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Improving Hospital Performance
Rankings Using Discrete Patient
Diagnoses for Risk Adjustment of
Outcomes

Brendan DeCenso, Herbert C. Duber, Abraham D. Flaxman,
Shane M. Murphy, and Michael Hanlon

Objective. To assess the changes in patient outcome prediction and hospital perfor-
mance ranking when incorporating diagnoses as risk adjusters rather than comorbidity
indices.

Data Sources. Healthcare Cost and Utilization Project State Inpatient Databases for
New York State, 2005-2009.

Study Design. Conducted tree-based classification for mortality and readmission by
incorporating discrete patient diagnoses as predictors, comparing with traditional
comorbidity indices such as those used for Centers for Medicare and Medicaid Services
(CMS) outcome models.

Principal Findings. Diagnosis codes as predictors increased predictive accuracy 5.6
percent (95% CI: 4.5-6.9 percent) relative to CMS condition categories for heart fail-
ure 30-day mortality. Most other outcomes exhibited statistically significant accuracy
gains and facility ranking shifts. Sensitivity analysis showed improvements even when
predictors were limited to only the diagnoses included in CMS models.

Conclusions. Discretizing patient severity information beyond the levels of tradi-
tional comorbidity indices improves patient outcome predictions and substantially
shifts facility rankings.

Key Words. Risk adjustment, machine learning, Medicare

In an ongoing effort to incentivize quality health care delivery, the Centers for
Medicare and Medicaid Services (CMS) has introduced two pay-for-perfor-
mance initiatives monitoring hospital patient outcomes: (1) the Hospital
Value-Based-Purchasing (HVBP) program, which will link 0.5 percent of
FY 17 Medicare DRG-based payments to 30-day mortality measures (Centers
for Medicare and Medicaid Services, 2015), and (2) the Hospital Readmissions
Reduction Program (HRRP), which links 3.0 percent of DRG-based
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payments to readmission rates (Joynt and Jha 2013). For FY 14, roughly one-
quarter of eligible hospitals experienced a 0.2 percent or more reduction in
payments under HVBP (Conway 2014), while approximately two-thirds saw
penalties under HRRP (Boccuti and Casillas 2015). To control for varying
average patient health (“risk”) across facilities, CMS risk adjusts outcome
measures using the condition categories forming Hierarchical Condition
Categories (HCCs), a comorbidity index implemented in the early 2000s to
predict expenditures and determine capitated payments for Medicare Advan-
tage issuers (Pope et al. 2004). HCCs have been compared against baseline risk
adjustment indices, such as pure age—sex models and the Elixhauser comorbid-
ity index, and been found to be more representative of patient severity for major
cardiovascular conditions (Li, Kim, and Doshi 2010; Krumholz et al. 2007).

To assess health facility performance, traditional risk adjustment of out-
comes relies on hierarchical logistic regression with facility random effects.
Defining predictors for such models involves grouping a large number of bin-
ary indicators, typically diagnosis codes in patient records, into a smaller set of
medically relevant categories, such as HCCs (Krumholz et al. 2007). For
instance, the presence of malignant neoplasms in respiratory or digestive
organs registers as a single binary indicator representing cancers of those sys-
tems. Facility risk-adjusted rates are then calculated by inflating or deflating
the mean population outcome by facility random effects, independent of vari-
ation explained by patient-level predictors.

Over the past two decades, data scientists have developed sophisticated
nonparametric machine learning techniques as alternatives to logistic regres-
sion (James et al. 2013). Among these techniques are classification and regres-
sion trees (CART), which trace observations through single predictors at a
time in a decision tree fashion. A main advantage of CART is that, unlike
methods used to fit logistic regression, it does not estimate parameters simulta-
neously, computationally accommodating a much larger number of predic-
tors. In terms of risk adjustment, this feature allows for diagnostic predictors
to be kept discrete, avoiding information loss that could occur in grouping
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them. Additionally, CART implicitly explores interactions between predic-
tors, a flexibility that logistic modeling lacks (Touw et al. 2013). Past studies
have examined nonparametric machine learning for risk adjustment and
found improvements in accuracy over traditional methods (DiRusso et al.
2000; Eftekhar et al. 2005; Robinson 2008; Austin et al. 2012; Liu et al.
2015). Others have replicated CMS outcome models and compared to alter-
native predictor sets: Li, Kim, and Doshi (2010) found that HCCs outperform
the Charlson and Elixhauser comorbidity indices; and Silber et al. (2010,
2016) found that including facility-level information, particularly patient vol-
ume, improved accuracy of the CMS outcome models. We uniquely combine
aspects from the above studies by replicating CMS methodology, and compar-
ing the predictive performance of CMS risk adjusters to that of discrete ICD-9-
CM codes. We hypothesize that discretizing patient severity information will
improve the accuracy of risk-adjusted outcomes to such an extent that hospital
performance rankings will shift toward a truer order, implying that there exists
a more appropriate allocation of performance-based payments.

METHODS
Data Source and Study Population

We identified cases of acute myocardial infarction (AMI), heart failure (HF),
and pneumonia (PN) in New York State (NY) from 2006 to 2007 within the
Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases
(SID). We categorized the occurrences of each condition by applying CMS
criteria to a patient’s primary diagnosis (Grady et al. 2013a, b). We removed
all the patients under the age of 66 to approximate a Medicare patient popula-
tion with at least a one-year history. Other sample exclusions followed CMS
methodology (Grady et al. 2013a, b), a listing of which can be found in
Table 1. We were unable to precisely match the CMS pay-for-performance
population in that we (1) excluded Medicare beneficiaries under age 65, and
(2) included beneficiaries enrolled in Medicare Advantage, Medicare Hospice
programs, or Veterans Health Administration Hospice programs in the
12 months prior to admission.

Outcomes

We examined nine outcomes: 30-day readmission, 30-day mortality, and in-
facility mortality for each of AMI, HF, and PN. Our dataset consisted of NY
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inpatient records, from which we captured 30-day readmission provided the
readmission occurred in New York. We did not count as readmissions those
admissions with diagnoses or procedures defined by CMS as planned visits
(Grady et al. 2013b). Transfers were treated as single observations by assign-
ing deaths to the originating hospital and readmissions to the final hospital.
Because our data lacked vital registration information, we could not directly
assign 30-day mortality. To account for this limitation, we referenced 2006—
2009 NY admissions and deaths in the inpatient setting to assign 30-day mor-
tality for 76.4 percent of 2006 admissions and 73.1 percent of 2007 admissions
in our analysis. We then dropped from the 30-day mortality sample admis-
sions with indeterminate status—those corresponding to out-of-facility deaths,
or patients not admitted to a NY facility between 30 days following their
index admission and year-end 2009. For the sake of having a complete mortal-
ity outcome, we also examined in-facility mortality. It should be noted that in-
facility mortality produces biased performance rankings in favor of facilities
with low length-of-stay (Rosenthal et al. 2000).

Predictors

We compiled seven predictor sets: (1) age and sex alone (“Age—sex”), (2) Elix-
hauser comorbidities (“Elixhauser”; Elixhauser et al. 1998), (3) CMS condi-
tion categories used for HCCs (“CMS”), (4) three-digit ICD-9-CM diagnosis
codes (“3-digit ICD expanded”), (5) a restricted set of three-digit ICD-9-CM
diagnosis codes (“3-digit ICD restricted”), (6) five-digit ICD-9-CM diagnosis
codes (“5-digit ICD expanded”), and (7) a restricted set of five-digit ICD-9-
CM diagnosis codes (“5-digit ICD restricted”). The “restricted” ICD predictor
sets consisted of only diagnosis codes that translate into CMS condition cate-
gories used for a given outcome—that is to say, the only difference between
the CMS predictor set and the ICD “restricted” predictor sets was the extent
to which patient diagnostic information was discretized. Per 2008 CMS model
revisions (Bhat et al. 2008), we did not impose hierarchies on condition cate-
gories to form HCCs. We combined related condition categories in line with
CMS methodology (e.g., schizophrenia and major depressive disorder) and
reduced categories to only those used by CMS models. For the ICD predictor
sets, binary indicators represented the presence of specific three-digit (e.g.,
276.XX) or five-digit (e.g., 276.51) diagnosis codes. We populated the Elix-
hauser, CMS, and ICD predictor sets with one-year inpatient histories, and
from index admissions included only diagnoses present-on-admission, as
established in the literature (Iezzoni 2007). Notably, CMS excludes diagnoses
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for condition categories indicating complications of the index admission even
if present-on-admission (Grady et al. 2013a, b)—we removed all such diag-
noses from both the CMS and the ICD predictor sets. We additionally
removed five diagnoses from the ICD “expanded” predictor sets (995.91,
995.92, 348.1, 780.01, and 783.7) that could reasonably be facility induced, do
not translate to HCCs, and were found to be highly predictive of outcomes.
Finally, we removed from the ICD “expanded” predictor sets all ICD-9-CM
V codes that do not translate to CMS condition categories, as V codes are less
often tied to payment and therefore vary in usage across facilities.
Appendix SA3 provides further detail on ICD-9-CM codes excluded from
the ICD “expanded” predictor sets.

Tree-Based Classification

For outcome predictions, we utilized random forests, a classification
technique that incorporates uncertainty in two ways: (1) by creating
multiple decision trees with bootstrapped datasets drawn from a training
set of observations, and (2) by randomly selecting only a subset of all
predictors at each node in a tree, and subgrouping observations by the
predictor among the selected subset that yields the best split of the data
(Breiman 2001). For classification, the “best split of the data” at a node
minimizes heterogeneity in outcomes for immediately subsequent group-
ings. Once all splits have been made and decision trees compiled, test
set observations are run through the splitting rules of each tree, with
the expectation of a test observation having a particular outcome equal-
ing the fraction of trees assigning the observation to that outcome.

For each outcome and predictor set, we first trained random forests on
2006 admissions. Each of these training runs provided two outputs of interest:
(1) predictions (“risk scores”) for 2007 admissions, to be used in the logistic
modeling described below, and (2) an “importance” score for each predictor,
representing the extent to which accuracy decreased if the predictor was left
out of classification. We used the randomForest package in R version 3.3.1 for
classification (R Core Team 2016; Liaw and Wiener 2002).

Model Comparisons

To produce model fit statistics—the c-statistic and Hosmer—Lemeshow chi-
square value (Hosmer and Lemeshow 1980)— we ran 10-fold cross validation
on 2007 admissions with logistic regression fit by maximum likelihood
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estimation without facility random effects. The risk scores outputted by ran-
dom forests for 2007 admissions served as the only right-hand-side variable.

We then used hospital-clustered bootstrapping to generate 500 datasets
consisting of 2007 admissions for each outcome and calculated the c-statistic
as described above for each predictor set on each bootstrapped dataset. Also
for each predictor set on each bootstrapped dataset, we ran mixed effects logis-
tic regression fit by maximum likelihood with facility random effects. The risk
scores outputted by random forests for each predictor set served as fixed
effects in these models. We then calculated facility risk-adjusted rates dividing
predicted outcomes (facility random effect included) by expected outcomes
(facility random effect excluded) and multiplying by the mean outcome in the
full sample. Within each bootstrapped dataset, we ranked facilities according
to their risk-adjusted rates and calculated the change in ranking between the
CMS predictor set and other predictor sets. We then calculated across all boot-
straps each facility’s mean risk-adjusted rate, the average change in ranking
and average relative percent change in c-statistic between the CMS predictor
set and other predictor sets, as well as the 2.5th percentile and 97.5th percentile
change in ranking and relative percent change in c-statistic between the CMS
predictor set and the other predictor sets. We further described reclassification
under the five-digit ICD “restricted” and “expanded” predictor sets relative to
the CMS predictor set using facility ranking scatterplots (based on facility
mean risk-adjusted rates) and quintiles of risk-adjusted rates. We conducted all
data processing, logistic modeling, and analysis in Stata SEversion 14.2 (Stata-
Corp 2015).

RESULTS

Table 1 presents demographic information, sample counts, and crude rates by
outcome. Table 2 displays model fit statistics for each outcome and predictor
set, as well as facility ranking changes and c-statistic changes relative to the
CMS predictor set. The five-digit ICD predictors outperformed CMS predic-
tors for 30-day mortality and 30-day readmission outcomes, with anywhere
from a 1.5-3.5 and 1.7-5.6 relative percent increase in the c-statistic over
CMS predictors for the “restricted” and “expanded” sets, respectively. The
five-digit ICD predictors also outperformed corresponding three-digit ICD
predictors.

Appendix SA2 lists the 200 most important predictors for the five-digit
ICD “restricted” and “expanded” predictor sets. For the most part, conditions
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that served as strong predictors across all outcomes—for instance, chronic kid-
ney disease, malignant neoplasms, and dementia—appeared in both
“restricted” and “expanded” predictor sets, indicating they are conditions
included in CMS outcome models. Table 3 presents the most important
five-digit ICD “expanded” predictors not included in CMS models for each
outcome.

Scatterplots of five-digit ICD facility rankings against CMS rankings are
shown in Figure 1. When facility risk-adjusted rates were grouped into quin-
tiles, 26.8, 21.2, and 30.1 percent of facilities shifted from one quintile to
another under the five-digit ICD “expanded” predictor set relative to the
CMS predictor set for AMI, HF, and PN 30-day mortality, respectively. Simi-
larly, 12.4, 19.1, and 22.7 percent of facilities shifted from one quintile to
another for AMI, HF, and PN 30-day readmission, respectively. For the five-
digit ICD “restricted” predictor sets, these values were 17.0, 15.4, and 21.1 per-
cent for AMI, HF, and PN 30-day mortality, respectively; and 12.4, 18.2, and
18.0 percent for AMI, HF, and PN 30-day readmission, respectively.

DISCUSSION

We used tree-based classification to predict mortality and readmission for
three different conditions, finding that individual ICD-9-CM diagnoses
yielded more accurate predictions for all outcomes relative to CMS condition
categories. This relationship held even for our five-digit ICD “restricted” pre-
dictors, where the only difference from CMS condition categories was that
individual diagnoses were broken out rather than grouped together. This find-
ing that discretization of patient severity information (beyond traditional
levels) improves outcome prediction is further evidenced by the five-digit
ICD predictors outperforming three-digit ICD predictors.

We additionally found substantial facility ranking shifts when comparing
the five-digit ICD “expanded” predictors and CMS predictors across all out-
comes, with the average facility moving in the rankings by roughly 5 percent
for most outcomes, and up to 30 percent of facilities shifting into a different
quintile of performance. Notably, ranking shifts observed when moving from
CMS predictors to five-digit ICD “expanded” predictors in some cases
exceeded the shifts observed when moving from the purely demographic
age—sex predictors to CMS predictors. When combined with the increased
accuracy of ICD predictors, these results point to the strengths of a data-driven
approach—ICD predictors outperformed CMS predictors and sizably
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Figure 1: Performance Rankings, Five-Digit ICD Relative to CMS
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impacted performance rankings. The introduction of ICD-10-CM in the Uni-
ted States, with its four-fold increase in diagnosis codes, presents an opportu-
nity to further leverage these gains in predictive accuracy.

As shown in Table 3, results from our five-digit ICD “expanded” models
yielded diagnoses that were highly informative in classification models but
might not be traditionally considered for risk adjustment. These diagnoses
included sequelae of serious conditions (e.g., anemia in neoplastic/chronic
kidney disease), signs of underlying debility and/or weakened immune
response (e.g., cellulitis, abnormal coagulation, obesity, dysphagia, diarrhea, a
history of being coded with “failure to thrive”), and disorders of systems tan-
gentially related to the condition of interest (e.g., aortic valve disorder for PN
outcomes, gastrointestinal inflammation/bleeding for all outcomes). This abil-
ity to identify predictors, which would not at first glance seem to be clinically
relevant to the outcome of interest, is another benefit of a nonparametric
machine learning approach.

We note several limitations in our analysis. First, despite our efforts to
exclude potentially facility-induced codes from our ICD “expanded” models,
there are likely still some of these codes among the strongest predictors. For
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the sake of transparency, we have included a list of the top-200 strongest pre-
dictors in Appendix SA2. An additional limitation is that we utilized classifica-
tion trees for all predictor sets to facilitate comparisons across their outputs
and parse out the incremental effect of discretizing patient severity informa-
tion. Multiple studies have shown little advantage or even a disadvantage for
implementing CART over logistic regression when run on identical predictor
sets (Colombet et al. 2000; Dreiseitl and Ohno-Machado 2002; Terrin et al.
2003; Austin 2007). Hierarchical logistic regression and/or more fine-tuned
tree-based classification may be better modeling tools for the objective of this
analysis and merit further exploration. Additional limitations in our analysis
include (1) our 30-day mortality assignment was incomplete (we acknowledge
that patients dropped due to unknown 30-day mortality were likely those for
whom outcomes would be most difficult to predict; however, all models com-
pared in this analysis were subject to this same bias), (2) we populated patient
histories using only encounters from the inpatient setting, and (3) our sample
did not precisely capture the population used for CMS hospital performance
measures.

Despite the above limitations, we believe that incorporating individual
patient diagnoses as severity predictors demonstrates strong potential to
improve outcome prediction and hospital performance rankings. The results
presented here have relevance for U.S. performance-based financing pro-
grams, such as HVBP and HRRP, in that even small ranking shifts under
those programs can be enough to impact facility payments. To clarify these
findings, future analyses could quantify the degree to which using different
risk adjustment models influences hospital performance-based payments, as
well as assess the potential to improve patient outcome prediction with the fur-
ther discretization of diagnostic information under ICD-10-CM.
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