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Abstract. Improving Hit-and-Run is a random search algorithm for global optimization that at each 
iteration generates a candidate point for improvement that is uniformly distributed along a randomly 
chosen direction within the feasible region. The candidate point is accepted as the next iterate if it 
offers an improvement over the current iterate. We show that for positive definite quadratic programs, 
the expected number of function evaluations needed to arbitrarily well approximate the optimal 
solution is at most O(n 5~2) where n is the dimension of the problem. Improving Hit-and-Run when 
applied to global optimization problems can therefore be expected to converge polynomially fast as it 
approaches the global optimum. 
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1. In troduct ion  

R a n d o m  search  a lgor i thms  offer  cons ide r ab l e  p r o m i s e  as eff icient  op t im iz a t i on  

m e t h o d s  for  a la rge  class of  p rob l ems .  R e c e n t  resul ts  [16, 28] d e m o n s t r a t e  tha t  it 

is t heo re t i c a l l y  poss ib le  for  a r a n d o m  search  a lgo r i thm to ach ieve  a c o m p u t a t i o n a l  

c o m p l e x i t y  tha t  is, on ave rage ,  l inear  in d imens ion .  In  this p a p e r ,  we i n t roduce  

and  i m p l e m e n t  a new sequen t i a l  r a n d o m  search  a lgo r i thm n a m e d  I m p r o v i n g  

H i t - a n d - R u n  ( I H R ) .  

Sequen t i a l  r a n d o m  search  p r o c e d u r e s  a re  des igned  to address  a s t a n d a r d  

o p t i m i z a t i o n  p r o b l e m ,  

rain f ( x ) ,  (P )  

w h e r e  x is an n - d i m e n s i o n a l  vec tor ,  S is a convex ,  c o m p a c t ,  fu l l -d imens iona l  

subse t  of  R n, and  f is a r ea l -va lued  con t inuous  func t ion  def ined  over  S. A l l  

s equen t i a l  r a n d o m  search  p r o c e d u r e s  gene ra t e  a s equence  of  r a n d o m  po in t s  {Xj} 

which  m a y  d e p e n d  on the  p rev ious  po in t  or  severa l  of  the  p rev ious  poin ts .  The  
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concept underlying sequential step size algorithms [17, 18, 15, 23, 21, 13, 22, 25] 
is to generate the next random point Xj+ 1 by taking a specified step in a random 
direction from the previous point Xj. These algorithms are based on the iterative 
formula, for j =  1, 2 , . . .  

Xj + sjDj if f(Xj + sjDj) < f ( X j ) ,  
XJ+I= Xj otherwise, 

where Dj is the direction vector, sj is the step size, and Xj is the point generated in 
the jth iteration. The direction vector is often, but not necessarily, obtained by 
sampling from a uniform distribution on a unit hypersphere. The method of 
choosing the step size is specific to each algorithm. 

There is experimental evidence in the literature that suggests sequential random 
search algorithms are efficient for large dimensional quadratic programs. Schumer 
and Steiglitz [23] provide experimental evidence that the number of function 
evaluations increases linearly with dimension for their adaptive step size algorithm 

n n n on the following three test functions: Ei= 1 x 2, Ei= 1 x~, and r,i= 1 aix 2. They also 
prove that the average number of function evaluations for an optimum relative 
step size random search restricted to an unconstrained quadratic objective 
function is asymptotically linear in dimension. Schrack and Borowski [21] report 
experimental results on a quadratic test function, Ei~__l x~, that doubling the 
dimension doubles the number of function evaluations required for their random 
search algorithm. Solis and Wets [25] experimentally verified a linear correlation 
between the number of function evaluations and dimension for their own 
variation of the step size algorithm on a quadratic test function. They provided a 
justification of this linearity condition based on the tendency of these algorithms 
to maintain a constant probability of successful improvement. 

There is also theoretical justification that sequential random search algorithms 
are efficient for a larger class of global optimization problems. An analysis of a 
random search procedure called pure adaptive search [16, 28] proves that it is 
theoretically possible for a sequential random search procedure to achieve linear 
complexity (in improving iterates) for global optimization problems. Pure adap- 
tive search (PAS) constructs a sequence of points uniformly distributed within a 
corresponding sequence of nested improving regions. In Zabinsky and Smith [28], 
complexity is measured as the expected number of iterations needed to get 
arbitrarily close to the solution with a specified degree of certainty. In pure 
adaptive search, each iteration corresponds to an improving point. Unfortunately, 
as pointed out in [16, 28], pure adaptive search is difficult to implement directly 
due to the problem of efficiently generating a point according to a uniform 
distribution in a general region. However, recent research has shown that 
Hit-and-Run methods [4, 5, 11, 24, 2] can generate a sequence of points that 
asymptotically approach a uniform distribution, as shown by Smith [24]. Hit-and- 
Run generates a sequence of random points by providing a random direction and 
then providing a uniform random point in that direction. Since no better 
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alternative for generating uniform points is known at this time, we use Hit-and- 
Run to generate an improving point in the level set at each iteration. The 
resulting algorithm is called Improving Hit-and-Run. 

We analyze the computational efficiency of Improving Hit-and-Run for a 
specific class of quadratic programs, and theoretically establish an O(n 5/2) upper 
bound on the expected number of function evaluations. 

2. Improving Hit-and-Run 

Improving Hit-and-Run (IHR) is designed to be easy to implement and at the 
same time to inherit the efficiency of pure adaptive search. As already noted, the 
difficulty of directly implementing pure adaptive search lies in the iterative step of 
efficiently generating a uniform point in the improving region. This can be 
achieved by executing the Hit-and-Run algorithm at each iteration, restricting the 
sequence of Hit-and-Run points generated within an iterative step to the improv- 
ing feasible region. Since the resulting sequence is only asymptotically guaranteed 
to be uniform within the improving region, we must decide on how long a 
sequence to generate. A class of algorithms can therefore be parametrically 
related to the length of the corresponding Hit-and-Run sequences. At one 
extreme, we know that when the Hit-and-Run sequences are very long and hence 
provide a close approximation to sampling from a uniform distribution, we have a 
g~od approximation to pure adaptive search and can expect the number of 
improving points to be linear in dimension. At the other extreme, the Hit-and- 
Run sequence is reduced to a length of one. It is the latter algorithm with 
Hit-and-Run sequences of length one that we effectively adopt. We call the 
resulting algorithm Improving Hit-and-Run. 

Although the sequence of points generated per iteration is insufficiently long to 
well approximate uniformity, the hope is that the algorithm may nonetheless 
inherit a polynomial complexity similar to that enjoyed by pure adaptive search. 
In fact, we will prove for the class of positive definite quadratic programs that the 
expected number of iterations is O(n2), but more importantly the expected 
number of function evaluations remains polynomial, in particular, 0(n5/2). 

Improving Hit-and-Run is a sequential random search algorithm. The basic 
structure of IHR is to generate a random direction followed by a candidate point 
that is along a random step in that direction. A positive definite matrix H in the 
algorithm controls the direction distribution. If the matrix H is the identity 
matrix, then the direction distribution is uniform on a hypersphere. However in 
order to achieve the analytically established polynomial performance bound, H 
must be set to the Hessian of the quadratic objective function. In practice, for a 
global optimization problem H would be locally estimated as in quasi-Newton 
local search procedures. (See [29] for experimental results on general global 
optimization problems.) Note that IHR reduces to the Hide-and-Seek continuous 
simulated annealing algorithm with temperature 0 (see [3]). 
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Given a positive definite matrix H, we define the Improving Hit-and-Run 
algorithm as follows. 

IMPROVING HIT-AND-RUN (IHR) 

Step O. Initialize X 0 E S, }70 = f(Xo), and j = 0. 
Step 1. Generate a direction vector Dj from the multivariate normal distribution 

with mean 0 and covariance matrix H -1. 
Step 2. Generate a step size sj uniformly from Lj, the set of feasible step sizes 

from the current iteration point Xj in the direction Dj., where 

L i = ( A E R : X j +  h D j E S ) .  

If Lj = ~, go to Step 1. 
Step 3. Update the new point if it is improving, i.e. set 

{ xj + sjDj if + siDe) < 
XJ +1= Xj otherwise 

and set Yj +1 -- f(Xj+l). 
Step 4. If the stopping criterion is met, stop. Otherwise increment j and return to 

Step 1. 

Improving Hit-and-Run is straightforward to implement. Generating a random 
direction, as defined in Step 1, can be accomplished by appropriately transforming 
a multivariate standard normal deviate, using a decomposition of the covariance 
matrix H-1. When H = I, this simplifies to computing the direction vector Dj of 
unit length given by, 

/)j = ( d l ,  d 2 ,  . . . , d , )  [ d i [  2 , 

where di, i = 1, 2 , . . . ,  n are sampled independently from a standard normal 
distribution, N(0, 1) (see [12]). For the general case, we first find a matrix A of 
rank n such that H = A'A. One possible choice for A is obtained by diagonalizing 
H, i.e., by writing H = ZDZ', where D is a diagonal matrix containing the 
eigenvalues of H,  and Z is a matrix having the corresponding eigenvectors as its 
columns. This approach yields A - - Z D 2 Z  '. Another possibility is to perform a 
Cholesky decomposition H = LL', where L is a lower triangular matrix, yielding 
A = L' .  If Dj is distributed according to the standard normal distribution (i.e., Dj 
has mean zero and covariance matrix I) ,  then A-IDj has the desired distribution, 
i.e., A-1Dj is normally distributed with mean zero and covariance matrix H -1. 

Generating the step size in Step 2 is straightforward as long as it is possible to 
find the points where the line through Xj in the direction Dj intersects S. This is 
particularly easy for the case where S is a set of linear constraints. The points of 
intersection are easily found with a modified minimum ratio test [14]. Alternative- 
ly, one can enclose a general region in a box and identify the corresponding points 
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of intersection, and use one dimensional acceptance-rejection along the resulting 
line segment until a feasible point is found. 

3. Polynomial Performance 

3.1. DEFINITIONS AND NOTATION 

Before proceeding with the analysis of the algorithms computational complexity, 
we begin with notation and definitions. 

For the optimization problem (P), let (x., y . )  denote an optimal solution, 
where 

and 

y.  = min f(x) 
x E S  

f ( x . )  = y , .  

The value x. need not be unique. It will also be convenient to define the 
maximum, 

y* = max f (x) .  
x ~ S  

Let Py denote the level set of the problem (P) at objective function value y, 

Py = {x E S: f(x) < y} 

for y,  < y<~ y *. 
Let {Xj}, Xj C S, j = 0, 2, 2 . . . .  be the sequence of sample points generated by 

Improving Hit-and-Run on (P), with the subscript j denoting iteration count. 
Notice that each iteration corresponds to one sample point, and one function 
evaluation. Let {Yj}, y. <~ Yj ~ y*, j = 0, 2, 2 , . . .  be the corresponding sequence 
of sample values generated by the algorithm on (P), Yj =f (Xi ) .  Improving 
Hit-and-Run is defined so that the current sample point is only updated (Xj+ 1 = 
Xj + s~Dj) when it improves and repeated otherwise (Xj+I = Xj), so that Yj+~/> 
Yj for j = 0, 2 , 2  . . . .  

The sequences {XE} and (Yj} are random variables since the directions and 
step sizes are random. The distribution of improvement is defined to be the 
probability that the j th objective function value Yj is at most y. This is the 
probability that the j th sample point lies within the level set Py, so that 

P(Yi < Y) = P(Xj @ Py) 

for j = 0, 1, 2 . . . .  and y,  < y ~< y*. The conditional distribution of improvement, 
denoted 

P(Yj+I <Y] Yj = w) 

for j = 0, 1, 2 . . .  and y.  < y, w ~< y* is defined to be the probability of obtaining 
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an objective function value of at most y in a single iteration, starting from sample 
value w. 

It  will be convenient for the analysis to identify the sequence of record values 
and their corresponding improving points. Let Jk denote the subscript correspond- 
ing to the kth improving point. Thus the point Xik is the kth record point. 

The  analysis will be performed on a class of mathematical programs with 
"elliptical" level sets. This class of programs includes positive definite quadratic 
programs as a special case. We define an elliptical program to be the mathematical 
program (P) ,  where f(x) can be expressed as 

f(x) = h(r) with r = [ I x -  X.I[A , 

where A is an n • n-matrix of full rank, and h is strictly monotonically increasing 
for r ~ 0 .  The norm [[. [[A is defined for any n-dimensional point z as 

I lz l lz  = I I A z l l ,  

where [[.[[ denotes the standard Euclidean norm. Note that [[-1[/= I['[[. In this 
class of programs, we assume x.  is interior to S. Furthermore,  for this class of 
programs we use the IHR algorithm with H chosen to be equal to A'A. 

An elliptical program can be interpreted geometrically as a problem with level 
sets that are elliptical in shape, and nested about the optimum, The function h(r) 
can be interpreted as a means of layering the level sets. In the special case where 
A = I the level sets become spherical in shape, and the variable r can be 
geometrically interpreted as the radius of the level set. We will call the special 
case of A = I a spherical program. Notice that an elliptical program is convex if 
and only if h(r) is convex in r. The class of elliptical programs also includes cases 

where h(r) is nonconvex in r. 
Much of the analysis is developed for spherical programs and then extended to 

elliptical programs using the A matrix. For spherical programs, we use the 
geometric interpretation of the radius of the level set and define (Rk}, k = 0, 1, 
2 , . . .  to be the sequence of radii associated with the level sets of the improving 
points generated by Improving Hit-and-Run, i.e., R k = [[Xjk- x.  I[1, where Xjk is 
the k th record point. Also, R~ = h-l(f(Xj~)) = h-l(Yjk). Notice that the sequence 
{Rk} is defined on ly  for record points, and thus is strictly decreasing, i.e., 

R k > Rk+ 1 for k = 0, 1, 2 . . . .  
To  measure computational complexity we define a sample point count, N(r),  as 

the number  of points sampled to achieve Yj <~ h(r) for 0 < r ~< q. The sample point 
count is equal to the count of iterations and equivalently the count of function 
evaluations, since each iteration involves exactly one additional function evalua- 
tion. There  is very little overhead other than the function evaluation associated 
with each iteration, so this is a very accurate indication of total computing time. 
In the next section we prove our main result that the expected value of N(r) is at 
m o s t  0(n5/2). 

For the analysis we also define an improving point count, K(r), as the number  
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of improving points needed to achieve YJk ~< h(r) for 0 < r < q. As an intermediate 
result, we prove that the expected value of K(r) is at most quadratic in dimension. 

3.2. COMPLEXITY ANALYSIS 

We now turn to an analysis of the complexity of Improving Hit-and-Run. To 
simplify the presentation of the analysis, we assume without loss of generality that 
Y0 = Y*, and S equals the level set associated with X0. We also assume for the 
spherical program that R 0 -- q. 

We will proceed by first showing that we can restrict our attention to the case 
where A = I, i.e., a spherical program where the level sets are concentric spheres 
instead of ellipsoids. To facilitate the proof of this result, we transform an 
elliptical program (P) with corresponding matrix A into a spherical program (/3) 
by defining a transformed point ~ = Ax, and 

S= { .~@R ":A - I . ~  S} 

and 

f:S--->R 

f (~)  = f(A-1)~). 

Denote  the transformed problem of minimizing )7 over S by (/3), and note that 

rain s f(x) = min j~s  
s  

T H E O R E M  3.1. Performing the 1HR algorithm on the elliptical problem (P) 

min f(x) 
x E S  

using H = A'A is equivalent (under the identification s Ax) to performing the 
1HR algorithm on the problem (fi) 

min T(s 

using H = I. 
Proof. See Appendix. 

It follows from Theorem 3.1 that in the remainder of the complexity analysis, we 
need only consider the class of spherical programs. Since the number of points 
generated is invariant, all complexity results that will be obtained for this class 
also hold for the more general case of elliptical programs. 

We next determine the conditional distribution of improvement for Improving 
Hit-and-Run on a spherical program. The conditional probability of making a 
specified improvement on a single iteration depends on the position of the current 
point, 
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P(Yj+, < y ]  Yj = w) = E[P(Yj+, <ylXj, Yj = w)] 

= E[P(Xj+, E Py IXj, Yj = w)l .  

The probability within the last expectation can be expressed as an integral in 
terms of the random direction generated from the point x, and the ratio of the 
length of improving line segment(s) in that direction, 

p ( x j + l ~ P ~ l X j = x  , E =  w ) = f o  D ]]Lpy(d,x)U/l[Ls(d,x)lldF~D(d ) (1) 

where c~D is the boundary of the unit sphere, and FD(. ) is the cumulative 
distribution function for the normalized random direction vector. Note that the 
normalized direction vector has a uniform distribution on the boundary of the unit 
sphere (see [12]). The expression ][ LG(d,  x)ll is the combined lengths of the line 

segments formed by the intersection of the level set Py with the line in direction d 
originating at x. In words, the probability of achieving an objective function value 
of at most y, starting at point x with f(x)  = w, is the probability of landing within 
Py given direction d, i.e., ]lLsy(d, x)l l / l lLs(d,  x)ll, integrated over all feasible 
improving directions. 

For general mathematical programs, the conditional probability of improve- 
ment depends on the exact location of Xj, and makes it difficult to derive a 
general expression. However,  for the class of spherical programs, we can analyti- 
cally derive the conditional probability of improvement. 

L E M M A  3.2. For any spherical program (P),  the conditional probability o f  
improvement on the next sample point for  IHR is given by 

P(Yj+, < h(s)] Yj = h(r), Yo = h( q)) =- p(s; r, q) 

( s) s 1 F I  n - 1  1 1 n + 2  s 2 2 
n 2 ' 2 ' 2 '  2 , q 2 ,  

for  0 <  s <~ r <~ q, and for j = O, 1, 2 , . . .  , where Fl(a, b, c, d; x, y) is a generalized 
hypergeometric function (see [1] or [10]). 

Proof. See Appendix. 

Notice that the special case where s = r, denoted p(r; r, q), is the probability that 
a sample point is improving given the current point is at Yj = h(r) and simplifies to 
(using [10] pp. 1055, equation 10): 

where 

p ( r ; r , q ) =  T ~ F  , 2 ; 2 ; (2) 

~ ( n )  = 

n + l  1 
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for 0 < r ~ < q ,  and for j = 0 ,  1, 2 , . . . ,  where F(a,b;c;z) is Gauss' hyper- 
geometric function (see [1] or [10]). We now express the expected number of 
sample points, and hence the expected number of function evaluations, in terms 
of the expected number of improving points. 

THEOREM 3.3. For any spherical program (P), the expected number of  IHR 
sample points needed to achieve an objective function value of  h(r) or better is 
bounded by 

E[K(r)] 
E[N(r)] <~ p(r; r, q~ 

<~ q y(n)E[K(r)] 
r 

for 0 < r <<- q and where 

n + l  1 

~ , ( n )  = 

= o ( v - ~ ) .  

Proof. See Appendix. 

We now analyze the performance of improving points of IHR. We start by 
evaluating a conditional probability for improving points and then develop a 
bound on the expected number of improving points E[K(r)] in terms of di- 
mension. 

LEMMA 3.4. For any spherical program (P), the conditional probability dis- 
tribution of  improving points for IHR is given by 

, p(s;r,  q) 
P(Rk+ 1 < s i R  k = r, Ro= q)= ~ ~ q) 

(s/r)" 
9 - -  

n 

for O<s<~r<~q, and for k = 0 ,  1, 2 . . . . .  
Proof. See Appendix. 

THEOREM 3.5. For any spherical program (P), the expected number of  IHR 
improving points needed to achieve an objective function value of  h(r) or better is 
bounded by 

~[/, ;(r)]  ~< nF~[ K(r) TM] 
= O(n 2) 
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for 0 < r <~ q where K(r) PAs is the corresponding expected number o f  improving 
points for PAS. 

Proof. See Appendix. 

The culminating result of polynomial complexity follows from combining 
Theorems 3.3 and 3.5 with Theorem 3.1. 

COROLLARY 3.6. For any elliptical program (P), the expected number of  IHR 
sample points needed to achieve an objective function value of  h(r) or better is 
bounded by 

E[n(r)] ~ q- y(n)nE[K(r) vAs] 
r 

: O(n 5j2) 

f o rO<r<~q .  
Proof. From Theorem 3.3 we have, for 0 < r ~< q, 

E[ U(r) ] <- q "y(n)E[ K(r)] 
r 

and from Theorem 3.5 

~< q__ ~(n)nE[/((r) ~As] 
r 

which yields 

= O(nS/2). �9 

4. Discussion 

Improving Hit-and-Run has been shown to have search effort that is polynomially 
bounded in dimension for the class of elliptical programs. This complexity is 
attainable for strictly convex quadratic programs by choosing H to be the Hessian 
of the objective function. Although this class is small, we can (in principle) 
construct an algorithm with asymptotically the same polynomial complexity if the 
objective function is twice continuously differentiable at the global minimum x., 
and if the Hessian/4. at that point, is strictly positive definite. In that case, we 
can, for values of x sufficiently close to x.; approximate the objective function by 

1 
f (x)  ~ L  + ~ (x - x . ) 'H , (x  - x . )  

by using the second order Taylor approximation at the global minimum. The 
approximating function is now a strictly convex quadratic function, for which the 
complexity results in this paper apply. However, we should know H. in advance 
to implement the algorithm. 

Alternatively, if f is twice continuously differentiable everywhere, we can, at 
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iteration j, approximate the objective function by 

1 
f ( x )  ~- f ( X j )  + Vf(Xi) ' (x  - Xj )  + ~ (x  - Xj ) 'H(X~)(x  - Xi )  , 

where Vf(Xj) denotes the gradient at Xj, and H(Xj) denotes the Hessian at Xj. 
This suggests that, in every iteration, we should use the Hessian at the iteration 
point in the IHR algorithm. If this scheme is computationally too expensive, or if 
H(X~) is not positive definite at some iteration point, one should turn to 
approximation methods for the Hessian. For example, DFP and BFGS approxi- 
mation schemes are used in quasi-Newton local search algorithms (see e.g. [20]). 

The original hope for Improving Hit-and-Run was that its computational 
complexity would be comparable to pure adaptive search. If extremely long 
sequences of Hit-and-Run were used to approximate PAS then we would expect a 
linear bound in dimension on improving points at a comparably high cost of 
obtaining an improving point. For IHR, which has extremely short sequences of 
Hit-and-Run (length one), the expected number of improving points has a 
quadratic bound which although worse than PAS is associated with a comparably 
low cost of obtaining an improving point. In fact, the total expected number of 
function evaluations is only 0(n5/2). Thus IHR can be viewed as an optimizing 
version of Hit-and-Run, and the complexity results provide support for the value 
of short Hit-and-Run sequences within an optimizing framework. 
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Appendix 

A. PROOFS FOR THE COMPLEXITY ANALYSIS 

T H E O R E M  3.1. Performing the 1HR algorithm on the elliptical problem (P)  

min f ( x )  
x ~ S  

using H = A ' A  is equivalent to performing the IHR algorithm on the problem (P ) 

min 1~(~) 
s  

using H = I. 

Proof. We show that the following two methods are equivalent. Given Xj E S, 
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the first method is to generate Xi+ 1 using I H R  as defined in the text on the 
original problem (P)  with H = A'A .  The second method is to transform the given 
Xj into X i = AXj ,  perform I H R  on the transformed problem (/3) with H = I, and 
then transform the point )(j+l back into the original space, Xj+ I = A Xj+ 1. We 
now show that Xj+ 1 is stochastically equivalent to X~+ 1. 

Method 2: 
Step 1 '. Set J(i = A X r  Generate a direction vector /)i from the normal dis- 

tribution with mean 0 and covariance matrix I. 
Step 2'. Generate a step size ~ uniformly f rom/~ j ,  the set of feasible step sizes 

from the current iteration point Xj in the di rect ion/) j ,  i.e., 

t2j =  e:2j +  zSj g} .  

If/~j = 0, go to Step 1. 
Step 3'. Update  the new point if it is improving: 

J(i+l = )~j otherwise 

and set lTj+ 1 = f(J(j+,).  Set X;+I = A-1j(j+I. 

First note that A D  i, where Dj is as in Step 1 of IHR,  has the same distribution 
a s / ) j  in Step 1' of Method 2. Using this, we get 

Lj = ( A E R : X j  + A D I O S }  

= {A E R : A - a 2 j  + A A - 1 D i E S }  

= {A E R:  a - l ( J ( j  + A/)j) G S} 

---- /~j  �9 

Thus sj from Step 2 and ~ from Step 2' are realizations from the same 
d N 

distribution, i.e., sj = sj. Note that 

d f (A - 'X ~  + ~ - '  ~ f (X j  + sjDi) = sjA DI) 

= f (a -a ( f ( j  + ~I)j)) 

N ~ d 

and hence f (Xj+l)  =f(Xj+l ) .  Thus the probability of not finding an improvement 
is the same for both methods, and so if the new point is not improving, then 

, d 
Xj+ 1 = Xj+ 1. Now look at the distributions of the new iteration points given that 
an improvement occurs: 
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X j +  1 -~ A Xj+ 1 

= A- ' (2 ,  + ~b i )  

= A-~Xj + sjA Dj 

d 
= Xj + sjDj 

S j +  1 

t d 
and again Xj+I = Xj+ 1. Thus performing IHR on (P)  with H = A ' A  is equivalent 
in distribution to the second method of performing IH R on (/3) with H = I. �9 

L E M M A  3.2 For any spherical program (P) ,  the conditional probability o f  
improvement on the next sample point for IHR can be expressed as 

P(Yj+I < h(s) I Yj = h(r), Yo = h(q))=-p(s; r, q) 

( q ) ( ~ ) "  1 ( n - X  1 1 n + 2  s2 s 2) 
n F1 2 ' 2 ' 2 '  2 q 2 , r  2 

for  0 < s <~ r <~ q, and for j = O, 1, 2 , . . .  , where Fl(a ,b ,c ,d;x ,y  ) is a generalized 
hypergeometric function (see [1] or [10]). 

Proof. We derive the analytical expression for P (Yj+x < h(s)[ ~ -- h(r), }Io = 
h(q))  in terms of the radii of the level sets, r. In order  to take full advantage of 
the symmetry of the problem, we shall use a spherical coordinate system (p,O,q~i, 
i = 1  . . . .  , n - 2 )  to compute the integral required to evaluate P (Yj+I<  
h(s)[ Yj = h(r), Yo = h( q)) =-- p(s;r,q). We let the origin of the spherical coordi- 
nates be at X/, where the radius of the corresponding level set is r. Let  the 
positive x I axis run through the center of the level sets. Figure 1 illustrates a cross 
section corresponding to fixed ~bi, i = 1 , . . ,  n - 2 of a level set of radius r within 
the feasible region of radius q and containing a level set of radius s. Appendix B 
includes a brief summary of spherical coordinates. 

The integral that we need to evaluate corresponds to equation 1 in the text, 
only now we use the spherical coordinate system. An important term in the 
integral is the proport ion of the line intersecting the s-sphere to the line inter- 

6(r,s,O) 
secting the q-sphere, which we write as 6(r,q,O) (see Figure 1), where 6(r,s,O) is 

the length of a line segment emanating in a direction 0 from a point Xj on a 
sphere of radius r that intersects with a sphere of radius s. Let  00 be the angle that 
corresponds to the line segment that is tangent to the inner sphere of radius s. 
Then,  

sin 00 = s / r .  

Using spherical coordinates, the equation of the inner sphere of radius s is given 
by 

p 2 _ 2 r p  cos0 + r 2 = s 2 , 
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X ~ axis 

"~ r slnO 

r 
q 

Fig.  1. 

or  (refer to Figure  1), 

p._ = r cos0 - ~/s 2 - r 2 sin20 

for 0 ~< 0 ~< 0 o. Now,  in the range 0 ~< 0 ~< 00 the length of the l ine segment  that  lies 

in  the sphere of radius s is i n d e p e n d e n t  of the ~b i because  of symmetry ,  and  can be 

expressed as 

6 ( r ,  s, 0) = p+ - p_ = 23v/s  2 - r e sin 2 0 . 

Similar ly we get 

6 ( r ,  q ,  O) = 2 ~ / q  z - r z sin 2 0 . 

I t  now follows easily that  (refer to A p p e n d i x  B for details) 
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p(s; r, q) 

f?lo 2 " " " ~0 ~r 
6(r, s, O) 

o)(0, (D1, �9 �9 �9 , (~n-2) 6(r, q, O) dO d ~ b l . . ,  d~b,_ 2 

where  

f O ~ 1 2  . . . f ~ r  . . . ~ . . . 
2 f o  f0 ~ w(O' ~bl' q5"-2) dO d~bl d~b~-2 

n - 3  

09(0, ~b,, . .  - ,  ~bn_2) = sin"-2(O) l~  sm" ,-2-~,_tq~k), 
k = l  

for  n i> 4 (as in [26], pp. 227-228),  and 

6(r, s, O) ~/s 2 - r 2 sin 2 0 

8(r, q, 0) V q  2 - r 2 sin 2 0 

Af te r  simplifying, we have 

p(s; r, q) = 

~ ~/s___~2 - r~ sin 2 0 
sinn-2(0 ) dO 

Vq  2 - r 2 sin 2 0 

fo ~r/2 sinn-2(0) dO 

and since for w, z > 0 the Beta function can be writ ten as ([1] pp. 258), 

1 1 r ( z ) r ( w )  
-~ B(z,  w ) -  2 F(z + w) 

we can write 

- ji~/2 sin2Z-l(t) cos 2~ l(t) dt  

s 2  - sin 2 0 
2 ;Oo r 2 

p(s; r, q) J 0  - - -  sin n 2(0) d 0 .  

B ( n - 1  1) q+ sin20 

It is easily shown that  this expression is also valid for n = 2 and 3. 
We now concentrate  on the integral and go through a series of substitutions in 

order  to get the final expression. First we let a = s2/r z and b = q2/r2 to get 

+ 
f;o - sin2 0 fo~ a_sin20~ 1/2 

2 sinn-2(0) dO = ( ~  sin2----~/ 
-7 sin z 0 

and then  we change variables using sin20 = at to get 

n - 2  

fo 1 ( a - -  at ~ 1/2 (at) 2 a dt 
= \ ~ - a t /  2(at)1/2(1 - at) 1/2 

sin~-2(O) dO 
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n a2;( )112n3 
= -2 (b - a t e ( f -  at) t 2 dt 

n - - 2  

( 2 (b/a - t ) (1 /a  - t) / t 2 dt 

which, using 3.211 of [10] pp. 287, reduces to 
n 

_ a  2 ( 3 n - - 1 ) ( n - - l l l n + 2  

2bl/2 B 2 '  -2 Fa 2 ' 2 ' - 2 '  2 

Noticing that 

' 2 1 

8( n 

we can write 

-~ 1) n 

.a) 
, b , a  �9 

n,2 ( ) a n - 1  1 1 n + 2  a 
p(s; r, q) = - ~  Fa ~ '  2 '  -2' 2 ; -~, a 

and returning to the original variables 

( q ) ( S r )  ( n - I  1 1 n + 2  s2 ~ )  
n l F 1  2 2 2 2 ' q  n , , 2 ,  " 

TH EO R EM 3.3. For any spherical program (P), the expected number o f  IHR  
sample points needed to achieve an objective function value o f  h(r) or better is 
bounded by 

E[K(r)I 
E[N(r)] <<- 

p(r; r, q) 

<~ q T(n)E[K(r)] 
r 

for  0 < r <~ q and where 

~ , (n)  = 

= o ( v - ~ ) .  

Proof. We first express N(r) as a sum, 
K(r) 

N(r) = ~, Nm,  
m = l  

where N m is defined to be the number of sample points between R m_, and R m, for 
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m = 1, 2 , . . .  Thus N m is the number of sample points between consecutive 
improving points (including the sample point corresponding to R m). Now we take 
the expectation of both sides to get, 

i- K(r) 

E[N(F)] ~ E[m~=l Nm ] 

F F K(r) 
= E [ E [ m Z = l g m l g ( r ) , R o , . . .  ,RK(r) - I ]]"  

The conditional expectation can be rewritten, for r 0 > r  1> "--rk_ 1> r, and 
k>~l: 

F K(r) 
E[m~-I Nm l K(r) = k' R~ = r ~  " " Rk- l  = r~-l] 

= E NmlK(r)=k, Ro= ro, . . . ,R~_l=rk 1 
-1 

=E NmlRo=ro,...  ,R~_l=rk_l ,R~ ~ r  
1 

because the k-th improving point is the first point inside the r-sphere 

k 

= ~ E [ N m l R o = r o , ' " , R k  l = r k - l ,  Rk <~r] 
m = l  

by linearity of conditional expectation 
k 

= Z E [ N m l R m - 1  =rm-1] 
m = l  

since N m is conditionally independent of Rj (]  # m -  1) when given Rm_ 1 

k 
= ~  1 

m=l P(rm-1; rm-1, q) 

because the number of sample points to achieve the m-th improving point, given 
R m -  1 = rm- 1, has a geometric distribution with parameter p(r  m_ 1 ; rm-1, q) 

k 

m=l p(r; r, q) 

since p(r;r ,q)  <~p(s;s,q) for s/> r 

k 
- p ( r ;  r ,  q )  " 

We now can show the first statement in the theorem, 

E[N(r)]<-E[ K(r) ] 
Lp(r; r, q) 

E[K(r)] 
- p ( r ;  r ,  q )  " 
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The second statement follows easily from the expression for p(r;r,  q) as given in 
the text in equation (2), 

r y (n )F  ' 2 ; - - - ~ ;  E[K(r)I 

( ) n + X  ( 1 )  
F \ - - ~ / F  1 n - 1  n + l  2 ( - ,q)  w h e r e y ( n ) =  . N o t i n g t h a t F  2 '  2 ' 2 ~<l, wehave  

E[N(r)] ~ q ~,(n)E[g(r)l . 
r 

Now for large n, we have 

/ n + l \  
r t -5 -  ) 

(see [6]), yielding 7 ( n ) =  O(x/-~). �9 

LEMMA 3.4. For any spherical program (P),  the conditional probability for 
improving points for IHR can be expressed as 

p(s; r, q) 
P(Rk+ 1 < s IRk = r, R o = q) - p(r; r, q) 

( s / r )  n 
9 - -  

n 

for  O<s<~r<~q,  and for  k = O ,  1 , 2  . . . .  
Proof. 

P(Rk+ , < s IRk = r, n o = q) = P(Y]+, < h(s) l Yj = h(r), ro = h(q))  

+ P(Yj+2 < h ( s ) ,  Y]+l ~ h(r) l Yj = h(r), 

Y o = h ( q ) )  + . . .  

= p(s; r, 

= p(s; r, 

_ p(s; r, 
p(r; r, 

From Lemma 3.2 and equation (2) we have 

p ( s ; r , q ) = ( q ) ( S r )  n_l F l ( n - I  1 
n 2 ' 2  

q) +p(s ;  r, q ) ( 1 - p ( r ;  r, q)) + . ." 

q) ~ (1 - p ( r ;  r, q))' 
i=0 

q) 
q )  

1 n + 2  s2 ~2) 
' 2 '  2 , q2 ,  
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and 

~(~)~n+l (1) ~ ' ~ ' ~  

It is easy to see from definitions that F(a,b;c;z) is increasing in z for z > 0 when 
a,b,c > 0. Also, Fl(a,b,c,d;x,y ) is increasing in both x and y for x, y > 0 when 
a,b,c,d > 0. Thus, 

( 1  n - 1  n §  q )  (~  ) �9 �9 ~ < F  n - 1  _ _ n + l .  
F , 2 ' 2 ' ~ ' 2 ' 2 ,1 

from [10] 9.122.1 pp. 1042 for 0 <  r/q ~< 1. Similarly, 

F l ( n - 1  1 1 n + 2  ; S 22, S 2 ) ( n - 1  1 1 ,  , n + 2  ) _ _ , 0 , 0  
2 ' 2 ' 2 '  2 q - -  ~5 >~F1 ~ 2 ' 2  2 

= 1 .  

Hence 

p(s; r, q) 
p(r; r, q) 

 1t. 1 1 ( : ; 1  ~ , ~  ~ ~ q~, ~ 
n 

( 1  n - i  n + l  q ) '  ( 2 )  
F ' 2 ' 2 ; F 

(s/r)" 
n 

T H E O R E M  3.5. For any spherical program (P),  the expected number of IHR 
improving points needed to achieve an objective function value of h(r) or better is 
bounded by 

E[ K(r)] <~ nE[ K(r) eAs] 

= O(n 2) 

forO<r<~q. 
Proof. From Lemma 3.4 we have a bound on the conditional probability for 

improving points for IHR, for 0 < s ~< r <~ q 

(s/r)" P ( R I H R  I~IHR = r )  ~ - -  
- - \ ' ' k + l  ~ S I " ' k  n 
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Similarly, for pure adaptive search (PAS) we have [28], 

p f R  P A S  = \ ' ' k + l  < S [  R P A S  F) = (s/r)" " ' k  

Now we define the following intermediate algorithm, called A. 

A L G O R I T H M  A 

Step O. Initialize X 0 E S, and k = 0. 

Step 1. With probabili ty 1/n, choose Xk+ 1 uniformly from the set 

{x :x E S, and f ( x ) < f ( X k )  } . 

Otherwise,  set Xk+ 1 = X k. 
Step 2. Increment  k, and return to Step 1. 

Algor i thm A performs a PAS step with probabili ty 1/n. Thus for 0 < s ~< r ~< q we 
have,  

A A = F ) -  P(R~+ 1 < s I R  ~ 

and further,  

(S/F) n 

A A ~ I H R  I ~ I H R  = r )  . P(Rk+a <s]Rk = r)--~P(Rk+ 1 < s l . . ~  

We have defined E[K(r)] to be the expected number  of improving points needed 

to achieve R k ~< r, and we now extend the definition for the three algorithms and 
add a superscript. We now have E[K(r)IHR], E[K(r)PAS], and E[K(r)A]. With the 

above comments ,  we have the following, 

E[ g(r)  IHg] <~ E[ g(r)  A ] 

= nE[K(r) PAs] 

= O ( n 2 ) .  �9 

B. SPHERICAL COORDINATES 

Here  we summarize the spherical coordinates in n dimensions as given in [26], 
pp. 227-228. We only include those details that are necessary for the proof  of 
L e m m a  3.2. Let  xl ,  x 2 , . . . ,  x ,  denote the Cartesian coordinates and let p, 0, 
r  ~b,-2 denote the spherical coordinates. For n > 3, the relationships are 
given by 

X a = p COS 0 

X 2 = p s in  0 c o s  ~a 

X 3 = p sin 0 sin Ca cos ~b 2 

Xn_ 1 ~-- p sin 0 sin r sin ( ~ 2 " "  " s i n  r cos tb,_2 

x n = p sin 0 sin r sin ~b2 �9 �9 �9 sin r sin ~b, 2 " 
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Note that p = [[xl[ and that 0 is the angle between x and the positive x 1 axis. In 
order to cover the whole space - o 0 < x  1< +~  once, we need 0~<r< +~; 
0~<0~<Tr; 0~<~bi~<~ for i = 1 , . . . , n - 3 ;  and -~-~<(kn_z~<~. The surface 
element of the unit sphere is given by 

d o  = r ~bl, . . . , qbn_2) dO d~b 1 . . .  dq~n_2 , 

w h e r e ,  

60(0, (~1, " " �9 , (~n-2) = sin.-2(0) i ik= ln-3 sin" n-2-k/~. ~)k)X 

for n>~3. 
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