block
granularity.

(iv) maximum number of resident blocks is reached. It is possible,
and in our experience quite common, for thread blocks to exhaust
only one of these resources (the limiting resource), while leaving
the others underutilized. For example, on the Fermi, a thread block
that uses 16 registers per thread and contains 128 threads per thread
block is limited by the maximum number of resident blocks (8) and
not by the number of registers or threads. The unused resources
obviously cannot accommodate another thread block from the same
grid and are therefore wasted.

If the hardware were able to modify grid and thread block sizes,
it could choose sizes that would optimize the utilization of hard-
ware resources. Unfortunately, grids are specified at the program-
ming model level and provide the basis for work distribution. Most
programmers size grids and thread blocks on the amount of work
available, and not for optimal utilization of hardware resources.

The only way to utilize these wasted resources, then, is to al-
low concurrent execution of other independent grids whose thread
blocks could possibly utilize these wasted resources. Such inde-
pendent grids may be obtained from other concurrently executing
GPGPU programs or from other streams (Section 3.1) in the same
program. As a consequence, current GPUs have begun support-
ing concurrent execution of independent grids. Policies vary, but
in general, after thread blocks from a grid have been dispatched to
hardware limits, any leftover resources are distributed to the next
independent grid. Under this “LEFTOVER” policy, concurrent ex-
ecution is not guaranteed — it is still possible for running (or resi-
dent) thread blocks from one grid to consume too many resources,
preventing other grids from executing concurrently. In practice, we
find this is actually a serious problem — 50% of the kernels from
the Parboil2 benchmark consume too many resources and prevent
concurrent execution of other Parboil2 kernels (Section 2).

Past work [1, 7, 8, 14] has motivated GPU concurrency as a
method to improve GPU throughput. Adriaens et al. [1] propose
the use of GPU concurrency for mobile GPUs, Ravi et al. [14]
look at GPGPU applications in the cloud and Guevara et al. [8]
and Gregg et al. [7] demonstrate throughput improvements due
to concurrency. Although these works partition GPU resources
among concurrent kernels, the granularity of their techniques is
either too coarse, operating at the level of a thread block [1,
7, 8], or their techniques are not general enough to apply to all
kernels [14]. We show in this work that they either underutilize
resources significantly or do not perform as well as our policies.

‘We make the following contributions:

e We identify major inhibitors of GPGPU concurrency in the

CUDA execution model where long running kernels and mem-

ory transfers act as serialization bottlenecks. We propose a tech-

nique to time-slice kernel execution and memory transfers to
mitigate this serialization.

We find that the current CUDA Streams API and its hardware
implementation lead to a high degree of “false serialization”,
and we build a replacement Non-serializing Streams API to
work around these limitations in the existing API and hardware.
We identify a lack of mechanisms to control the resource usage
of a grid which leads to poor utilization and poor concurrency
and therefore propose and describe the use of elastic kernels,
a mechanism to control resource allocation for grids during
runtime.

We propose and study elastic-kernel-aware concurrency poli-
cies that perform significantly better than the default LEFT-
OVER policy, achieving a higher degree of concurrency as well
as performance.

Finally, we evaluate our proposals on real hardware using mul-
tiprogram workloads constructed from the Parboil2 benchmark
suite. Averaged across the workloads, our best elastic policy
improves system throughput (STP) by 1.21x and average nor-
malized turnaround time (ANTT) by 3.73x over CUDA exe-
cution. Our time-slicing technique improves geomean STP by
7.8% and geomean ANTT by 1.55x where applicable. Our poli-
cies improve the average number of concurrent kernels by 1.53x
over CUDA, and reduce kernel waiting time by up to three or-
ders of magnitude.

This paper is organized as follows. Section 2 describes the moti-
vation for GPGPU concurrency and how current concurrency poli-
cies are ineffective. Section 3 identifies other factors that inhibit
GPGPU concurrency. Elastic kernels and elastic-kernel aware con-
currency policies are presented in Section 4. Our Non-Serializing
Streams API is described in Section 5. Section 6 contains the eval-
uation of our proposals and presents performance results.

2. Motivation

The NVIDIA Fermi is the only GPU available (as of Q2, 2012)
with the software and hardware ability to run multiple GPU grids
concurrently. Therefore, we use it in our examination of GPGPU
concurrency mechanisms and policies.

Table 2 presents the resources used by the grids of all 18 kernels
of the Parboil2 benchmark suite when executed on the NVIDIA
Fermi GPU. Observe that no grid from any kernel utilizes 100%
of all resources. The vast majority of grids exhaust only a single
resource. On the Fermi, this is either registers or resident blocks.
Overall, over 40% of threads and blocks, 30% of registers and 80%
of shared memory are not used on average. When we examine
the benchmarks in the Rodinia 2 suite [3], we arrive at similar
conclusions: 35% of threads, 47% of registers, 88% of shared
memory and 52% of blocks are not utilized on average.

Since these wasted resources cannot be utilized by thread blocks
from the same grid, the Fermi GPU supports concurrent execu-
tion of up to 16 grids. Independent grids must be identified and
the programs modified in order to convey dependency informa-
tion to CUDA. None of the programs in the Parboil2 or Rodinia 2
benchmarks currently executes multiple grids in parallel; support
for GPU concurrency is relatively new. So, in this work, we use
multiprogrammed workloads which are a convenient source of in-
dependent grids. Therefore, in this paper, the term “GPU concur-
rency” exclusively refers to the concurrent execution of indepen-
dent grids from multiprogrammed workloads.

The Fermi’s concurrency policy is not publicly documented.
Our experiments using microbenchmarks of concurrently execut-
ing synthetic kernels suggest that the Fermi uses the LEFTOVER
policy. Under this policy, a grid begins concurrent execution only
if there are enough resources to allow execution of at least one of
its thread blocks. This is a fairly conservative policy and seems di-



Program Kernel TB TPB T% R% S% B% Program Kernel CP KT (ms) Calls FPT (%)
bfs BFS_in_.GPU 1 512 2 2 2 1 bfs BFS_in_.GPU 16 14.41 2 37
BFS_multi_blk... 14 512 33 31 26 12 ) BFS_multi_blk... 15 49.57 1 63
mri-q ComputePhiMag... 4 512 10 5 0 4 mri-q ComputePhiMag... 16 0.002 1 0.002
ComputeQ_GPU 1024 256 83 94 0 62 ComputeQ_GPU 2 4491 2 99.998
fft GPU_FFT_Global 1024 128 67 62 0 100 fft GPU_FFT_Global 0 0.11 8 100
stencil block2D_hybrid... 512 256 67 94 17 50 stencil block2D_hybrid... 2 2.70 100 100
cutcp cuda_cutoff... 121 128 67 75 69 100 cutcp cuda_cutoff... 0 2.86 11 100
tpacf gen_hists 201 256 50 70 81 38 tpacf gen_hists 13 840.40 1 100
histo_final 42 512 100 94 0 38 histo_final 0 0.07 100 6
histo h@stointgrmediates 65 498 100 75 0 38 histo h?stoimgrmediates 0 0.18 100 16
histo_main 84 768 100 94 100 25 histo_main 0 0.85 100 75
histo_prescan 64 512 100 75 25 38 histo_prescan 0 0.03 100 3
larger_sad_calc_16 99 32 15 33 0 88 larger_sad_calc_16 15 0.04 1 4
sad larger_sad_calc_8 99 128 59 66 0 88 sad larger_sad_calc_8 15 0.19 1 19
mb_sad_calc 1584 61 33 50 38 100 mb_sad_calc 0 0.80 1 71
mm mysgemmNT 528 128 50 94 6 75 mm mysgemmNT 2 5.51 1 100
Ibm performStream... 13000 100 58 98 0 88 Ibm performStream... 0 23.69 100 100
spmv spmv_jds_texture 112 192 88 98 0 88 spmv spmv_jds_texture 0 0.13 1 100
Average 60 67 20 57

Table 2. Resource usage of Parboil2 kernels on the Fermi GPU.
Legend: TB=Thread Blocks,TPB=Threads per Thread Block,
T=Threads used, R=Registers used, S=Shared Memory used,
B=Thread Blocks used. All usage is expressed as percentage of
total GPU resources.

rected at improving resource utilization whenever possible. It is a
poor policy for concurrency, however, because it cannot guarantee
that two independent grids will always execute concurrently. If a
grid consumes all thread blocks, for example, no other independent
grid can execute concurrently with it. Thus, for concurrent execu-
tion under this policy, the programmer must ensure that each inde-
pendent grid will not consume too many resources. Table 3 shows
that 9 of the 18 Parboil2 kernels do not form concurrent pairs at
all (i.e. zero concurrent pairs) under this policy. Similarly, in the
Rodinia 2 [3] benchmark suite, 22 kernels (of the total 38) do not
form concurrent pairs under this policy. The LEFTOVER policy also
makes concurrent execution of grids a function of GPU resources,
which keeps changing over GPU generations.

An alternative policy, spatial partitioning, is suggested by Adri-
aens et al. [1]. Under this policy, the streaming multiprocessors
(SM) of a GPU are partitioned among thread blocks of concurrently
executing grids. While independent pairs of grids can therefore al-
ways execute concurrently, albeit with fewer resources, their work
does not consider the wastage due to the GPU’s resource alloca-
tion mechanisms. Each partition wastes the same percentage of re-
sources as when the grids were executing alone. Thus, this policy
does not improve GPU resource utilization.

In this work, we show that the grid’s resource allocation con-
siderations can be separated from the programming model consid-
erations by the use of what we term “elastic kernels”. Since elastic
kernels provide finer control over GPU resources, we can design
concurrency policies that improve concurrency and resource uti-
lization. These policies can then attempt to achieve both high sys-
tem throughput and low turnaround time when compared to current
policies that only try to achieve maximum concurrency or maxi-
mum resource utilization.

3. Limiters of GPU Concurrency

The performance benefits of GPU concurrency are governed by
Amdahl’s Law — speedup is limited by the extent of serialization.
Serialization due to dependences demanded by program semantics
is unavoidable, but serialization which arises as artifacts of the GPU
execution model decreases potential GPU concurrency. In this sec-
tion, we identify a number of serialization factors, all of which must
be tackled to reduce the extent of serialization. Before we describe

Table 3. Concurrent Execution possible on Fermi (LEFTOVER pol-
icy) for Parboil2 kernels. Legend: CP=Concurrent Pairs with ker-
nel starting first (0-17), KT=Average Kernel Time, FPT=Fraction
of GPU Program Time.
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Figure 2. Components that affect concurrency on the Fermi GPU.
Streams contain Memory (M) or Kernel (K) commands. A DMA
engine performs unidirectional data transfers. With two DMA en-
gines on the Fermi, two memory transfers may run concurrently
with kernel execution.

these causes of serialization, we first review how concurrency is
expressed in GPU programs.

3.1 Task-level Concurrency in GPU programs

The tasks in a GPU program can be divided broadly into memory
operations (memory allocations, memory transfers, memsets, etc.)
and kernel executions. Task-level concurrency in a GPU program
therefore involves exploiting concurrency between memory oper-
ations and kernels. CUDA uses a mechanism called Streams [12,
15] to expose task-level concurrency in a GPGPU program. Each
stream is a queue-like structure into which the CPU program in-
serts commands. Each command is either a memory operation or
a kernel execution. Commands placed in the same stream execute
in order, but those from different streams can execute concurrently
subject to resource availability.

Figure 2 presents a simplified view of the various components
that play a role in the concurrent execution of GPU tasks: (i)
Streams, which contain commands to be sent to the GPU, (ii) the
Stream Scheduler, which dispatches commands from each stream
to the hardware units, sending memory transfer commands to one
of the two DMA engines depending on the direction of the trans-
fer, and sending kernel execution commands to the Thread Block



Scheduler, (iii) The Thread Block Scheduler which instantiates a
grid for the kernel as specified by the programmer and then dis-
patches thread blocks from the grid to the Streaming Multiproces-
sors as described in Section 1. The Fermi Thread Block Scheduler
can dispatch thread blocks from up to 16 concurrently executing
grids.

In the following sections, we describe how each component
of the above GPU execution model can contribute to unnecessary
serialization.

3.2 Serialization due to Lack of Resources

A GPU consists of a number of Stream Multiprocessors (SM). Each
SM has a fixed amount of resources in terms of thread blocks, reg-
isters, threads and shared memory. For a kernel to begin execution
on an SM, resources for the execution of at least one of its thread
block must be available. Under the current LEFTOVER policy, two
grids cannot execute concurrently if the one scheduled first con-
sumes too many resources to allow the other to begin execution.
Since the resources consumed are specified by the programmer, the
Thread Block Scheduler is forced to serialize the execution of such
grids.

One way to guarantee concurrent execution and prevent serial-
ization is to partition the SMs among the different grids [1]. This
guarantees that each grid will always have resources to execute and
multiple grids can execute across different SMs. However, as noted
in Section 2, it does not address the problem of under-utilization of
resources. Hence, in this paper, we explore an alternative technique
that seeks instead to control the amount of resources occupied by
a grid to allow concurrent execution. This will also allow multiple
grids to share the same SM. In Section 4, we show that support for
kernels which we term elastic kernels can allow control of SM re-
sources by permitting modification of their grid and thread block
dimensions. This allows us to design resource allocation policies
that can guarantee resources for grids to varying degrees and thus
allow concurrent execution, preventing serialization due to lack of
resources.

3.3 Serialization due to Inter-stream Scheduling

The LEFTOVER concurrency policy renders the concurrency rela-
tion non-commutative, making the order in which grids are dis-
patched to the Thread Block Scheduler important. Figure 3 il-
lustrates this by an example using grids from cutcp, bfs and fft.
From Table 2, we know that the grids from cutcp and fft con-
sume 100% of resident blocks. Thus, grids starting after them
will not have resident blocks or threads to run and will have to
wait. However, neither grid from bfs consumes all of the resources,
so it is possible for other grids to execute with them. Assume
now that GPU_FFT_Global from fft is already running. Now, the
grids from cutcp and bfs arrive, in that order, and must wait for
GPU_FFT_Global to complete. After GPU_FFT_Global finishes ex-
ecution, the scheduler must decide which grid from cutcp or bfs
must execute first. A FIFO scheduler would execute the kernel from
cutep first, thus serializing bfs’s grid, while a concurrency-aware
scheduler would first dispatch bfs, leading to concurrent execution
with cutcp. Thus, to avoid serialization, we either need to reorder
grids to maximize concurrency or we need to ensure that order of
arrival does not matter. The latter can be achieved by controlling
resource allocation so that no one grid blocks the execution of an-
other. In Section 4.3, we describe several resource-limiting policies
using elastic kernels to allow kernels to execute regardless of dis-
patch order.

3.4 Serialization due to Kernel Execution

A long-running grid can serialize the execution of grids from other
programs if it consumes too many resources, preventing other grids

Time
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fft fft

[ | cutep bfs
bfs cutcp

FIFO Scheduling Concurrency-aware Scheduling

Figure 3. Execution of kernels from bfs, cutcp and fft with a FIFO
scheduler and a Concurrency-aware scheduler. Note: Timeline is
not to scale.

from executing concurrently with it. Even if it allows concurrent
execution, the resources it occupies will be unavailable to other
kernels for the duration of its execution, possibly slowing them
down. The ability to time slice such long running kernels can
help improve not only turnaround time, but also throughput and
resource utilization. Grid execution is not pre-empted in current
CUDA implementations. The large amount of state involved (also
noted by [1]) make pre-emption prohibitively expensive. However,
this is true only if we want the ability to stop and restore a grid
at any arbitrary point of execution. Instead, we propose to use the
discrete nature of grid execution to identify points where little or
no state will need to be preserved. Completion of a thread block is
an example of one such point. The thread block is the unit of state
in a grid and there is no state to save after it completes. Therefore
the thread block scheduler can switch from kernel K; to K2 by
simply: (i) halting the dispatch of ready thread blocks from K’s
grid, allowing current thread blocks to complete, and (ii) starting
the dispatch of ready thread blocks from K>’s grid.

While this still means that we cannot pre-empt a running block,
in practice this scheme enables concurrency, and requires no addi-
tional state to be preserved. The Thread Block Scheduler already
maintains state on which blocks have completed and therefore can
restart a grid where it left off. We describe our implementation for
time-slicing of GPU grids in Section 4.4.

3.5 Serialization due to Memory Transfers

Current NVIDIA GPUs have two DMA engines. One performs
memory transfers to the GPU and the other performs memory trans-
fers from the GPU. Thus, the GPU can sustain two memory trans-
fers at the same time. Further, memory transfers can execute in par-
allel with kernel execution. However, since only one transfer can be
active in a given direction, memory transfers can cause serialization
similar to that caused by long-running grids. A large memory trans-
fer in one program can stall progress in other concurrently execut-
ing programs as they wait for the DMA engine to become free. In-
creasing the number of DMA engines is not a solution, since PCle
bandwidth is the actual limiting factor. But increasing the number
of memory transfers that can be active and time-slicing between
them can reduce waiting time. Figure 4 uses Ibm and bfs to illus-
trate the problem and how timeslicing memory transfers can help.
Initially, a 100MB memory transfer in Ibm prevents execution of
bfs’s memory transfer, which in turn causes bfs’s kernels to seri-
alize behind Ibm’s kernel. By timeslicing the large memory trans-
fer, bfs’s memory transfer finishes early, and its kernel can execute
in parallel with Ibm’s memory transfer. In our implementation, we
break up a long-running memory transfer into smaller chunks and
interleave them with chunks of other active memory transfers, thus
achieving memory transfer timeslicing.

3.6 Serialization in the CUDA API

The CUDA API contains several functions that implicitly syn-
chronize commands from different streams [12], i.e. they act as
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Figure 4. Memory transfers can stall progress across programs,
but time-slicing them can reduce waiting times. Note: Timeline is
not to scale.

program-wide barriers for GPGPU functionality. For example, de-
vice memory allocation functions cudaMalloc and cudaFree will
wait for all currently executing commands to complete before exe-
cuting, and will prevent later commands from beginning execution
until they complete. The effects of this barrier-like behaviour can be
severe — if a cudaFree is issued when the GPU is executing a ker-
nel, it will wait as long as the kernel takes to finish execution while
stalling progress across the rest of the program. The cudaMemset
function is another source of serialization, but one that seems un-
necessarily so since it can be associated with a stream [12], unlike
cudaFree which is global in nature. It is difficult for us to com-
ment on the difficulty of implementing non-serializing API func-
tions without concrete low-level details of the driver and hardware,
but we observe in our experiments that serializing functions can
lower throughput drastically.

3.7 Serialization in the Implementation

Finally, we note a source of serialization that is specific to the im-
plementation on the Fermi. To maintain ordering of commands in
a single stream, the Fermi uses ‘“signals” [15] between the ker-
nel and memory transfer hardware queues. These signals act as
barriers and prevent Kernel-Memory Transfer, Memory Transfer—
Kernel, Memory Transfer—Memory Transfer, and Kernel-Kernel
dependencies (abbreviated as K-M, M-K, M-M and K-K respec-
tively) from being violated in a stream. Unfortunately, in the current
implementation, these signals act as a barrier between commands
of all streams. Thus, a K-M (or M—K) dependency in one program
imposes a barrier between commands from all concurrently execut-
ing GPU programs. The CUDA Programming Guide calls this an
“implicit synchronization caused due to a dependency check” [12].

This false serialization can severely restrict the ability of pro-
grams to exploit concurrency. For our evaluation, therefore, we de-
veloped a replacement for the default CUDA streams implementa-
tion that does not suffer from this problem. Our “Non-Serializing
Streams” (NSS) implementation provides CUDA-like Streams be-
haviour but uses alternate methods that do not induce serialization
to enforce intra-stream dependencies. Section 5 describes our NSS
implementation.

4. Elastic Kernels

Elastic kernels decouple physical hardware resource allocation for
thread blocks from logical program-level grid and thread block
identity. In Section 4.1, we first describe how an ordinary CUDA
kernel can be transformed into an elastic kernel by source-to-source
transformations. These transformations are necessary because we
currently implement elastic kernels in software. The resulting elas-
tic kernel can run using physical grid and thread block dimensions
that are different from programmer specified grid and thread block
dimensions. Then, the algorithm presented in Section 4.2 uses this
ability to control the resource usage of an elastic kernel. Given re-
source constraints, the algorithm computes physical grid and thread
block dimensions such that the elastic kernel’s grid will satisfy

those constraints. Next, in Section 4.3, we describe several elastic-
kernel aware concurrency policies which improve concurrency by
controlling the resources allocated to an elastic kernel. Finally, we
describe how elastic kernels are used to implement time-slicing of
kernels in Section 4.4.

4.1 Elastic Kernel Transformations

Currently, the hardware maps logical thread blocks and threads to
physical thread blocks and threads using a 1 : 1 logical-to-physical
mapping scheme. If we could implement an N : 1 logical-to-
physical mapping scheme while preserving CUDA semantics, we
can achieve fine-grained resource allocation for GPU grids.

The idea of an N : 1 mapping for CUDA grids has been ex-
plored by Stratton et al. in their MCUDA [17, 18] work which
executes CUDA grids efficiently on multicore CPUs. They devel-
oped a technique called iterative wrapping (similar to chunked it-
eration [16]) to efficiently run the large number of CUDA threads
on the comparatively fewer threads available on the CPU. Iter-
ative wrapping executes N CUDA thread blocks using a single
CPU thread by inserting an enclosing iterative loop. However, it
does not change the number of thread blocks or threads. Our work
uses a similar N : 1 mapping scheme, but performs a GPU-to-
GPU transformation and also allows modification of the number
of threads and thread blocks. Changing the number of threads or
thread blocks will change thread identities which, in turn, will af-
fect any work distribution based on identity being used by the ker-
nel. Therefore, our transformations also preserve the original iden-
tity of each thread block and thread. Essentially, the elastic kernel
uses whatever physical grid it was launched with to execute the
original logical grid.

We note that some kernels (e.g. histo_main_kernel in histo)
can run with changed thread blocks or threads even without our
transformations. To identify such kernels, we performed a test
where the number of blocks and threads was varied for each kernel
and their results compared to that obtained by the kernel running
with the original number of blocks and threads.> Only 4 kernels
of the 18 among the Parboil2 benchmarks passed the test. These
kernels can run with different grid and thread block dimensions
because they compute a global thread identifier and use it as a
basis for work distribution. While we do not need to transform such
kernels, in this work we apply our transformations to all kernels.

Our N : 1 mapping scheme takes a 2D logical grid and a 3D
logical thread block and executes them using a 1D grid and 1D
thread blocks. Listing 1 shows the code for a physical thread block
that implements our mapping scheme. This code is placed around
the original kernel code and implements a general transformation
from physical grid identities to logical grid identities while looping
over the original kernel code. To preserve program semantics with
respect to identities, we also replace any references to physical
dimension variables (gridDim, blockDim) and physical identity
variables (blockIdx, threadIdx) in the original kernel code with
their logical equivalents (gd, bd, bi and ti respectively). The code
is now an elastic kernel that can execute the original logical grid
faithfully with any number of physical thread blocks as well as any
physical thread block dimension.

Although the code of Listing 1 allows us to change thread block
dimensions, we do not do so for kernels that use shared memory or
synchronization instructions. In general, doing so could split a logi-
cal thread block across two physical thread blocks. This would vio-
late CUDA semantics for shared memory accesses and behaviour of
synchronization instructions. Essentially, shared memory accesses

2 This test only identifies kernels which cannot handle different grid and
thread block dimensions. We still need to examine the code for those that
pass to verify that the kernels can indeed display elastic kernel behaviour.



// find global thread id in physical grid
// note: physical grid and thread blocks are ID
int tid = threadldx.x + blockIdx.x * blockDim.x;

// iterate over threads in logical grid
for (int gtid = tid;
gtid < (gdX * gdY x bdX * bdY % bdZ);
gtid += blockDim.x % gridDim.x)

{
// linearized identities in logical grid
int block_id = gtid / (bdX % bdY * bdZ);
int thread_id = gtid % (bdX * bdY x bdZ);
// logical block identities
int biX = block_.id % gdX;
int biY = block_.id / gdX;
// logical thread identities
int tiX = (thread_.id % (bdX % bdY)) % (bdX);
int tiY = (thread_id % (bdX x bdY x bdZ)) / (bdX = bdY);
int tiZ = thread_id / (bdX * bdY x bdZ);
// original kernel code follows
//
}

Listing 1. Code in each physical thread block to execute logical
thread blocks according to our mapping scheme. The values gdX,
gdY, bdX, bdY, and bdZ are logical grid and thread block dimen-
sions as set by the programmer.

are tied to physical thread blocks and not logical thread blocks and
such a split would lead to incorrect execution. Similarly, it is not
currently possible to synchronize threads across different physi-
cal thread blocks without using slow global synchronization primi-
tives. Therefore, in this work, we do not apply thread block resizing
to kernels that use shared memory or synchronization instructions,
i.e. 9 of the 18 kernels in the Parboil2 benchmarks.

Our software implementation suffers from two performance is-
sues. Firstly, we are forced to use ordinary variables to store logical
identities and dimensions. This increases register usage of the ker-
nel and can cause a potential drop in throughput because the num-
ber of threads that can be resident could reduce. Dedicated hard-
ware registers for logical identities and dimensions would solve this
problem. The second performance issue arises from the use of the
division and modulus operations in our transformed kernels which
are not supported natively by the Fermi hardware. Their use in-
creases the runtime of elastic kernels compared to the original ker-
nels. Note that a hardware implementation of elastic kernels would
not have these issues and would also be completely transparent to
the programmer.

4.2 Resource Control with Elastic Kernels

In this section, we present an algorithm to limit physical resource
usage for grids of elastic kernels. To control physical resource us-
age, we manipulate the elastic kernel’s physical grid and thread
block dimensions. By changing the number of physical thread
blocks, we can control the utilization of threads and registers.
For thread block-level resources like shared memory and resident
blocks, grid dimensions must be modified. For thread-level re-
sources likes threads and registers, either grid dimensions or thread
block dimensions can be modified.

Given resource constraints (Limits), Algorithm 1 determines
the physical grid and thread block dimensions for an elastic ker-
nel that satisfies those constraints. The input to the algorithm is
the number of logical thread blocks, the number of logical threads
per thread block and resource constraints on the four resources —
resident thread blocks, shared memory, threads and registers. The
algorithm first obtains the current resource usage of each thread
block using BLOCKUSAGE, a routine derived from the CUDA Oc-

Algorithm 1 Algorithm GETPHYGRID

1: function GETPHYGRID(K ernel, Blocks, Threads, Limits)
: Usage < BLOCKUSAGE(K ernel)
3: MazResident < Usage.SM Blocks * GPU.SMCount

4. Blocks < MIN(Blocks, MaxResident, Limits. Blocks)
5: if THREADSPERBLOCKCANCHANGE(K ernel) then

6: Incr < | (ChangeInThreads/Blocks) |

7. Threads < Threads + Incr

8: end if

9: REDUCEBLOCKS(Limits.ShMem, Usage.ShMem)

10: REDUCEBLOCKS(Limits.Threads, Usage.Threads)
11: REDUCEBLOCKS(Limits.Registers, Usage.Registers)
12: return (Blocks, Threads)

13: end function

1: procedure REDUCEBLOCKS(RLimit, Per BlockU sage)

2: /I Blocks refers to the value in GETPHYGRID

3: CurUsage < Blocks x PerBlockUsage

4: if CurUsage > RLimit then

5: Deficit <+ CurUsage — RLimit

6: ReduceBlocks <+ [Deficit/PerBlockUsage]

7: Blocks < Blocks — ReduceBlocks

8: end if

9: end procedure

cupancy Calculator [11], which calculates the number of registers,
threads, shared memory and thread blocks that the kernel currently
occupies. Then, the algorithm sets the number of physical thread
blocks to the maximum number of concurrent thread blocks that
can be accommodated on the GPU (i.e. M axResident) since all
blocks in excess of Max Resident have to wait to execute and, on
the NVIDIA Fermi, also prevent blocks of later concurrent grids
from beginning execution. The algorithm then reduces the number
of thread blocks further to meet constraints on the maximum num-
ber of resident blocks. As thread blocks and threads are coupled,
reducing thread blocks will also reduce the total number of threads
(ChangeInThreads). If the kernel supports thread block resiz-
ing, we compensate by increasing the number of threads per thread
block. Finally, for each resource constraint on shared memory,
threads, or registers, the algorithm reduces the number of blocks to
satisfy the constraint. The number of blocks and threads computed
by this algorithm are the physical grid and thread block dimensions
respectively and can be used to run the elastic kernel under the
specified resource constraints.

4.3 Elastic Kernel Aware Concurrency Policies

With mechanisms to elasticize a CUDA kernel and control its re-
source usage available, we now present policies that impose re-
source constraints on elastic kernels in order to improve concur-
rency. These policies are implemented at the Stream Scheduler
level and apply their resource constraints during the launch of a
kernel.

4.3.1 MEDIAN

The MEDIAN policy uses profile-based information to reserve re-
sources for a hypothetical median kernel. Using the data in Table 2
about the programs in Parboil2, we compute this median kernel’s
resources to be 224 threads, 6144 registers and 256 bytes of shared
memory per thread block. These numbers are the medians for those
resources among the Parboil2 kernels. The MEDIAN policy limits
the resource usage of actual kernels to ensure that each streaming
multiprocessor will have resources leftover to run one block of this
median kernel.

4.3.2 MPMAX

The multiprogram maximum or MPMAX policy also uses profile
information to reserve resources. For each program, the MPMAX



policy constructs a largest kernel based on the maximum resource
usage of its kernels. This largest kernel need not correspond to
an actual kernel of the program — it may have the register usage
of one kernel and the shared memory usage of another. Then, for
each program, it computes the othersLargest kernel by repeating
a similar procedure using the largest kernels of other concurrently
executing programs. Thus, the othersLargest kernel is different for
each of the programs executing concurrently. Then, like MEDIAN,
the resources of each actual kernel in a program are restricted so
that one thread block of the othersLargest kernel will always have
enough resources to run.

4.3.3 EQUAL

The EQUAL policy partitions GPU resources equally among all
concurrently running programs. For two program workloads, for
example, it limits each grid’s resource usage to 50% of GPU re-
sources. It is based on the Even SM partitioning heuristic of Adri-
aens et al. [1]. It is thus a form of spatial partitioning though our im-
plementation does not prevent multiple grids from executing con-
currently on the same SM. Thus, this policy dedicates resources for
each concurrently executing grid, but without incurring the per-SM
wastage noted in Section 2.

434 QUEUEMOLD

The QUEUEMOLD policy is based on the GetAffinityByMolding al-
gorithm of Ravi et al. [14]. This policy examines all kernels waiting
to be launched and modifies the resources requested by them if they
make excessive use of: (i) shared memory or (ii) threads. In our
implementation, the policy examines kernels waiting in the NSS
scheduler queues. If the sum total of shared memory of a newly
arrived kernel and a kernel waiting in the queue exceeds the total
shared memory available, the number of thread blocks of the wait-
ing kernel is reduced. Similarly, if the thread usage of a waiting
kernel exceeds 512 threads, the number of thread blocks (or the
number of threads per block) is reduced. The original implementa-
tion also uses a notion of affinity in order to distribute kernels across
multiple GPUs. Since we do not use multiple GPUs in our evalu-
ation, we do not use any affinity values. Note that this policy only
modifies the resources used by a kernel if another kernel arrives in
the queue before it is launched.

4.4 Implementing Timeslicing of Grid Execution

We implement timeslicing using elastic kernels. By default, elastic
kernels iterate over all the thread blocks of the original grid in a sin-
gle launch. We modify them to accept offser and limit parameters,
S0 as to restrict execution to only a certain range of thread blocks of
the original grid. As each range completes, we simply relaunch the
kernel with the next range. The per-invocation ranges for each ker-
nel are currently chosen offline to ensure that the runtime of each
range is nearly equal to 1ms whenever possible. The thread block
scheduler would, of course, be able to do this online.

5. Non-Serializing Streams Implementation

To avoid false serialization on the NVIDIA Fermi due to depen-
dency checks inserted by the CUDA Streams implementation as
described in Section 3.7, we develop a CUDA-like streams imple-
mentation called “Non-Serializing Streams” (NSS) that does not
introduce false serialization. NSS is also used to implement our
elastic policies, and can timeslice kernel execution and memory
transfers. It also reorders items in the queues so as to avoid the
issues caused by inter-stream scheduling (Section 3.3).

NSS prevents false serialization by avoiding any action that
would insert or perform a dependency check in a CUDA stream. In
general, submitting each command in the NSS stream to a different

if (threadIldx.x == 0
&& threadldx .y == 0
&& threadldx .z == 0) {

int blocks_done = atomicAdd(blocks_done_d, 1);

if (blocks_.done == (gridDim.x * gridDim.y — 1) {
blocks_done_-d = 0;
blocks_done_-h = 1;

}
}

Listing 2. Kernel completion notification code that is inserted onto
every exit path of a kernel to notify the CPU that the kernel has
completed.

CUDA stream prevents dependency checks from being inserted
since no dependency checks are inserted between commands of
different CUDA streams. However, this does not mean that we
need a new CUDA stream for each command. Since we are only
concerned with the serializing behaviour of the M—K and K-M
dependency checks, we only need two CUDA streams. One of
these is used for all memory operations, and the other is used for
kernel execution. The use of different and exclusive streams for
memory and kernel commands prevents CUDA from inserting M—
K and K-M dependency checks. However, NSS must enforce these
dependencies.

To enforce M-K dependencies in NSS, we note that in the
current API, memory transfers that involve pageable memory are
synchronous. So a memory transfer is nearly complete when the
function call returns. NSS can thus enforce M—K dependencies by
simply waiting for the cudaMemcpy call to complete. This does not
present a performance limitation in our studies because none of the
applications in Parboil2 use asynchronous memory transfers.

Enforcing K-M and K-K dependencies is harder since ker-
nel launches are always asynchronous and CUDA provides no
way to check if a kernel has completed without introducing a
dependency check. We therefore improvise a kernel completion
notification mechanism as follows. On every exit path of a ker-
nel, we add the code snippet in Listing 2. This code counts the
thread blocks that have finished executing so far in the GPU-side
blocks_done_d variable. Once all thread blocks have finished, the
CPU/GPU shared (host-memory mapped) blocks_done_h is set,
alerting a polling routine on the CPU of the completion of this ker-
nel.

Like our elastic kernel transformations, the addition of this code
also changes the original kernel. Firstly, the number of registers
used by the kernel may increase. This affects the number of resi-
dent threads and throughput. Secondly, atomic operations have low
throughput, causing a performance loss when compared to the orig-
inal kernel.

The NVIDIA Kepler K20 based on the GK110 GPU is adver-
tised to contain a Hyper-Q feature [13] that provides one hardware
queue per CUDA stream and prevents this form of serialization.
So, on the GK110, NSS may be able to use hardware dependency
checks without incurring the overheads of false serialization.

6. Evaluation
6.1 Workload Construction

We evaluate our policies using multiprogrammed workloads since
all of the Parboil2 benchmarks are single-threaded serial CUDA
programs. However, since CUDA does not execute grids from dif-
ferent programs concurrently [12], we cannot obtain a multipro-
grammed workload execution by simply running the programs to-
gether. To work around this limitation, we study multithreaded
CUDA programs whose individual threads execute traces of the
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original Parboil2 programs. Figure 5 illustrates the procedure we
use to construct such a multithreaded “multiprogrammed” work-
load. We run each program in Parboil2 individually and obtain
traces of its CUDA API calls using 1trace. Simultaneously, we
obtain the memory and argument values passed to those API calls
using a library interposer we have developed for the CUDA Run-
time API. These traces are input to our trace reconstructor which
outputs a C program that replays the traced API calls. To obtain
an n-program workload, we reconstruct the n original programs as
separate threads of a new n-threaded program. Each thread repre-
sents an individual program of the workload and consists of three
distinct parts: (i) an initialization part to load the CUDA modules,
functions and textures, (ii) a “replay” part to re-execute the pro-
gram’s kernel launches and memory transfers using values from
the stored trace, and (iii) a cleanup part to release any resources ob-
tained. Since the original programs do not use streams, our trace re-
constructor also translates the original non-stream CUDA API calls
(e.g. cudaMemcpy) to their functionally equivalent CUDA Streams
API (e.g. cudaMemcpyAsync) or the corresponding NSS replace-
ment to obtain concurrent execution. Thus, we essentially obtain a
re-execution of the CUDA portions of the original programs as a
concurrent workload.

6.2 Methodology

We evaluate workloads consisting of two programs. Each workload
has four variants that are all generated from the same trace. The
first variant single uses CUDA API calls and runs each trace of the
workload one after the other, so that each trace executes alone with
the full resources of the GPU at its disposal. The second variant
cuda uses CUDA API calls and runs each trace concurrently with
a separate CUDA stream for each trace, establishing the baseline
for CUDA concurrency. The third variant nss replaces the use of
CUDA Streams API by our Non-Serializing Streams implementa-
tion (Section 5) to work around the false serialization encountered
by the cuda variant. Finally, the fourth variant elastic builds on nss
and allows the resources assigned to a grid to be varied by the poli-
cies of Section 4.3. This variant also has kernel timeslicing enabled.
All variants execute the same kernel source code to mitigate the
performance issues of our software implementation as described in
Section 4.1 and to provide a fair comparison.

There are a total of 55 two-program workloads, of which we
evaluate 54. The bfs+Ibm workload was not evaluated because it
experiences CUDA launch timeouts. The implementation of bfs
in the Parboil2 benchmarks uses a global atomic barrier which
requires that all its thread blocks be resident concurrently. However,
CUDA does not guarantee that all thread blocks will be resident

concurrently. While the standalone execution of bfs is not affected,
the execution with Ibm causes the global atomic barrier to deadlock.

The workloads are run on a Fermi-equipped NVIDIA Tesla
C2070 with CUDA driver 295.41 and CUDA runtime 4.2, the latest
available at the time of writing. The host machine is a quad-core
Intel Xeon W3550 CPU with 16GB of RAM and runs the 64-bit
version of Debian Linux 6.0.

We report the performance of each workload using the System
Throughput (STP) and the Average Normalized Turnaround Time
(ANTT) metrics [6]. In our results, we substitute runtime for cycles
in the equations for STP and ANTT. We record the runtime for each
individual program as the time spent in the replay portion of the
thread but subtract all time spent in performing trace I/O, which is
an artifact of our workload construction technique. To account for
interleaving effects, we use Tuck and Tullsen’s methodology [20] —
the replay part runs until all of the programs in the workload have
been replayed at least 7 times. The last runtime of each program
in the workload is discarded to avoid counting non-overlapping
executions. For each program in the workload, the execution times
of its replays are averaged and used in the equations for STP and
ANTT as the multiprogram mode time. The single variant provides
the single-program mode execution time for a program.

We use the log files generated by the NVIDIA Compute Com-
mand Line Profiler [10] to compute other metrics such as utiliza-
tion and waiting time. Utilization is estimated from the start and
end times of kernels because the profiler does not report starting
and ending times of each individual thread block. We define wait-
ing time as the time from API call (e.g. cuLaunchKernel) to ac-
tual execution as reported in the profiler log. This measures wait-
ing time in the GPU’s hardware queues and does not contain time
spent in NSS queues (which is accounted for in the total program
time). Since the CPU and GPU use different clocks, we use the
TIMESTAMPFACTOR value stored in the log by the CUDA Profiler
to correlate the two timestamps. We use the Linux User Space Trac-
ing Toolkit [4] to record API calls on the CPU side.

In our initial experiments, CUDA memory allocation functions
limit achievable STP to that of nss (Section 3.6). To mitigate this,
we built a custom GPU memory allocator based on the CPU mem-
ory allocator jemalloc 3.2.0 [5] and use it for all the variants.
Although our custom allocator uses the CUDA allocation functions
internally, by allocating memory in bulk and recycling allocations,
it calls them less frequently than the original program. Another
possibility would be to ignore cudaMalloc and cudaFree from
the second and first run onwards respectively. In such experiments,
the average STP improves by about 5% and the ANTT improves
by 10% over those reported in our evaluation. We also replace
cudaMemset with a custom, non-serializing implementation in all
variants.

6.3 Analyzing Runtime Behaviour of Kernels in Concurrent
Workloads

Kernel execution dominates the runtime of workloads. In concur-
rent workloads, a kernel’s execution time is affected by the pres-
ence of other concurrently executing kernels. To better understand
the effect of other concurrent kernels on execution time, we classify
each instance of a kernel into one of four overlap categories (Fig-
ure 6). For each kernel instance we identify its set of co-runners, i.e.
other kernels whose instances overlap with it in time. Four overlap
categories can then be defined as:
e EXCLUSIVE: If the set of co-runners is empty, the kernel in-
stance is classified as EXCLUSIVE, i.e. it ran alone.
e SHARED/FULL: If the set of co-runners is not empty, but the
kernel instance being classified started before all co-runners, we
classity it as SHARED/FULL. In this case, the instance started
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Figure 7. Runtimes of GPU_FFT_Global instances from one run
of the bfs+fft workload under the MEDIAN elastic policy with each
instance categorized into one of the four overlap categories.

alone, but will share some of its runtime with concurrently

executing kernels.

e SHARED/RESTRICTED: If the kernel instance started after any
of its co-runners then it will run with restricted resources. If
none of the earlier co-runners terminated before this kernel, we
classify it as SHARED/RESTRICTED.

o SHARED/PARTIAL: If, however, some earlier co-runner termi-
nated before this kernel did, possibly making its resources avail-
able to this kernel, we classify the instance as SHARED/PAR-
TIAL.

We expect the runtime for an EXCLUSIVE kernel instance in a
concurrent workload to be similar to when the kernel runs alone.
For all of the SHARED categories, however, we expect the runtime
to vary depending on the degree of overlap with other kernels. Ad-
ditionally, for SHARED/PARTIAL and SHARED/RESTRICTED, we
expect the runtime to further vary based on the resources allocated
to the kernel by the GPU.

To illustrate this categorization, Figure 7 portrays the execution
of the GPU_FFT_Global kernel from the fft benchmark during its
execution as part of the bfs+fft two-program workload. In the fig-
ure, the y-axis shows the runtime of each GPU_FFT_Global ker-

Variant(+Policy) STP ANTT
geomean best geomean worst
cuda 1.03 1.24 6.71 194.93
nss 1.18 1.81 3.05 69.07
elastic+mpmax 1.25 2.08 1.80 19.23
elastic+median 1.24 1.95 1.86 16.83
elastic+equal 1.18 1.83 1.91 30.70
elastic+queuemold 1.18 1.79 2.08 17.94

Table 4. Overall STP and ANTT results for two-program work-
loads. Note: ANTT is a lower-is-better metric.

. . Improvement
Variant(+Policy) STPp ANTT MTSpeedup
cuda 1.00 1.00 1.00
nss 1.15 2.20 1.20
elastic+mpmax 1.21 3.73 1.28
elastic+median 1.20 3.62 1.24
elastic+equal 1.14 3.51 1.15
elastic+queuemold 1.15 3.22 1.17

Table 5. Improvements in STP and ANTT and Multithreaded
Speedup (MTSpeedup) for two-program workloads over the cuda
variant. For MTSpeedup, a workload’s execution time is taken as
the maximum execution time of the programs in that workload.

nel instance, while the x-axis denotes the start time of the cor-
responding instance along the workload execution timeline. Us-
ing information from CUDA profiler log files, each instance has
been categorized into one of the four overlap categories, indi-
cated by different markers in the figure. Initially, during transfers
of data by bfs, GPU_FFT_Global kernel instances run in EXCLU-
SIVE mode. When the kernels of bfs begin execution, the instances
of GPU_FFT_Global transition to running mostly in SHARED/RE-
STRICTED mode because both the kernels of bfs take much longer
to complete (see Table 3). A few SHARED/PARTIAL and SHARED/-
FULL instances can be observed during the transitions from one
bfs kernel to another. The runtimes of each GPU_FFT_Global in-
stance demonstrate the trends we have described in the previous
paragraph.

6.4 Results

We evaluate all possible two-programmed workloads (except for
bfs+Ibm as noted) of the 11 programs from Parboil2 (Table 2) with
the elastic policies MPMAX, MEDIAN, EQUAL and QUEUEMOLD.

6.4.1 Overall Results

Table 4 shows the average STP and ANTT across the workloads.
All elastic policies improve throughput and turnaround time com-
pared to cuda and nss. The elastic policies have the best STP values
compared to all the variants. Similarly, their worst ANTT values
are considerably lower than both cuda and nss, indicating that they
have better turnaround times. Table 5 shows that compared to cuda,
on average the elastic policy MPMAX improves system throughput
by 1.21x and turnaround time by 3.73x. Viewing the workload as
a multithreaded workload, on average the elastic policy MPMAX
obtains a 1.28x speedup (Table 5) over cuda. The nss variant also
improves on cuda’s STP by 15%, and its ANTT is significantly bet-
ter by 2.20x. On average, although the elastic polices EQUAL and
QUEUEMOLD perform better than cuda, they do not do as well as
our elastic policies, for reasons explained in the following sections.

In experiments with four-program workloads (excluding bfs),
we find that the average STP value is 1.21 for the elastic policy
MEDIAN. The average ANTT for four-program workloads is 6.61
for MPMAX, which is 8.9x better than that of cuda. The multi-
threaded speedup for four-program workloads also increases to



[ SH/RESTRICTED [] SH/PARTIAL I SH/FULL [ EXCLUSIVE

100%

80%

60%

40%

20%

0% T T T
cuda nss e+mpmax e+median e+equal

Figure 8. Fraction of execution time of kernels spent in different
overlap categories per variant and per policy.

1.47 as compared to cuda. Due to lack of space, we do not elaborate
on our results for four-program workloads in this paper.

6.4.2 Effect of Elastic Policies on Kernel Runtime Behaviour
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Figure 8 shows the breakup of execution timing across kernel
using the categories of Section 6.3. While the cuda kernels largely
run in EXCLUSIVE mode about 90% of the time, the elastic policies
tend to spread execution over the four categories.

Although EXCLUSIVE mode implies high performance on a
per-kernel instance basis, in the case of cuda, this comes at the
cost of waiting time. Figure 9 shows the distribution of average
waiting time for a kernel for each workload under each variant.
Kernel waiting times under cuda are higher than those under any
of the other variants. The mean waiting times under cuda (130.5ms)
and nss (11.21ms) are significantly higher than those for the elastic
policies - MPMAX (0.53ms), MEDIAN (0.96ms), EQUAL (0.51ms)
and QUEUEMOLD (1.57ms). The cuda kernels thus have to wait up
to three orders of magnitude more time to execute compared to any
of the elastic policies. This delay can largely be attributed to false
serialization introduced by the CUDA implementation. The nss
variant shows a 11.6x reduction in average kernel waiting time by
eliminating false serialization, but still suffers a mean waiting time
of 11.21ms due to lack of resources. The elastic policies reduce
waiting times even further by preventing serialization due to lack
of resources.

6.4.3 Effect of Elastic Policies on STP and ANTT

Figure 10 shows the distribution of STP values for all workloads.
The elastic policy MPMAX has the highest STP values for nearly
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Figure 10. System throughput for each two-program workload,
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40% of the workloads. For the remaining 60%, it behaves similarly
to elastic policy MEDIAN. Both these policies offer significantly
better performance than non-resource aware nss and cuda. The per-
formance of the third elastic policy EQUAL is not quite as straight-
forward. For about 30% of the workloads, it performs poorly, even
worse than nss. It shadows but is lower than MEDIAN and MPMAX
for about 35% of the workloads. Then, for the remaining 35% of
the workloads, its performance is like that of MPMAX. Finally, the
elastic QUEUEMOLD exhibits performance that is only marginally
better than nss.

The performance variation in STP exhibited by these policies
is determined by their resource-limiting decisions. Both the ME-
DIAN and EQUAL elastic policies set aside a fixed amount of GPU
resources regardless of the workload. By design, the MEDIAN pol-
icy does not take away too many resources from a running kernel
in about half of the workloads. (This will be borne out later in the
next section while examining utilization.) For the remainder, the
reserved resources are not enough to improve concurrency, causing
the drop in performance. The EQUAL elastic policy, takes away too
many resources in the worst performing 30% of the workloads. At
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the other end, the reserved half of resources is adequate to provide
the rapid execution in the best performing 35% of the workloads.
Our evaluation of the performance of QUEUEMOLD shows that it
gets few opportunities to reduce the resources of individual ker-
nels; given the wide disparity in kernel execution times (Table 3),
the NSS queues rarely contain two or more kernels. Therefore, un-
der QUEUEMOLD, most of the kernels execute with full resources
like in nss. The elastic policy MPMAX differs from EQUAL and
MEDIAN in that the GPU resources reserved vary per program and
per workload. Thus, MPMAX avoids overcommitting resources and
achieves a balance that delivers good concurrency and good perfor-
mance. We conclude that for two program workloads, a policy that
adapts to co-executing programs delivers the best performance.

Figure 11 shows the distribution of ANTT values across work-
loads. The elastic policies other than QUEUEMOLD display simi-
lar behaviour. The QUEUEMOLD shows lower ANTT values than
nss but 60% of the values are clearly higher than the other elastic
policies. Section 6.4.5 will show that the kernel timeslicing imple-
mented for all elastic policies leads to reduction in ANTT com-
pared to nss. For cuda the high degree of serialization leads to very
high values of ANTT. This is corroborated by Figure 9 which shows
that average waiting time for kernel execution is much higher for
these variants as compared to the elastic variants, indicating a high
degree of serialization.

6.4.4 Effects of Policies on Utilization

Figure 12 shows the average number of concurrent kernels for each
variant and the different elastic policies. All elastic policies ex-
cept for QUEUEMOLD behave similarly, with the average number
of concurrent kernels ranging from 1.23 for MPMAX to 1.22 for
EQUAL. This is 1.53x better than cuda, which averages 0.81 con-
currently running kernels and also 1.34x better than the nss variant
which averages 0.92 concurrently running kernels.

However, a higher average number of concurrent kernels alone
does not necessarily translate into higher utilization of GPU re-
sources. The average number of threads utilized (Figure 13) is high
even for nss and cuda because these variants do not limit resource
usage. However, the EQUAL policy, which enforces large fixed lim-
its, shows much lower thread utilization. For performance, thread
utilization as well as number of concurrent kernels should be high.
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Figure 13. Average utilization of threads for each two-program
workload.

6.4.5 Effects of Time-slicing

In all our experiments so far, timeslicing of kernels has been en-
abled for long running grids from the following benchmarks (in
order of grid running time): mm, Ibm, mri-q and tpacf, i.e. 33 of
the 54 workloads. To quantify the impact of timeslicing, we per-
formed additional measurements with kernel timeslicing turned off.
For the timeslicing-enabled subset of workloads, time-slicing of
kernels with a timeslice value of approximately 1ms produces an
overall improvement of 7.8% in geomean STP and improves ge-
omean ANTT by 1.55x over elastic policies that do not have times-
licing enabled (evaluated using the MPMAX elastic policy). For all
54 workloads, time-slicing of kernels produces improvements of
3.3% geomean STP and 1.28x improvements in geomean ANTT
over elastic policies that do not perform timeslicing.

Next we evaluate the effect of memory transfer slicing with a
4MB chunk size. Our experiments reveal no significant effect on
geomean STP or geomean ANTT. The 4MB memory chunk size
used means that only transfers from the following programs will
be time-sliced (size of transfers in parentheses): mm (4.1M), tpacf
(4.7M), bfs (7.6M, 45M), stencil (64M) and Ibm (105M), i.e. 40
pairs. However, over 97% of dynamic transfers in our workloads
are less than 1MB in size. Hence, memory transfers do not seem to
be a significant serialization bottleneck in practice yet.

7. Related Work

To the best of our knowledge, our work is the first to examine an
actual implementation of GPGPU concurrency and to identify and
address issues of poor resource utilization and poor concurrency.
‘We have also identified many serialization factors in the CUDA ex-
ecution model, the CUDA API and hardware implementation that
inhibit GPGPU concurrency and have proposed solutions for all of
them. We now list works that have examined GPU concurrency and
resource allocation for concurrent execution of GPGPU kernels.

Guevara et al. [8] present the first work on GPU concurrency
that predates the NVIDIA Fermi GPU. The GPUs they use do
not support hardware concurrency, so they resort to combining the
source of two kernels into a single kernel at compile-time to exe-
cute them concurrently, a technique they call “thread interleaving”.
Their technique only merges kernels together and does not change
resource allocation for each kernel.

Gregg et al. [7] introduce the KernelMerge runtime framework
to investigate GPGPU concurrency for OpenCL programs. This



framework uses a technique similar to thread interleaving to merge
kernels into a single kernel, but does so at runtime. However, each
thread block of this merged kernel can choose to execute thread
blocks of any of the merged kernels under the control of a sched-
uler. Thus, different scheduling algorithms can achieve different
partitioning of resources at the thread block level.

G. Wang et al. [21] propose the use of kernel fusion to achieve
power efficiency on the GPU. Again, they use a technique similar
to thread interleaving to merge kernels. All of these works demon-
strate significant improvements in throughput and power efficiency
through the use of GPU concurrency. Also, their merging technique
does not require hardware support for concurrency. However, merg-
ing kernels into one large kernel leads to wastage of resources be-
cause GPU resources cannot be reclaimed until both component
kernels finish. In our work, we have used hardware support avail-
able on the NVIDIA Fermi to achieve concurrency.

L. Wang et al. [22] propose context funneling to execute ker-
nels from different GPU contexts concurrently. Their technique al-
lows kernels from different operating system threads (which be-
fore CUDA 4 used different contexts) or kernels from different pro-
grams to execute concurrently.

Adriaens et al. [1] propose that GPU streaming multiprocessors
be spatially partitioned for GPU concurrency. They partition the set
of streaming multiprocessors (SMs) among concurrently executing
programs using different SM partitioning heuristics and evaluate
their policies using the GPGPU-Sim [2] simulator. In this paper,
we base our EQUAL policy on their Even SM spatial partitioning
heuristic which distributes SMs evenly among concurrent applica-
tions. We have evaluated EQUAL in this paper and shown that it
significantly underutilizes resources compared to our policies.

The work closest to our own is the work by Ravi et al. [14]
which uses GPU concurrency to improve GPU throughput for ap-
plications in the cloud. A key feature of their work is the ability
to change the resources assigned to a kernel by varying grid and
thread block dimensions, a technique they call molding. However,
they only claim to support molding for kernels which are already
written to run with any number of threads. As we have shown, there
are only 4 such kernels among the 18 in the Parboil2 benchmark
suite. Our work proposes a transformation (Section 4.1) to con-
vert any kernel to an elastic kernel. We base our QUEUEMOLD
policy on their GetAffinityByMolding resource allocation algorithm
and evaluate it in our paper. We find that given the wide disparity in
execution times of GPU kernels (Table 3), this policy rarely finds
the opportunity to limit resources of kernels and does not perform
as well as our policies.

8. Conclusion

In this paper, we looked at concurrent execution of GPGPU work-
loads. We showed that the current grid programming model of the
GPU leads to wastage that can be reduced by concurrent execution
of GPGPU workloads. However, we found that the current imple-
mentation of concurrency on the GPU suffers from a wide variety
of serialization issues that prevent concurrent execution of GPGPU
workloads. To the best of our knowledge, this is the first work that
raises these issues. Prominent among these issues are serialization
due to lack of resources, and serialization due to exclusive execu-
tion of long-running kernels and memory transfers. To tackle se-
rialization due to lack of resources, we proposed elastic kernels,
a mechanism that allows fine grain control over the amount of re-
sources allocated to a GPU kernel. We used this ability to build
elastic kernel-aware concurrency policies that significantly improve
concurrency for GPGPU workloads. To tackle serialization due to
long-running kernels, we also presented a simple and effective tech-
nique to timeslice kernel execution using elastic kernels. We have
also identified several other implementation issues in the CUDA

hardware and API that inhibit GPGPU concurrency, and have sug-
gested solutions for all of them.

Our proposals improve average system throughput (STP) by
1.21x and average normalized turnaround time (ANTT) by 3.73x
for two-program workloads compared to CUDA on real hardware.
They also increase the number of concurrent kernels by 1.53x and
reduce waiting times for kernels by three orders of magnitude. Our
policies also achieve higher throughput, lower turnaround times
and better resource utilization when compared to a static partition-
ing scheme and a runtime resource allocation scheme. Finally, our
proposal for time-slicing of kernels improves STP by 7.8% and
ANTT by 1.55x for programs with long running kernels.

Acknowledgments

We thank Sanjiv Satoor and Dibyapran Sanyal of NVIDIA for as-
sistance with the CUDA Profiler. We thank our anonymous review-
ers and our shepherd, Rodric Rabbah, for their feedback which has
significantly improved this work. We acknowledge partial funding
from Microsoft Corporation towards this work.

References

[1] J. Adriaens et al. The case for GPGPU spatial multitasking. In HPCA,
2012.

[2] A. Bakhoda et al. Analyzing CUDA Workloads Using a Detailed
GPU Simulator. In ISPASS, 2009.

[3] S. Che et al. Rodinia: A benchmark suite for heterogeneous
computing. In ZISWC, 2009.

[4] M. Desnoyers et al. LTTng-UST User Space Tracer.

[5] J. Evans. A Scalable Concurrent malloc(3) Implementation for
FreeBSD. In BSDcan, 2006.

[6] S. Eyerman and L. Eeckhout. System-level Performance Metrics for
Multiprogram Workloads. IEEE Micro, 28(3), 2008.

[7] C. Gregg et al. Fine-grained resource sharing for concurrent GPGPU
kernels. In HotPar, 2012.

[8] M. Guevara et al. Enabling task parallelism in the CUDA scheduler.

In Workshop on Programming Models for Emerging Architectures
(PMEA), 2009.

[9] E. Lindholm et al. NVIDIA Tesla: A unified graphics and computing
architecture. IEEE Micro, 28(2):39-55, 2008.

[10] NVIDIA. Compute Command Line Profiler: User Guide.

[11] NVIDIA. CUDA Occupancy Calculator.

[12] NVIDIA. NVIDIA CUDA C Programming Guide (version 4.2).

[13] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110.

[14] V. T. Ravi et al. Supporting GPU sharing in cloud environments with
a transparent runtime consolidation framework. In HPDC, 2011.

[15] S. Rennich. CUDA C/C++ Streams and Concurrency.

[16] J. Shirako et al. Chunking parallel loops in the presence of
synchronization. In ICS, 2009.

[17] J. A. Stratton et al. Efficient compilation of fine-grained SPMD-
threaded programs for multicore CPUs. In CGO, 2010.

[18] J. A. Stratton, S. S. Stone, and W. mei W. Hwu. MCUDA: An efficient
implementation of CUDA kernels for multi-core CPUs. In LCPC,
2008.

[19] TOP500.org. The Top 500.

[20] N. Tuck and D. M. Tullsen. Initial Observations of the Simultaneous
Multithreading Pentium 4 Processor. In PACT, 2003.

[21] G. Wang, Y. Lin, and W. Yi. Kernel fusion: An effective method
for better power efficiency on multithreaded GPU. In Proceedings
of the 2010 IEEE/ACM Int’l Conference on Green Computing and
Communications & Int’l Conference on Cyber, Physical and Social
Computing, GREENCOM-CPSCOM ’10, 2010.

[22] L. Wang, M. Huang, and T. El-Ghazawi. Exploiting concurrent kernel
execution on graphic processing units. In HPCS, 2011.



