

Open access · Posted Content · DOI:10.1101/2020.01.30.926634

Improving Heart disease risk through quality-focused diet logging: pre-post study of a diet quality tracking app — Source link 🗹

Courtland VanDam, Bum Chul Kwon, Stephanie E Chiuve, Hyung-Wook Choi ...+3 more authors

Institutions: Massachusetts Institute of Technology, IBM, AbbVie, Drexel University ...+2 more institutions

Published on: 30 Jan 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Behavior change

Related papers:

- Improving Heart Disease Risk Through Quality-Focused Diet Logging: Pre-Post Study of a Diet Quality Tracking App.
- Rams Have Heart, a Mobile App Tracking Activity and Fruit and Vegetable Consumption to Support the Cardiovascular Health of College Students: Development and Usability Study.
- Dietary Self-Monitoring, But Not Dietary Quality, Improves With Use of Smartphone App Technology in an 8-Week
 Weight Loss Trial
- A Fully Automated Conversational Artificial Intelligence for Weight Loss: Longitudinal Observational Study Among Overweight and Obese Adults.
- A Mobile Phone App Designed to Support Weight Loss Maintenance and Well-Being (MotiMate): Randomized Controlled Trial.

Share this paper: 😯 🔰 🛅 🖂

1 Improving Heart disease risk through quality-focused diet

2 logging: pre-post study of a diet quality tracking app

3	Courtland VanDam, PhD ^{1¶} , Bum Chul Kwon, PhD ^{2¶} , Stephanie Chiuve, ScD ^{3&} ,
4	Hyung-Wook Choi ⁴ , Paul Entler, DO ⁵ ,
5	Pang-Ning Tan, PhD ^{6¶} , Jina Huh-Yoo, MHCI, PhD ^{4¶}

- 6 ¹MIT Lincoln Laboratory, Lexington, MA
- 7 ²IBM Research, Cambridge, MA
- 8 ³AbbVie Inc, Chicago, IL
- 9 ⁴College of Computing and Informatics, Drexel University, PA
- 10 ⁵Sparrow Hospital, Lansing, MI
- ⁶Department of Computer Science and Engineering, Michigan State University,
- 12 Lansing, MI
- 13 Corresponding author: Email: jinahuhyoo@drexel.edu
- 14 [¶]These authors contributed equally to this work.
- 15 [&]These authors also contributed equally to this work.
- 16

17 Abstract

18 Diet-tracking mobile apps have been effective in behavior change. At the same time, 19 quantity-focused diet tracking (e.g., calorie counting) can be time-consuming and 20 tedious, leading to unsustained adoption. Diet Quality—focusing on high-quality 21 dietary patterns rather than quantifying diet into calories—has shown effectiveness 22 in improving heart disease risk. Healthy Heart Score (HHS) predicts 20-year 23 cardiovascular risks based on guality-focused food category consumptions, rather 24 than detailed serving sizes. No studies have examined how mobile health apps 25 focusing on diet quality can bring promising results on health outcomes and ease of 26 adoption. We designed a mobile app to support the HHS informed quality-focused 27 dietary approach by enabling users to log simplified diet quality and view its real-28 time impact on future heart disease risks. Users were asked to log food categories 29 that are the main predictors of HHS. We measured the app's feasibility and efficacy 30 on improving individuals' clinical and behavioral factors affecting future heart 31 disease risks and app use. We recruited 38 overweight or obese participants at high 32 heart disease risk, who used the app for 5 weeks and measured weight, blood sugar, 33 and blood pressure, HHS, and Diet Score (DS) measuring diet quality at baseline and 34 the fifth week of the intervention. The majority used the application every week 35 (84%) and significantly improved DS and HHS at the fifth week (p<0.05), although 36 only 10 participants (31%) checked their risk scores more than once. Other 37 outcomes did not show significant changes. Our study showed logging simplified 38 diet quality significantly improved dietary behavior. The participants were not

interested in seeing HHS, and the participants perceived logging diet categories
irrelevant to improving HHS as important. We discuss the complexities of
addressing health risks, quantity vs. quality-based health monitoring, and
incorporating secondary behavior change goals that matter to users when designing
mobile health.

44 Introduction

45 An increasing number of mobile apps have explored ways to efficiently and 46 effectively monitor and improve health behavior (1-3). Among these mobile health 47 apps, diet monitoring is one of the most popular domains. Reasons attribute to 48 diabetes and obesity leading as the top two fields producing revenue in the mobile 49 health market (4) and their significance in impacting public health. A systematic 50 review of mobile applications showed that mobile health apps increased adherence 51 to diet monitoring and reduced efforts to maintain diet without using the apps (5). 52 However, focusing on the quantification of diet can bring a number of challenges. 53 Food journaling can be "too much effort," "time-consuming," or "tedious" (6,7). 54 Detailed food journaling entry can be challenging because users often might not 55 remember or know what and how much they have eaten (8). Users also feel the 56 dietary information in the database is unreliable, calories burnt seemed random and 57 "did not line up," (9) and entering unhealthy food consumption in detail makes 58 people feel guilty in general. These high barriers leading to limited engagement with 59 diet tracking apps, researchers attempted lightweight approaches of diet tracking.

and such attempt has shown to be successful by providing users a photo-based foodtracking app and encouraging them to track only one food per day (10).

62 A 2018 study published at the Journal of American Medical Association showed the 63 effectiveness of focusing on diet quality over quantity—to focus on restricting low-64 quality foods, such as processed foods, added sugar, or refined grains—rather than 65 calorie counting (11). However, mobile apps on dietary monitoring focused on 66 quantification of diet (e.g., calorie counting) and other health behaviors (e.g., steps). 67 This quantification approach does not necessarily address the needs of broader 68 groups of individuals. Numeracy and literacy in general can be a barrier. People 69 show increased confusion around serving size (12), but for these apps to work 70 appropriately, it would require accurate calculations of these very nuanced behavior 71 choices. For instance, one might have eaten mixed salad, but the system needs to 72 know how many grams of spinach versus carrots and which salad dressing in order 73 to calculate accurate calories and nutritional content. Sophisticated, detailed, 74 quantified tracking practices are not popular for all user groups (13). Tracking 75 detailed health information is a user burden, affecting sustained tracking behavior 76 (7).

At the center of effectiveness that mobile health brings includes seeing the effect of
behavior change. Knowledge of risk level helps individuals to understand how
urgent they need to change their behavior. Individuals at higher risk are more
motivated to change if they know they are at high risk (5). A mobile app allowing
users to observe how their risks are affected by their day-to-day choices relating to
health and wellness (e.g., such as their choice of food that day) can greatly help with

83	the prevention of chronic diseases. Awareness of heart disease risk has shown as
84	one of the most critical methods and strategies to change behavior. Numerous
85	mobile apps have been designed to directly or indirectly bring awareness about
86	heart disease (14,15). However, these apps rarely show how lifestyle behavior
87	change of risk factors—smoking, diet quality, or alcohol consumption—affects their
88	outcomes to preventing heart disease (1,14–20). While understanding future risks
89	increases motivation of individuals to change behavior, whether individuals will
90	actually change behavior is a more complicated, sophisticated problem to solve than
91	just "getting the message across" (21).
92	Our goal was to design and test a mobile app that would help users focus on
93	improving diet quality with the help of getting real-time feedback on future heart
94	disease risk as a result of their diet quality patterns. This way, we could increase
95	individuals' awareness on cardiovascular risks based on daily dietary choices. Users
96	thus can focus on the behavior that is present and immediate, rather than an
97	uncertain future (22,23). Users can log simplified categories that have high quality
98	diet—e.g., vegetables, fruits, whole grainsto help users focus on the quality of food,
99	rather than the detailed nutritional value, calories, and quantity of food.
100	Our study demonstrated that: (1) Monitoring simple diet quality can have significant
101	effect on dietary behavior change; and (2) regardless of participants' interest
102	toward heart disease risk, the app reduced the risk.

103 Materials and Methods

104	We designed the app based on Behavior Change Techniques (BCT) (24). We used
105	focus groups to iteratively improve the paper prototypes and developed Android
106	based app as a result. We then conducted a 5-week pre-post study with a follow up
107	two weeks after the post study to evaluate the app's efficacy of clinical and
108	behavioral outcome changes as well as app usage patterns.
109	Focus groups for app development
110	We conducted three focus groups in a sequence (n=13 total with $3\sim5$ people for
111	each group) to iteratively improve the initial digital paper prototype (Figure 1). The
112	participants were at risk for heart disease recruited from a weight management
113	clinic in the U.S. Midwest. During the focus groups, the participants were presented
114	with images from the initial prototype to test usability and learnability of each
115	screen (Figure 1). We revised the design iteratively based on the feedback. We then
116	developed the mobile application on an Android platform.
117	Figure 1. Screens from the prototype presented to the focus group. Users can select
118	which goal to work on using the mountain climbing metaphor (left). As users
119	accomplish the goals, they would unlock the next category of goals. Selecting a
120	category on the Behavior Category Map would direct the user to the Goal Selection
121	screen (middle). Right describes a screen in which users can choose the 'sides' and
122	see how future cardiovascular risks might differ, if the user were to repeat the
123	behavior for a week.

124 Final app design

125	BCT suggests four core components to designing an intervention: Environmental
126	contexts, Goals, Feedback and Monitoring, and Reinforcement. The app contains five
127	screens: Main Menu, Profile, Goals, Meal Calendar (food logging screen), and
128	Cardiovascular Risk (screen showing heart disease risk score). We designed the
129	Profile page to incorporate environmental context, the Goals menu for users to
130	personalize goals, Meal Calendar to log diet quality for feedback and monitoring,
131	and Cardiovascular Risk screen to reinforce and reward positive diet change. A first-
132	time user is directed to the Profile screen to provide their demographic information
133	related to calculating their risk.
134	Diet quality and Healthy Heart Score (HHS). The definition of high quality diet in
135	this study was based on the Healthy Heart Score (HHS), a risk score system for heart
136	disease risk developed at Harvard University (Figure 2) (5). Among a number of
137	heart disease risk models (e.g., Framingham (25)), HHS is uniquely useful for middle
138	aged adults who do not have elevated clinical factors, such as high blood pressure or
139	cholesterol, but still may be at high risk for developing cardiovascular disease. The
140	HHS model builds on lifestyle factors, such as smoking status, level of physical
141	activity, alcohol intake, and a diet score based on consumption of fruits and
142	vegetables, nuts, cereal fiber, sugar-sweetened beverages, and red and processed
143	meats. HHS measures diet quality with the Diet Score (DS) factor (Figure 2). High DS
144	indicates the individual is eating more <i>healthy foods</i> , including fruits, vegetables,

145 nuts, and white meat. Consumption of *unhealthy foods*, including red meat,

- 146 processed meat, and sugary drinks will lead to lower DS.
- 147 Figure 2. This figure describes the Healthy Heart Score (HHS) (5) and calculation of
- 148 Diet Score (DS) for women and men.
- 149 In the diet monitoring screen (Figure 3a), users can enter up to four food categories
- 150 for each of the meals they ate each day; breakfast, lunch, dinner, and snack.
- 151 Following HHS, users could log overall quality of diet through the seven food
- 152 category items noted by HHS: four *healthy categories*—fruits, vegetables, whole
- 153 grains, and nuts and three *unhealthy categories*—red meat, processed meat, and
- 154 sugary drinks. The app also allowed selecting the Other category to log foods not
- 155 included in the provided categories. The Goals screen showed the default number of
- 156 servings suggested for each food category. Users can either drag a food category
- 157 icon, e.g. Fruit, to one of the meal slots, which counts as one serving of that category
- 158 to that meal, or tap the calendar and work on the popup window to increase or
- 159 decrease the number of servings and add the name of the food they consumed.
- 160 Definition of a serving was not defined—any consumption counted as a serving,
- 161 following the anti-quantification approach. In the Goal screen (Figure 3b), the
- 162 default suggestions on the intake amount of unhealthy food categories was set to 0
- 163 servings. For fruits and vegetables, their combined total should be at least 3 servings
- 164 per day, or equivalently, 21 servings per week.
- Figure 3. Figure 3a (left) shows the Meal Calendar screen, where users can enter
 simple quality-oriented diet categories. Figure 3b (middle) shows options to add

167 more detail on the food, if user desires. Figure 3c (right) shows the screen that

168 updates HHS risk score as user enters diet information.

169 Future cardiovascular risk. Cardiovascular Risk (Figure 3c) screen shows current

- 170 HHS, the user's real-time calculated cardiovascular risk score. The screen compares
- 171 their risk when they started using the app to the current week. In this risk screen,

we rescaled the HHS to a range from 1 to 10 from its original unit, 0-100%,

173 following the suggestion provided by from the focus groups and in consultation with

174 the expert who developed the HHS. The focus groups' complaint was that the

175 percentage was confusing—e.g., whether 50% meant 50% higher risk than others or

176 half of the risk compared to others (or compared to current status). In the rescaled

177 range of the score, the ideal risk score for a healthy individual is between 1 and 2,

and if one has a risk score of 9 or above, the person is four times or more likely to

179 develop heart disease than an individual with a healthy lifestyle.

180 Goals. At the beginning of each week, the app prompts users to set their goals and

181 direct them to the Goals screen. Users can tap the goal icon of the food categories

they want to actively work on. The users can deactivate a goal by tapping it again,

and the goal will be displayed as grayed out. If one of the goals for unhealthy

184 categories is active, users will be notified on the Meal Calendar if they exceed the

185 maximum number of servings stated by the goal. The Goals screen includes a

186 checkbox that shows the status of whether the user has met the goal.

187 **Pre-post study: Recruitment and procedures**

188	The participants were recruited from a weight management clinic at a major
189	hospital in the U.S. Midwest. 38 participants started the study between June and
190	September 2016 for a 5-week intervention (denoted as Week 0-4) with a follow up
191	meeting two weeks after the end of Week 4. The participants were asked to use the
192	app at least six days a week for the five weeks of the study. The participants had the
193	option to continue using the app until the follow up meeting. Initially, the
194	participants were asked to log their diet to establish a baseline. Starting at the
195	beginning of Week 1, the app started prompting the participants to set goals for
196	each week based on HHS recommendationseither by keeping the default
197	suggestion (ideal diet) or changing it to personalized goals.
198	At baseline and at the end of Week 4, the participants visited the clinic for a clinician
199	to measure their weight and fasting blood sugar. At the end of Week 4, we reminded
200	the participants they were no longer required to use the app. In addition, an exit
201	interview was held at the follow up visit to discuss their experiences with the app.
202	Figure 4 shows the study procedure.
203	Figure 4. The figure shows the timeline of the pre-study and post-study
204	measurements and follow up and the notation of the Weeks.

All participants received cash compensations of up to U.S. \$50. The participants

206 received partial or full compensation depending on how much they completed the

207 following: three online surveys; measure health outcomes twice; and use the app at

least 6 days a week during Week 0 to 4. The app was provided to the participants in

- 209 two ways. If the participants had an Android phone, we installed the app onto their
- 210 phones. Otherwise, we provided them with a Samsung Galaxy S3 phone, with the
- app installed, for the duration of the study. These participants were required to
- 212 return their phones at the follow up.

213 **Research questions and analyses**

- 214 We wanted to answer three research questions regarding feasibility to logging diet
- 215 quality, motivating behavior change through feedback on future heart disease risks,
- and the app's efficacy of behavior change.

217 RQ1. How feasible was logging diet quality?

- 218 We recorded and analyzed the time, frequency, and screen of the participants'
- tapping events on the app. We analyzed how often participants went to each screen
- and which food categories were logged over time. We also analyzed user logs about
- food names to understand diet logging behavior.

222 RQ2. How feasible was communicating risk to motivate behavior change?

- 223 We analyzed participants' usage of the Risk screen. We then associated the usage
- with participants with their HHS.

225 **RQ3.** How effective was the application in changing health outcomes?

- 226 We conducted a paired-sample t-test to compare the outcome changes in diet
- 227 quality, HHS, and in-clinic measurements (weight and fasting blood glucose)
- between pre- (At the beginning of Week 0) and post-test (At the end of Week 4)
- 229 measurements.

230 **Results**

In this section, we first report demographical information of the participants and
the recruitment outcome. We then report results on diet quality, risk score checking,
health outcomes and diet score, and association between app use and diet score.

234 **Participants**

- 235 32 out of the 38 recruited participants completed at follow up. Twenty-two
- 236 participants used the provided study phones and the rest used their own phones.
- 237 Three participants who were Android phone users stopped using the app and
- 238 stopped responding to the researchers. Another participant withdrew because the
- app was too cumbersome. Two other participants withdrew because they decided
- the study no longer applied to them. The remaining 32 participants (Female=26;
- Age: M=57.48, SD=11.85) who completed the study have a wide range of age,
- 242 weight, smoking status, and experience of using a smartphone. One participant was
- a smoker, 12 were former smokers, and 19 were non-smokers. 17 participants were
- 244 diagnosed with diabetes. Four participants were overweight (BMI between 25 and
- 245 29.9) and the remaining 28 participants were obese (BMI >= 30) (26).

246 **RQ 1: How feasible was logging diet quality?**

App use. During the active intervention when the participants were required to use
the app (Baseline~Week 4), the participants tapped on the app 27 times on average
(SD=25.6) per week. After Week 4 and until follow up, the participants tapped on

the app 11 times on average (SD=18.3) per week. Figure 5 shows each participant'soverall app use over the weeks.

252	Figure 5. Each small graph shows each participant's total number of tapping events
253	over the 7 total weeks including two-week follow up (between the baseline and
254	follow up). The x-axis shows the week of intervention (0 indicating the frequency
255	accumulated between the baseline and at the end of Week 0). The y-axis shows the
256	total number of tapping for each week. 27 participants visited the screen nearly
257	every week for the intervention duration (Week 0-4).
258	Diet logging. 28 out of 32 participants logged food every week between the
259	baseline and at end of Week 4, at least once a week. About a half of the participants
260	logged food nearly every day. As seen in Figure 6, during the active weeks, the 32
261	participants altogether logged "Other" the most (6066 instances, 40%), followed by
262	"Vegetables" (2857 instances, 19%), "Fruit" (2398 instances, 16%), "Whole Grains"
263	(1614 instances, 11%), "Nuts" (698 instances, 5%), "Red Meat" (627 instances, 4%),
264	"Processed Meat" (614 instances, 4%) and "Sugary Drinks" (151 instances, 1%).
265	Figure 6 shows when these food categories were logged to the meal slots during the
266	course of the day—breakfast, lunch, dinner, or snack. Fruits and whole grains were
267	logged proportionally larger during breakfast meals than other meals, and
268	vegetables were logged proportionally larger during lunch and dinner meal times.
269	"Other" categories were logged equally over all meal slots.

Figure 6. This figure shows all 32 participants' logging per food category and which
meal of day the logging occurred during the active intervention weeks (Between
baseline and end of Week 4).

273 Participants entered qualitative description of the food in the "food name" field for 274 38% (5,730 instances) of all diet logging instances. 49% of these instances (2,800) 275 were entered when logging to the Other category, 18% for the Vegetables, 15% for 276 Fruit, 8% for Whole grains, 4% for Nuts, 3% for Red meat, 3% for Processed meat, 277 0.7% for Sugary drinks. For non-other categories, participants entered example 278 description of the food category they entered. For instance, Fruit category included 279 descriptions such as "strawberries" or "grilled fruit salad." Vegetable category 280 included "arugula" or "grilled squash and zucchini with lemon and olive oil." When participants entered "Other," 98.9% of them included detailed descriptions on 281 282 the food. The qualitative analysis of these descriptions together with the exit 283 interviews revealed several reasons for why the food was logged an "Other." First, 284 the given food categories did not capture all the food categories they attempted to 285 log, such as their current dietary goals (e.g., to reduce dairy). The participants were 286 given the instruction to only log what is related to heart disease risks, but they still 287 captured other categories not affecting healthy heart risk, including dairy, dessert, 288 or other protein foods (e.g., 338 protein instances such as eggs, tofu, and beans, 289 12.2%; 584 dairy instances such as milk, cheese, and greek yogurt, 21.1%). The 290 participants also captured foods in the "Other" category when the food was a mix of 291 various food categories that might have been difficult to be captured in one or two 292 food categories (e.g., California roll, sandwich). 19 instances showed red meat food,

such as pork, and vegetables being logged as the "Other," showing how the users
might have been confused on what food categories these foods belonged to. Even
though pork was red meat, the fact that it was logged as the "Other" matched with
the exit interview content that the participants considered pork a white meat.

297 RQ2. How feasible was communicating risk to motivate behavior change?

298 **Risk screen.** As Figure 7 shows, at the baseline, most participants checked their

299 Risk scores (n=29). Starting the week after, however, most did not come back to the

300 Risk screen to view their changes in their HHS. Thirteen people checked the Risk

- screen in Week 1, 11 in Week 2, 6 in Week 3, 10 in Week 4, and 6 in Week 5 until
- 302 follow up.
- **Figure 7.** The figure shows the participants' use of the Risk screen (loading

304 frequency) over the weeks. 29 participants out of 32 checked their risks the first

305 week, and then only a few checked again at Week 4 (n=10). Most participants did

306 not return to the Risk screen to recheck it after the baseline.

307 **RQ3.** How effective was the application in changing health outcomes?

308 **Diet Score.** All but two participants logged their diet during the active intervention.

- 309 Among the n=30 participants who logged their diet during the active intervention,
- 310 the Diet Score showed significant difference between baseline (M=1.31, SD=1.14)
- 311 and post-test during Week 4 (M=2.36, SD=2.48); t(29)=-2.85, p=0.008. (See Figure
- 312 8).

- **Figure 8.** The figure shows the Diet Score (left) and Healthy Heart Score (right)
- 314 changes between pre- and post-study measurements of the participants.
- 315 **HHS.** Healthy Heart Score also showed significant difference between baseline
- 316 (M=22.94, SD=18.86) and post-test at the end of Week 4 (M=22.15, SD=18.58)
- 317 measurements; t(29)=2.41, p=0.02.
- 318 There was no statistical association between food logging frequency and three
- 319 measures: Diet Score, Risk, and BMI.
- 320 In-clinic measurements. Weight did not show significant difference between pre-
- 321 test (M=241.7 lbs, SD=61.17) and post-test (M=242.6 lbs, SD=61.9) measurements;
- 322 t(29)=-1.043, p=0.31. Blood sugar also did not show significant difference between
- 323 pre-test (M=130.2, SD=76.62) and post-test (M=123.3, SD=48.8) measurements;

324 t(28)=-0.95, p=0.35.

325 **Discussion**

- 326 The study showed feasibility to logging diet quality (RQ1) but not communicating
- 327 risk (RQ2). However, the application was effective in changing health outcomes
- 328 (RQ3), showing logging simplified diet quality significantly improved dietary scores
- 329 and future cardiovascular risk scores. The following shows key takeaways:
- The study showed no association between frequency of logging and
 improved dietary scores, showing the importance of separating frequency of
 use in measuring health outcomes.

333	•	The participants were not interested in monitoring the risk scores, but they
334		still significantly decreased their risk scores by focusing on the target
335		behavior. This finding gives implications to health risk communication in
336		mobile health app design.
337	•	The study showed users mostly logged irrelevant dietary behaviors to the
338		target behavior. This finding shows the need to balance reducing monitoring

339 items for efficiency versus what matters to users to support user experience.

Opportunities and challenges of quality focused diet monitoring

341 Previous literature shows logging diet is highly associated with improved diet (27).

342 At the same time, studies showed that not all users can benefit from sophisticated

343 diet logging applications. Users often find diet logging a tedious, cumbersome

activity, which leads to abandonment (6). Also, people do not always accurately

345 estimate food proportions and nutritional contents (12). Automated techniques

346 including calorie calculations and artificial intelligence-based food detection can

reduce such user burden in detailed diet logging (28–30). However, these methods

348 are still limited and error prone, which lead to increased user frustration and

349 abandonment.

350 To address this gap, we implemented the Healthy Heart Score (5) into a mobile app,

351 which simplified the diet monitoring process to focusing on improving diet quality

352 over quantity. This approach incorporates a lenient approach toward food

353 proportion and nutritional details in calculating the risk. By allowing users to focus

on logging simplified diet quality that does not require logging detailed nutritional,

355	caloric breakdown of each meal and focusing on whether a gross food group was
356	consumed (fruits, vegetables), we showed users steadily used the app even after the
357	required weeks they were not incentivized to use it. One participant asked if they
358	can continue using the app even after the study had completed.
359	At the same time, the study showed no association between frequency of use and
360	diet score increase. This finding shows the need to separate quantitative measure of
361	usage from health outcomes. This implication aligns with the discussions around
362	whether sustained use of an mHealth app is a positive one or not—discontinuing to
363	use an app might mean the user no longer needs the app because the user has
364	achieved the health goal or that the user has become more independent (9).
365	One challenge we discovered in logging diet quality was that even at the gross level
366	of food categories, some participants found confusions around categorizing food to
367	the right categories (e.g., confused pork as white meat, avocado as not being
368	vegetable).

369 Implications for health risk communication in mHealth design

Our initial goal of this app was to increase individuals' awareness on cardiovascular
risks based on daily dietary choices. We expected that users would check on their
risk scores as they changed their dietary patterns to understand how their risks
were impacted by their dietary choices, thus making behavioral changes. However,
while logging the diet quality was positively accepted by the participants, the
participants rarely visited the risk screen throughout the weeks. The participants
mainly visited the risk screen at the very beginning to check their initial risk score,

377	and a few came back for a second check after a week, and most did not come back.
378	The follow up interview revealed that the participants noted their score did not
379	seem to visibly change, so they did not think to check more often. At the same time,
380	the HHS results showed that the participants still significantly improved their HHS
381	at Week 4. A solution would be to improve on visualizing the risk scores so that
382	their improvement is more visible and concrete. One idea is to augment a
383	forecasting trajectory to the risk score. The predicted line could be designed to
384	adjust more sensitively to users' recent efforts to provide further motivation.
385	Communicating future risks is known to alert and motivate people to change
386	behavior (31–33). At the same time, risk communication largely suffers from people
387	making the actual behavior change because the risk is too distant in the future,
388	giving lack of sense for relevance (34,35). This study showed the participants were
389	initially motivated by their risk score, but the behavior change was not related to
390	their checking of the risk score over time. Though users did not check their risk
391	scores, they overall decreased the risk scores in the end. This finding gives
392	implications to the role of health risk communication in consumer facing mobile
393	health apps, in which continuous monitoring is the strength. The risk scores can
394	serve as initial motivation to set up goals, but users would focus on monitoring and
395	improving the target risk behavior (in this case diet quality), and the improvement
396	with the risk can be a positive side effect.

397 Implications of "Other" in monitoring apps

398	The findings on the largest logging activity of "Other" food categories provided
399	implications for balancing between simplification and accommodation of users'
400	"Other" needs. The HHS discourages or encourages certain food categories to be
401	consumed. This instruction—to focus on improving consumption of certain food
402	categories—was reassured to the participants during the instruction. In the app
403	design, we also specifically only allowed users to log the relevant food categories to
404	improving the HHS score. However, the majority of the diet logs were under "Other",
405	where it included irrelevant food categories, such as dairy. According to follow up
406	interview, this came from having a concurrent diet goal of their own. When
407	designing a monitoring app to improve a health behavior, one needs to consider the
408	gap between the chosen clinical approach and individuals' concurrent goals and
409	considerations. While simplifying the design to only monitor necessary information
410	can improve efficiency and reduce user burden, this design approach might lose
411	incorporating users' concurrent needs and focus. One should not consider what
412	matters to users as "Other" because it is considered irrelevant to a target goal.

413 Limitations

This study did not have a control group, and the duration was only five weeks—not
enough to show true behavior change. The data did not include collecting
information on whether the participants did not continue to check risk scores

- 417 because of the lack of usability (e.g., legibility of the visualization) or their
- 418 disinterest on risks.

419 **Conclusions**

- 420 Our study showed feasibility and efficacy of a simplified diet quality monitoring in a
- 421 mobile health application. Future work should further test the app's efficacy with a
- 422 larger, focused population who are disinterested in using existing quantity-focused
- 423 monitoring applications. Despite some known limitations on research design and
- 424 duration, the findings provided significant contributions to understanding the
- 425 implications on the opportunities and challenges in designing a simplified, diet
- 426 quality focused monitoring app and how health risk communication can be
- 427 effectively integrated into an mHealth design. The study also sheds light on finding
- 428 the balance between affording users to focus on simplified target behavior, reducing
- 429 user burden versus further incorporating what matters to users in designing a
- 430 health monitoring app.

431 Acknowledgements

432 None

433 Conflicts of Interest

434 None declared.

435 **References**

436	1.	DiFilippo KN, Huang W-H, Andrade JE, Chapman-Novakofski KM. The use of
437		mobile apps to improve nutrition outcomes: A systematic literature review.
438		Journal of telemedicine and telecare. 2015 Feb 12;
439	2.	Chiarini G, Ray P, Akter S, Masella C, Ganz A. MHealth technologies for chronic
440		diseases and elders: A systematic review. IEEE Journal on Selected Areas in
441		Communications. 2014;31(9 PG-6–18):6–18.
442	3.	Free C, Phillips G, Felix L, Galli L, Patel V, Edwards P. The effectiveness of M-
443		health technologies for improving health and health services: a systematic
444		review protocol. BMC research notes. 2010;3(1):250.
445	4.	Aranyi G, van Schaik P. Testing a model of user-experience with news
446		websites. Journal of the Association for Information Science and Technology.
447		2015;n/a-n/a.
448	5.	Chiuve SE, Cook NR, Shay CM, Rexrode KM, Albert CM, Manson JE, et al.
449		Lifestyle-based prediction model for the prevention of CVD: the Healthy Heart
450		Score. Journal of the American Heart Association. 2014;3(6):e000954.
451	6.	Cordeiro F, Bales E, Cherry E, Fogarty J. Rethinking the Mobile Food Journal:
452		Exploring Opportunities for Lightweight Photo-Based Capture. In:
453		Proceedings of the 33rd Annual ACM Conference on Human Factors in
454		Computing Systems. New York, NY, USA: Association for Computing
455		Machinery; 2015. p. 3207–3216. (CHI '15).

456	7.	Cordeiro F, Epstein DA, Thomaz E, Bales E, Jagannathan AK, Abowd GD, et al.
457		Barriers and Negative Nudges: Exploring Challenges in Food Journaling. In:
458		Proceedings of the 33rd Annual ACM Conference on Human Factors in
459		Computing Systems. New York, NY, USA: Association for Computing
460		Machinery; 2015. p. 1159–1162. (CHI '15).
461	8.	Bentley F, Tollmar K. The power of mobile notifications to increase wellbeing
462		logging behavior. In: Proceedings of the SIGCHI Conference on Human Factors
463		in Computing Systems - CHI '13. New York, New York, USA: ACM Press; 2013.
464		p. 1095.
465	9.	Epstein DA, Caraway M, Johnston C, Ping A, Fogarty J, Munson SA. Beyond
466		abandonment to next steps: understanding and designing for life after
467		personal informatics tool use. In: Proceedings of the 2016 CHI Conference on
468		Human Factors in Computing Systems. 2016. p. 1109–13.
469	10.	Epstein DA, Cordeiro F, Fogarty J, Hsieh G, Munson SA. Crumbs: lightweight
470		daily food challenges to promote engagement and mindfulness. In:
471		Proceedings of the 2016 CHI Conference on Human Factors in Computing
472		Systems. ACM; 2016. p. 5632–44.
473	11.	Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J, Ioannidis
474		JPA, et al. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss
475		in overweight adults and the association with genotype pattern or insulin
476		secretion: the DIETFITS randomized clinical trial. Jama. 2018;319(7):667–79.
477	12.	Hogbin MB, Hess MA. Public confusion over food portions and servings.

478		Journal of the Academy of Nutrition and Dietetics. 1999;99(10):1209.
479	13.	Majmudar MD, Colucci LA, Landman AB. The quantified patient of the future:
480		Opportunities and challenges. In: Healthcare. 2015. p. 153–6.
481	14.	Chow CK, Ariyarathna N, Islam SMS, Thiagalingam A, Redfern J. mHealth in
482		cardiovascular health care. Heart, Lung and Circulation. 2016;25(8):802–7.
483	15.	Martínez-Pérez B, De La Torre-Díez I, López-Coronado M, Herreros-González
484		J. Mobile apps in cardiology. JMIR mHealth and uHealth. 2013;1(2):e15.
485	16.	Azar KMJ, Lesser LI, Laing BY, Stephens J, Aurora MS, Burke LE, et al. Mobile
486		applications for weight management: theory-based content analysis.
487		American journal of preventive medicine. 2013;45(5):583–9.
488	17.	Boulos MNK, Brewer AC, Karimkhani C, Buller DB, Dellavalle RP. Mobile
489		medical and health apps: state of the art, concerns, regulatory control and
490		certification. Online journal of public health informatics. 2014;5(3):229.
491	18.	Eyles H, McLean R, Neal B, Doughty RN, Jiang Y, Mhurchu CN. Using mobile
492		technology to support lower-salt food choices for people with cardiovascular
493		disease: protocol for the SaltSwitch randomized controlled trial. BMC public
494		health. 2014;14(1):950.
495	19.	Piette JD, List J, Rana GK, Townsend W, Striplin D, Heisler M. Mobile health
496		devices as tools for worldwide cardiovascular risk reduction and disease
497		management. Circulation. 2015;132(21):2012–27.
498	20.	Urrea B, Misra S, Plante TB, Kelli HM, Misra S, Blaha MJ, et al. Mobile health

499		initiatives to improve outcomes in primary prevention of cardiovascular
500		disease. Current treatment options in cardiovascular medicine.
501		2015;17(12):59.
502	21.	Kelly MP, Barker M. Why is changing health-related behaviour so difficult?
503		Public health. 2016;136:109–16.
504	22.	Pozolotina T, Olsen SO. Consideration of immediate and future consequences,
505		perceived change in the future self, and health behavior. Health marketing
506		quarterly. 2019;36(1):35–53.
507	23.	Wood W, Neal DT. Healthy through habit: Interventions for initiating &
508		maintaining health behavior change. Behavioral Science & Policy.
509		2016;2(1):71-83.
510	24.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new
510 511	24.	method for characterising and designing behaviour change interventions.
510 511 512	24.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science. 2011;6(1):42.
510 511 512 513	24. 25.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science. 2011;6(1):42. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA. Comparisons of established
 510 511 512 513 514 	24. 25.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science. 2011;6(1):42. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ.
 510 511 512 513 514 515 	24. 25.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science. 2011;6(1):42. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012;344:e3318.
 510 511 512 513 514 515 516 	24. 25. 26.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science. 2011;6(1):42. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012;344:e3318. NIH. Overweight and Obesity. 2017.
 510 511 512 513 514 515 516 517 	24. 25. 26. 27.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science. 2011;6(1):42. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012;344:e3318. NIH. Overweight and Obesity. 2017. Prestwich A, Kellar I, Parker R, MacRae S, Learmonth M, Sykes B, et al. How
 510 511 512 513 514 515 516 517 518 	24. 25. 26. 27.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science. 2011;6(1):42. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012;344:e3318. NIH. Overweight and Obesity. 2017. Prestwich A, Kellar I, Parker R, MacRae S, Learmonth M, Sykes B, et al. How can self-efficacy be increased? Meta-analysis of dietary interventions. Health
 510 511 512 513 514 515 516 517 518 519 	24. 25. 26. 27.	Michie S, Van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implementation science. 2011;6(1):42. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ. 2012;344:e3318. NIH. Overweight and Obesity. 2017. Prestwich A, Kellar I, Parker R, MacRae S, Learmonth M, Sykes B, et al. How can self-efficacy be increased? Meta-analysis of dietary interventions. Health Psychology Review. 2014;8(3):270–85.

520	28.	Beijbom O, Joshi N, Morris D, Saponas S, Khullar S. Menu-match: Restaurant-
521		specific food logging from images. In: 2015 IEEE Winter Conference on
522		Applications of Computer Vision. 2015. p. 844–51.
523	29.	Bruno V, Silva Resende CJ. A survey on automated food monitoring and
524		dietary management systems. Journal of health & medical informatics.
525		2017;8(3).
526	30.	Terzimehić N, Leipold N, Schaefer H, Madenach M, Böhm M, Groh G, et al. Can
527		an Automated Personalized Nutrition Assistance System Successfully Change
528		Nutrition Behavior?-Study Design. 2016;
529	31.	Jensen JD, King AJ, Carcioppolo N, Davis L. Why are tailored messages more
530		effective? A multiple mediation analysis of a breast cancer screening
531		intervention. Journal of Communication. 2012 Sep 6;62(5):851–68.
532	32.	Unruh HK, Bowen DJ, Meischke H, Bush N, Wooldridge JA. Women's
533		approaches to the use of new technology for cancer risk information. Women
534		& health. 2004 Jan;40(1):59–78.
535	33.	Kushi LH, Byers T, Doyle C, Bandera E V, McCullough M, Gansler T, et al.
536		American Cancer Society guidelines on nutrition and physical activity for
537		cancer prevention: Reducing the risk of cancer with healthy food choices and
538		physical activity. Ca-A Cancer Journal for Clinicians. 2006;56(5):254–81.
539	34.	Margolis PA, Stevens R, Bordley WC, Stuart J, Harlan C, Keyes-Elstein L, et al.
540		From concept to application: the impact of a community-wide intervention to
541		improve the delivery of preventive services to children. Pediatrics. 2001

542 Sep;108(3):E42.

543	35.	Edwards A, Thomas R, Williams R, Ellner AL, Brown P, Elwyn G. Presenting	
544		risk information to people with diabetes: Evaluating effects and preferences	
545		for different formats by a web-based randomised controlled trial. Patient	
546		Education and Counseling. 2006;63(3 SPEC. ISS.):336–49.	
547	Supp	orting Information	
548	Figu	re 1. Screens from the prototype presented to the focus group. Users can select	
549	whic	h goal to work on using the mountain climbing metaphor (left). As users	
550	accor	nplish the goals, they would unlock the next category of goals. Selecting a	
551	category on the Behavior Category Map would direct the user to the Goal Selection		
552	scree	en (middle). Right describes a screen in which users can choose the 'sides' and	
553	see h	ow future cardiovascular risks might differ, if the user were to repeat the	
554	beha	vior for a week.	
555	Figu	re 2. This figure describes the Healthy Heart Score (HHS) (5) and calculation of	
556	Diet	Score (DS) for women and men.	
557	Figu	re 3. Figure 3a (left) shows the Meal Calendar screen, where users can enter	
558	simp	le quality-oriented diet categories. Figure 3b (middle) shows options to add	
559	more	e detail on the food, if user desires. Figure 3c (right) shows the screen that	
560	upda	tes HHS risk score as user enters diet information.	
561	Figu	re 4. The figure shows the timeline of the pre-study and post-study	
562	meas	surements and follow up and the notation of the Weeks.	

563 **Figure 5.** Each small graph shows each participant's total number of tapping events

- over the 7 total weeks including two-week follow up (between the baseline and
- 565 follow up). The x-axis shows the week of intervention (0 indicating the frequency
- accumulated between the baseline and at the end of Week 0). The y-axis shows the
- total number of tapping for each week. 27 participants visited the screen nearly
- 568 every week for the intervention duration (Week 0-4).
- 569 **Figure 6.** This figure shows all 32 participants' logging per food category and which
- 570 meal of day the logging occurred during the active intervention weeks (Between
- 571 baseline and end of Week 4).
- 572 **Figure 7.** The figure shows the participants' use of the Risk screen (loading
- 573 frequency) over the weeks. 29 participants out of 32 checked their risks the first
- 574 week, and then only a few checked again at Week 4 (n=10). Most participants did
- 575 not return to the Risk screen to recheck it after the baseline.
- 576 **Figure 8.** The figure shows the Diet Score (left) and Healthy Heart Score (right)
- 577 changes between pre- and post-study measurements of the participants.

Women

20-year CVD risk (%) = [1 - 0. 9660 (exp [W-6.57301)] × 100%

where W = 0.10820 × age + 0.15285 (if past smoker) + 0.90138 (if current smoker) + 0.04676 × BMI – 0.01923 × grams/d of alcohol + 0.0004 × (grams/d of alcohol)² – 0.02951 × hours/week of exercise - 0.05113 × diet score^{*}

*Diet score (women) = (0.03326 × grams/d of cereal fiber + 0.18283 [if fruits + vegetables ≥3 servings/d] + 0.14522 [if nuts 0.1-1 servings/d + 0.24444 [if nuts >1 servings/d] - 0.14631 × servings/d of sugar-sweetened beverages - 0.15624 × servings/d of red and processed meats)*10

Men

20-year CVD risk (%) = [1 - 0. 96368^(exp [M-7.2437)] × 100%

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926634; this version posted January 30, 2020. The copyright holder for this preprint (which was not cattilled by peer review) is the author/funder, who has grainted bioRxiva license to display the preprint in perperuity if is made at smoker) + 0.42305 (if current smoker) + 0.07424× BMI – 0.00898 × grams/d of alcohol + 0.0001 × (grams/d of alcohol)²– 0.01755 × hours/week of exercise - 0.06691 × diet score[†]

[†]Diet score (men) = (0.01816 × grams/d of cereal fiber + 0.08819 [if fruits + vegetables ≥3 servings/d] – 0.00535 [if nuts 0.1-1 servings/d] + 0.14285 [if nuts >1 servings/d] - 0.14734 × servings/d of sugar-sweetened beverages - 0.07112 × servings/d of red and processed meats)*10

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30/923604 this version posted January 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Week #