
Improving Hit-and-Run for Global Optimization*

ZELDA B. ZABINSKY 1, ROBERT L. SMITH 2, J. FRED McDONALD 3, H. EDWIN
ROMEIJN 4 and DAVID E. KAUFMAN 5
~Industrial Engineering Program, FU-20, University of Washington, Seattle, Washington 98195,
USA; 2 Department of Industrial and Operations Engineering, The University of Michigan, Ann
Arbor, Michigan 48109-2117, USA; 3Department of Mathematics and Statistics, University of
Windsor, Windsor, Ontario, Canada N9B 31)4; 4Department of Operations Research & Tinbergen
Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands;
and 5Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor,
Michigan 48109-2117, USA

(Received: 14 December 1990; accepted: 17 March 1992)

Abstract. Improving Hit-and-Run is a random search algorithm for global optimization that at each
iteration generates a candidate point for improvement that is uniformly distributed along a randomly
chosen direction within the feasible region. The candidate point is accepted as the next iterate if it
offers an improvement over the current iterate. We show that for positive definite quadratic programs,
the expected number of function evaluations needed to arbitrarily well approximate the optimal
solution is at most O(n 5~2) where n is the dimension of the problem. Improving Hit-and-Run when
applied to global optimization problems can therefore be expected to converge polynomially fast as it
approaches the global optimum.

Key words. Random search, Monte Carlo optimization, algorithm complexity, global optimization.

1. In troduct ion

R a n d o m search a lgor i thms offer cons ide r ab l e p r o m i s e as eff icient op t im iz a t i on

m e t h o d s for a la rge class of p rob l ems . R e c e n t resul ts [16, 28] d e m o n s t r a t e tha t it

is t heo re t i c a l l y poss ib le for a r a n d o m search a lgo r i thm to ach ieve a c o m p u t a t i o n a l

c o m p l e x i t y tha t is, on ave rage , l inear in d imens ion . In this p a p e r , we i n t roduce

and i m p l e m e n t a new sequen t i a l r a n d o m search a lgo r i thm n a m e d I m p r o v i n g

H i t - a n d - R u n (I H R) .

Sequen t i a l r a n d o m search p r o c e d u r e s a re des igned to address a s t a n d a r d

o p t i m i z a t i o n p r o b l e m ,

rain f (x) , (P)

w h e r e x is an n - d i m e n s i o n a l vec tor , S is a convex , c o m p a c t , fu l l -d imens iona l

subse t of R n, and f is a r ea l -va lued con t inuous func t ion def ined over S. A l l

s equen t i a l r a n d o m search p r o c e d u r e s gene ra t e a s equence of r a n d o m po in t s {Xj}

which m a y d e p e n d on the p rev ious po in t or severa l of the p rev ious poin ts . The

*Paper presented at the II. IIASA-Workshop on Global Optimization, December 9-14, 1990, Sopron
(Hungary).

Journal of Global Optimization 3: 171-192, 1993.
�9 1993 Kluwer Academic Publishers. Printed in the Netherlands.

172 Z E L D A B. Z A B I N S K Y ET AL.

concept underlying sequential step size algorithms [17, 18, 15, 23, 21, 13, 22, 25]
is to generate the next random point Xj+ 1 by taking a specified step in a random
direction from the previous point Xj. These algorithms are based on the iterative
formula, for j = 1, 2 , . . .

Xj + sjDj if f(Xj + sjDj) < f (X j) ,
XJ+I= Xj otherwise,

where Dj is the direction vector, sj is the step size, and Xj is the point generated in
the jth iteration. The direction vector is often, but not necessarily, obtained by
sampling from a uniform distribution on a unit hypersphere. The method of
choosing the step size is specific to each algorithm.

There is experimental evidence in the literature that suggests sequential random
search algorithms are efficient for large dimensional quadratic programs. Schumer
and Steiglitz [23] provide experimental evidence that the number of function
evaluations increases linearly with dimension for their adaptive step size algorithm

n n n on the following three test functions: Ei= 1 x 2, Ei= 1 x~, and r,i= 1 aix 2. They also
prove that the average number of function evaluations for an optimum relative
step size random search restricted to an unconstrained quadratic objective
function is asymptotically linear in dimension. Schrack and Borowski [21] report
experimental results on a quadratic test function, Ei~__l x~, that doubling the
dimension doubles the number of function evaluations required for their random
search algorithm. Solis and Wets [25] experimentally verified a linear correlation
between the number of function evaluations and dimension for their own
variation of the step size algorithm on a quadratic test function. They provided a
justification of this linearity condition based on the tendency of these algorithms
to maintain a constant probability of successful improvement.

There is also theoretical justification that sequential random search algorithms
are efficient for a larger class of global optimization problems. An analysis of a
random search procedure called pure adaptive search [16, 28] proves that it is
theoretically possible for a sequential random search procedure to achieve linear
complexity (in improving iterates) for global optimization problems. Pure adap-
tive search (PAS) constructs a sequence of points uniformly distributed within a
corresponding sequence of nested improving regions. In Zabinsky and Smith [28],
complexity is measured as the expected number of iterations needed to get
arbitrarily close to the solution with a specified degree of certainty. In pure
adaptive search, each iteration corresponds to an improving point. Unfortunately,
as pointed out in [16, 28], pure adaptive search is difficult to implement directly
due to the problem of efficiently generating a point according to a uniform
distribution in a general region. However, recent research has shown that
Hit-and-Run methods [4, 5, 11, 24, 2] can generate a sequence of points that
asymptotically approach a uniform distribution, as shown by Smith [24]. Hit-and-
Run generates a sequence of random points by providing a random direction and
then providing a uniform random point in that direction. Since no better

IMPROVING HIT-AND-RUN 173

alternative for generating uniform points is known at this time, we use Hit-and-
Run to generate an improving point in the level set at each iteration. The
resulting algorithm is called Improving Hit-and-Run.

We analyze the computational efficiency of Improving Hit-and-Run for a
specific class of quadratic programs, and theoretically establish an O(n 5/2) upper
bound on the expected number of function evaluations.

2. Improving Hit-and-Run

Improving Hit-and-Run (IHR) is designed to be easy to implement and at the
same time to inherit the efficiency of pure adaptive search. As already noted, the
difficulty of directly implementing pure adaptive search lies in the iterative step of
efficiently generating a uniform point in the improving region. This can be
achieved by executing the Hit-and-Run algorithm at each iteration, restricting the
sequence of Hit-and-Run points generated within an iterative step to the improv-
ing feasible region. Since the resulting sequence is only asymptotically guaranteed
to be uniform within the improving region, we must decide on how long a
sequence to generate. A class of algorithms can therefore be parametrically
related to the length of the corresponding Hit-and-Run sequences. At one
extreme, we know that when the Hit-and-Run sequences are very long and hence
provide a close approximation to sampling from a uniform distribution, we have a
g~od approximation to pure adaptive search and can expect the number of
improving points to be linear in dimension. At the other extreme, the Hit-and-
Run sequence is reduced to a length of one. It is the latter algorithm with
Hit-and-Run sequences of length one that we effectively adopt. We call the
resulting algorithm Improving Hit-and-Run.

Although the sequence of points generated per iteration is insufficiently long to
well approximate uniformity, the hope is that the algorithm may nonetheless
inherit a polynomial complexity similar to that enjoyed by pure adaptive search.
In fact, we will prove for the class of positive definite quadratic programs that the
expected number of iterations is O(n2), but more importantly the expected
number of function evaluations remains polynomial, in particular, 0(n5/2).

Improving Hit-and-Run is a sequential random search algorithm. The basic
structure of IHR is to generate a random direction followed by a candidate point
that is along a random step in that direction. A positive definite matrix H in the
algorithm controls the direction distribution. If the matrix H is the identity
matrix, then the direction distribution is uniform on a hypersphere. However in
order to achieve the analytically established polynomial performance bound, H
must be set to the Hessian of the quadratic objective function. In practice, for a
global optimization problem H would be locally estimated as in quasi-Newton
local search procedures. (See [29] for experimental results on general global
optimization problems.) Note that IHR reduces to the Hide-and-Seek continuous
simulated annealing algorithm with temperature 0 (see [3]).

174 ZELDA B. ZABINSKY ET AL.

Given a positive definite matrix H, we define the Improving Hit-and-Run
algorithm as follows.

IMPROVING HIT-AND-RUN (IHR)

Step O. Initialize X 0 E S, }70 = f(Xo), and j = 0.
Step 1. Generate a direction vector Dj from the multivariate normal distribution

with mean 0 and covariance matrix H -1.
Step 2. Generate a step size sj uniformly from Lj, the set of feasible step sizes

from the current iteration point Xj in the direction Dj., where

L i = (A E R : X j + h D j E S) .

If Lj = ~, go to Step 1.
Step 3. Update the new point if it is improving, i.e. set

{ xj + sjDj if + siDe) <
XJ +1= Xj otherwise

and set Yj +1 -- f(Xj+l).
Step 4. If the stopping criterion is met, stop. Otherwise increment j and return to

Step 1.

Improving Hit-and-Run is straightforward to implement. Generating a random
direction, as defined in Step 1, can be accomplished by appropriately transforming
a multivariate standard normal deviate, using a decomposition of the covariance
matrix H-1. When H = I, this simplifies to computing the direction vector Dj of
unit length given by,

/)j = (d l , d 2 , . . . , d ,) [d i [2 ,

where di, i = 1, 2 , . . . , n are sampled independently from a standard normal
distribution, N(0, 1) (see [12]). For the general case, we first find a matrix A of
rank n such that H = A'A. One possible choice for A is obtained by diagonalizing
H, i.e., by writing H = ZDZ', where D is a diagonal matrix containing the
eigenvalues of H, and Z is a matrix having the corresponding eigenvectors as its
columns. This approach yields A - - Z D 2 Z '. Another possibility is to perform a
Cholesky decomposition H = LL', where L is a lower triangular matrix, yielding
A = L' . If Dj is distributed according to the standard normal distribution (i.e., Dj
has mean zero and covariance matrix I) , then A-IDj has the desired distribution,
i.e., A-1Dj is normally distributed with mean zero and covariance matrix H -1.

Generating the step size in Step 2 is straightforward as long as it is possible to
find the points where the line through Xj in the direction Dj intersects S. This is
particularly easy for the case where S is a set of linear constraints. The points of
intersection are easily found with a modified minimum ratio test [14]. Alternative-
ly, one can enclose a general region in a box and identify the corresponding points

IMPROVING HIT-AND-RUN 175

of intersection, and use one dimensional acceptance-rejection along the resulting
line segment until a feasible point is found.

3. Polynomial Performance

3.1. DEFINITIONS AND NOTATION

Before proceeding with the analysis of the algorithms computational complexity,
we begin with notation and definitions.

For the optimization problem (P), let (x., y .) denote an optimal solution,
where

and

y. = min f(x)
x E S

f (x .) = y , .

The value x. need not be unique. It will also be convenient to define the
maximum,

y* = max f (x) .
x ~ S

Let Py denote the level set of the problem (P) at objective function value y,

Py = {x E S: f(x) < y}

for y, < y<~ y *.
Let {Xj}, Xj C S, j = 0, 2, 2 be the sequence of sample points generated by

Improving Hit-and-Run on (P), with the subscript j denoting iteration count.
Notice that each iteration corresponds to one sample point, and one function
evaluation. Let {Yj}, y. <~ Yj ~ y*, j = 0, 2, 2 , . . . be the corresponding sequence
of sample values generated by the algorithm on (P), Yj =f (Xi) . Improving
Hit-and-Run is defined so that the current sample point is only updated (Xj+ 1 =
Xj + s~Dj) when it improves and repeated otherwise (Xj+I = Xj), so that Yj+~/>
Yj for j = 0, 2 , 2

The sequences {XE} and (Yj} are random variables since the directions and
step sizes are random. The distribution of improvement is defined to be the
probability that the j th objective function value Yj is at most y. This is the
probability that the j th sample point lies within the level set Py, so that

P(Yi < Y) = P(Xj @ Py)

for j = 0, 1, 2 and y, < y ~< y*. The conditional distribution of improvement,
denoted

P(Yj+I <Y] Yj = w)

for j = 0, 1, 2 . . . and y. < y, w ~< y* is defined to be the probability of obtaining

176 ZELDA B. ZABINSKY ET AL.

an objective function value of at most y in a single iteration, starting from sample
value w.

It will be convenient for the analysis to identify the sequence of record values
and their corresponding improving points. Let Jk denote the subscript correspond-
ing to the kth improving point. Thus the point Xik is the kth record point.

The analysis will be performed on a class of mathematical programs with
"elliptical" level sets. This class of programs includes positive definite quadratic
programs as a special case. We define an elliptical program to be the mathematical
program (P) , where f(x) can be expressed as

f(x) = h(r) with r = [I x - X.I[A ,

where A is an n • n-matrix of full rank, and h is strictly monotonically increasing
for r ~ 0 . The norm [[. [[A is defined for any n-dimensional point z as

I lz l lz = I I A z l l ,

where [[.[[denotes the standard Euclidean norm. Note that [[-1[/= I['[[. In this
class of programs, we assume x. is interior to S. Furthermore, for this class of
programs we use the IHR algorithm with H chosen to be equal to A'A.

An elliptical program can be interpreted geometrically as a problem with level
sets that are elliptical in shape, and nested about the optimum, The function h(r)
can be interpreted as a means of layering the level sets. In the special case where
A = I the level sets become spherical in shape, and the variable r can be
geometrically interpreted as the radius of the level set. We will call the special
case of A = I a spherical program. Notice that an elliptical program is convex if
and only if h(r) is convex in r. The class of elliptical programs also includes cases

where h(r) is nonconvex in r.
Much of the analysis is developed for spherical programs and then extended to

elliptical programs using the A matrix. For spherical programs, we use the
geometric interpretation of the radius of the level set and define (Rk}, k = 0, 1,
2 , . . . to be the sequence of radii associated with the level sets of the improving
points generated by Improving Hit-and-Run, i.e., R k = [[Xjk- x. I[1, where Xjk is
the k th record point. Also, R~ = h-l(f(Xj~)) = h-l(Yjk). Notice that the sequence
{Rk} is defined on ly for record points, and thus is strictly decreasing, i.e.,

R k > Rk+ 1 for k = 0, 1, 2
To measure computational complexity we define a sample point count, N(r), as

the number of points sampled to achieve Yj <~ h(r) for 0 < r ~< q. The sample point
count is equal to the count of iterations and equivalently the count of function
evaluations, since each iteration involves exactly one additional function evalua-
tion. There is very little overhead other than the function evaluation associated
with each iteration, so this is a very accurate indication of total computing time.
In the next section we prove our main result that the expected value of N(r) is at
m o s t 0(n5/2).

For the analysis we also define an improving point count, K(r), as the number

I M P R O V I N G H I T - A N D - R U N 177

of improving points needed to achieve YJk ~< h(r) for 0 < r < q. As an intermediate
result, we prove that the expected value of K(r) is at most quadratic in dimension.

3.2. COMPLEXITY ANALYSIS

We now turn to an analysis of the complexity of Improving Hit-and-Run. To
simplify the presentation of the analysis, we assume without loss of generality that
Y0 = Y*, and S equals the level set associated with X0. We also assume for the
spherical program that R 0 -- q.

We will proceed by first showing that we can restrict our attention to the case
where A = I, i.e., a spherical program where the level sets are concentric spheres
instead of ellipsoids. To facilitate the proof of this result, we transform an
elliptical program (P) with corresponding matrix A into a spherical program (/3)
by defining a transformed point ~ = Ax, and

S= { .~@R ":A - I . ~ S}

and

f:S--->R

f (~) = f(A-1)~).

Denote the transformed problem of minimizing)7 over S by (/3), and note that

rain s f(x) = min j~s
s

T H E O R E M 3.1. Performing the 1HR algorithm on the elliptical problem (P)

min f(x)
x E S

using H = A'A is equivalent (under the identification s Ax) to performing the
1HR algorithm on the problem (fi)

min T(s

using H = I.
Proof. See Appendix.

It follows from Theorem 3.1 that in the remainder of the complexity analysis, we
need only consider the class of spherical programs. Since the number of points
generated is invariant, all complexity results that will be obtained for this class
also hold for the more general case of elliptical programs.

We next determine the conditional distribution of improvement for Improving
Hit-and-Run on a spherical program. The conditional probability of making a
specified improvement on a single iteration depends on the position of the current
point,

178 ZELDA B. ZABINSKY ET AL.

P(Yj+, < y] Yj = w) = E[P(Yj+, <ylXj, Yj = w)]

= E[P(Xj+, E Py IXj, Yj = w)l .

The probability within the last expectation can be expressed as an integral in
terms of the random direction generated from the point x, and the ratio of the
length of improving line segment(s) in that direction,

p (x j + l ~ P ~ l X j = x , E = w) = f o D]]Lpy(d,x)U/l[Ls(d,x)lldF~D(d) (1)

where c~D is the boundary of the unit sphere, and FD(.) is the cumulative
distribution function for the normalized random direction vector. Note that the
normalized direction vector has a uniform distribution on the boundary of the unit
sphere (see [12]). The expression][LG(d, x)ll is the combined lengths of the line

segments formed by the intersection of the level set Py with the line in direction d
originating at x. In words, the probability of achieving an objective function value
of at most y, starting at point x with f(x) = w, is the probability of landing within
Py given direction d, i.e.,]lLsy(d, x)l l / l lLs(d, x)ll, integrated over all feasible
improving directions.

For general mathematical programs, the conditional probability of improve-
ment depends on the exact location of Xj, and makes it difficult to derive a
general expression. However, for the class of spherical programs, we can analyti-
cally derive the conditional probability of improvement.

L E M M A 3.2. For any spherical program (P), the conditional probability o f
improvement on the next sample point for IHR is given by

P(Yj+, < h(s)] Yj = h(r), Yo = h(q)) =- p(s; r, q)

(s) s 1 F I n - 1 1 1 n + 2 s 2 2
n 2 ' 2 ' 2 ' 2 , q 2 ,

for 0 < s <~ r <~ q, and for j = O, 1, 2 , . . . , where Fl(a, b, c, d; x, y) is a generalized
hypergeometric function (see [1] or [10]).

Proof. See Appendix.

Notice that the special case where s = r, denoted p(r; r, q), is the probability that
a sample point is improving given the current point is at Yj = h(r) and simplifies to
(using [10] pp. 1055, equation 10):

where

p (r ; r , q) = T ~ F , 2 ; 2 ; (2)

~ (n) =

n + l 1

I M P R O V I N G H I T - A N D - R U N 179

for 0 < r ~ < q , and for j = 0 , 1, 2 , . . . , where F(a,b;c;z) is Gauss' hyper-
geometric function (see [1] or [10]). We now express the expected number of
sample points, and hence the expected number of function evaluations, in terms
of the expected number of improving points.

THEOREM 3.3. For any spherical program (P), the expected number of IHR
sample points needed to achieve an objective function value of h(r) or better is
bounded by

E[K(r)]
E[N(r)] <~ p(r; r, q~

<~ q y(n)E[K(r)]
r

for 0 < r <<- q and where

n + l 1

~ , (n) =

= o (v - ~) .

Proof. See Appendix.

We now analyze the performance of improving points of IHR. We start by
evaluating a conditional probability for improving points and then develop a
bound on the expected number of improving points E[K(r)] in terms of di-
mension.

LEMMA 3.4. For any spherical program (P), the conditional probability dis-
tribution of improving points for IHR is given by

, p(s;r, q)
P(Rk+ 1 < s i R k = r, Ro= q)= ~ ~ q)

(s/r)"
9 - -

n

for O<s<~r<~q, and for k = 0 , 1, 2
Proof. See Appendix.

THEOREM 3.5. For any spherical program (P), the expected number of IHR
improving points needed to achieve an objective function value of h(r) or better is
bounded by

~[/, ;(r)] ~< nF~[K(r) TM]
= O(n 2)

180 Z E L D A B. Z A B I N S K Y E T AL.

for 0 < r <~ q where K(r) PAs is the corresponding expected number o f improving
points for PAS.

Proof. See Appendix.

The culminating result of polynomial complexity follows from combining
Theorems 3.3 and 3.5 with Theorem 3.1.

COROLLARY 3.6. For any elliptical program (P), the expected number of IHR
sample points needed to achieve an objective function value of h(r) or better is
bounded by

E[n(r)] ~ q- y(n)nE[K(r) vAs]
r

: O(n 5j2)

f o rO<r<~q .
Proof. From Theorem 3.3 we have, for 0 < r ~< q,

E[U(r)] <- q "y(n)E[K(r)]
r

and from Theorem 3.5

~< q__ ~(n)nE[/((r) ~As]
r

which yields

= O(nS/2). �9

4. Discussion

Improving Hit-and-Run has been shown to have search effort that is polynomially
bounded in dimension for the class of elliptical programs. This complexity is
attainable for strictly convex quadratic programs by choosing H to be the Hessian
of the objective function. Although this class is small, we can (in principle)
construct an algorithm with asymptotically the same polynomial complexity if the
objective function is twice continuously differentiable at the global minimum x.,
and if the Hessian/4. at that point, is strictly positive definite. In that case, we
can, for values of x sufficiently close to x.; approximate the objective function by

1
f (x) ~ L + ~ (x - x .) 'H , (x - x .)

by using the second order Taylor approximation at the global minimum. The
approximating function is now a strictly convex quadratic function, for which the
complexity results in this paper apply. However, we should know H. in advance
to implement the algorithm.

Alternatively, if f is twice continuously differentiable everywhere, we can, at

IMPROVING HIT-AND-RUN 181

iteration j, approximate the objective function by

1
f (x) ~- f (X j) + Vf(Xi) ' (x - Xj) + ~ (x - Xj) 'H(X~)(x - Xi) ,

where Vf(Xj) denotes the gradient at Xj, and H(Xj) denotes the Hessian at Xj.
This suggests that, in every iteration, we should use the Hessian at the iteration
point in the IHR algorithm. If this scheme is computationally too expensive, or if
H(X~) is not positive definite at some iteration point, one should turn to
approximation methods for the Hessian. For example, DFP and BFGS approxi-
mation schemes are used in quasi-Newton local search algorithms (see e.g. [20]).

The original hope for Improving Hit-and-Run was that its computational
complexity would be comparable to pure adaptive search. If extremely long
sequences of Hit-and-Run were used to approximate PAS then we would expect a
linear bound in dimension on improving points at a comparably high cost of
obtaining an improving point. For IHR, which has extremely short sequences of
Hit-and-Run (length one), the expected number of improving points has a
quadratic bound which although worse than PAS is associated with a comparably
low cost of obtaining an improving point. In fact, the total expected number of
function evaluations is only 0(n5/2). Thus IHR can be viewed as an optimizing
version of Hit-and-Run, and the complexity results provide support for the value
of short Hit-and-Run sequences within an optimizing framework.

Acknowledgements

This work was supported in part by NATO Collaborative Research Grant
0119/89. The work of Z.B. Zabinsky was partially supported by the Graduate
School Research Fund at the University of Washington. The work of J.F.
McDonald was partially supported by the Natural Sciences and Engineering
Research Council of Canada under Grant A4625.

Appendix

A. PROOFS FOR THE COMPLEXITY ANALYSIS

T H E O R E M 3.1. Performing the 1HR algorithm on the elliptical problem (P)

min f (x)
x ~ S

using H = A ' A is equivalent to performing the IHR algorithm on the problem (P)

min 1~(~)
s

using H = I.

Proof. We show that the following two methods are equivalent. Given Xj E S,

182 Z E L D A B. Z A B I N S K Y E T A L .

the first method is to generate Xi+ 1 using I H R as defined in the text on the
original problem (P) with H = A'A . The second method is to transform the given
Xj into X i = AXj , perform I H R on the transformed problem (/3) with H = I, and
then transform the point)(j+l back into the original space, Xj+ I = A Xj+ 1. We
now show that Xj+ 1 is stochastically equivalent to X~+ 1.

Method 2:
Step 1 '. Set J(i = A X r Generate a direction vector /)i from the normal dis-

tribution with mean 0 and covariance matrix I.
Step 2'. Generate a step size ~ uniformly f rom/~ j , the set of feasible step sizes

from the current iteration point Xj in the di rect ion/) j , i.e.,

t2j = e:2j + zSj g} .

If/~j = 0, go to Step 1.
Step 3'. Update the new point if it is improving:

J(i+l =)~j otherwise

and set lTj+ 1 = f(J(j+,). Set X;+I = A-1j(j+I.

First note that A D i, where Dj is as in Step 1 of IHR, has the same distribution
a s /) j in Step 1' of Method 2. Using this, we get

Lj = (A E R : X j + A D I O S }

= {A E R : A - a 2 j + A A - 1 D i E S }

= {A E R: a - l (J (j + A/)j) G S}

---- /~j �9

Thus sj from Step 2 and ~ from Step 2' are realizations from the same
d N

distribution, i.e., sj = sj. Note that

d f (A - 'X ~ + ~ - ' ~ f (X j + sjDi) = sjA DI)

= f (a -a (f (j + ~I)j))

N ~ d

and hence f (Xj+l) =f(Xj+l) . Thus the probability of not finding an improvement
is the same for both methods, and so if the new point is not improving, then

, d
Xj+ 1 = Xj+ 1. Now look at the distributions of the new iteration points given that
an improvement occurs:

I M P R O V I N G H I T - A N D - R U N 183

X j + 1 -~ A Xj+ 1

= A- ' (2 , + ~b i)

= A-~Xj + sjA Dj

d
= Xj + sjDj

S j + 1

t d
and again Xj+I = Xj+ 1. Thus performing IHR on (P) with H = A ' A is equivalent
in distribution to the second method of performing IH R on (/3) with H = I. �9

L E M M A 3.2 For any spherical program (P) , the conditional probability o f
improvement on the next sample point for IHR can be expressed as

P(Yj+I < h(s) I Yj = h(r), Yo = h(q))=-p(s; r, q)

(q) (~) " 1 (n - X 1 1 n + 2 s2 s 2)
n F1 2 ' 2 ' 2 ' 2 q 2 , r 2

for 0 < s <~ r <~ q, and for j = O, 1, 2 , . . . , where Fl(a ,b ,c ,d;x ,y) is a generalized
hypergeometric function (see [1] or [10]).

Proof. We derive the analytical expression for P (Yj+x < h(s)[~ -- h(r), }Io =
h(q)) in terms of the radii of the level sets, r. In order to take full advantage of
the symmetry of the problem, we shall use a spherical coordinate system (p,O,q~i,
i = 1 , n - 2) to compute the integral required to evaluate P (Yj+I<
h(s)[Yj = h(r), Yo = h(q)) =-- p(s;r,q). We let the origin of the spherical coordi-
nates be at X/, where the radius of the corresponding level set is r. Let the
positive x I axis run through the center of the level sets. Figure 1 illustrates a cross
section corresponding to fixed ~bi, i = 1 , . . , n - 2 of a level set of radius r within
the feasible region of radius q and containing a level set of radius s. Appendix B
includes a brief summary of spherical coordinates.

The integral that we need to evaluate corresponds to equation 1 in the text,
only now we use the spherical coordinate system. An important term in the
integral is the proport ion of the line intersecting the s-sphere to the line inter-

6(r,s,O)
secting the q-sphere, which we write as 6(r,q,O) (see Figure 1), where 6(r,s,O) is

the length of a line segment emanating in a direction 0 from a point Xj on a
sphere of radius r that intersects with a sphere of radius s. Let 00 be the angle that
corresponds to the line segment that is tangent to the inner sphere of radius s.
Then,

sin 00 = s / r .

Using spherical coordinates, the equation of the inner sphere of radius s is given
by

p 2 _ 2 r p cos0 + r 2 = s 2 ,

184 Z E L D A B. Z A B I N S K Y E T A L .

X ~ axis

"~ r slnO

r
q

Fig. 1.

or (refer to Figure 1),

p._ = r cos0 - ~/s 2 - r 2 sin20

for 0 ~< 0 ~< 0 o. Now, in the range 0 ~< 0 ~< 00 the length of the l ine segment that lies

in the sphere of radius s is i n d e p e n d e n t of the ~b i because of symmetry , and can be

expressed as

6 (r , s, 0) = p+ - p_ = 23v/s 2 - r e sin 2 0 .

Similar ly we get

6 (r , q , O) = 2 ~ / q z - r z sin 2 0 .

I t now follows easily that (refer to A p p e n d i x B for details)

IMPROVING HIT-AND-RUN 185

p(s; r, q)

f?lo 2 " " " ~0 ~r
6(r, s, O)

o)(0, (D1, �9 �9 �9 , (~n-2) 6(r, q, O) dO d ~ b l . . , d~b,_ 2

where

f O ~ 1 2 . . . f ~ r . . . ~ . . .
2 f o f0 ~ w(O' ~bl' q5"-2) dO d~bl d~b~-2

n - 3

09(0, ~b,, . . - , ~bn_2) = sin"-2(O) l~ sm" ,-2-~,_tq~k),
k = l

for n i> 4 (as in [26], pp. 227-228), and

6(r, s, O) ~/s 2 - r 2 sin 2 0

8(r, q, 0) V q 2 - r 2 sin 2 0

Af te r simplifying, we have

p(s; r, q) =

~ ~/s___~2 - r~ sin 2 0
sinn-2(0) dO

Vq 2 - r 2 sin 2 0

fo ~r/2 sinn-2(0) dO

and since for w, z > 0 the Beta function can be writ ten as ([1] pp. 258),

1 1 r (z) r (w)
-~ B(z, w) - 2 F(z + w)

we can write

- ji~/2 sin2Z-l(t) cos 2~ l(t) dt

s 2 - sin 2 0
2 ;Oo r 2

p(s; r, q) J 0 - - - sin n 2(0) d 0 .

B (n - 1 1) q+ sin20

It is easily shown that this expression is also valid for n = 2 and 3.
We now concentrate on the integral and go through a series of substitutions in

order to get the final expression. First we let a = s2/r z and b = q2/r2 to get

+
f;o - sin2 0 fo~ a_sin20~ 1/2

2 sinn-2(0) dO = (~ sin2----~/
-7 sin z 0

and then we change variables using sin20 = at to get

n - 2

fo 1 (a - - at ~ 1/2 (at) 2 a dt
= \ ~ - a t / 2(at)1/2(1 - at) 1/2

sin~-2(O) dO

186 Z E L D A B. Z A B I N S K Y ET AL.

n a2;()112n3
= -2 (b - a t e (f - at) t 2 dt

n - - 2

(2 (b/a - t) (1 /a - t) / t 2 dt

which, using 3.211 of [10] pp. 287, reduces to
n

_ a 2 (3 n - - 1) (n - - l l l n + 2

2bl/2 B 2 ' -2 Fa 2 ' 2 ' - 2 ' 2

Noticing that

' 2 1

8(n

we can write

-~ 1) n

.a)
, b , a �9

n,2 () a n - 1 1 1 n + 2 a
p(s; r, q) = - ~ Fa ~ ' 2 ' -2' 2 ; -~, a

and returning to the original variables

(q) (S r) (n - I 1 1 n + 2 s2 ~)
n l F 1 2 2 2 2 ' q n , , 2 , "

TH EO R EM 3.3. For any spherical program (P), the expected number o f IHR
sample points needed to achieve an objective function value o f h(r) or better is
bounded by

E[K(r)I
E[N(r)] <<-

p(r; r, q)

<~ q T(n)E[K(r)]
r

for 0 < r <~ q and where

~ , (n) =

= o (v - ~) .

Proof. We first express N(r) as a sum,
K(r)

N(r) = ~, Nm,
m = l

where N m is defined to be the number of sample points between R m_, and R m, for

I M P R O V I N G H I T - A N D - R U N 187

m = 1, 2 , . . . Thus N m is the number of sample points between consecutive
improving points (including the sample point corresponding to R m). Now we take
the expectation of both sides to get,

i- K(r)

E[N(F)] ~ E[m~=l Nm]

F F K(r)
= E [E [m Z = l g m l g (r) , R o , . . . ,RK(r) - I]]"

The conditional expectation can be rewritten, for r 0 > r 1> "--rk_ 1> r, and
k>~l:

F K(r)
E[m~-I Nm l K(r) = k' R~ = r ~ " " Rk- l = r~-l]

= E NmlK(r)=k, Ro= ro, . . . ,R~_l=rk 1
-1

=E NmlRo=ro,... ,R~_l=rk_l ,R~ ~ r
1

because the k-th improving point is the first point inside the r-sphere

k

= ~ E [N m l R o = r o , ' " , R k l = r k - l , Rk <~r]
m = l

by linearity of conditional expectation
k

= Z E [N m l R m - 1 =rm-1]
m = l

since N m is conditionally independent of Rj (] # m - 1) when given Rm_ 1

k
= ~ 1

m=l P(rm-1; rm-1, q)

because the number of sample points to achieve the m-th improving point, given
R m - 1 = rm- 1, has a geometric distribution with parameter p(r m_ 1 ; rm-1, q)

k

m=l p(r; r, q)

since p(r;r ,q) <~p(s;s,q) for s/> r

k
- p (r ; r , q) "

We now can show the first statement in the theorem,

E[N(r)]<-E[K(r)]
Lp(r; r, q)

E[K(r)]
- p (r ; r , q) "

188 ZELDA B. ZABINSKY ET AL.

The second statement follows easily from the expression for p(r;r, q) as given in
the text in equation (2),

r y (n)F ' 2 ; - - - ~ ; E[K(r)I

() n + X (1)
F \ - - ~ / F 1 n - 1 n + l 2 (- ,q) w h e r e y (n) = . N o t i n g t h a t F 2 ' 2 ' 2 ~<l, wehave

E[N(r)] ~ q ~,(n)E[g(r)l .
r

Now for large n, we have

/ n + l \
r t -5 -)

(see [6]), yielding 7 (n) = O(x/-~). �9

LEMMA 3.4. For any spherical program (P), the conditional probability for
improving points for IHR can be expressed as

p(s; r, q)
P(Rk+ 1 < s IRk = r, R o = q) - p(r; r, q)

(s / r) n
9 - -

n

for O<s<~r<~q, and for k = O , 1 , 2
Proof.

P(Rk+ , < s IRk = r, n o = q) = P(Y]+, < h(s) l Yj = h(r), ro = h(q))

+ P(Yj+2 < h (s) , Y]+l ~ h(r) l Yj = h(r),

Y o = h (q)) + . . .

= p(s; r,

= p(s; r,

_ p(s; r,
p(r; r,

From Lemma 3.2 and equation (2) we have

p (s ; r , q) = (q) (S r) n_l F l (n - I 1
n 2 ' 2

q) +p(s ; r, q) (1 - p (r ; r, q)) + . ."

q) ~ (1 - p (r ; r, q))'
i=0

q)
q)

1 n + 2 s2 ~2)
' 2 ' 2 , q2 ,

IMPROVING HIT-AND-RUN 189

and

~(~)~n+l (1) ~ ' ~ ' ~

It is easy to see from definitions that F(a,b;c;z) is increasing in z for z > 0 when
a,b,c > 0. Also, Fl(a,b,c,d;x,y) is increasing in both x and y for x, y > 0 when
a,b,c,d > 0. Thus,

(1 n - 1 n § q) (~) �9 �9 ~ < F n - 1 _ _ n + l .
F , 2 ' 2 ' ~ ' 2 ' 2 ,1

from [10] 9.122.1 pp. 1042 for 0 < r/q ~< 1. Similarly,

F l (n - 1 1 1 n + 2 ; S 22, S 2) (n - 1 1 1 , , n + 2) _ _ , 0 , 0
2 ' 2 ' 2 ' 2 q - - ~5 >~F1 ~ 2 ' 2 2

= 1 .

Hence

p(s; r, q)
p(r; r, q)

 1t. 1 1 (: ; 1 ~ , ~ ~ ~ q~, ~
n

(1 n - i n + l q) ' (2)
F ' 2 ' 2 ; F

(s/r)"
n

T H E O R E M 3.5. For any spherical program (P), the expected number of IHR
improving points needed to achieve an objective function value of h(r) or better is
bounded by

E[K(r)] <~ nE[K(r) eAs]

= O(n 2)

forO<r<~q.
Proof. From Lemma 3.4 we have a bound on the conditional probability for

improving points for IHR, for 0 < s ~< r <~ q

(s/r)" P (R I H R I~IHR = r) ~ - -
- - \ ' ' k + l ~ S I " ' k n

190 ZELDA B. ZABINSKY ET AL.

Similarly, for pure adaptive search (PAS) we have [28],

p f R P A S = \ ' ' k + l < S [R P A S F) = (s/r)" " ' k

Now we define the following intermediate algorithm, called A.

A L G O R I T H M A

Step O. Initialize X 0 E S, and k = 0.

Step 1. With probabili ty 1/n, choose Xk+ 1 uniformly from the set

{x :x E S, and f (x) < f (X k) } .

Otherwise, set Xk+ 1 = X k.
Step 2. Increment k, and return to Step 1.

Algor i thm A performs a PAS step with probabili ty 1/n. Thus for 0 < s ~< r ~< q we
have,

A A = F) - P(R~+ 1 < s I R ~

and further,

(S/F) n

A A ~ I H R I ~ I H R = r) . P(Rk+a <s]Rk = r)--~P(Rk+ 1 < s l . . ~

We have defined E[K(r)] to be the expected number of improving points needed

to achieve R k ~< r, and we now extend the definition for the three algorithms and
add a superscript. We now have E[K(r)IHR], E[K(r)PAS], and E[K(r)A]. With the

above comments , we have the following,

E[g(r) IHg] <~ E[g(r) A]

= nE[K(r) PAs]

= O (n 2) . �9

B. SPHERICAL COORDINATES

Here we summarize the spherical coordinates in n dimensions as given in [26],
pp. 227-228. We only include those details that are necessary for the proof of
L e m m a 3.2. Let xl , x 2 , . . . , x , denote the Cartesian coordinates and let p, 0,
r ~b,-2 denote the spherical coordinates. For n > 3, the relationships are
given by

X a = p COS 0

X 2 = p s in 0 c o s ~a

X 3 = p sin 0 sin Ca cos ~b 2

Xn_ 1 ~-- p sin 0 sin r sin (~ 2 " " " s i n r cos tb,_2

x n = p sin 0 sin r sin ~b2 �9 �9 �9 sin r sin ~b, 2 "

I M P R O V I N G H I T - A N D - R U N 191

Note that p = [[xl[and that 0 is the angle between x and the positive x 1 axis. In
order to cover the whole space - o 0 < x 1< +~ once, we need 0~<r< +~;
0~<0~<Tr; 0~<~bi~<~ for i = 1 , . . . , n - 3 ; and -~-~<(kn_z~<~. The surface
element of the unit sphere is given by

d o = r ~bl, . . . , qbn_2) dO d~b 1 . . . dq~n_2 ,

w h e r e ,

60(0, (~1, " " �9 , (~n-2) = sin.-2(0) i ik= ln-3 sin" n-2-k/~. ~)k)X

for n>~3.

R e f e r e n c e s

1. M. Abramowitz and I. A. Stegun, eds. (1961), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Applied Mathe-
matics Series 55, June 1964).

2. C. J. P. B~lisle, H. E. Romeijn, and R. L. Smith (1993), Hit-and-Run Algorithms for Generating
Multivariate Distributions, to appear in Mathematics of Operations Research.

3. C. J. P. Btlisle, H. E. Romeijn, and R. L. Smith (1990), Hide-and-Seek: A Simulated Annealing
Algorithm for Global Optimization, Technical Report 90-25, Department of Industrial and
Operations Engineering, The University of Michigan, Ann Arbor, September 1990.

4. H. C. P. Berbee, C. G. E. Boender, A. H. G. Rinnooy Kan, C. L. Scheffer, R. L. Smith, and J.
Telgen (1987), Hit-and-Run Algorithms for the Identification of Nonredundant Linear
Inequalities, Mathematical Programming 37 184-207.

5. A. Boneh (1983), A Probabilistic Algorithm for Identifying Redundancy by a Random Feasible
Point Generator (RFPG), in M. H. Karwan, V. Lotfi, J. Telgen, and S. Zionts, eds., Redundancy
in Mathematical Programming (Springer-Verlag, Berlin).

6. H. Cram& (1946), Mathematical Methods of Statistics (Princeton University Press).
7. L. C. W. Dixon and G. P. Szeg6, eds. (1975), Towards Global Optimization (North-Holland,

Amsterdam).
8. L. C. W. Dixon and G. P. Szeg6, eds. (1978), Towards Global Optimization 2 (North-Holland,

Amsterdam).
9. W. Feller (1971), An Introduction to Probabittiy Theory and Its Applications, Volume 2, 2nd

Edition (John Wiley and Sons, New York).
10. I. S. Gradshteyn and I. M. Ryzhik, eds. (1980), translated by Alan Jeffrey, Table of Integrals,

Series, and Products (Academic Press, New York).
11. M. H. Karwan, V. Lotfi, J. Telgen, and S. Zionts, eds. (1983), Redundancy in Mathematical

Programming (Springer-Verlag, Berlin), 108-134.
12. D. E. Knuth (1969), The Art of Computer Programming, Vol. 2 (Addison-Wesley, Reading,

Massachusetts), p. 116.
13. J. P. Lawrence III and K. Steiglitz (1972), Randomized Pattern Search, IEEE Transactions On

Computers C-21, 382-385.
14. K. G. Murty (1983), Linear Programming (John Wiley and Sons, New York).
15. V. A. Mutseniyeks and L. Rastrigin (1964), Extremal Control of Continuous Multi-Parameter

Systems by the Method of Random Search, Engineering Cybernetics 1, 82-90.
16. N. R. Patel, R. L. Smith, and Z. B. Zabinsky (1988), Pure Adaptive Search In Monte Carlo

Optimization, Mathematical Programming 43, 317-328.
17. L. A. Rastrigin (1960), Extremal Control by the Method of Random Scanning, Automation and

Remote Control 21, 891-896.
18. L. A. Rastrigin (1963), The Convergence of the Random Method in the Extremal Control of a

Many-Parameter System, Automation and Remote Control 24, 1337-1342.
19. S. M. Ross (1983), Stochastic Processes (John Wiley and Sons, New York).

192 Z E L D A B. Z A B I N S K Y ET AL.

20. L. E. Scales (1985) Introduction to Non-Linear Optimization (Macmillan).
21. G. Schrack and N. Borowski (1972), An Experimental Comparison of Three Random Searches,

in F. Lootsma, ed., Numerical Methods for Nonlinear Optimization (Academic Press, London),
pp. 137-147.

22. G. Schrack and M. Choit (1976), Optimized Relative Step Size Random Searches, Mathematical
Programming 10, 270-276.

23. M. A. Schumer and K. Steiglitz (1968), Adaptive Step Size Random Search, IEEE Transactions
On Automatic Control AC-13, 270-276.

24. R. L. Smith (1984), Efficient Monte Carlo Procedures for Generating Points Uniformly Distribut-
ed over Bounded Regions, Operations Research 32, 1296-1308.

25. F. J. Solis and R. J.-B. Wets (1981), Minimization by Random Search Techniques, Mathematics
of Operations Research 6, 19-30.

26. A. Sommerfeld (1949), Partial Differential Equations in Physics (Academic Press, New York).
27. Z. B. Zabinsky (1985), Computational Complexity of Adaptive Algorithms in Monte Carlo

Optimization (Ph.D. Dissertation from The University of Michigan, Ann Arbor MI).
28. Z. B. Zabinsky and R. L. Smith (1992), Pure Adaptive Search in Global Optimization,

Mathematical Programming 53, 323-338.
29. Z. B. Zabinsky, D. L. Graesser, M. E. Tuttle, and G. I. Kim (1992), Global Optimization of

Composite Laminates Using Improving Hit-and-Run, in C. A. Floudas and P. M. Pardalos, eds.,
Recent Advances in Global Optimization, Princeton University Press.

